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Abstract

Earth’s Critical Zone sustains terrestrial life, and consists of the thin planetary surface
layer between unaltered rock and the atmospheric boundary. Within this zone, flows
of energy and materials are mediated by physical processes and by the actions of
diverse organisms. Human activities significantly influence these physical and
biological processes, affecting the atmosphere, shallow lithosphere, hydrosphere and
biosphere. The role of organisms includes an additional class of biogeochemical
cycling, this being the flow and transformation of genetic information. This is
particularly the case for the microorganisms that govern carbon and nitrogen cycling.
These biological processes are mediated by expression of functional genes and their
translation into enzymes that catalyze geochemical reactions. Understanding human
effects on microbial gene activity and microbial distribution is an important
component of Critical Zone science, but is highly challenging to investigate across the
enormous physical scales of impact ranging from individual organisms to the planet.
One arena where this might be tractable is by studying the dynamics and
dissemination of genes for antibiotic resistance and the organisms that carry such
genes. Here we explore the transport and transformation of microbial genes and cells
through Earth’s Critical Zone. We do so by examining the origins and rise of
antibiotic resistance genes, their subsequent dissemination, and the ongoing

colonization of diverse ecosystems by resistant organisms.
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Introduction

Earth’s Critical Zone is the thin surface layer of the planet upon which terrestrial life
depends. It extends from unaltered bedrock, through the land surface, to the
vegetation canopy and atmospheric boundary layer. Critical Zone science is
complementary to other integrative systems approaches for studying terrestrial,
marine and freshwater environments. Crucially, it includes a mechanistic
understanding of shallow lithosphere processes and their interactions with the above-
ground ecosystems (Mobley 2009)

. It addresses these interactions across wide temporal (sub-second reaction kinetics to
geological time spans) and spatial scales (molecular to planetary). The Critical Zone
approach recognizes Earth as a physical and geochemical substrate that supports
above ground ecological functions, and extends the lower boundary of ecological

function to embrace the lithosphere, and its inputs over geological time scales.

This interdisciplinary research area within geobiology links biological and
geochemical processes across temporal and spatial scales. However, the distribution,
transport and recruitment of functional genes has rarely been investigated via the
systems perspective framed by Critical Zone science. Since investigation of Critical
Zone biogeochemical processes extends the analysis of flows and transformations of
material and energy to explicitly include biodiversity, a tractable approach may be to
describe the geospatial dynamics of the genetic information encoded in functional
genes, and the microbes that carry these genes. Above—ground human activities
generate impacts that are transmitted through the vertical extent of the Critical Zone,
via aquifers, and horizontally within water catchments. Analyzing the vertical and
horizontal penetration of genetic material should be part of these investigations

(Kiisel, et al. 2016).

Environmental microbes and genes are traditionally studied in one location, or in one
environmental compartment (such as vegetation, the water column, or soil), with little

attention paid to the dynamic exchange of microbes and genes across system
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boundaries and physical scales. The advent of "omics" tools has facilitated the
exploration of Earth’s biological ‘dark matter’, but there remains a substantial
conceptual gap between the notion of the Earth’s biome and its quantitative
manifestation in biogeochemical fluxes. Integrating "omics" data into earth system
science should generate better models of biogeochemistry and improve understanding
of how environmental changes will impact microorganisms. For instance,
incorporating environmental genomics data into biogeochemical models improves

predictions about nitrogen cycling (Mock, et al. 2016; Reed, et al. 2014).

Driven by these concepts, there is increasing attention towards system views of the
temporal and spatial distribution of microbes and genes in Earth’s Critical Zone.
Metagenomics has been used to determine the influence of fluvial networks on the co-
occurrence of microbes, by examining biofilms in over a hundred streams (Widder, et
al. 2014). The distribution and origins of fecal bacteria have been determined in large
mixed-use watersheds in Michigan, USA, also using omics technologies
(Verhougstraete, et al. 2015). Similar ecosystem wide approaches have been used to
demonstrate how below ground microbial diversity might be a primary driver of plant
diversity and productivity (Bardgett and van der Putten 2014). Questions are also
being asked about how surface activities might influence below ground biota and
nutrient cycling, using combinations of omics, biogeochemical, and hydrogeological

approaches (Kusel, et al. 2016).

