

---

This is the **accepted version** of the article:

Zhu, Yong [U+2010] Guan; Gillings, Michael; Simonet, Pascal; [et al.]. «Human dissemination of genes and microorganisms in Earth's Critical Zone». *Global change biology*, Vol. 24, Issue 4 (April 2018), p. 1488-1499. DOI 10.1111/gcb.14003

---

This version is available at <https://ddd.uab.cat/record/218316>

under the terms of the  IN COPYRIGHT license

1 Human dissemination of genes and microorganisms

2  
3 Yong-Guan Zhu<sup>1</sup>, Michael Gillings<sup>2</sup>, Pascal Simonet<sup>3</sup>, Dov Stekel<sup>4</sup>, Steve Banwart<sup>5</sup>  
4 and Josep Penuelas<sup>6,7</sup>

5  
6  
7 <sup>1</sup> Key Lab of Urban Environment and Health, Institute of Urban Environment,

8 Chinese Academy of Sciences, Xiamen 361021, China; <sup>2</sup> Department of Biological  
9 Sciences, Macquarie University, Sydney, NSW 2109, Australia; <sup>3</sup> Environmental  
10 Microbial Genomics Group, Université de Lyon, 69134, France; <sup>4</sup> School of

11 Biosciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom; <sup>5</sup>  
12 Department of Geography, The University of Sheffield, Sheffield S10 2TN, United  
13 Kingdom; <sup>6</sup> CSIC, Global Ecology Unit, CREAF- CSIC-UAB, Bellaterra, 08193  
14 Barcelona, Catalonia, Spain; <sup>7</sup> CREAF, Cerdanyola del Vallès, 08193 Barcelona,  
15 Catalonia, Spain

16  
17 Corresponding Author:

18 Y.G. Zhu

19 Address: Key Lab of Urban Environment and Health, Institute of Urban Environment,  
20 Chinese Academy of Sciences, Xiamen 361021, China

21 Email: [ygzhu@iue.ac.cn](mailto:ygzhu@iue.ac.cn)

22 M Gillings

23 Department of Biological Sciences, Macquarie University, Sydney, NSW 2109,  
24 Australia

25 Email: [michael.gillings@mq.edu.au](mailto:michael.gillings@mq.edu.au)

26  
27 Keywords: Anthropocene; human impacts; resistome; planetary health; pollution;  
28 xenogenetic

29

30 **Abstract**

31 Earth's Critical Zone sustains terrestrial life, and consists of the thin planetary surface  
32 layer between unaltered rock and the atmospheric boundary. Within this zone, flows  
33 of energy and materials are mediated by physical processes and by the actions of  
34 diverse organisms. Human activities significantly influence these physical and  
35 biological processes, affecting the atmosphere, shallow lithosphere, hydrosphere and  
36 biosphere. The role of organisms includes an additional class of biogeochemical  
37 cycling, this being the flow and transformation of genetic information. This is  
38 particularly the case for the microorganisms that govern carbon and nitrogen cycling.  
39 These biological processes are mediated by expression of functional genes and their  
40 translation into enzymes that catalyze geochemical reactions. Understanding human  
41 effects on microbial gene activity and microbial distribution is an important  
42 component of Critical Zone science, but is highly challenging to investigate across the  
43 enormous physical scales of impact ranging from individual organisms to the planet.  
44 One arena where this might be tractable is by studying the dynamics and  
45 dissemination of genes for antibiotic resistance and the organisms that carry such  
46 genes. Here we explore the transport and transformation of microbial genes and cells  
47 through Earth's Critical Zone. We do so by examining the origins and rise of  
48 antibiotic resistance genes, their subsequent dissemination, and the ongoing  
49 colonization of diverse ecosystems by resistant organisms.

50

51

52 **Introduction**

53 Earth's Critical Zone is the thin surface layer of the planet upon which terrestrial life  
54 depends. It extends from unaltered bedrock, through the land surface, to the  
55 vegetation canopy and atmospheric boundary layer. Critical Zone science is  
56 complementary to other integrative systems approaches for studying terrestrial,  
57 marine and freshwater environments. Crucially, it includes a mechanistic  
58 understanding of shallow lithosphere processes and their interactions with the above-  
59 ground ecosystems (Mobley 2009)

60 . It addresses these interactions across wide temporal (sub-second reaction kinetics to  
61 geological time spans) and spatial scales (molecular to planetary). The Critical Zone  
62 approach recognizes Earth as a physical and geochemical substrate that supports  
63 above ground ecological functions, and extends the lower boundary of ecological  
64 function to embrace the lithosphere, and its inputs over geological time scales.

65  
66 This interdisciplinary research area within geobiology links biological and  
67 geochemical processes across temporal and spatial scales. However, the distribution,  
68 transport and recruitment of functional genes has rarely been investigated via the  
69 systems perspective framed by Critical Zone science. Since investigation of Critical  
70 Zone biogeochemical processes extends the analysis of flows and transformations of  
71 material and energy to explicitly include biodiversity, a tractable approach may be to  
72 describe the geospatial dynamics of the genetic information encoded in functional  
73 genes, and the microbes that carry these genes. Above-ground human activities  
74 generate impacts that are transmitted through the vertical extent of the Critical Zone,  
75 via aquifers, and horizontally within water catchments. Analyzing the vertical and  
76 horizontal penetration of genetic material should be part of these investigations  
77 (Küsel, et al. 2016).

78  
79 Environmental microbes and genes are traditionally studied in one location, or in one  
80 environmental compartment (such as vegetation, the water column, or soil), with little  
81 attention paid to the dynamic exchange of microbes and genes across system

82 boundaries and physical scales. The advent of "omics" tools has facilitated the  
83 exploration of Earth's biological 'dark matter', but there remains a substantial  
84 conceptual gap between the notion of the Earth's biome and its quantitative  
85 manifestation in biogeochemical fluxes. Integrating "omics" data into earth system  
86 science should generate better models of biogeochemistry and improve understanding  
87 of how environmental changes will impact microorganisms. For instance,  
88 incorporating environmental genomics data into biogeochemical models improves  
89 predictions about nitrogen cycling (Mock, et al. 2016; Reed, et al. 2014).

90

91 Driven by these concepts, there is increasing attention towards system views of the  
92 temporal and spatial distribution of microbes and genes in Earth's Critical Zone.  
93 Metagenomics has been used to determine the influence of fluvial networks on the co-  
94 occurrence of microbes, by examining biofilms in over a hundred streams (Widder, et  
95 al. 2014). The distribution and origins of fecal bacteria have been determined in large  
96 mixed-use watersheds in Michigan, USA, also using omics technologies  
97 (Verhougstraete, et al. 2015). Similar ecosystem wide approaches have been used to  
98 demonstrate how below ground microbial diversity might be a primary driver of plant  
99 diversity and productivity (Bardgett and van der Putten 2014). Questions are also  
100 being asked about how surface activities might influence below ground biota and  
101 nutrient cycling, using combinations of omics, biogeochemical, and hydrogeological  
102 approaches (Küsel, et al. 2016).

103

104 These publications are representative of recent efforts to explore the links between  
105 microbial biogeography, biogeochemistry and geological processes. In particular, they  
106 reflect a growing interest on the effects that human activities might have on the  
107 microbial world (Gillings and Paulsen 2014). Understanding the role that humans  
108 might have in changing the distributions of microorganisms, and in generating  
109 selective forces that alter adaptive pressures, are essential if we are to predict how  
110 global change will affect microbial activity and function. However, many of the most  
111 important processes for Critical Zone function are complex, multi-gene and multi-cell

112 interactions that are difficult to model, due to the complexity and dynamics of genetic  
113 and functional diversity within indigenous microbial communities.

