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Abstract 30 

Earth’s Critical Zone sustains terrestrial life, and consists of the thin planetary surface 31 

layer between unaltered rock and the atmospheric boundary. Within this zone, flows 32 

of energy and materials are mediated by physical processes and by the actions of 33 

diverse organisms. Human activities significantly influence these physical and 34 

biological processes, affecting the atmosphere, shallow lithosphere, hydrosphere and 35 

biosphere. The role of organisms includes an additional class of biogeochemical 36 

cycling, this being the flow and transformation of genetic information. This is 37 

particularly the case for the microorganisms that govern carbon and nitrogen cycling. 38 

These biological processes are mediated by expression of functional genes and their 39 

translation into enzymes that catalyze geochemical reactions. Understanding human 40 

effects on microbial gene activity and microbial distribution is an important 41 

component of Critical Zone science, but is highly challenging to investigate across the 42 

enormous physical scales of impact ranging from individual organisms to the planet. 43 

One arena where this might be tractable is by studying the dynamics and 44 

dissemination of genes for antibiotic resistance and the organisms that carry such 45 

genes. Here we explore the transport and transformation of microbial genes and cells 46 

through Earth’s Critical Zone. We do so by examining the origins and rise of 47 

antibiotic resistance genes, their subsequent dissemination, and the ongoing 48 

colonization of diverse ecosystems by resistant organisms. 49 

 50 

  51 



Introduction 52 

Earth’s Critical Zone is the thin surface layer of the planet upon which terrestrial life 53 

depends. It extends from unaltered bedrock, through the land surface, to the 54 

vegetation canopy and atmospheric boundary layer. Critical Zone science is 55 

complementary to other integrative systems approaches for studying terrestrial, 56 

marine and freshwater environments. Crucially, it includes a mechanistic 57 

understanding of shallow lithosphere processes and their interactions with the above-58 

ground ecosystems (Mobley 2009) 59 

. It addresses these interactions across wide temporal (sub-second reaction kinetics to 60 

geological time spans) and spatial scales (molecular to planetary). The Critical Zone 61 

approach recognizes Earth as a physical and geochemical substrate that supports 62 

above ground ecological functions, and extends the lower boundary of ecological 63 

function to embrace the lithosphere, and its inputs over geological time scales. 64 

 65 

This interdisciplinary research area within geobiology links biological and 66 

geochemical processes across temporal and spatial scales. However, the distribution, 67 

transport and recruitment of functional genes has rarely been investigated via the 68 

systems perspective framed by Critical Zone science. Since investigation of Critical 69 

Zone biogeochemical processes extends the analysis of flows and transformations of 70 

material and energy to explicitly include biodiversity, a tractable approach may be to 71 

describe the geospatial dynamics of the genetic information encoded in functional 72 

genes, and the microbes that carry these genes. Above–ground human activities 73 

generate impacts that are transmitted through the vertical extent of the Critical Zone, 74 

via aquifers, and horizontally within water catchments. Analyzing the vertical and 75 

horizontal penetration of genetic material should be part of these investigations 76 

(Küsel, et al. 2016). 77 

 78 

Environmental microbes and genes are traditionally studied in one location, or in one 79 

environmental compartment (such as vegetation, the water column, or soil), with little 80 

attention paid to the dynamic exchange of microbes and genes across system 81 



boundaries and physical scales. The advent of "omics" tools has facilitated the 82 

exploration of Earth’s biological ‘dark matter’, but there remains a substantial 83 

conceptual gap between the notion of the Earth’s biome and its quantitative 84 

manifestation in biogeochemical fluxes. Integrating "omics" data into earth system 85 

science should generate better models of biogeochemistry and improve understanding 86 

of how environmental changes will impact microorganisms. For instance, 87 

incorporating environmental genomics data into biogeochemical models improves 88 

predictions about nitrogen cycling (Mock, et al. 2016; Reed, et al. 2014).  89 

 90 

Driven by these concepts, there is increasing attention towards system views of the 91 

temporal and spatial distribution of microbes and genes in Earth’s Critical Zone. 92 