These publications are representative of recent efforts to explore the links between
microbial biogeography, biogeochemistry and geological processes. In particular, they
reflect a growing interest on the effects that human activities might have on the
microbial world (Gillings and Paulsen 2014). Understanding the role that humans
might have in changing the distributions of microorganisms, and in generating
selective forces that alter adaptive pressures, are essential if we are to predict how
global change will affect microbial activity and function. However, many of the most

important processes for Critical Zone function are complex, multi-gene and multi-cell
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interactions that are difficult to model, due to the complexity and dynamics of genetic

and functional diversity within indigenous microbial communities.

There are alternative, simpler systems that we can use to understand the influences
that humans have on the transport and transformation of genetic information in the
Critical Zone. Antibiotic resistance, for instance, is generally a one-gene, one
phenotype character, and has been the subject of considerable research over the last
fifty years. Genes conferring resistance, and the cells that host these genes, could be
used as a paradigm for assessing the interactions of gene flow with the diversity of

microorganisms in the Critical Zone.

Antibiotic resistance might be a good proxy that can inform more general conclusions
about alterations in the distribution and activity of the microorganisms that host
specific genes within the Critical Zone. The widespread use of antibiotics in
agriculture and medicine has increased the abundance of both resistance genes and the
bacteria that host them. These genes and microorganisms are then shed into
environmental compartments via human and animal waste streams such as manure,
sewage sludge, and wastewater (Gillings 2013). As a consequence, antibiotic
resistance genes are considered to be emerging environmental contaminants (Pruden,
et al. 2013). On the one hand, the spread of resistance determinants within the Critical
Zone is caused by human activities, and on the other hand, it also threatens human
health worldwide. The history of resistance begins in the 1950s, and is thus co-
incident with the ‘Great Acceleration’ and the rapidly increasing impact of humans

activity on the planet since this time point (Steffen, et al. 2015).

Natural transport and biogeography of bacteria

We live in a world where organismal abundance and gene frequencies have been
significantly shaped by human activities. Nevertheless, it is worth reflecting on the
historical dynamics of microbial organisms and ecosystems, before the rise of human

influence. This allows comparisons with the modern world.
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It has been known for some time that microorganisms exhibit the same taxa-area
relationships and turnover in species assemblages with distance that are characteristic
of larger organisms (Green, et al. 2004; Horner-Devine, et al. 2004). Taxa are
distributed non-randomly in environments such as soil, fresh water and groundwater,
at scales from meters to many thousands of kilometers (Martiny, et al. 2006). These
patterns are driven by a combination of factors, including: the ability to disperse over
distance; selection at the destination; and stochastic processes such as drift and
mutation (Hanson, et al. 2012). Teasing apart the relative contributions of the
processes that generate patterns of microbial biogeography is difficult, and is further
complicated by the diversity and complexity of microbial communities themselves
(Evans, et al. 2017; Haggerty and Dinsdale 2016). The impact of human migration as
a transport vector on structuring prokaryotic communities is still poorly understood.
Some authors have argued that stochastic events could be more important than

deterministic factors such as competition and niche differentiation (Sloan, et al. 2006).

At the largest possible temporal and spatial scales, bacteria are the best candidates to
survive interplanetary transfer inside rock. Such lithopanspermia is a potential means
that life could be transferred between planetary bodies within and outside our solar
system (Nicholson 2009). On Earth, but still across large spatial scales,
microorganisms are capable of long-distance dispersal, being ubiquitous and
abundant, even in the upper atmosphere (Barberan, et al. 2015). Thousands of distinct
bacterial taxa, accompanied by other microorganisms, are carried within dust plumes
in long-range intercontinental transport events. For instance, Asian aerosols contribute
to microbial species richness in North American air (Smith, et al. 2013), and dust
storms generated in the African Sahara-Sahel transport microorganisms that
eventually contribute to bacterial assemblages in European mountain lakes (Perfumo

and Marchant 2010; Peter, et al. 2014).