114

115 There are alternative, simpler systems that we can use to understand the influences  
116 that humans have on the transport and transformation of genetic information in the  
117 Critical Zone. Antibiotic resistance, for instance, is generally a one-gene, one  
118 phenotype character, and has been the subject of considerable research over the last  
119 fifty years. Genes conferring resistance, and the cells that host these genes, could be  
120 used as a paradigm for assessing the interactions of gene flow with the diversity of  
121 microorganisms in the Critical Zone.

122

123 Antibiotic resistance might be a good proxy that can inform more general conclusions  
124 about alterations in the distribution and activity of the microorganisms that host  
125 specific genes within the Critical Zone. The widespread use of antibiotics in  
126 agriculture and medicine has increased the abundance of both resistance genes and the  
127 bacteria that host them. These genes and microorganisms are then shed into  
128 environmental compartments via human and animal waste streams such as manure,  
129 sewage sludge, and wastewater (Gillings 2013). As a consequence, antibiotic  
130 resistance genes are considered to be emerging environmental contaminants (Pruden,  
131 et al. 2013). On the one hand, the spread of resistance determinants within the Critical  
132 Zone is caused by human activities, and on the other hand, it also threatens human  
133 health worldwide. The history of resistance begins in the 1950s, and is thus co-  
134 incident with the ‘Great Acceleration’ and the rapidly increasing impact of humans  
135 activity on the planet since this time point (Steffen, et al. 2015).

136

### 137 **Natural transport and biogeography of bacteria**

138 We live in a world where organismal abundance and gene frequencies have been  
139 significantly shaped by human activities. Nevertheless, it is worth reflecting on the  
140 historical dynamics of microbial organisms and ecosystems, before the rise of human  
141 influence. This allows comparisons with the modern world.

142

143 It has been known for some time that microorganisms exhibit the same taxa-area  
144 relationships and turnover in species assemblages with distance that are characteristic  
145 of larger organisms (Green, et al. 2004; Horner-Devine, et al. 2004). Taxa are  
146 distributed non-randomly in environments such as soil, fresh water and groundwater,  
147 at scales from meters to many thousands of kilometers (Martiny, et al. 2006). These  
148 patterns are driven by a combination of factors, including: the ability to disperse over  
149 distance; selection at the destination; and stochastic processes such as drift and  
150 mutation (Hanson, et al. 2012). Teasing apart the relative contributions of the  
151 processes that generate patterns of microbial biogeography is difficult, and is further  
152 complicated by the diversity and complexity of microbial communities themselves  
153 (Evans, et al. 2017; Haggerty and Dinsdale 2016). The impact of human migration as  
154 a transport vector on structuring prokaryotic communities is still poorly understood.  
155 Some authors have argued that stochastic events could be more important than  
156 deterministic factors such as competition and niche differentiation (Sloan, et al. 2006).

157

158 At the largest possible temporal and spatial scales, bacteria are the best candidates to  
159 survive interplanetary transfer inside rock. Such lithopanspermia is a potential means  
160 that life could be transferred between planetary bodies within and outside our solar  
161 system (Nicholson 2009). On Earth, but still across large spatial scales,  
162 microorganisms are capable of long-distance dispersal, being ubiquitous and  
163 abundant, even in the upper atmosphere (Barberán, et al. 2015). Thousands of distinct  
164 bacterial taxa, accompanied by other microorganisms, are carried within dust plumes  
165 in long-range intercontinental transport events. For instance, Asian aerosols contribute  
166 to microbial species richness in North American air (Smith, et al. 2013), and dust  
167 storms generated in the African Sahara-Sahel transport microorganisms that  
168 eventually contribute to bacterial assemblages in European mountain lakes (Perfumo  
169 and Marchant 2010; Peter, et al. 2014).

170

171 **Natural release and survival of DNA**

172 Microbial biogeography is further complicated by the ability of microorganisms to  
173 acquire foreign DNA, and consequently movement of genes through the Critical Zone  
174 can occur independently of organismal movement. DNA released from organisms can  
175 transfer to unrelated species either through close contact, or at a distance, when DNA  
176 can survive in the environment for extended time periods (Gillings 2017b).

177

178 Extracellular DNA can be readily detected in environmental samples, and can  
179 originate from dead bacterial, animal or plant cells. All soils contain significant  
180 quantities of extracellular DNA (Frostegård, et al. 1999). This DNA can persist in the  
181 environment and can be transported away from cell debris. Because DNA can resist  
182 physical and biological degradation under some conditions, it has even been proposed  
183 as a potential signature of life during interplanetary exploration (Lyon, et al. 2010).

184

185 Under natural conditions, DNA released via cell lysis is in contact with other cellular  
186 components (wall debris, proteins, lipids, RNA, etc.). The presence of both organic  
187 compounds and inorganic molecules in soil particles strongly influences the  
188 adsorption of DNA (Pietramellara, et al. 2009). Consequently, DNA can be protected  
189 from enzymatic degradation in soil by adsorption onto soil minerals and humic  
190 substances (Levy-Booth, et al. 2007). Protection against degradation by DNases of  
191 microbial origin is aided by the concomitant adsorption of nucleases (Demanèche, et  
192 al. 2001). Many studies on survival of DNA in the environment have been conducted  
193 using plasmids and antibiotic resistance genes as markers.

194

195 The DNA persisting in soil is only a tiny fraction of the total DNA being released at  
196 any one time from decaying plants, animals and microorganisms. This DNA usually  
197 undergoes rapid degradation (Ceccherini, et al. 2007; Pontiroli, et al. 2007; Poté, et al.  
198 2010). Degradation is biological and enzymatic, since DNA can survive in autoclaved  
199 treatments (Zhu 2006). Nevertheless, a proportion of extracellular DNA does persist  
200 in natural environments, either bound to soil particles, or inside biofilms, where it is  
201 an important structural component (Pietramellara, et al. 2009; Whitchurch, et al.

202 2002). In the long term, persistence eventually requires being taken up by a recipient  
203 cell, and incorporated into that cell's genome. The likelihood of this occurring  
204 improves with increasing phylogenetic and ecological similarity of donor and  
205 recipient (Beiko, et al. 2005), and also improves markedly if the donor DNA can  
206 confer an adaptive phenotype. This is one reason why genes that confer antibiotic  
207 resistance are a good marker for these processes in natural environments.

208

209 **Movement and transport of extracellular DNA.**

210 DNA is able to be transported vertically in unsaturated soils, to eventually penetrate  
211 groundwater and aquifers, where it can be immobilized through adsorption onto  
212 mineral surface or be transported with groundwater flow (Poté, et al. 2009). Forced  
213 pumping of groundwater for drinking can thus induce rapid flow and associated  
214 transport of DNA over considerable distances. DNA can also move upwards in the  
215 soil column via capillary action (Ceccherini, et al. 2007), potentially allowing  
216 subsequent long distance movement via erosion and run-off.

217

218 The presence of extracellular DNA in environmental samples is increasingly being  
219 used to perform multi-taxa surveys, or to detect rare and elusive species (Zinger, et al.  
220 2016). However, the parameters that affect transport and survival of extracellular  
221 DNA are not well understood, and may compromise some of these experiments  
222 (Jerde, et al. 2016). Given the problems of differential survival and transport of  
223 extracellular DNA, guidelines for the design and interpretation of environmental  
224 DNA methods are required (Goldberg, et al. 2016).