Metagenomics has been used to determine the influence of fluvial networks on the co-93 

occurrence of microbes, by examining biofilms in over a hundred streams (Widder, et 94 

al. 2014). The distribution and origins of fecal bacteria have been determined in large 95 

mixed-use watersheds in Michigan, USA, also using omics technologies 96 

(Verhougstraete, et al. 2015). Similar ecosystem wide approaches have been used to 97 

demonstrate how below ground microbial diversity might be a primary driver of plant 98 

diversity and productivity (Bardgett and van der Putten 2014). Questions are also 99 

being asked about how surface activities might influence below ground biota and 100 

nutrient cycling, using combinations of omics, biogeochemical, and hydrogeological 101 

approaches (Küsel, et al. 2016).  102 

 103 

These publications are representative of recent efforts to explore the links between 104 

microbial biogeography, biogeochemistry and geological processes. In particular, they 105 

reflect a growing interest on the effects that human activities might have on the 106 

microbial world (Gillings and Paulsen 2014). Understanding the role that humans 107 

might have in changing the distributions of microorganisms, and in generating 108 

selective forces that alter adaptive pressures, are essential if we are to predict how 109 

global change will affect microbial activity and function. However, many of the most 110 

important processes for Critical Zone function are complex, multi-gene and multi-cell 111 



interactions that are difficult to model, due to the complexity and dynamics of genetic 112 

and functional diversity within indigenous microbial communities. 113 

 114 

There are alternative, simpler systems that we can use to understand the influences 115 

that humans have on the transport and transformation of genetic information in the 116 

Critical Zone. Antibiotic resistance, for instance, is generally a one-gene, one 117 

phenotype character, and has been the subject of considerable research over the last 118 

fifty years. Genes conferring resistance, and the cells that host these genes, could be 119 

used as a paradigm for assessing the interactions of gene flow with the diversity of 120 

microorganisms in the Critical Zone. 121 

 122 

Antibiotic resistance might be a good proxy that can inform more general conclusions 123 

about alterations in the distribution and activity of the microorganisms that host 124 

specific genes within the Critical Zone. The widespread use of antibiotics in 125 

agriculture and medicine has increased the abundance of both resistance genes and the 126 

bacteria that host them. These genes and microorganisms are then shed into 127 

environmental compartments via human and animal waste streams such as manure, 128 

sewage sludge, and wastewater (Gillings 2013). As a consequence, antibiotic 129 

resistance genes are considered to be emerging environmental contaminants (Pruden, 130 

et al. 2013). On the one hand, the spread of resistance determinants within the Critical 131 

Zone is caused by human activities, and on the other hand, it also threatens human 132 

health worldwide. The history of resistance begins in the 1950s, and is thus co-133 

incident with the ‘Great Acceleration’ and the rapidly increasing impact of  humans 134 

activity on the planet since this time point (Steffen, et al. 2015). 135 

 136 

Natural transport and biogeography of bacteria 137 

We live in a world where organismal abundance and gene frequencies have been 138 

significantly shaped by human activities. Nevertheless, it is worth reflecting on the 139 

historical dynamics of microbial organisms and ecosystems, before the rise of human 140 

influence. This allows comparisons with the modern world.  141 



 142 

It has been known for some time that microorganisms exhibit the same taxa-area 143 

relationships and turnover in species assemblages with distance that are characteristic 144 

of larger organisms (Green, et al. 2004; Horner-Devine, et al. 2004). Taxa are 145 

distributed non-randomly in environments such as soil, fresh water and groundwater, 146 

at scales from meters to many thousands of kilometers (Martiny, et al. 2006). These 147 

patterns are driven by a combination of factors, including: the ability to disperse over 148 

distance; selection at the destination; and stochastic processes such as drift and 149 

mutation (Hanson, et al. 2012). Teasing apart the relative contributions of the 150 

processes that generate patterns of microbial biogeography is difficult, and is further 151 

complicated by the diversity and complexity of microbial communities themselves 152 

(Evans, et al. 2017; Haggerty and Dinsdale 2016). The impact of human migration as 153 

a transport vector on structuring prokaryotic communities is still poorly understood. 154 

