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Abstract. We study the logarithmic Hamiltonians H = (p2
x +p2

y)/2+log(1+x2 +

y2/q2)1/2, which appears in the study of the galactic dynamics. We characterize all
the invariant algebraic hypersurfaces and all exponential factors of the Hamiltonian
system with Hamiltonian H. We prove that this Hamiltonian system is completely
integrable with Darboux first integrals if and only if q = ±1.

1. Introduction and statement of the main results

The potential

V =
1

2
log

(
R2 + x2 +

y2

q2

)
,

where q ∈ R \ {0} is called the logarithmic potential. It has an absolute minimum
and reflection symmetry with respect to both axes. This potential is relevant in
problems of galactic dynamics as a model for elliptical galaxies. More precisely, it
is a model of a core embedded in a dark matter halo, with R being the core radius.
Without loss of generality we can assume that R = 1, and the energy can take any
non-negative value. The parameter q is the ellipticity of the potential, which ranges
in the interval 0.6 ≤ q ≤ 1. Lower values of q have no physical meaning and greater
values of q are equivalent to reverse the role of the coordinate axes. In this paper,
to make a complete and deep study of the Darboux integrability of such a potentials
we will consider that q ∈ R \ {0}. This model has been intensively investigated from
different dynamical and physical point of views by several authors, see for instance
[3, 7, 11, 12, 13].

We consider the logarithmic Hamiltonian

H =
1

2
(p2

x + p2
y) +

1

2
log

(
1 + x2 +

y2

q2

)
, q ∈ R \ {0},

its Hamiltonian system is

ẋ = −px,

ẏ = −py,

ṗx =
x

1 + x2 + y2/q2
,

ṗy =
y

q2(1 + x2 + y2/q2)
,

(1)
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where the dot indicates derivative with respect to time t. Note that this Hamiltonian
system (1) has two degrees of freedom.

The main aim of this paper is to study the existence of first integrals of system
(1). The vector field X associated to system (1) is

X = −px
∂

∂x
− py

q

∂

∂y
+

x

1 + x2 + y2/q2

∂

∂px

+
y

q2(1 + x2 + y2/q2)

∂

∂py

.

Let U ⊂ R2 be an open set. We say that the non–constant function F : R2 → R is
a first integral of a vector field X on U , if F (x(t), y(t), px(t), py(t)) = constant for all
values of t for which the solution (x(t), y(t), px(t), py(t)) of X is defined on U . Clearly
F is a first integral of X on U if and only if XF = 0 on U .

We say that the functions F1, . . . , Fn are in involution if {Fi, Fj} = 0 for all i ̸= j,
where {·, ·} denotes the Poisson bracket. Moreover, they are independent if the one–
forms dF1, . . . , dFn are linearly independent over a full Lebesgue measure subset of
the common definition domain of Fj for j = 1, . . . , n. By definition, a Hamiltonian
system with n degrees of freedom having n independent first integrals in involution
is completely integrable, see for more details [1].

Note that system (1) is completely integrable, if and only if there exists a first
integral linearly independent and in involution with H. We have the following result,
whose proof follows by direct computations.

Proposition 1. When q = ±1 the Hamiltonian system (1) is completely integrable
with the first integrals H and H1 = ypx − xpy.

From now on we will restrict to the case q ̸= ±1. Doing the change of time
dt = (1 + x2 + y2/q2) ds, system (1) becomes

x′ = −px(1 + x2 + y2/q2),

y′ = −py(1 + x2 + y2/q2),

p′
x = x,

p′
y =

y

q2
,

where the prime denotes derivative with respect to the new time s.

Taking the notation Y = y/q, Q = 1/q2 > 0, PY = qpy we get

x′ = −px(1 + x2 + Y 2),

Y ′ = −QPY (1 + x2 + Y 2),

p′
x = x,

P ′
Y = Y.
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We write the previous system again as

x′ = −px(1 + x2 + y2),

y′ = −Qpy(1 + x2 + y2),

p′
x = x,

p′
y = y.