225

226 Experiments to address this problem have used a variety of indicator DNAs.  
227 Antibiotic resistance genes known to be associated with humans are a good choice.  
228 They have been used to show survival and dissemination of DNA into freshwater  
229 sediments in an aquatic environment used for drinking water supply (Thevenon, et al.  
230 2012). Similarly, plasmids (Poté, et al. 2003) and bacteriophages (Chetochine, et al.  
231 2006) have been used to demonstrate transport over considerable distances in water

232 saturated soil and groundwater. However, the dynamic relationships between DNA  
233 transport, immobilization, survival, and the limits of detection are not well established  
234 (Hunter, et al. 2016).

235

236 One way to track and understand dissemination of DNA through the environment, and  
237 indeed, throughout Earth's Critical Zone is to use a model system that is tractable and  
238 reflects the history of human impacts. Antibiotic resistance genes, their plasmid  
239 vectors, and the bacteria that host them are a good candidate for use as a proxy for  
240 anthropogenic influences (Gillings, et al. 2015).

241

## 242 **The evolutionary history of antibiotic resistance**

243 The genes that we regard as antibiotic resistance genes are, by and large, recently  
244 descended from genes whose original functions were *not* to confer resistance to  
245 clinical concentrations of antibiotic compounds. Two kinds of event are responsible  
246 for the genesis of modern antibiotic resistance genes: mutation of a pre-existing gene  
247 within a cell lineage; and co-option of a gene acquired by lateral gene transfer from an  
248 unrelated lineage (Gillings, et al. 2017). In the latter case, it has been suggested that  
249 many of these laterally transferred genes originally functioned in defensive responses  
250 to small signaling molecules arising from antagonistic biota, including those  
251 molecules we now use as antimicrobial agents (Davies and Davies 2010; Davies, et al.  
252 2006; Linares, et al. 2006).

253

254 This idea is supported by the observation that natural environments and  
255 environmental bacteria contain large numbers of genes that *could* confer resistance to  
256 antibiotics if they were present in clinical contexts. These genes are collectively  
257 termed the resistome. The resistome is far larger and far older than the small subset of  
258 problematic resistome elements that have recently made their way into human and  
259 animal bacteria of clinical importance (Allen, et al. 2010). For example, gene families  
260 that can confer resistance to particular antibiotic classes are plausibly related to  
261 defense mechanisms selected in response to naturally-occurring compounds which

262 induce chemical stress. These gene families date back hundreds of millions of years,  
263 and can be recovered from ancient environments such as caves and permafrost (Baltz  
264 2008; Bhullar, et al. 2012; D'Costa, et al. 2011).

265

266 The widespread use of antibiotics in health care and intensive animal farming since  
267 the 1950s has exerted strong selection for rare, individual cells that had recently  
268 acquired a mutation or resistome element. As a result of continuing antibiotic use  
269 resistant organisms have rapidly increased in both abundance and distribution  
270 (Gillings 2017b). Under this selection pressure, resistant organisms and their genetic  
271 cargo have spread between individuals, species and continents (Bengtsson-Palme, et  
272 al. 2015; Hu, et al. 2016). These resistance genes are readily identifiable because their  
273 recent expansion means they have highly conserved DNA sequences. Carriage of such  
274 resistance genes is now a universal feature of gut bacteria in humans and agricultural  
275 animals (Pal, et al. 2016).

276

277 As a consequence of their universal carriage, resistant bacteria are continually  
278 discharged into the environment via waste water, sewage treatment plants and animal  
279 manure, thus spreading both resistant organisms and resistance genes. These same  
280 waste streams also release antibiotics (Grenni, et al. 2017; Liu, et al. 2017), which  
281 have significant effects, and trigger chemical stress responses even at sub-inhibitory  
282 concentrations (Chow, et al. 2015). Waste waters then become giant reactors where  
283 complex interactions occur between chemical compounds, molecular responses, cells,  
284 resistance genes, and genetic transformation driven by lateral transfer and mutation  
285 (Gillings and Stokes 2012).

286

287 The broad-scale dissemination of bacterial genes, including resistance genes, is  
288 mediated by a number of factors. This transport and transformation is controlled at  
289 various nested levels. Firstly, DNA can be released from cells and persist in the  
290 environment. From here it can be taken up and incorporated into environmental  
291 bacteria. Secondly, genes can be transported within their host bacteria. Where such

292 bacteria are dispersed by water or wind, their cargo genes are carried with them.  
293 Finally, the bacteria themselves can be carried inside animal hosts via mass migration,  
294 or in the case of humans, by travel and tourism.

295

296 **Tracking the movement of resistance genes in Earth's Critical Zone**

297 Interest in the dispersal of antibiotic resistance genes and their host bacteria is  
298 growing rapidly as the environmental consequences of this dissemination become  
299 more apparent. Partly, this is because resistance genes themselves have unique  
300 properties. On the one hand, they behave like pollutants which exhibit environmental  
301 exposure routes, and on the other hand, they can replicate, making them more akin to  
302 an invasive species with multiple cellular hosts (Gillings 2017a).

303

304 Human activities directly promote the invasion and spread of resistance determinants.  
305 Waste water treatment plants occupy a position between human waste streams and the  
306 aquatic environment, but do not effectively remove resistance genes, thus distributing  
307 them in effluent (Aubertheau, et al. 2016; Ben, et al. 2017; Karkman, et al. 2016).  
308 Effluents also contain significant concentrations of selective agents, thus promoting  
309 the survival of resistant organisms, potentially at the expense of endemic species  
310 (Borruso, et al. 2016; Caucci, et al. 2016; Koczura, et al. 2016; Lehmann, et al. 2016).  
311 Application of sewage sludge, or antibiotics alone, increases the abundance of  
312 resistance genes, and changes the microbial community in soils (Chen, et al. 2016;  
313 Cleary, et al. 2016).

314

315 Agricultural activities also strongly promote the environmental spread of resistance  
316 through disposal of wastes and application of manure (Heuer, et al. 2011; Sandberg  
317 and LaPara 2016). Similarly, aquaculture is increasingly being recognized as a focal  
318 point for enhancing and dispersing resistance in the environment (Muziasari, et al.  
319 2016). In both of these cases, the simultaneous release of antibiotics and other  
320 selective agents promotes selection of organisms containing resistance genes (He, et  
321 al. 2016; Liu, et al. 2017; Wang, et al. 2016). This generates opportunities for co-

322 selection and fixation of chemical (toxic metals) and resistance determinants in  
323 species, and within individual DNA molecules (Johnson, et al. 2016; Zhou, et al.  
324 2016).

325

326 A combination of phenomena, including the volume of human and agricultural waste  
327 streams, and the concomitant release of selective agents, means that resistance genes  
328 and resistant organisms can become extraordinarily widespread and abundant over  
329 very short time frames. A single multidrug resistant clone of *E. coli* has become  
330 globally disseminated since its origin as recently as the year 2000 (Petty, et al. 2014).

331

332 Antimicrobial resistance in Earth's Critical Zone is thus dependent on human  
333 activities, the action of selection in natural environments, and upon natural transport  
334 mechanisms, such as rivers, groundwater and soil movement. At landscape scale,  
335 antibiotic resistance genes can move with soil erosion and drainage from top soil to  
336 groundwater.

337

### 338 **Modeling of the dynamics of resistance genes in the Critical Zone**

339 Effective modelling of the spread of antimicrobial resistance is essential for making  
340 predictions that can inform policy, practice and environmental surveillance. Policy  
341 makers are interested in models for two reasons. First, they support general policies  
342 that can inform handling of antimicrobials in the environment, during production,  
343 agricultural use or waste water treatment. Second, they inform possible interventions  
344 in the face of a specific outbreak of an antibiotic resistant human or animal pathogen.  
345 Models need to be flexible, realistic, and able to be used in different contexts.