Some authors have argued that stochastic events could be more important than 155 

deterministic factors such as competition and niche differentiation (Sloan, et al. 2006). 156 

 157 

At the largest possible temporal and spatial scales, bacteria are the best candidates to 158 

survive interplanetary transfer inside rock. Such lithopanspermia is a potential means 159 

that life could be transferred between planetary bodies within and outside our solar 160 

system (Nicholson 2009). On Earth, but still across large spatial scales, 161 

microorganisms are capable of long-distance dispersal, being ubiquitous and 162 

abundant, even in the upper atmosphere (Barberán, et al. 2015). Thousands of distinct 163 

bacterial taxa, accompanied by other microorganisms, are carried within dust plumes 164 

in long-range intercontinental transport events. For instance, Asian aerosols contribute 165 

to microbial species richness in North American air (Smith, et al. 2013), and dust 166 

storms generated in the African Sahara-Sahel transport microorganisms that 167 

eventually contribute to bacterial assemblages in European mountain lakes (Perfumo 168 

and Marchant 2010; Peter, et al. 2014). 169 

  170 

Natural release and survival of DNA  171 



Microbial biogeography is further complicated by the ability of microorganisms to 172 

acquire foreign DNA, and consequently movement of genes through the Critical Zone 173 

can occur independently of organismal movement. DNA released from organisms can 174 

transfer to unrelated species either through close contact, or at a distance, when DNA 175 

can survive in the environment for extended time periods (Gillings 2017b). 176 

 177 

Extracellular DNA can be readily detected in environmental samples, and can 178 

originate from dead bacterial, animal or plant cells. All soils contain significant 179 

quantities of extracellular DNA (Frostegård, et al. 1999). This DNA can persist in the 180 

environment and can be transported away from cell debris. Because DNA can resist 181 

physical and biological degradation under some conditions, it has even been proposed 182 

as a potential signature of life during interplanetary exploration (Lyon, et al. 2010).  183 

 184 

Under natural conditions, DNA released via cell lysis is in contact with other cellular 185 

components (wall debris, proteins, lipids, RNA, etc.). The presence of both organic 186 

compounds and inorganic molecules in soil particles strongly influences the 187 

adsorption of DNA (Pietramellara, et al. 2009). Consequently, DNA can be protected 188 

from enzymatic degradation in soil by adsorption onto soil minerals and humic 189 

substances (Levy-Booth, et al. 2007). Protection against degradation by DNases of 190 

microbial origin is aided by the concomitant adsorption of nucleases (Demanèche, et 191 

al. 2001). Many studies on survival of DNA in the environment have been conducted 192 

using plasmids and antibiotic resistance genes as markers. 193 

 194 

The DNA persisting in soil is only a tiny fraction of the total DNA being released at 195 

any one time from decaying plants, animals and microorganisms. This DNA usually 196 

undergoes rapid degradation (Ceccherini, et al. 2007; Pontiroli, et al. 2007; Poté, et al. 197 

2010). Degradation is biological and enzymatic, since DNA can survive in autoclaved 198 

treatments (Zhu 2006). Nevertheless, a proportion of extracellular DNA does persist 199 

in natural environments, either bound to soil particles, or inside biofilms, where it is 200 

an important structural component (Pietramellara, et al. 2009; Whitchurch, et al. 201 



2002). In the long term, persistence eventually requires being taken up by a recipient 202 

cell, and incorporated into that cell’s genome. The likelihood of this occurring 203 

improves with increasing phylogenetic and ecological similarity of donor and 204 

recipient (Beiko, et al. 2005), and also improves markedly if the donor DNA can 205 

confer an adaptive phenotype. This is one reason why genes that confer antibiotic 206 

resistance are a good marker for these processes in natural environments. 207 

 208 

Movement and transport of extracellular DNA. 209 

DNA is able to be transported vertically in unsaturated soils, to eventually penetrate 210 

groundwater and aquifers, where it can be immobilized through adsorption onto 211 

mineral surface or be transported with groundwater flow (Poté, et al. 2009). Forced 212 

pumping of groundwater for drinking can thus induce rapid flow and associated 213 

transport of DNA over considerable distances. DNA can also move upwards in the 214 

soil column via capillary action (Ceccherini, et al. 2007), potentially allowing 215 

subsequent long distance movement via erosion and run-off. 216 

 217 

The presence of extracellular DNA in environmental samples is increasingly being 218 

used to perform multi-taxa surveys, or to detect rare and elusive species (Zinger, et al. 219 