(2)

The vector field associated to system (2) is

X = −px(1 + x2 + y2)
∂

∂x
− Qpy(1 + x2 + y2)

∂

∂y
+ x

∂

∂px

+ y
∂

∂py

.

Note that system (2) has the first integral

(3) H0 = (1 + x2 + y2)ep2
x+Qp2

y .

From now on Q ̸= 1.

The aim of this paper is to study the existence of additional first integrals of system
(2) which are linearly independent with H0 and that can be described by functions of
Darboux type (see (7)). Note that one of the main tools for studying the dynamics of
the differential system (2) is to know the existence of an additional independent first
integral for some values of the parameter Q > 0. In general, for a given differential
system it is a difficult problem to determine the existence or nonexistence of first
integrals.

First we study the existence of first integrals of system (2) given by polynomials.
A polynomial first integral f = f(x, y, px, py) of system (2) is a polynomial in the

variables x, y, px and py such that

− px(1 + x2 + y2)
∂f

∂x
− Qpy(1 + x2 + y2)

∂f

∂y
+ x

∂f

∂px

+ y
∂f

∂py

= 0.(4)

The first main result is the following.

Theorem 2. System (2) with Q ̸= 1 has no polynomial first integrals.

The proof of Theorem 2 is given in section 2.

A rational first integral of system (2) is a rational function f satisfying (4).

Theorem 3. System (2) with Q ̸= 1, has no rational first integrals.

The proof of Theorem 3 is given in section 4.

To prove Theorem 3 we will use the Darboux theory of integrability. The Darboux
theory of integrability in dimension 4 is based on the existence of invariant algebraic
hypersurfaces (or Darboux polynomials). For more details see [4, 5, 6]. This theory is
one of the best theories for studying the existence of first integrals for the polynomial
differential systems.

A Darboux polynomial of system (2) is a polynomial f ∈ C[x, y, px, py] \ C such
that

(5) −px(1 + x2 + y2)
∂f

∂x
− Qpy(1 + x2 + y2)

∂f

∂y
+ x

∂f

∂px

+ y
∂f

∂py

= Kf,
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for some polynomial

K = α0 + α1x + α2y + α3px + αypy + α5x
2 + α6xy + α7xpx + α8xpy + α9y

2

+ α10ypx + α11ypy + α12p
2
x + α13pxpy + α14p

2
y,

(6)

called the cofactor of f . Note that f = 0 is an invariant algebraic hypersurface for
the flow of system (2), and a polynomial first integral is a Darboux polynomial with
zero cofactor. We note that if f ̸∈ R[x, y, px, py] \ R is a Darboux polynomial then
there exists another Darboux polynomial f̄ (the conjugate of f) with cofactor K̄ (the
conjugate of K).

Theorem 4. The unique irreducible Darboux polynomial with non–zero cofactor of
system (2) with Q ̸= 1 is 1 + x2 + y2.

The proof of Theorem 4 is given in section 3.

An exponential factor F = F (x, y, px, py) of system (2) is a function of the form
F = exp(g0/g1) ̸∈ C with g0, g1 ∈ C[x, y, px, py] coprime satisfying that

−px(1 + x2 + y2)
∂F

∂x
− Qpy(1 + x2 + y2)

∂F

∂y
+ x

∂F

∂px

+ y
∂F

∂py

= LF,

for some polynomial L = L(x, y, px, py) of degree at most 2, called the cofactor of
F . We note that if F ̸∈ R[x, y, px, py] \ R is an exponential factor then there exists
another exponential factor F̄ (the conjugate of F ) with cofactor L̄ (the conjugate of
L).

Theorem 5. The unique exponential factors of system (2) with Q ̸= 1 are epx, epy ,

ep2
x, epxpy , ep2

y , eypx−Qxpy , and exponential of linear combinations of all the exponents
in the previous exponential factors.

The proof of Theorem 5 is given in Section 5.

A Darboux first integral G of system (2) is a first integral of the form

(7) G=fλ1
1 · · · fλp

p F µ1

1 · · · F µq
q ,

where f1, . . . , fp are Darboux polynomials and F1, . . . , Fq are exponential factors and
λj, µk ∈ C for j = 1, . . . , p and k = 1, . . . , q. Note that the Darboux first integral
always is a real function due to the fact that if there are complex polynomials or
complex exponential factors, then always also appear their conjugates.