346

347 However, developing realistic and flexible models that operate on an environmental  
348 scale is a significant challenge. AMR encompasses a broad range of organisms, genes  
349 and antimicrobial agents, and mobile genetic elements. Sensitive and resistant  
350 organisms live in complex, heterogeneous communities. The processes that drive  
351 fixation of resistance occur at microscopic scales. Selection and spread within the

352 Critical Zone can involve slurry tanks (Baker, et al. 2016), the animal gut (Volkova, et  
353 al. 2012), wastewater treatment plants (Sharifi, et al. 2014) and industrial effluents,  
354 while broader dissemination might be driven by soil movement, water percolation,  
355 rivers, domestic animals and wildlife.

356

357 Mathematical modelling of resistance spread has been applied at a range of scales.  
358 Models for laboratory-scale experiments have been valuable for establishing rates of  
359 mutation, selection and the spread of resistance (Bootsma, et al. 2012; De Gelder, et  
360 al. 2004). However, while these models are useful for characterizing key processes,  
361 they do not scale up to the required complexity for whole environments.

362 Consideration of the spatial structure of microbial communities, for example biofilms,  
363 gives a more accurate representation of the spread resistance in a community (Lardon,  
364 et al. 2011). Models of farms or sewage treatment plants have shown that it is possible  
365 for resistant organisms or pathogens to persist even in the absence of antibiotic  
366 treatment (Sharifi, et al. 2014), and can also make predictions about the duration of  
367 persistence (Volkova, et al. 2013). However, these models have been limited to  
368 considering a single type of bacterium or antimicrobial agent.

369

370 Therefore, three developments are needed to move forward with environmental scale  
371 models that can be effective in understanding and predicting spread or reduction in  
372 resistance in the Critical Zone: inclusion of heterogeneity; multi-scaling in space and  
373 time; and effective global data sharing.

374

375 First, models will need to consider a fuller range of organisms, resistance genes,  
376 mobile genetic elements and antimicrobials, that reflect the complexity of the  
377 observed system (Chen, et al. 2016; Perron, et al. 2015) and the importance of co-  
378 selection of antibiotic and metal resistance genes (Gullberg, et al. 2014; Pal, et al.  
379 2015). Importantly, different organisms, genes and mobile genetic elements will  
380 behave differently, leading to heterogeneity in growth, transmission and selection.  
381 However, their inclusion will be essential to determine the pace and range of spread or

382 elimination of resistance, and the relative contributions of resistance genes to the  
383 emergence of potentially resistant pathogens. This is a considerable modeling  
384 challenge, because the number of possible genetic and resistance combinations  
385 increases exponentially with the degree of biological complexity to be included. For  
386 example, even within a mass action ordinary differential equation framework, to  
387 model populations of a single bacterial species in an environment with two different  
388 antimicrobials, two respective resistance genes, that each might be carried on one of  
389 two different mobile genetic elements, requires many differential equations, and such  
390 models are difficult to parameterize or analyze.

391

392 Second, models will need to operate on multiple scales. While the best representation  
393 of spread of AMR on a microscopic scale is through individual-based models, such  
394 models do not extend to an environmental scale. Therefore, it will be necessary to  
395 coarse-grain predictive outcomes of small-scale models into larger scale, multi-  
396 compartment models that can consider populations of humans, farm animals and  
397 wildlife in their respective geographical compartments. It may also be necessary to  
398 use models that combine deterministic with stochastic elements. Deterministic models  
399 are capable of simulating large populations of bacteria, while stochastic models can  
400 capture rare and random events, for example the spread of a particular resistance  
401 determinant from one species to another. A further feature of such models will be the  
402 need to embed geospatial data (Pruden, et al. 2012), to include factors such as  
403 topography, land use and water flows.

404

405 Third, such models will require considerable calibration against real data. Researchers  
406 carrying out environmental and field studies will need to share data in a way that is  
407 useful for embedding into predictive models. To do this, we will require agreed  
408 standards for data capture and sharing, and the development of an international  
409 database for resistance in the critical zone. Such data could include observations from  
410 a wide range of experimental techniques, and data on taxa, species, phenotypes,  
411 genomes, resistance genes, mobile genetic elements, antibiotics, heavy metals and

412 other antimicrobials. Ideally, the data would also include geospatial coordinates so  
413 that they can be used in geospatially explicit models. While this challenge alone is  
414 considerable, there is considerable precedent for agreed data standards in other areas  
415 of high throughput biology, which this development can draw upon.

416

417 **Dispersal of resistance genes in the Critical Zone – A planetary view**

418 Understanding movement of antibiotic resistance through the Critical Zone is  
419 complex, and difficult to model (Figure XX). Quantifying ARG movement requires  
420 the coupling between the transport of bacterial cells (and resistance genes they carry)  
421 and materials (and associated selective agents) and their interactions within the  
422 Critical Zone. We can then infer more general principles about the movement and  
423 transformation of genes and microorganisms. These principles might then be tested  
424 and applied to even more complex, multi-gene phenotypes of central importance to  
425 global biogeochemistry.

426

427 Before humans had a major influence on the planet, movement of microorganisms  
428 and the genes they carry was mainly driven by physical phenomena, such as air  
429 currents and water flow. Without human influence, a relatively small number of  
430 microbial cells would be transported to any specific location, therefore chance played  
431 a large role in dispersal of bacterial cells/genes. This dispersal did not necessarily  
432 result in survival or recruitment, since locally adapted cells were already present, and  
433 filled existing niches. With the advent of the Anthropocene, human activities now  
434 have large effects on the dispersal of microorganisms and the genes they carry (Table  
435 1). Movement of humans around the globe transports our internal microbiota to new  
436 locations at an unprecedented scale. Human migration changes the abundance of  
437 resistance genes, and successfully transports resistance genes between continents  
438 (Bengtsson-Palme, et al. 2015; Sun, et al. 2016).

439

440 The fact that biomass of humans and domestic animals now comprise 35 times that of  
441 wild terrestrial mammals (Smil 2011) may have consequences for the microbial

442 world. Firstly, humans, domestic and agricultural animals all carry resistance genes in  
443 their gut microbiota, thus vastly increasing the abundance and distribution of these  
444 genes on the planet. Secondly, on a global scale the fecal microbiota are now mainly  
445 represented by the gut microbiota of six species: humans, cattle, sheep, goats, pigs  
446 and chickens. Thus, the overall diversity of bacteria being shed in feces has  
447 consequently declined. At the same time, the quantity of fecal microbiota has  
448 increased as the biomass of humans and their domesticates approaches five times the  
449 global carrying capacity for terrestrial vertebrates (Smil 2011). Therefore , disposal of  
450 both human and animal manures has a significant impact on the dissemination of both  
451 microbial organisms and genes (Chen, et al. 2016; Jechalke, et al. 2013). These cells  
452 and genes can contaminate agricultural produce (Bengtsson-Palme 2017; Jones-Dias,  
453 et al. 2016), which is then transported between countries.

454

455 Humans disperse microorganisms by mass movement of materials (Table 1).  
456 Transport of ballast water in ships is estimated to move  $10^{19}$  bacteria each day  
457 (Endresen, et al. 2004; Ruiz, et al. 2000), spreading diverse microorganisms around  
458 the globe and thus reshaping microbial biogeography (Brinkmeyer 2016; Lohan, et al.  
459 2016). It has been suggested that anthropogenic movement of soil, sand and rock now  
460 surpasses all natural processes combined (Wilkinson and McElroy 2007), incidentally  
461 transporting huge numbers of microbial cells. Wastewater also transports  
462 microorganisms and their cargo genes into the environment. With increasing human  
463 populations, the volume of wastewater is increasing, but global data on the treatment,  
464 reuse, or volumes of waste water is difficult to assemble (Sato, et al. 2013). As an  
465 example, antibiotic resistance genes now pollute over 4,000 kilometers of the Chinese  
466 coastline at levels up to 100 million genes per gram of sediment (Zhu, et al. 2017b).  
467 None of these genes would have been present in this sediment 50 years ago.