2016). However, the parameters that affect transport and survival of extracellular 220 

DNA are not well understood, and may compromise some of these experiments 221 

(Jerde, et al. 2016). Given the problems of differential survival and transport of 222 

extracellular DNA, guidelines for the design and interpretation of environmental 223 

DNA methods are required (Goldberg, et al. 2016). 224 

 225 

Experiments to address this problem have used a variety of indicator DNAs. 226 

Antibiotic resistance genes known to be associated with humans are a good choice. 227 

They have been used to show survival and dissemination of DNA into freshwater 228 

sediments in an aquatic environment used for drinking water supply (Thevenon, et al. 229 

2012). Similarly, plasmids (Poté, et al. 2003) and bacteriophages (Chetochine, et al. 230 

2006) have been used to demonstrate transport over considerable distances in water 231 



saturated soil and groundwater. However, the dynamic relationships between DNA 232 

transport, immobilization, survival, and the limits of detection are not well established 233 

(Hunter, et al. 2016). 234 

 235 

One way to track and understand dissemination of DNA through the environment, and 236 

indeed, throughout Earth’s Critical Zone is to use a model system that is tractable and 237 

reflects the history of human impacts. Antibiotic resistance genes, their plasmid 238 

vectors, and the bacteria that host them are a good candidate for use as a proxy for 239 

anthropogenic influences (Gillings, et al. 2015). 240 

 241 

The evolutionary history of antibiotic resistance 242 

The genes that we regard as antibiotic resistance genes are, by and large, recently 243 

descended from genes whose original functions were not to confer resistance to 244 

clinical concentrations of antibiotic compounds. Two kinds of event are responsible 245 

for the genesis of modern antibiotic resistance genes: mutation of a pre-existing gene 246 

within a cell lineage; and co-option of a gene acquired by lateral gene transfer from an 247 

unrelated lineage (Gillings, et al. 2017). In the latter case, it has been suggested that 248 

many of these laterally transferred genes originally functioned in defensive responses 249 

to small signaling molecules arising from antagonistic biota, including those 250 

molecules we now use as antimicrobial agents (Davies and Davies 2010; Davies, et al. 251 

2006; Linares, et al. 2006). 252 

 253 

This idea is supported by the observation that natural environments and 254 

environmental bacteria contain large numbers of genes that could confer resistance to 255 

antibiotics if they were present in clinical contexts. These genes are collectively 256 

termed the resistome. The resistome is far larger and far older than the small subset of 257 

problematic resistome elements that have recently made their way into human and 258 

animal bacteria of clinical importance (Allen, et al. 2010). For example, gene families 259 

that can confer resistance to particular antibiotic classes are plausibly related to 260 

defense mechanisms selected in response to naturally-occurring compounds which 261 



induce chemical stress. These gene families date back hundreds of millions of years, 262 

and can be recovered from ancient environments such as caves and permafrost (Baltz 263 

2008; Bhullar, et al. 2012; D'Costa, et al. 2011).  264 

 265 

The widespread use of antibiotics in health care and intensive animal farming since 266 

the 1950s has exerted strong selection for rare, individual cells that had recently 267 

acquired a mutation or resistome element. As a result of continuing antibiotic use 268 

resistant organisms have rapidly increased in both abundance and distribution 269 