Theorem 6. The unique Darboux first integrals of system (2) with Q ̸= 1 are func-
tions of Darboux type of H0.

The proof of Theorem 6 is given in section 6.

In short, from Proposition 1 and Theorem 6 we have the following result.

Corollary 7. The Hamiltonian system (1) is completely integrable with Darboux first
integrals if and only if q = ±1.
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2. Polynomial first integrals: Proof of Theorem 2

Let f be a polynomial first integral of system (2). Without loss of generality
we can assume that it has no constant term. Then f satisfies (4). We write f as
f =

∑n
j=0 fj(x, y, px, py) where each fj is a homogeneous polynomial of degree j in

each variables x, y, px and py. We can assume that fn ̸= 0 with n > 0. We have that
the terms of degree n + 2 in (4) satisfy

(8) (x2 + y2)
(
px

∂fn

∂x
+ Qpy

∂fn

∂y

)
= 0.

Solving it we get

fn = Kn(px, py, ypx − Qxpy),

where Kn is any function in the variables px, py and ypx − Qxpy. Since fn must be a
homogeneous polynomial of degree n we must have

(9) fn =
∑

j1+j2+2m=n

aj1,j2,mpj1
x pj2

y (ypx − Qxpy)
m, aj1,j2,m ∈ R.

Now the terms of degree n in (4) satisfy

(x2 + y2)
(
px

∂fn−2

∂x
+ Qpy

∂fn−2

∂y

)
= −px

∂fn

∂x
− Qpy

∂fn

∂y
+ x

∂fn

∂px

+ y
∂fn

∂py

= x
∑

j1+j2+2m=n

j1aj1,j2,mpj1−1
x pj2

y (ypx − Qxpy)
m

+ y
∑

j1+j2+2m=n

j2aj1,j2,mpj1
x pj2−1

y (ypx − Qxpy)
m

+ (1 − Q)xy
∑

j1+j2+2m=n

maj1,j2,mpj1
x pj2

y (ypx − Qxpy)
m−1.

(10)

Now we introduce the variable

(11) Y = ypx − Qxpy and y =
Y + Qxpy

px

.

Then we can rewrite the right-hand side of (10) in the variables (x, Y, px, py) as

x
∑

j1+j2+2m=n

(j1 + Qj2 + (1 − Q)m)aj1,j2,mpj1−1
x pj2

y Y m

+
∑

j1+j2+2m=n

j2aj1,j2,mpj1−1
x pj2−1

y Y m+1

+ (1 − Q)Qx2
∑

j1+j2+2m=n

maj1,j2,mpj1−1
x pj2+1

y Y m−1.
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Note that in these new variables, if we set f̃n−2(x, Y, px, py) = fn−2(x, y, px, py) then
we can rewrite (10) as

∂f̃n−2

∂x
=

x

x2p2
x + (Y + Qxpy)2

∑

j1+j2+2m=n

(j1 + Qj2 + (1 − Q)m)aj1,j2,mpj1
x pj2

y Y m

+
1

x2p2
x + (Y + Qxpy)2

∑

j1+j2+2m=n

j2aj1,j2,mpj1
x pj2−1

y Y m+1

(1 − Q)Qx2

x2p2
x + (Y + Qxpy)2

∑

j1+j2+2m=n

maj1,j2,mpj1
x pj2+1

y Y m−1.