468

469 Human activities increase the numbers of microorganisms being transported within  
470 the Critical Zone and around the Earth ecosystem, thus increasing the chances for  
471 successful recruitment (Table 1). Furthermore, during transport, microorganisms are

472 often exposed to pollutants, particularly during discharge of manure and waste water.  
473 Exposure to antibiotics and other co-selective agents, even at low does, can enhance  
474 the rate at which bacteria generate diversity via mutation (Kohanski, et al. 2010),  
475 recombination (Guerin, et al. 2009) and lateral gene transfer (Prudhomme, et al.  
476 2006). The simultaneous dispersal of microorganisms and various selective agents  
477 increases the genetic variation being generated in those microbial populations,  
478 enhancing their potential to evolve (Gillings and Stokes 2012). Consequently a subset  
479 of the cells dispersed to new locations are adapted to the co-dispersed pollutants,  
480 increasing their probability of recruitment at these new locations. Further, because  
481 genes for metal, disinfectant and antibiotic resistance are often closely linked  
482 (Johnson, et al. 2016), exposure to any one selective agent drives their co-selection,  
483 and maintains mosaic clusters of resistance determinants (Di Cesare, et al. 2016;  
484 Gaze, et al. 2005; Skurnik, et al. 2010). Possession of diverse resistance determinants  
485 significantly increases the probability of recruitment at novel destinations by  
486 providing a selective advantage over endemic microorganisms (Table 1).

487

#### 488 **Concluding remarks**

489 It is becoming more and more important to understand how human activities cause  
490 systematic changes in ecosystems (Alberti, et al. 2017), and especially the effects on  
491 the emergence and spread of ARGs in urbanizing Earth's Critical Zone (Zhu, et al.  
492 2017a). To better understand the dynamics of ARGs in the Critical Zone, future  
493 studies should emphasize linkages between biogeochemical cycling of nutrients and  
494 contaminants with the movement of microorganisms. Under the framework of Critical  
495 Zone science, tracking the dynamics of ARGs should give us insights into the  
496 interconnections between multiple environmental compartments within the entire  
497 Critical Zone. Due to the extreme heterogeneity of the Critical Zone, we should also  
498 focus on hot spots for ARG dissemination such as locations receiving high loads of  
499 wastewater or manure. Understanding the complex feedbacks between the dynamics  
500 of ARGs and interactions with physical, chemical and biological processes in the  
501 Critical Zone is a grand challenge. Progress can only be made by forging

502 interdisciplinary research teams that can manage and interpret the enormous datasets  
503 of genomics and biogeochemistry, and by developing predictive models based on  
504 these datasets.

505

506 **Acknowledgements**

507 YGZ is supported by Natural Science Foundation of China (41571130063), Chinese  
508 Academy of Sciences (XDB15020302 and XDB15020402), MRG is supported by the  
509 Australian Research Council, JP is supported by the European Research Council  
510 Synergy grant SyG-2013-610028 IMBALANCE-P. The authors declare no conflicts  
511 of interest.

512

513

514

515

516 **References**

517

518 Alberti M, Marzluff J, Hunt VM. 2017. Urban driven phenotypic changes: empirical  
519 observations and theoretical implications for eco-evolutionary feedback. *Phil. Trans. R. Soc. B* 372(1712):20160029.

520

521 Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. 2010.  
522 Call of the wild: antibiotic resistance genes in natural environments. *Nature Reviews Microbiology* 8(4):251-259.

523

524 Aubertheau E, Stalder T, Mondamert L, Ploy M-C, Dagot C, Labanowski J. 2016.  
525 Impact of wastewater treatment plant discharge on the contamination of river  
526 biofilms by pharmaceuticals and antibiotic resistance. *Science of The Total  
527 Environment* 579:1387-1398.

528 Baker M, Hobman JL, Dodd CE, Ramsden SJ, Stekel DJ. 2016. Mathematical  
529 modelling of antimicrobial resistance in agricultural waste highlights  
530 importance of gene transfer rate. *FEMS microbiology ecology* 92(4):fiw040.

531 Baltz RH. 2008. Renaissance in antibacterial discovery from actinomycetes. *Current  
532 Opinion in Pharmacology* 8(5):557-563.

533 Barberán A, Ladau J, Leff JW, Pollard KS, Menninger HL, Dunn RR, Fierer N. 2015.  
534 Continental-scale distributions of dust-associated bacteria and fungi.  
535 Proceedings of the National Academy of Sciences 112(18):5756-5761.

536 Bardgett RD, van der Putten WH. 2014. Belowground biodiversity and ecosystem  
537 functioning. *Nature* 515(7528):505-511.

538 Beiko RG, Harlow TJ, Ragan MA. 2005. Highways of gene sharing in prokaryotes.  
539 *PNAS* 102(40):14332-14337.

540 Ben W, Wang J, Cao R, Yang M, Zhang Y, Qiang Z. 2017. Distribution of antibiotic  
541 resistance in the effluents of ten municipal wastewater treatment plants in  
542 China and the effect of treatment processes. *Chemosphere* 172:392-398.

543 Bengtsson-Palme J. 2017. Antibiotic resistance in the food supply chain: Where can  
544 sequencing and metagenomics aid risk assessment? *Current Opinion in Food  
545 Science* 14:66-71.

546 Bengtsson-Palme J, Angelin M, Huss M, Kjellqvist S, Kristiansson E, Palmgren H,  
547 Larsson DJ, Johansson A. 2015. The human gut microbiome as a transporter  
548 of antibiotic resistance genes between continents. *Antimicrobial Agents and  
549 Chemotherapy* 59(10):6551-6560.

550 Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, Barton  
551 HA, Wright GD. 2012. Antibiotic resistance is prevalent in an isolated cave  
552 microbiome. *PLoS ONE* 7(4):e34953.

553 Bootsma M, van der Horst M, Guryeva T, Ter Kuile B, Diekmann O. 2012. Modeling  
554 non-inherited antibiotic resistance. *Bulletin of mathematical biology*  
555 74(8):1691-1705.

556 Borruso L, Harms K, Johnsen PJ, Nielsen KM, Brusetti L. 2016. Distribution of class  
557 1 integrons in a highly impacted catchment. *Science of The Total Environment*  
558 566:1588-1594.

559 Brinkmeyer R. 2016. Diversity of bacteria in ships ballast water as revealed by next

560 generation DNA sequencing. *Marine pollution bulletin* 107(1):277-285.

561 Caucci S, Karkman A, Cacace D, Rybicki M, Timpel P, Voolaid V, Gurke R, Virta M,  
562 Berendonk TU. 2016. Seasonality of antibiotic prescriptions for outpatients  
563 and resistance genes in sewers and wastewater treatment plant outflow. *FEMS  
564 Microbiology Ecology* 92(5):fiw060.

565 Ceccherini MT, Ascher J, Pietramellara G, Vogel TM, Nannipieri P. 2007. Vertical  
566 advection of extracellular DNA by water capillarity in soil columns. *Soil  
567 Biology and Biochemistry* 39(1):158-163.

568 Chen Q, An X, Li H, Su J, Ma Y, Zhu Y-G. 2016. Long-term field application of  
569 sewage sludge increases the abundance of antibiotic resistance genes in soil.  
570 *Environment international* 92:1-10.