(Gillings 2017b). Under this selection pressure, resistant organisms and their genetic 270 

cargo have spread between individuals, species and continents (Bengtsson-Palme, et 271 

al. 2015; Hu, et al. 2016). These resistance genes are readily identifiable because their 272 

recent expansion means they have highly conserved DNA sequences. Carriage of such 273 

resistance genes is now a universal feature of gut bacteria in humans and agricultural 274 

animals (Pal, et al. 2016). 275 

 276 

As a consequence of their universal carriage, resistant bacteria are continually 277 

discharged into the environment via waste water, sewage treatment plants and animal 278 

manure, thus spreading both resistant organisms and resistance genes. These same 279 

waste streams also release antibiotics (Grenni, et al. 2017; Liu, et al. 2017), which 280 

have significant effects, and trigger chemical stress responses even at sub-inhibitory 281 

concentrations (Chow, et al. 2015). Waste waters then become giant reactors where 282 

complex interactions occur between chemical compounds, molecular responses, cells, 283 

resistance genes, and genetic transformation driven by lateral transfer and mutation 284 

(Gillings and Stokes 2012). 285 

 286 

The broad-scale dissemination of bacterial genes, including resistance genes, is 287 

mediated by a number of factors. This transport and transformation is controlled at 288 

various nested levels. Firstly, DNA can be released from cells and persist in the 289 

environment. From here it can be taken up and incorporated into environmental 290 

bacteria. Secondly, genes can be transported within their host bacteria. Where such 291 



bacteria are dispersed by water or wind, their cargo genes are carried with them. 292 

Finally, the bacteria themselves can be carried inside animal hosts via mass migration, 293 

or in the case of humans, by travel and tourism. 294 

 295 

Tracking the movement of resistance genes in Earth's Critical Zone  296 

Interest in the dispersal of antibiotic resistance genes and their host bacteria is 297 

growing rapidly as the environmental consequences of this dissemination become 298 

more apparent. Partly, this is because resistance genes themselves have unique 299 

properties. On the one hand, they behave like pollutants which exhibit environmental 300 

exposure routes, and on the other hand, they can replicate, making them more akin to 301 

an invasive species with multiple cellular hosts (Gillings 2017a).  302 

 303 

Human activities directly promote the invasion and spread of resistance determinants. 304 

Waste water treatment plants occupy a position between human waste streams and the 305 

aquatic environment, but do not effectively remove resistance genes, thus distributing 306 

them in effluent (Aubertheau, et al. 2016; Ben, et al. 2017; Karkman, et al. 2016). 307 

Effluents also contain significant concentrations of selective agents, thus promoting 308 

the survival of resistant organisms, potentially at the expense of endemic species 309 

(Borruso, et al. 2016; Caucci, et al. 2016; Koczura, et al. 2016; Lehmann, et al. 2016). 310 

Application of sewage sludge, or antibiotics alone, increases the abundance of 311 

resistance genes, and changes the microbial community in soils (Chen, et al. 2016; 312 

Cleary, et al. 2016). 313 

 314 

Agricultural activities also strongly promote the environmental spread of resistance 315 

through disposal of wastes and application of manure (Heuer, et al. 2011; Sandberg 316 

and LaPara 2016). Similarly, aquaculture is increasingly being recognized as a focal 317 

point for enhancing and dispersing resistance in the environment (Muziasari, et al. 318 

2016). In both of these cases, the simultaneous release of antibiotics and other 319 

selective agents promotes selection of organisms containing resistance genes (He, et 320 

al. 2016; Liu, et al. 2017; Wang, et al. 2016). This generates opportunities for co-321 



selection and fixation of chemical (toxic metals) and resistance determinants in 322 

species, and within individual DNA molecules (Johnson, et al. 2016; Zhou, et al. 323 

2016). 324 

 325 

A combination of phenomena, including the volume of human and agricultural waste 326 

streams, and the concomitant release of selective agents, means that resistance genes 327 

and resistant organisms can become extraordinarily widespread and abundant over 328 

very short time frames. A single multidrug resistant clone of E. coli has become 329 

globally disseminated since its origin as recently as the year 2000 (Petty, et al. 2014).  330 