(12)

Using the integrals
∫

dx

x2p2
x + (Y + Qxpy)2

=
1

pxY
arctan

(
xp2

x + p2
yQ

2x + pyQY

pxY

)
,

∫
x

x2p2
x + (Y + Qxpy)2

dx =
1

2
(
p3

x + p2
yQ

2px

)
(
px log (p2

xx
2 + (pyQx + Y )2)

−2pyQ arctan

(
xp2

x + pyQ(pyQx + Y )

pxY

))
,

∫
x2

x2p2
x + (Y + Qxpy)2

dx =
1

px

(
p2

x + p2
yQ

2
)2

( (
p2

yQ
2Y − p2

xY
)

arctan

(
xp2

x + pyQ(pyQx + Y )

pxY

)
+ px

( (
p2

x + p2
yQ

2
)
x

−pyQY log (p2
xx

2 + (pyQx + Y )2)
))

,

we get

f̃n−2 =
1

2(p2
x + p2

yQ
2)2

∑

j1+j2+2m=n

aj1,j2,mpj1−1
x pj2−1

y Y m−1
(
2
(
(j2 + 2m)p2

yQ
2p2

x

+j2p
4
x − (j1 + 2m)p2

yQp2
x − j1p

4
yQ

3
)
Y arctan

(
xp2

x + p2
yQ

2x + pyQY

pxY

)

+pxpy

(
(j2 + m)p2

yQ
3 + (j1 − m)p2

yQ
2 + (j2 − m)p2

xQ + (j1 + m)p2
x

)
Y

log
(
p2

xx
2 + (pyQx + Y )2

)
− 2mpy(Q − 1)Q

(
p2

x + p2
yQ

2
)
x
)

+ Kn−2(px, py, Y ).

Since fn−2 must be a polynomial, in particular, we must have that the part with
arctan must be zero. Then,

∑

j1+j2+2m=n

aj1,j2,mpj1
x pj2

y Y m
(
(j2 + 2m)p2

yQ
2p2

x + j2p
4
x − (j1 + 2m)p2

yQp2
x − j1p

4
yQ

3
)

= 0.

This implies that either aj1,j2,m = 0, or

j1 = 0, j2 = 0, (j2 + 2m)Q2 − (j1 + 2m)Q = 0.
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Hence, since Q(Q − 1) ̸= 0 we get that either aj1,j2,m = 0 or j1 = j2 = m = 0. In
the first case fn = 0, and in the second one n = 0. So, in both cases we have a
contradiction with the fact that f is a polynomial first integral.

3. Darboux polynomials with non-zero cofactor: Proof of Theorem 4

We consider a Darboux polynomial with non-zero cofactor. We write it as f =∑n
j=0 fj(x, y, px, py) where each fj is a homogeneous polynomial of degree j in each

variables x, y, px and py. Without loss of generality we can assume that fn ̸= 0 with
n > 0. We have that the terms of degree n + 2 in (5) satisfy

− (x2 + y2)
(
px

∂fn

∂x
+ Qpy

∂fn

∂y

)
= (α5x

2 + α6xy + α7xpx + α8xpy + α9y
2

+ α10ypx + α11ypy + α12p
2
x + α13pxpy + α14p

2
y)fn.

(13)

Solving the differential equation in (13) we have

fn = Kn(px, py, ypx − Qxpy) exp

(−(α5p
2
x + Qpy(α6px + α9Qpy))x

px(p2
x + Q2p2

y)

)

exp

( −T1 arctan
(pxx + Qypy

Qxpy − ypx

)

(Qxpy − ypx)(p2
x + Q2p2

y)
2

)
(p2

x(x
2 + y2))

−T2

2(p2
x + Q2p2

y)
2
,

where

T1 = (α14p
2
y + α13pxpy + α12p

2
x)(p

2
x + Q2p2

y)
2

+ (Qxpy − ypx)(p
2
x + Q2p2

y)(−α10p
2
x − (α11 − Qα7)pxpy + α8Qp2

y)

+ ((α5 − α9)p
2
x + 2α6Qpxpy + (α9 − α5)Q

2p2
y)(ypx − Qxpy),

T2 = (α7p
2
x + (α8 + α10Q)pxpy + α11Qp2

y)(p
2
x + Q2p2

y)

+ (2Q(α9 − α5)pxpy + α6(p
2
x − Q2p2

y))(ypx − Qxpy).