571 Chetochine AS, Brusseau ML, Gerba CP, Pepper IL. 2006. Leaching of phage from  
572 class B biosolids and potential transport through soil. *Applied and  
573 environmental microbiology* 72(1):665-671.

574 Chow L, Waldron L, Gillings M. 2015. Potential impacts of aquatic pollutants: sub-  
575 clinical antibiotic concentrations induce genome changes and promote  
576 antibiotic resistance. *Frontiers in microbiology* 6:803.

577 Cleary DW, Bishop AH, Zhang L, Topp E, Wellington EM, Gaze WH. 2016. Long-  
578 term antibiotic exposure in soil is associated with changes in microbial  
579 community structure and prevalence of class 1 integrons. *FEMS Microbiology  
580 Ecology* 92(10):fiw159.

581 D'Costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, Froese D, Zazula  
582 G, Calmels F, Debruyne R and others. 2011. Antibiotic resistance is ancient.  
583 *Nature* 477:457-461.

584 Davies J, Davies D. 2010. Origins and evolution of antibiotic resistance.  
585 *Microbiology and Molecular Biology Reviews* 74(3):417-433.

586 Davies J, Spiegelman GB, Yim G. 2006. The world of subinhibitory antibiotic  
587 concentrations. *Curr. Opinion Microbiol.* 9(5):445-453.

588 De Gelder L, Ponciano JM, Abdo Z, Joyce P, Forney LJ, Top EM. 2004. Combining  
589 mathematical models and statistical methods to understand and predict the  
590 dynamics of antibiotic-sensitive mutants in a population of resistant bacteria  
591 during experimental evolution. *Genetics* 168(3):1131-1144.

592 Demanèche S, Jocteur-Monrozier L, Quiquampoix H, Simonet P. 2001. Evaluation of  
593 biological and physical protection against nuclease degradation of clay-bound  
594 plasmid DNA. *Applied and Environmental Microbiology* 67(1):293-299.

595 Di Cesare A, Eckert E, Corno G. 2016. Co-selection of antibiotic and heavy metal  
596 resistance in freshwater bacteria. *Journal of Limnology* 75(s2).

597 Endresen Ø, Behrens HL, Brynestad S, Andersen AB, Skjøng R. 2004. Challenges in  
598 global ballast water management. *Marine Pollution Bulletin* 48(7):615-623.

599 Evans S, Martiny JB, Allison SD. 2017. Effects of dispersal and selection on  
600 stochastic assembly in microbial communities. *The ISME Journal* 11:176-185.

601 Frostegård Å, Courtois S, Ramisse V, Clerc S, Bernillon D, Le Gall F, Jeannin P,  
602 Nesme X, Simonet P. 1999. Quantification of bias related to the extraction of  
603 DNA directly from soils. *Applied and environmental microbiology*

604 65(12):5409-5420.

605 Gaze WH, Abdouslam N, Hawkey PM, Wellington EMH. 2005. Incidence of class 1  
606 integrrons in a quaternary ammonium compound-polluted environment.  
607 *Antimicrobial Agents and Chemotherapy* 49(5):1802-1807.

608 Gillings MR. 2013. Evolutionary consequences of antibiotic use for the resistome,  
609 mobilome and microbial pangenome. *Frontiers in Microbiology* 4:4.

610 Gillings MR. 2017a. Class 1 integrons as invasive species. *Current Opinion in*  
611 *Microbiology*.

612 Gillings MR. 2017b. Lateral gene transfer, bacterial genome evolution, and the  
613 Anthropocene. *Annals of the New York Academy of Sciences* 1389:20-36.

614 Gillings MR, Gaze WH, Pruden A, Smalla K, Tiedje JM, Zhu Y-G. 2015. Using the  
615 class 1 integron-integrase gene as a proxy for anthropogenic pollution. *The*  
616 *ISME Journal* 9(6):1269-1279.

617 Gillings MR, Paulsen IT. 2014. Microbiology of the Anthropocene. *Anthropocene*.

618 Gillings MR, Paulsen IT, Tetu SG. 2017. Genomics and the evolution of antibiotic  
619 resistance. *Annals of the New York Academy of Sciences* 1388:92-107.

620 Gillings MR, Stokes HW. 2012. Are humans increasing bacterial evolvability? *Trends*  
621 *in Ecology and Evolution* 27(6):346-352.

622 Goldberg CS, Turner CR, Deiner K, Klymus KE, Thomsen PF, Murphy MA, Spear  
623 SF, McKee A, Oyler - McCance SJ, Cornman RS. 2016. Critical  
624 considerations for the application of environmental DNA methods to detect  
625 aquatic species. *Methods in Ecology and Evolution* 7(11):1299-1307.

626 Green JL, Holmes AJ, Westoby M, Oliver I, Briscoe D, Dangerfield M, Gillings M,  
627 Beattie AJ. 2004. Spatial scaling of microbial eukaryote diversity. *Nature*  
628 432(7018):747-750.

629 Grenni P, Ancona V, Caracciolo AB. 2017. Ecological effects of antibiotics on natural  
630 ecosystems: A review. *Microchemical Journal*.

631 Guerin E, Cambray G, Sanchez-Alberola N, Campoy S, Erill I, Da Re S, Gonzalez-  
632 Zorn B, Barbe J, Ploy M-C, Mazel D. 2009. The SOS Response Controls  
633 Integron Recombination. *Science* 324(5930):1034.

634 Gullberg E, Albrecht LM, Karlsson C, Sandegren L, Andersson DI. 2014. Selection of  
635 a multidrug resistance plasmid by sublethal levels of antibiotics and heavy  
636 metals. *MBio* 5(5):e01918-14.

637 Haggerty JM, Dinsdale EA. 2016. Distinct biogeographical patterns of marine  
638 bacterial taxonomy and functional genes. *Global Ecology and Biogeography*.

639 Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB. 2012. Beyond  
640 biogeographic patterns: processes shaping the microbial landscape. *Nature*  
641 *Reviews Microbiology* 10(7):497-506.

642 He L-Y, Ying G-G, Liu Y-S, Su H-C, Chen J, Liu S-S, Zhao J-L. 2016. Discharge of  
643 swine wastes risks water quality and food safety: Antibiotics and antibiotic  
644 resistance genes from swine sources to the receiving environments.  
645 *Environment international* 92:210-219.

646 Heuer H, Schmitt H, Smalla K. 2011. Antibiotic resistance gene spread due to manure  
647 application on agricultural fields. *Current Opinion in Microbiology* 14:236-

648 243.

649 Horner-Devine MC, Lage M, Hughes JB, Bohannan BJ. 2004. A taxa-area  
650 relationship for bacteria. *Nature* 432(7018):750-753.

651 Hu Y, Yang X, Li J, Lv N, Liu F, Wu J, Lin IY, Wu N, Weimer BC, Gao GF. 2016. The  
652 transfer network of bacterial mobile resistome connecting animal and human  
653 microbiome. *Applied and Environmental Microbiology:AEM*. 01802-16.

654 Hunter ME, Dorazio RM, Butterfield JS, Meigs - Friend G, Nico LG, Ferrante JA.  
655 2016. Detection limits of quantitative and digital PCR assays and their  
656 influence in presence-absence surveys of environmental DNA. *Molecular  
657 Ecology Resources*.

658 Jechalke S, Schreiter S, Wolters B, Dealtry S, Heuer H, Smalla K. 2013. Widespread  
659 dissemination of class 1 integron components in soils and related ecosystems  
660 as revealed by cultivation-independent analysis. *Frontiers in Microbiology*  
661 4:420.