 331 

Antimicrobial resistance in Earth’s Critical Zone is thus dependent on human 332 

activities, the action of selection in natural environments, and upon natural transport 333 

mechanisms, such as rivers, groundwater and soil movement. At landscape scale, 334 

antibiotic resistance genes can move with soil erosion and drainage from top soil to 335 

groundwater.  336 

 337 

Modeling of the dynamics of resistance genes in the Critical Zone 338 

Effective modelling of the spread of antimicrobial resistance is essential for making 339 

predictions that can inform policy, practice and environmental surveillance. Policy 340 

makers are interested in models for two reasons. First, they support general policies 341 

that can inform handling of antimicrobials in the environment, during production, 342 

agricultural use or waste water treatment. Second, they inform possible interventions 343 

in the face of a specific outbreak of an antibiotic resistant human or animal pathogen. 344 

Models need to be flexible, realistic, and able to be used in different contexts.  345 

 346 

However, developing realistic and flexible models that operate on an environmental 347 

scale is a significant challenge. AMR encompasses a broad range of organisms, genes 348 

and antimicrobial agents, and mobile genetic elements. Sensitive and resistant 349 

organisms live in complex, heterogeneous communities. The processes that drive 350 

fixation of resistance occur at microscopic scales. Selection and spread within the 351 



Critical Zone can involve slurry tanks (Baker, et al. 2016), the animal gut (Volkova, et 352 

al. 2012), wastewater treatment plants (Sharifi, et al. 2014) and industrial effluents, 353 

while broader dissemination might be driven by soil movement, water percolation, 354 

rivers, domestic animals and wildlife.  355 

 356 

Mathematical modelling of resistance spread has been applied at a range of scales. 357 

Models for laboratory-scale experiments have been valuable for establishing rates of 358 

mutation, selection and the spread of resistance (Bootsma, et al. 2012; De Gelder, et 359 

al. 2004). However, while these models are useful for characterizing key processes, 360 

they do not scale up to the required complexity for whole environments. 361 

Consideration of the spatial structure of microbial communities, for example biofilms, 362 

gives a more accurate representation of the spread resistance in a community (Lardon, 363 

et al. 2011). Models of farms or sewage treatment plants have shown that it is possible 364 

for resistant organisms or pathogens to persist even in the absence of antibiotic 365 

treatment (Sharifi, et al. 2014), and can also make predictions about the duration of 366 

persistence (Volkova, et al. 2013). However, these models have been limited to 367 

considering a single type of bacterium or antimicrobial agent. 368 

 369 

Therefore, three developments are needed to move forward with environmental scale 370 

models that can be effective in understanding and predicting spread or reduction in 371 

resistance in the Critical Zone: inclusion of heterogeneity; multi-scaling in space and 372 

time; and effective global data sharing. 373 

 374 

First, models will need to consider a fuller range of organisms, resistance genes, 375 

mobile genetic elements and antimicrobials, that reflect the complexity of the 376 

observed system (Chen, et al. 2016; Perron, et al. 2015) and the importance of co-377 

selection of antibiotic and metal resistance genes (Gullberg, et al. 2014; Pal, et al. 378 

2015). Importantly, different organisms, genes and mobile genetic elements will 379 

behave differently, leading to heterogeneity in growth, transmission and selection. 380 

However, their inclusion will be essential to determine the pace and range of spread or 381 



elimination of resistance, and the relative contributions of resistance genes to the 382 

emergence of potentially resistant pathogens. This is a considerable modeling 383 

challenge, because the number of possible genetic and resistance combinations 384 

increases exponentially with the degree of biological complexity to be included. For 385 

example, even within a mass action ordinary differential equation framework, to 386 

model populations of a single bacterial species in an environment with two different 387 

antimicrobials, two respective resistance genes, that each might be carried on one of 388 

two different mobile genetic elements, requires many differential equations, and such 389 

models are difficult to parameterize or analyze. 390 

 391 

Second, models will need to operate on multiple scales. While the best representation 392 

of spread of AMR on a microscopic scale is through individual-based models, such 393 

models do not extend to an environmental scale. Therefore, it will be necessary to 394 

coarse-grain predictive outcomes of small-scale models into larger scale, multi-395 