Natural release and survival of DNA
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Microbial biogeography is further complicated by the ability of microorganisms to

acquire foreign DNA, and consequently movement of genes through the Critical Zone
can occur independently of organismal movement. DNA released from organisms can
transfer to unrelated species either through close contact, or at a distance, when DNA

can survive in the environment for extended time periods (Gillings 2017b).

Extracellular DNA can be readily detected in environmental samples, and can
originate from dead bacterial, animal or plant cells. All soils contain significant
quantities of extracellular DNA (Frostegard, et al. 1999). This DNA can persist in the
environment and can be transported away from cell debris. Because DNA can resist
physical and biological degradation under some conditions, it has even been proposed

as a potential signature of life during interplanetary exploration (Lyon, et al. 2010).

Under natural conditions, DNA released via cell lysis is in contact with other cellular
components (wall debris, proteins, lipids, RNA, etc.). The presence of both organic
compounds and inorganic molecules in soil particles strongly influences the
adsorption of DNA (Pietramellara, et al. 2009). Consequently, DNA can be protected
from enzymatic degradation in soil by adsorption onto soil minerals and humic
substances (Levy-Booth, et al. 2007). Protection against degradation by DNases of
microbial origin is aided by the concomitant adsorption of nucleases (Demanéche, et
al. 2001). Many studies on survival of DNA in the environment have been conducted

using plasmids and antibiotic resistance genes as markers.

The DNA persisting in soil is only a tiny fraction of the total DNA being released at
any one time from decaying plants, animals and microorganisms. This DNA usually
undergoes rapid degradation (Ceccherini, et al. 2007; Pontiroli, et al. 2007; Poté, et al.
2010). Degradation is biological and enzymatic, since DNA can survive in autoclaved
treatments (Zhu 2006). Nevertheless, a proportion of extracellular DNA does persist
in natural environments, either bound to soil particles, or inside biofilms, where it is

an important structural component (Pietramellara, et al. 2009; Whitchurch, et al.
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2002). In the long term, persistence eventually requires being taken up by a recipient
cell, and incorporated into that cell’s genome. The likelihood of this occurring
improves with increasing phylogenetic and ecological similarity of donor and
recipient (Beiko, et al. 2005), and also improves markedly if the donor DNA can
confer an adaptive phenotype. This is one reason why genes that confer antibiotic

resistance are a good marker for these processes in natural environments.

Movement and transport of extracellular DNA.

DNA is able to be transported vertically in unsaturated soils, to eventually penetrate
groundwater and aquifers, where it can be immobilized through adsorption onto
mineral surface or be transported with groundwater flow (Poté, et al. 2009). Forced
pumping of groundwater for drinking can thus induce rapid flow and associated
transport of DNA over considerable distances. DNA can also move upwards in the
soil column via capillary action (Ceccherini, et al. 2007), potentially allowing

subsequent long distance movement via erosion and run-off.

The presence of extracellular DNA in environmental samples is increasingly being
used to perform multi-taxa surveys, or to detect rare and elusive species (Zinger, et al.
2016). However, the parameters that affect transport and survival of extracellular
DNA are not well understood, and may compromise some of these experiments
(Jerde, et al. 2016). Given the problems of differential survival and transport of
extracellular DNA, guidelines for the design and interpretation of environmental

DNA methods are required (Goldberg, et al. 2016).

Experiments to address this problem have used a variety of indicator DNAs.
Antibiotic resistance genes known to be associated with humans are a good choice.
They have been used to show survival and dissemination of DNA into freshwater
sediments in an aquatic environment used for drinking water supply (Thevenon, et al.
2012). Similarly, plasmids (Poté, et al. 2003) and bacteriophages (Chetochine, et al.

2006) have been used to demonstrate transport over considerable distances in water
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saturated soil and groundwater. However, the dynamic relationships between DNA
transport, immobilization, survival, and the limits of detection are not well established

(Hunter, et al. 2016).

One way to track and understand dissemination of DNA through the environment, and
indeed, throughout Earth’s Critical Zone is to use a model system that is tractable and
reflects the history of human impacts. Antibiotic resistance genes, their plasmid
vectors, and the bacteria that host them are a good candidate for use as a proxy for

anthropogenic influences (Gillings, et al. 2015).