Since fn must be a polynomial, introducing the change of variables in (11), the part
of the first exponential must be zero. Then α5 = α6 = α9 = 0. Then, T1 reduces to

(α14p
2
y + α13pxpy + α12p

2
x)(p

2
x + Q2p2

y)
2 + (Qxpy − ypx)(p

2
x + Q2p2

y)
(−α10p

2
x − (α11 − Qα7)pxpy + α8Qp2

y) =
α12p

6
x + α13pyp

5
x + α10yp5

x + α14p
2
yp

4
x + 2α12p

2
yQ

2p4
x − α10pyQxp4

x

+py(α11 − α7Q)yp4
x + 2α13p

3
yQ

2p3
x − p2

yQ(α11 − α7Q)xp3
x

−p2
yQ(α8 − α10Q)yp3

x + p4
yQ

2 (α12Q
2 + 2α14) p2

x + p3
yQ

2(α8 − α10Q)xp2
x

+p3
yQ

2(α11 − α7Q)yp2
x + α13p

5
yQ

4px − p4
yQ

3(α11 − α7Q)xpx

−α8p
4
yQ

3ypx + α14p
6
yQ

4 + α8p
5
yQ

4x.

Equating the coefficients of the same monomials in the previous equation, we get

α8 = α10 = α12 = α13 = α14 = 0,

and α11 = Qα7. Then, T2 = α7(p
2
x + Q2p2

y)
2, which yields α7 = −2m with m ∈ N.

Hence
K = α0 + α1x + α2y + α3px + α4py − 2m(xpx + Qypy),
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and

fn = K(px, py, ypx − Qxpy)(x
2 + y2)m.

Since fn must have degree n we get

(14) fn = (x2 + y2)m
∑

j1+j2+2j3=n−2m

aj1,j2,j3p
j1
x pj2

y (ypx − Qxpy)
j3 , aj1,j2,j3 ∈ C.

Computing the terms of degree n + 1 in (5) we get

− (x2 + y2)
(
px

∂fn−1

∂x
+ Qpy

∂fn−1

∂y

)
= −2m(xpx + Qypy)fn−1

+ (α1x + α2y + α3px + α4py)fn.

Now, proceeding as in the proof of Theorem 2, introducing the change of variables
(11), solving it and then going back to the old variables we obtain

fn−1 = Kn−1(px, py, ypx − Qxpy)(x
2 + y2)m +

(x2 + y2)m

2(p2
x + p2

yQ
2)

(
2
(
α3(p

2
x + p2

yQ
2)p2

x

+α4py(p
2
x + p2

yQ
2)px +

(
α2(p

2
x − p2

yQ
2(x − 1)) − α1pxpyQ

)
(pxy − pyQx)

)

arctan

(
pxx + pyQy

pyQx − pxy

)
− px(α1px + α2pyQx)(pxy − pyQx) log(p2

x(x
2 + y2))

)

∑

j1+j2+2j3=n−2m

aj1,j2,j3p
j1−1
x pj2

y (pxy − pyQx)j3−1,

where Kn−1 is a function in the variables px, py and ypx − Qxpy. Since fn−1 must be
a homogeneous polynomial of degree n − 1 and fn ̸= 0 we have that

α1 = α2 = α3 = α4 = 0

and

(15) fn−1 = (x2 + y2)m
∑

j4+j5+2j6=n−2m−1

bj4,j5,j6p
j4
x pj5

y (ypx − Qxpy)
j6 , bj4,j5,j6 ∈ C.

Now computing the terms of degree n we obtain

(16)

−(x2 + y2)
(
px

∂fn−2

∂x
+ Qpy

∂fn−2

∂y

)
+ −2m(xpx + Qypy)fn−2 =

α0fn + px
∂fn

∂x
+ Qpy

∂fn

∂y
− x

∂fn

∂px

− y
∂fn

∂py

=

α0(x
2 + y2)m

∑

j1+j2+2j3=n−2m

aj1,j2,j3p
j1
x pj2

y (ypx − Qxpy)
j3

+
∑

j1+j2+2j3=n−2m

aj1,j2,j3p
j1−1
x pj2−1

y (pxy − pyQx)j3−1(x2 + y2)m−1

(
2mpxpy(pxy − pyQx)(pxx + pyQy) + (x2 + y2)(j1pyx(pyQx − pxy)