compartment models that can consider populations of humans, farm animals and 396 

wildlife in their respective geographical compartments. It may also be necessary to 397 

use models that combine deterministic with stochastic elements. Deterministic models 398 

are capable of simulating large populations of bacteria, while stochastic models can 399 

capture rare and random events, for example the spread of a particular resistance 400 

determinant from one species to another. A further feature of such models will be the 401 

need to embed geospatial data (Pruden, et al. 2012), to include factors such as 402 

topography, land use and water flows. 403 

 404 

Third, such models will require considerable calibration against real data. Researchers 405 

carrying out environmental and field studies will need to share data in a way that is 406 

useful for embedding into predictive models. To do this, we will require agreed 407 

standards for data capture and sharing, and the development of an international 408 

database for resistance in the critical zone. Such data could include observations from 409 

a wide range of experimental techniques, and data on taxa, species, phenotypes, 410 

genomes, resistance genes, mobile genetic elements, antibiotics, heavy metals and 411 



other antimicrobials. Ideally, the data would also include geospatial coordinates so 412 

that they can be used in geospatially explicit models. While this challenge alone is 413 

considerable, there is considerable precedent for agreed data standards in other areas 414 

of high throughput biology, which this development can draw upon. 415 

 416 

Dispersal of resistance genes in the Critical Zone – A planetary view 417 

Understanding movement of antibiotic resistance through the Critical Zone is 418 

complex, and difficult to model (Figure XX). Quantifying ARG movement requires 419 

the coupling between the transport of bacterial cells (and resistance genes they carry) 420 

and materials (and associated selective agents) and their interactions within the 421 

Critical Zone. We can then infer more general principles about the movement and 422 

transformation of genes and microorganisms. These principles might then be tested 423 

and applied to even more complex, multi-gene phenotypes of central importance to 424 

global biogeochemistry.  425 

 426 

Before humans had a major influence on the planet, movement of microorganisms 427 

and the genes they carry was mainly driven by physical phenomena, such as air 428 

currents and water flow. Without human influence, a relatively small number of 429 

microbial cells would be transported to any specific location, therefore chance played 430 

a large role in dispersal of bacterial cells/genes. This dispersal did not necessarily 431 

result in survival or recruitment, since locally adapted cells were already present, and 432 

filled existing niches. With the advent of the Anthropocene, human activities now 433 

have large effects on the dispersal of microorganisms and the genes they carry (Table 434 

1). Movement of humans around the globe transports our internal microbiota to new 435 

locations at an unprecedented scale. Human migration changes the abundance of 436 

resistance genes, and successfully transports resistance genes between continents 437 

(Bengtsson-Palme, et al. 2015; Sun, et al. 2016). 438 

 439 

The fact that biomass of humans and domestic animals now comprise 35 times that of 440 

wild terrestrial mammals (Smil 2011) may have consequences for the microbial 441 



world. Firstly, humans, domestic and agricultural animals all carry resistance genes in 442 

their gut microbiota, thus vastly increasing the abundance and distribution of these 443 

genes on the planet. Secondly, on a global scale the fecal microbiota are now mainly 444 

represented by the gut microbiota of six species: humans, cattle, sheep, goats, pigs 445 

and chickens. Thus, the overall diversity of bacteria being shed in feces has 446 

consequently declined. At the same time, the quantity of fecal microbiota has 447 

increased as the biomass of humans and their domesticates approaches five times the 448 

global carrying capacity for terrestrial vertebrates (Smil 2011). Therefore , disposal of 449 

both human and animal manures has a significant impact on the dissemination of both 450 

microbial organisms and genes (Chen, et al. 2016; Jechalke, et al. 2013). These cells 451 

and genes can contaminate agricultural produce (Bengtsson-Palme 2017; Jones-Dias, 452 

et al. 2016), which is then transported between countries. 453 

 454 

Humans disperse microorganisms by mass movement of materials (Table 1). 455 

Transport of ballast water in ships is estimated to move 1019 bacteria each day  456 