662 Jerde CL, Olds BP, Shogren AJ, Andruszkiewicz EA, Mahon AR, Bolster D, Tank JL.  
663 2016. Influence of Stream Bottom Substrate on Retention and Transport of  
664 Vertebrate Environmental DNA. *Environmental Science & Technology*  
665 50(16):8770-8779.

666 Johnson TA, Stedtfeld RD, Wang Q, Cole JR, Hashsham SA, Looft T, Zhu Y-G,  
667 Tiedje JM. 2016. Clusters of Antibiotic Resistance Genes Enriched Together  
668 Stay Together in Swine Agriculture. *mBio* 7(2):e02214-15.

669 Jones-Dias D, Manageiro V, Ferreira E, Barreiro P, Vieira L, Moura IB, Caniça M.  
670 2016. Architecture of Class 1, 2, and 3 Integrons from Gram Negative  
671 Bacteria Recovered among Fruits and Vegetables. *Frontiers in Microbiology*  
672 7:1400.

673 Karkman A, Johnson TA, Lyra C, Stedtfeld RD, Tamminen M, Tiedje JM, Virta M.  
674 2016. High-throughput quantification of antibiotic resistance genes from an  
675 urban wastewater treatment plant. *FEMS microbiology ecology* 92(3):fiw014.

676 Koczura R, Mokracka J, Taraszewska A, Łopacińska N. 2016. Abundance of Class 1  
677 Integron-Integrase and Sulfonamide Resistance Genes in River Water and  
678 Sediment Is Affected by Anthropogenic Pressure and Environmental Factors.  
679 *Microbial Ecology* 72(4):909-916.

680 Kohanski MA, DePristo MA, Collins JJ. 2010. Sublethal antibiotic treatment leads to  
681 multidrug resistance via radical-induced mutagenesis. *Molec. Cell* 37(3):311-  
682 320.

683 Küsel K, Totsche KU, Trumbore SE, Lehmann R, Steinhäuser C, Herrmann M. 2016.  
684 How deep can surface signals be traced in the critical zone? Merging  
685 biodiversity with biogeochemistry research in a central German Muschelkalk  
686 landscape. *Frontiers in Earth Science* 4:32.

687 Lardon LA, Merkey BV, Martins S, Dötsch A, Picioreanu C, Kreft JU, Smets BF.  
688 2011. iDyNoMiCS: next - generation individual - based modelling of  
689 biofilms. *Environmental Microbiology* 13(9):2416-2434.

690 Lehmann K, Bell T, Bowes MJ, Amos GC, Gaze WH, Wellington EM, Singer AC.  
691 2016. Trace levels of sewage effluent are sufficient to increase class 1 integron

692 prevalence in freshwater biofilms without changing the core community.  
693 Water Research 106:163-170.

694 Levy-Booth DJ, Campbell RG, Gulden RH, Hart MM, Powell JR, Klironomos JN,  
695 Pauls KP, Swanton CJ, Trevors JT, Dunfield KE. 2007. Cycling of  
696 extracellular DNA in the soil environment. Soil Biology and Biochemistry  
697 39(12):2977-2991.

698 Linares JF, Gustafsson I, Baquero F, Martinez JL. 2006. Antibiotics as intermicrobial  
699 signaling agents instead of weapons. PNAS 103(51):19484-19489.

700 Liu X, Steele JC, Meng X-Z. 2017. Usage, residue, and human health risk of  
701 antibiotics in Chinese aquaculture: A review. Environmental Pollution  
702 223:161-169.

703 Lohan KP, Fleischer R, Carney K, Holzer K, Ruiz G. 2016. Amplicon-Based  
704 Pyrosequencing Reveals High Diversity of Protistan Parasites in Ships' Ballast  
705 Water: Implications for Biogeography and Infectious Diseases. Microbial  
706 ecology 71(3):530-542.

707 Lyon DY, Monier J-M, Dupraz S, Freissinet C, Simonet P, Vogel TM. 2010. Integrity  
708 and biological activity of DNA after UV exposure. Astrobiology 10(3):285-  
709 292.

710 Martiny J BH, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-  
711 Devine MC, Kane M, Krumins JA, Kuske CR. 2006. Microbial biogeography:  
712 putting microorganisms on the map. Nature Reviews Microbiology 4(2):102-  
713 112.

714 Mobley ML. 2009. Monitoring Earth's critical zone. Science 326(5956):1067-1068.

715 Mock T, Daines SJ, Geider R, Collins S, Metodiev M, Millar AJ, Moulton V, Lenton  
716 TM. 2016. Bridging the gap between omics and earth system science to better  
717 understand how environmental change impacts marine microbes. Global  
718 change biology 22(1):61-75.

719 Muziasari WI, Pärnänen K, Johnson TA, Lyra C, Karkman A, Stedtfeld RD,  
720 Tamminen M, Tiedje JM, Virta M. 2016. Aquaculture changes the profile of  
721 antibiotic resistance and mobile genetic element associated genes in Baltic Sea  
722 sediments. FEMS Microbiology Ecology 92(4):fiw052.

723 Nicholson WL. 2009. Ancient microneauts: interplanetary transport of microbes by  
724 cosmic impacts. Trends in microbiology 17(6):243-250.

725 Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DJ. 2015. Co-occurrence of  
726 resistance genes to antibiotics, biocides and metals reveals novel insights into  
727 their co-selection potential. BMC Genomics 16(1):964.

728 Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DJ. 2016. The structure and  
729 diversity of human, animal and environmental resistomes. Microbiome  
730 4(1):54.

731 Perfumo A, Marchant R. 2010. Global transport of thermophilic bacteria in  
732 atmospheric dust. Environmental microbiology reports 2(2):333-339.

733 Perron GG, Inglis RF, Pennings PS, Cobey S. 2015. Fighting microbial drug  
734 resistance: a primer on the role of evolutionary biology in public health.  
735 Evolutionary applications 8(3):211-222.

736 Peter H, Hörtnagl P, Reche I, Sommaruga R. 2014. Bacterial diversity and  
737 composition during rain events with and without Saharan dust influence  
738 reaching a high mountain lake in the Alps. *Environmental microbiology*  
739 reports 6(6):618-624.

740 Petty NK, Zakour NLB, Stanton-Cook M, Skippington E, Totsika M, Forde BM, Phan  
741 M-D, Moriel DG, Peters KM, Davies M. 2014. Global dissemination of a  
742 multidrug resistant *Escherichia coli* clone. *Proceedings of the National  
743 Academy of Sciences* 111(15):5694-5699.

744 Pietramellara G, Ascher J, Borgogni F, Ceccherini M, Guerri G, Nannipieri P. 2009.  
745 Extracellular DNA in soil and sediment: fate and ecological relevance.  
746 *Biology and Fertility of Soils* 45(3):219-235.

747 Pontiroli A, Simonet P, Frostegard A, Vogel TM, Monier J-M. 2007. Fate of  
748 transgenic plant DNA in the environment. *Environmental biosafety research*  
749 6(1-2):15-35.

750 Poté J, Ceccherini MT, Rosselli W, Wildi W, Simonet P, Vogel TM. 2003. Fate and  
751 transport of antibiotic resistance genes in saturated soil columns. *European  
752 Journal of Soil Biology* 39(2):65-71.

753 Poté J, Ceccherini MT, Rosselli W, Wildi W, Simonet P, Vogel TM. 2010. Leaching  
754 and transformability of transgenic DNA in unsaturated soil columns.  
755 *Ecotoxicology and environmental safety* 73(1):67-72.