+pxy(j3py(Q − 1)x + j2(pyQx − pxy)))
)
.
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Solving this differential equation we obtain
(17)

fn−2 = Kn−2(px, py, ypx − Qxpy)(x
2 + y2)m

+(x2 + y2)m
∑

j1+j2+2j3=n−2m

aj1,j2,j3p
j1
x pj2−1

y (pxy − pyQx)j3−1

(
py

(
m(pxy − pyQx)

x2 + y2
− j3py(Q − 1)Qx

p2
x + p2

yQ
2

)
+

2

2px(p2
x + p2

yQ
2)2

(
α0pxpy(p

2
x + p2

yQ
2)2 −

(
j2p

4
x + (j2 + 2j3)p

2
yQ

2p2
x − (j1 + 2j3)p

2
yQp2

x

−j1p
4
yQ

3
)
(pxy − pyQx)

)
arctan

(
pxx + pyQy

pyQx − pxy

)
+ pxpy

(
(j2 + j3)p

2
yQ

3

+(j1 − j3)p
2
yQ

2 + (j2 − j3)p
2
xQ + (j1 + j3)p

2
x

)
(pxy − pyQx)

log(p2
x(x

2 + y2))

)
,

where Kn−2 is a function in the variables px, py and ypx − Qxpy. Since fn−2 must be
a homogeneous polynomial of degree n − 2 and fn ̸= 0 we get

α0 = j1 = j2 = j3 = 0.

Then n = 2m and since fn−1 has degree n− 1 it follows from (14), (15) and (17) that

fn = a0,0,0(x
2+y2)m, fn−1 = 0, fn−2 = ma0,0,0(x

2+y2)m−1 =

(
m

1

)
a0,0,0(x

2+y2)m−1.

Computing the terms of degree n − 1 we get

−(x2 + y2)

(
px

∂fn−3

∂x
+ Qpy

∂fn−3

∂y

)
= −2m(xpx + Qypy)fn−3.

Solving this differential equation we obtain

fn−3 = Kn−3(px, py, ypx − Qxpy)(x
2 + y2)m,

where Kn−3 is a function in the variables px, py and ypx − Qxpy. Since fn−3 must be
a homogeneous polynomial of degree n − 3 and n = 2m, we get that fn−3 must be a
homogeneous polynomial of degree 2m − 3. This is not possible and then Kn−3 = 0
which yields fn−3 = 0.

Computing the terms of degree n − 2 we get

−(x2 + y2)

(
px

∂fn−4

∂x
+ Qpy

∂fn−4

∂y

)
+ 2m(xpx + Qypy)fn−4.

= px
∂fn−2

∂x
+ Qpy

∂fn−2

∂y
− x

∂fn−2

∂px

− y
∂fn−2

∂py

= 2a0,0,0

(
m

1

)
(m − 1)(x2 + y2)m−2(xpx + yQpy).



10 J. LLIBRE AND C. VALLS

Solving it we obtain

fn−4 = Kn−4(px, py, ypx − Qxpy)(x
2 + y2)m +

m(m − 1)

2
a0,0,0(x

2 + y2)m−2,

where Kn−4 is a function in the variables px, py and ypx − Qxpy. Since fn−4 must be
a homogeneous polynomial of degree n − 4 = 2m − 4 we must have Kn−4 = 0 and
fn−4 =

(
m
2

)
a0,0,0(x

2 + y2)m−2.

Proceeding inductively we get that

fn−2k−1 = 0 for k = 0, . . . , m − 1

and

fn−2k =

(
m

k

)
a0,0,0(x

2 + y2)m−k for k = 0, . . . , m.

This implies that fn = a0,0,0(1 + x2 + y2)m. Thus the unique irreducible Darboux
polynomial of equation (2) is 1 + x2 + y2. This concludes the proof of the theorem.

4. Proof of Theorem 3

To prove Theorem 3 we recall two auxiliary results. The first one was proved in
[6] while the second one was proved in [8].