(Endresen, et al. 2004; Ruiz, et al. 2000), spreading diverse microorganisms around 457 

the globe and thus reshaping microbial biogeography (Brinkmeyer 2016; Lohan, et al. 458 

2016). It has been suggested that anthropogenic movement of soil, sand and rock now 459 

surpasses all natural processes combined (Wilkinson and McElroy 2007), incidentally 460 

transporting huge numbers of microbial cells. Wastewater also transports 461 

microorganisms and their cargo genes into the environment. With increasing human 462 

populations, the volume of wastewater is increasing, but global data on the treatment, 463 

reuse, or volumes of waste water is difficult to assemble (Sato, et al. 2013). As an 464 

example, antibiotic resistance genes now pollute over 4,000 kilometers of the Chinese 465 

coastline at levels up to 100 million genes per gram of sediment (Zhu, et al. 2017b). 466 

None of these genes would have been present in this sediment 50 years ago. 467 

 468 

Human activities increase the numbers of microorganisms being transported within 469 

the Critical Zone and around the Earth ecosystem, thus increasing the chances for 470 

successful recruitment (Table 1). Furthermore, during transport, microorganisms are 471 



often exposed to pollutants, particularly during discharge of manure and waste water. 472 

Exposure to antibiotics and other co-selective agents, even at low does, can enhance 473 

the rate at which bacteria generate diversity via mutation (Kohanski, et al. 2010), 474 

recombination (Guerin, et al. 2009) and lateral gene transfer (Prudhomme, et al. 475 

2006). The simultaneous dispersal of microorganisms and various selective agents 476 

increases the genetic variation being generated in those microbial populations, 477 

enhancing their potential to evolve (Gillings and Stokes 2012). Consequently a subset 478 

of the cells dispersed to new locations are adapted to the co-dispersed pollutants, 479 

increasing their probability of recruitment at these new locations. Further, because 480 

genes for metal, disinfectant and antibiotic resistance are often closely linked 481 

(Johnson, et al. 2016), exposure to any one selective agent drives their co-selection, 482 

and maintains mosaic clusters of resistance determinants (Di Cesare, et al. 2016; 483 

Gaze, et al. 2005; Skurnik, et al. 2010). Possession of diverse resistance determinants 484 

significantly increases the probability of recruitment at novel destinations by 485 

providing a selective advantage over endemic microorganisms (Table 1). 486 

 487 

Concluding remarks 488 

It is becoming more and more important to understand how human activities cause 489 

systematic changes in ecosystems (Alberti, et al. 2017), and especially the effects on 490 

the emergence and spread of ARGs in urbanizing Earth’s Critical Zone (Zhu, et al. 491 

2017a). To better understand the dynamics of ARGs in the Critical Zone, future 492 

studies should emphasize linkages between biogeochemical cycling of nutrients and 493 

contaminants with the movement of microorganisms. Under the framework of Critical 494 

Zone science, tracking the dynamics of ARGs should give us insights into the 495 

interconnections between multiple environmental compartments within the entire 496 

Critical Zone. Due to the extreme heterogeneity of the Critical Zone, we should also 497 

focus on hot spots for ARG dissemination such as locations receiving high loads of 498 

wastewater or manure. Understanding the complex feedbacks between the dynamics 499 

of ARGs and interactions with physical, chemical and biological processes in the 500 

Critical Zone is a grand challenge. Progress can only be made by forging 501 



interdisciplinary research teams that can manage and interpret the enormous datasets 502 

of genomics and biogeochemistry, and by developing predictive models based on 503 

these datasets.  504 
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Table 1: Dissemination of genes and microorganisms in Earth’s Critical Zone.   847 

Three phenomena, or drivers, affect microbial/gene spread. These are: opportunity for 848 

dispersal; stochastics (the number of foreign cells landing at a particular location, 849 

processes that generate local variation such as mutation and drift); and recruitment 850 

(the persistence of cells at the new location, often driven by local selection). 851 

Historically, these forces generate biogeographic patterns for microorganisms that are 852 

similar to those of animals and plants. Human impacts have changed the dynamics of 853 

these phenomena, and are altering microbial biogeography in the process. 854 
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