The evolutionary history of antibiotic resistance

The genes that we regard as antibiotic resistance genes are, by and large, recently
descended from genes whose original functions were not to confer resistance to
clinical concentrations of antibiotic compounds. Two kinds of event are responsible
for the genesis of modern antibiotic resistance genes: mutation of a pre-existing gene
within a cell lineage; and co-option of a gene acquired by lateral gene transfer from an
unrelated lineage (Gillings, et al. 2017). In the latter case, it has been suggested that
many of these laterally transferred genes originally functioned in defensive responses
to small signaling molecules arising from antagonistic biota, including those
molecules we now use as antimicrobial agents (Davies and Davies 2010; Davies, et al.

2006; Linares, et al. 2006).

This idea is supported by the observation that natural environments and
environmental bacteria contain large numbers of genes that could confer resistance to
antibiotics if they were present in clinical contexts. These genes are collectively
termed the resistome. The resistome is far larger and far older than the small subset of
problematic resistome elements that have recently made their way into human and
animal bacteria of clinical importance (Allen, et al. 2010). For example, gene families
that can confer resistance to particular antibiotic classes are plausibly related to

defense mechanisms selected in response to naturally-occurring compounds which
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induce chemical stress. These gene families date back hundreds of millions of years,
and can be recovered from ancient environments such as caves and permafrost (Baltz

2008; Bhullar, et al. 2012; D'Costa, et al. 2011).

The widespread use of antibiotics in health care and intensive animal farming since
the 1950s has exerted strong selection for rare, individual cells that had recently
acquired a mutation or resistome element. As a result of continuing antibiotic use
resistant organisms have rapidly increased in both abundance and distribution
(Gillings 2017b). Under this selection pressure, resistant organisms and their genetic
cargo have spread between individuals, species and continents (Bengtsson-Palme, et
al. 2015; Hu, et al. 2016). These resistance genes are readily identifiable because their
recent expansion means they have highly conserved DNA sequences. Carriage of such
resistance genes is now a universal feature of gut bacteria in humans and agricultural

animals (Pal, et al. 2016).

As a consequence of their universal carriage, resistant bacteria are continually
discharged into the environment via waste water, sewage treatment plants and animal
manure, thus spreading both resistant organisms and resistance genes. These same
waste streams also release antibiotics (Grenni, et al. 2017; Liu, et al. 2017), which
have significant effects, and trigger chemical stress responses even at sub-inhibitory
concentrations (Chow, et al. 2015). Waste waters then become giant reactors where
complex interactions occur between chemical compounds, molecular responses, cells,
resistance genes, and genetic transformation driven by lateral transfer and mutation

(Gillings and Stokes 2012).

The broad-scale dissemination of bacterial genes, including resistance genes, is
mediated by a number of factors. This transport and transformation is controlled at
various nested levels. Firstly, DNA can be released from cells and persist in the
environment. From here it can be taken up and incorporated into environmental

bacteria. Secondly, genes can be transported within their host bacteria. Where such
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bacteria are dispersed by water or wind, their cargo genes are carried with them.
Finally, the bacteria themselves can be carried inside animal hosts via mass migration,

or in the case of humans, by travel and tourism.

Tracking the movement of resistance genes in Earth's Critical Zone

Interest in the dispersal of antibiotic resistance genes and their host bacteria is
growing rapidly as the environmental consequences of this dissemination become
more apparent. Partly, this is because resistance genes themselves have unique
properties. On the one hand, they behave like pollutants which exhibit environmental
exposure routes, and on the other hand, they can replicate, making them more akin to

an invasive species with multiple cellular hosts (Gillings 2017a).