756 Poté J, Mavingui P, Navarro E, Rosselli W, Wildi W, Simonet P, Vogel TM. 2009.  
757 Extracellular plant DNA in Geneva groundwater and traditional artesian  
758 drinking water fountains. *Chemosphere* 75(4):498-504.

759 Pruden A, Arabi M, Storteboom HN. 2012. Correlation between upstream human  
760 activities and riverine antibiotic resistance genes. *Environmental Science &  
761 Technology* 46(21):11541-11549.

762 Pruden A, Larsson DJ, Amézquita A, Collignon P, Brandt KK, Graham DW,  
763 Lazorchak JM, Suzuki S, Silley P, Snape JR. 2013. Management options for  
764 reducing the release of antibiotics and antibiotic resistance genes to the  
765 environment. *Environmental Health Perspectives* 121:878-885.

766 Prudhomme M, Attaiech L, Sanchez G, Martin B, Claverys J-P. 2006. Antibiotic stress  
767 induces genetic transformability in the human pathogen *Streptococcus*  
768 *pneumoniae*. *Science* 313(5783):89-92.

769 Reed DC, Algar CK, Huber JA, Dick GJ. 2014. Gene-centric approach to integrating  
770 environmental genomics and biogeochemical models. *Proceedings of the  
771 National Academy of Sciences* 111(5):1879-1884.

772 Ruiz GM, Rawlings TK, Dobbs FC, Drake LA, Mullady T, Huq A, Colwell RR. 2000.  
773 Global spread of microorganisms by ships. *Nature* 408(6808):49-50.

774 Sandberg KD, LaPara TM. 2016. The fate of antibiotic resistance genes and class 1  
775 integrons following the application of swine and dairy manure to soils. *FEMS  
776 Microbiology Ecology* 92(2):fiw001.

777 Sato T, Qadir M, Yamamoto S, Endo T, Zahoor A. 2013. Global, regional, and country  
778 level need for data on wastewater generation, treatment, and use. *Agricultural  
779 Water Management* 130:1-13.

780 Sharifi S, Murthy S, Takács I, Massoudieh A. 2014. Probabilistic parameter  
781 estimation of activated sludge processes using Markov Chain Monte Carlo.  
782 Water research 50:254-266.

783 Skurnik D, Ruimy R, Ready D, Ruppe E, Bernede-Bauduin C, Djossou F, Guillemot  
784 D, Pier GB, Andremont A. 2010. Is exposure to mercury a driving force for the  
785 carriage of antibiotic resistance genes? Journal of medical microbiology  
786 59(7):804-807.

787 Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP. 2006. Quantifying the  
788 roles of immigration and chance in shaping prokaryote community structure.  
789 Environmental microbiology 8(4):732-740.

790 Smil V. 2011. Harvesting the biosphere: The human impact. Population and  
791 Development Review 37(4):613-636.

792 Smith DJ, Timonen HJ, Jaffe DA, Griffin DW, Birmele MN, Perry KD, Ward PD,  
793 Roberts MS. 2013. Intercontinental dispersal of bacteria and archaea by  
794 transpacific winds. Applied and environmental microbiology 79(4):1134-1139.

795 Steffen W, Broadgate W, Deutsch L, Gaffney O, Ludwig C. 2015. The trajectory of  
796 the Anthropocene: the great acceleration. The Anthropocene Review 2(1):81-  
797 98.

798 Sun M, Ye M, Schwab AP, Li X, Wan J, Wei Z, Wu J, Friman V-P, Liu K, Tian D.  
799 2016. Human migration activities drive the fluctuation of ARGs: Case study of  
800 landfills in Nanjing, eastern China. Journal of Hazardous Materials 315:93-  
801 101.

802 Thevenon F, Adatte T, Wildi W, Poté J. 2012. Antibiotic resistant bacteria/genes  
803 dissemination in lacustrine sediments highly increased following cultural  
804 eutrophication of Lake Geneva (Switzerland). Chemosphere 86(5):468-476.

805 Verhougstraete MP, Martin SL, Kendall AD, Hyndman DW, Rose JB. 2015. Linking  
806 fecal bacteria in rivers to landscape, geochemical, and hydrologic factors and  
807 sources at the basin scale. Proceedings of the National Academy of Sciences  
808 112(33):10419-10424.

809 Volkova VV, Lanzas C, Lu Z, Gröhn YT. 2012. Mathematical model of plasmid-  
810 mediated resistance to ceftiofur in commensal enteric *Escherichia coli* of  
811 cattle. PLoS One 7(5):e36738.

812 Volkova VV, Lu Z, Lanzas C, Scott HM, Gröhn YT. 2013. Modelling dynamics of  
813 plasmid-gene mediated antimicrobial resistance in enteric bacteria using  
814 stochastic differential equations. Scientific reports 3.

815 Wang J, Ben W, Yang M, Zhang Y, Qiang Z. 2016. Dissemination of veterinary  
816 antibiotics and corresponding resistance genes from a concentrated swine  
817 feedlot along the waste treatment paths. Environment international 92:317-  
818 323.

819 Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. 2002. Extracellular DNA  
820 required for bacterial biofilm formation. Science 295(5559):1487-1487.

821 Widder S, Besemer K, Singer GA, Ceola S, Bertuzzo E, Quince C, Sloan WT,  
822 Rinaldo A, Battin TJ. 2014. Fluvial network organization imprints on  
823 microbial co-occurrence networks. Proceedings of the National Academy of

824 Sciences 111(35):12799-12804.

825 Wilkinson BH, McElroy BJ. 2007. The impact of humans on continental erosion and  
826 sedimentation. Geological Society of America Bulletin 119(1-2):140-156.

827 Zhou B, Wang C, Zhao Q, Wang Y, Huo M, Wang J, Wang S. 2016. Prevalence and  
828 dissemination of antibiotic resistance genes and coselection of heavy metals in  
829 Chinese dairy farms. Journal of Hazardous Materials 320:10-17.

830 Zhu B. 2006. Degradation of plasmid and plant DNA in water microcosms monitored  
831 by natural transformation and real-time polymerase chain reaction (PCR).  
832 Water research 40(17):3231-3238.

833 Zhu Y-G, Reid BJ, Meharg AA, Banwart SA, Fu B-J. 2017a. Optimizing Peri-URban  
834 Ecosystems (PURE) to re-couple urban-rural symbiosis. Science of The Total  
835 Environment 586:1085-1090.

836 Zhu Y-G, Zhao Y, Li B, Huang C-L, Zhang S-Y, Yu S, Chen Y-S, Zhang T, Gillings  
837 MR, Su J-Q. 2017b. Continental-scale pollution of estuaries with antibiotic  
838 resistance genes. Nature Microbiology 2:16270.

839 Zinger L, Chave J, Coissac E, Iribar A, Louisanna E, Manzi S, Schilling V, Schimann  
840 H, Sommeria-Klein G, Taberlet P. 2016. Extracellular DNA extraction is a  
841 fast, cheap and reliable alternative for multi-taxa surveys based on soil DNA.  
842 Soil Biology and Biochemistry 96:16-19.

843

844

845

846

847 **Table 1: Dissemination of genes and microorganisms in Earth's Critical Zone.**

848 Three phenomena, or drivers, affect microbial/gene spread. These are: opportunity for  
849 dispersal; stochastics (the number of foreign cells landing at a particular location,  
850 processes that generate local variation such as mutation and drift); and recruitment  
851 (the persistence of cells at the new location, often driven by local selection).

852 Historically, these forces generate biogeographic patterns for microorganisms that are  
853 similar to those of animals and plants. Human impacts have changed the dynamics of  
854 these phenomena, and are altering microbial biogeography in the process.

855