Human activities directly promote the invasion and spread of resistance determinants.
Waste water treatment plants occupy a position between human waste streams and the
aquatic environment, but do not effectively remove resistance genes, thus distributing
them in effluent (Aubertheau, et al. 2016; Ben, et al. 2017; Karkman, et al. 2016).
Effluents also contain significant concentrations of selective agents, thus promoting
the survival of resistant organisms, potentially at the expense of endemic species
(Borruso, et al. 2016; Caucci, et al. 2016; Koczura, et al. 2016; Lehmann, et al. 2016).
Application of sewage sludge, or antibiotics alone, increases the abundance of
resistance genes, and changes the microbial community in soils (Chen, et al. 2016;

Cleary, et al. 2016).

Agricultural activities also strongly promote the environmental spread of resistance
through disposal of wastes and application of manure (Heuer, et al. 2011; Sandberg
and LaPara 2016). Similarly, aquaculture is increasingly being recognized as a focal
point for enhancing and dispersing resistance in the environment (Muziasari, et al.
2016). In both of these cases, the simultaneous release of antibiotics and other
selective agents promotes selection of organisms containing resistance genes (He, et

al. 2016; Liu, et al. 2017; Wang, et al. 2016). This generates opportunities for co-
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selection and fixation of chemical (toxic metals) and resistance determinants in
species, and within individual DNA molecules (Johnson, et al. 2016; Zhou, et al.

2016).

A combination of phenomena, including the volume of human and agricultural waste
streams, and the concomitant release of selective agents, means that resistance genes
and resistant organisms can become extraordinarily widespread and abundant over
very short time frames. A single multidrug resistant clone of E. coli has become

globally disseminated since its origin as recently as the year 2000 (Petty, et al. 2014).

Antimicrobial resistance in Earth’s Critical Zone is thus dependent on human
activities, the action of selection in natural environments, and upon natural transport
mechanisms, such as rivers, groundwater and soil movement. At landscape scale,
antibiotic resistance genes can move with soil erosion and drainage from top soil to

groundwater.

Modeling of the dynamics of resistance genes in the Critical Zone

Effective modelling of the spread of antimicrobial resistance is essential for making
predictions that can inform policy, practice and environmental surveillance. Policy
makers are interested in models for two reasons. First, they support general policies
that can inform handling of antimicrobials in the environment, during production,
agricultural use or waste water treatment. Second, they inform possible interventions
in the face of a specific outbreak of an antibiotic resistant human or animal pathogen.

Models need to be flexible, realistic, and able to be used in different contexts.

However, developing realistic and flexible models that operate on an environmental
scale is a significant challenge. AMR encompasses a broad range of organisms, genes
and antimicrobial agents, and mobile genetic elements. Sensitive and resistant
organisms live in complex, heterogeneous communities. The processes that drive

fixation of resistance occur at microscopic scales. Selection and spread within the
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Critical Zone can involve slurry tanks (Baker, et al. 2016), the animal gut (Volkova, et
al. 2012), wastewater treatment plants (Sharifi, et al. 2014) and industrial effluents,
while broader dissemination might be driven by soil movement, water percolation,

rivers, domestic animals and wildlife.

Mathematical modelling of resistance spread has been applied at a range of scales.
Models for laboratory-scale experiments have been valuable for establishing rates of
mutation, selection and the spread of resistance (Bootsma, et al. 2012; De Gelder, et
al. 2004). However, while these models are useful for characterizing key processes,
they do not scale up to the required complexity for whole environments.
Consideration of the spatial structure of microbial communities, for example biofilms,
gives a more accurate representation of the spread resistance in a community (Lardon,
etal. 2011). Models of farms or sewage treatment plants have shown that it is possible
for resistant organisms or pathogens to persist even in the absence of antibiotic
treatment (Sharifi, et al. 2014), and can also make predictions about the duration of
persistence (Volkova, et al. 2013). However, these models have been limited to

considering a single type of bacterium or antimicrobial agent.

Therefore, three developments are needed to move forward with environmental scale
models that can be effective in understanding and predicting spread or reduction in
resistance in the Critical Zone: inclusion of heterogeneity; multi-scaling in space and

time; and effective global data sharing.

First, models will need to consider a fuller range of organisms, resistance genes,
mobile genetic elements and antimicrobials, that reflect the complexity of the
observed system (Chen, et al. 2016; Perron, et al. 2015) and the importance of co-
selection of antibiotic and metal resistance genes (Gullberg, et al. 2014; Pal, et al.
2015). Importantly, different organisms, genes and mobile genetic elements will
behave differently, leading to heterogeneity in growth, transmission and selection.

However, their inclusion will be essential to determine the pace and range of spread or
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elimination of resistance, and the relative contributions of resistance genes to the
emergence of potentially resistant pathogens. This is a considerable modeling
challenge, because the number of possible genetic and resistance combinations
increases exponentially with the degree of biological complexity to be included. For
example, even within a mass action ordinary differential equation framework, to
model populations of a single bacterial species in an environment with two different
antimicrobials, two respective resistance genes, that each might be carried on one of
two different mobile genetic elements, requires many differential equations, and such

models are difficult to parameterize or analyze.

Second, models will need to operate on multiple scales. While the best representation
of spread of AMR on a microscopic scale is through individual-based models, such
models do not extend to an environmental scale. Therefore, it will be necessary to
coarse-grain predictive outcomes of small-scale models into larger scale, multi-
compartment models that can consider populations of humans, farm animals and
wildlife in their respective geographical compartments. It may also be necessary to
use models that combine deterministic with stochastic elements. Deterministic models
are capable of simulating large populations of bacteria, while stochastic models can
capture rare and random events, for example the spread of a particular resistance
determinant from one species to another. A further feature of such models will be the
need to embed geospatial data (Pruden, et al. 2012), to include factors such as

topography, land use and water flows.

Third, such models will require considerable calibration against real data. Researchers
carrying out environmental and field studies will need to share data in a way that is
useful for embedding into predictive models. To do this, we will require agreed
standards for data capture and sharing, and the development of an international
database for resistance in the critical zone. Such data could include observations from
a wide range of experimental techniques, and data on taxa, species, phenotypes,

genomes, resistance genes, mobile genetic elements, antibiotics, heavy metals and
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other antimicrobials. Ideally, the data would also include geospatial coordinates so
that they can be used in geospatially explicit models. While this challenge alone is
considerable, there is considerable precedent for agreed data standards in other areas

of high throughput biology, which this development can draw upon.

Dispersal of resistance genes in the Critical Zone — A planetary view
Understanding movement of antibiotic resistance through the Critical Zone is
complex, and difficult to model (Figure XX). Quantifying ARG movement requires
the coupling between the transport of bacterial cells (and resistance genes they carry)
and materials (and associated selective agents) and their interactions within the
Critical Zone. We can then infer more general principles about the movement and
transformation of genes and microorganisms. These principles might then be tested
and applied to even more complex, multi-gene phenotypes of central importance to

global biogeochemistry.

Before humans had a major influence on the planet, movement of microorganisms
and the genes they carry was mainly driven by physical phenomena, such as air
currents and water flow. Without human influence, a relatively small number of
microbial cells would be transported to any specific location, therefore chance played
a large role in dispersal of bacterial cells/genes. This dispersal did not necessarily
result in survival or recruitment, since locally adapted cells were already present, and
filled existing niches. With the advent of the Anthropocene, human activities now
have large effects on the dispersal of microorganisms and the genes they carry (Table
1). Movement of humans around the globe transports our internal microbiota to new
locations at an unprecedented scale. Human migration changes the abundance of
resistance genes, and successfully transports resistance genes between continents

(Bengtsson-Palme, et al. 2015; Sun, et al. 2016).

The fact that biomass of humans and domestic animals now comprise 35 times that of

wild terrestrial mammals (Smil 2011) may have consequences for the microbial
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world. Firstly, humans, domestic and agricultural animals all carry resistance genes in
their gut microbiota, thus vastly increasing the abundance and distribution of these
genes on the planet. Secondly, on a global scale the fecal microbiota are now mainly
represented by the gut microbiota of six species: humans, cattle, sheep, goats, pigs
and chickens. Thus, the overall diversity of bacteria being shed in feces has
consequently declined. At the same time, the quantity of fecal microbiota has
increased as the biomass of humans and their domesticates approaches five times the
global carrying capacity for terrestrial vertebrates (Smil 2011). Therefore , disposal of
both human and animal manures has a significant impact on the dissemination of both
microbial organisms and genes (Chen, et al. 2016; Jechalke, et al. 2013). These cells
and genes can contaminate agricultural produce (Bengtsson-Palme 2017; Jones-Dias,

et al. 2016), which is then transported between countries.

Humans disperse microorganisms by mass movement of materials (Table 1).
Transport of ballast water in ships is estimated to move 10! bacteria each day
(Endresen, et al. 2004; Ruiz, et al. 2000), spreading diverse microorganisms around
the globe and thus reshaping microbial biogeography (Brinkmeyer 2016; Lohan, et al.
2016). It has been suggested that anthropogenic movement of soil, sand and rock now
surpasses all natural processes combined (Wilkinson and McElroy 2007), incidentally
transporting huge numbers of microbial cells. Wastewater also transports
microorganisms and their cargo genes into the environment. With increasing human
populations, the volume of wastewater is increasing, but global data on the treatment,
reuse, or volumes of waste water is difficult to assemble (Sato, et al. 2013). As an
example, antibiotic resistance genes now pollute over 4,000 kilometers of the Chinese
coastline at levels up to 100 million genes per gram of sediment (Zhu, et al. 2017b).

None of these genes would have been present in this sediment 50 years ago.

Human activities increase the numbers of microorganisms being transported within
the Critical Zone and around the Earth ecosystem, thus increasing the chances for

successful recruitment (Table 1). Furthermore, during transport, microorganisms are
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often exposed to pollutants, particularly during discharge of manure and waste water.
Exposure to antibiotics and other co-selective agents, even at low does, can enhance
the rate at which bacteria generate diversity via mutation (Kohanski, et al. 2010),
recombination (Guerin, et al. 2009) and lateral gene transfer (Prudhomme, et al.
2006). The simultaneous dispersal of microorganisms and various selective agents
increases the genetic variation being generated in those microbial populations,
enhancing their potential to evolve (Gillings and Stokes 2012). Consequently a subset
of the cells dispersed to new locations are adapted to the co-dispersed pollutants,
increasing their probability of recruitment at these new locations. Further, because
genes for metal, disinfectant and antibiotic resistance are often closely linked
(Johnson, et al. 2016), exposure to any one selective agent drives their co-selection,
and maintains mosaic clusters of resistance determinants (Di Cesare, et al. 2016;
Gaze, et al. 2005; Skurnik, et al. 2010). Possession of diverse resistance determinants
significantly increases the probability of recruitment at novel destinations by

providing a selective advantage over endemic microorganisms (Table 1).

Concluding remarks

It is becoming more and more important to understand how human activities cause
systematic changes in ecosystems (Alberti, et al. 2017), and especially the effects on
the emergence and spread of ARGs in urbanizing Earth’s Critical Zone (Zhu, et al.
2017a). To better understand the dynamics of ARGs in the Critical Zone, future
studies should emphasize linkages between biogeochemical cycling of nutrients and
contaminants with the movement of microorganisms. Under the framework of Critical
Zone science, tracking the dynamics of ARGs should give us insights into the
interconnections between multiple environmental compartments within the entire
Critical Zone. Due to the extreme heterogeneity of the Critical Zone, we should also
focus on hot spots for ARG dissemination such as locations receiving high loads of
wastewater or manure. Understanding the complex feedbacks between the dynamics
of ARGs and interactions with physical, chemical and biological processes in the

Critical Zone is a grand challenge. Progress can only be made by forging
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interdisciplinary research teams that can manage and interpret the enormous datasets
of genomics and biogeochemistry, and by developing predictive models based on

these datasets.
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Table 1: Dissemination of genes and microorganisms in Earth’s Critical Zone.
Three phenomena, or drivers, affect microbial/gene spread. These are: opportunity for
dispersal; stochastics (the number of foreign cells landing at a particular location,
processes that generate local variation such as mutation and drift); and recruitment
(the persistence of cells at the new location, often driven by local selection).
Historically, these forces generate biogeographic patterns for microorganisms that are
similar to those of animals and plants. Human impacts have changed the dynamics of

these phenomena, and are altering microbial biogeography in the process.