Lemma 8. Let f be a polynomial and f =
s∏

j=1

f
αj

j its decomposition into irreducible

factors in C[x, y, z]. Then f is a Darboux polynomial if and only if all the fj are
Darboux polynomials. Moreover, if K and Kj are the cofactors of f and fj, then

K =
s∑

j=1

αjKj.

Lemma 9. The existence of a rational first integral for a polynomial differential
system (2) implies the existence of a polynomial first integral, or the existence of two
Darboux polynomials with the same non-zero cofactor.

The proof of Theorem 3 follows readily from Theorems 2 and 4 together with
Lemmas 8 and 9.

5. Exponential Factors: Proof of Theorem 5

To prove Theorem 5 we will use the following known result whose proof and geo-
metrical meaning is given in [2, 10].

Proposition 10. The following statements hold.

(a) If E = exp(g0/g1) is an exponential factor for the polynomial system (2)
and g1 is not a constant polynomial, then g1 = 0 is an invariant algebraic
hypersurface.

(b) Eventually eg0 can be exponential factors, coming from the multiplicity of the
infinite invariant hyperplane.
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The following result given in [2, 10] characterizes the algebraic multiplicity of an
invariant algebraic hypersurface using the number of exponential factors of system
(2) associated with the invariant algebraic hypersurface.

Theorem 11. Given an irreducible invariant algebraic hypersurface g = 0 of degree
m of system (2), it has algebraic multiplicity k if and only if the vector field associated
to system (2) has k − 1 exponential factors of the form exp(gi/g

i), where gi is a
polynomial of degree at most im and (gi, g) = 1 for i = 1, . . . , k − 1.

In view of Theorem 11 if we prove that eg0/g is not an exponential factor with
degree g0 ≤ degree g, there are no exponential factors associated to the invariant
algebraic hypersurface g = 0.

System (2) has the irreducible Darboux polynomial 1 + x2 + y2. Then in view of
Proposition 10 it can have an exponential factor of the form: either E = exp(g) with
g ∈ C[x, y, px, py] \ C , or E = exp(g/(1 + x2 + y2)m) with m ≥ 1 and such that
g ∈ C[x, y, px, py] and is coprime with 1 + x2 + y2. We first prove that system (2) has
no exponential factors of the form E = exp(g/(1 + x2 + y2)m).

Assume that system (2) has an exponential factor of the form E = exp(g/(1+x2 +
y2)m) with m ≥ 1 such that 1 + x2 + y2 is coprime with g ∈ C[x, y, px, py]. In view
of Theorem 11 we can assume that m = 1 and that g has degree at most two (note
that here g = 1 + x2 + y2 has degree two). We write g as a polynomial of degree two
in the variables x, y, px, py as follows

g = a0 + a1x + a2y + a3px + a4py + a5x
2 + a6xy + a7xpx + a8xpy

+ a9y
2 + a10ypx + a11ypy + a12p

2
x + a13pxpy + a14p

2
y.

(18)

Clearly, g satisfies

− (1 + x2 + y2)px
∂g

∂x
− Qpy(1 + x2 + y2)

∂g

∂y
+ x

∂g

∂px

+ y
∂g

∂py

+ 2(xpx + Qypy)g = L(1 + x2 + y2)

(19)

where L is a polynomial of degree two in the variables x, y, px, py. Setting

L = b0 + b1x + b2y + b3px + b4py + b5x
2 + b6xy + b7xpx + b8xpy

+ b9y
2 + b10ypx + b11ypy + b12p

2
x + b13pxpy + b14p

2
y

(20)

in (19) with an algebraic manipulator we conclude that

g = a9(1 + x2 + y2) and L = 0.

However this is not possible since g is coprime with 1 + x2 + y2.

In summary, if (2) has an exponential factor it must be of the form E = exp(g)
with g ∈ C[x, y, px, py] \ C. In this case, g satisfies

− (1 + x2 + y2)px
∂g

∂x
− Qpy(1 + x2 + y2)

∂g

∂y
+ x

∂g

∂px

+ y
∂g

∂py

= L,(21)

where L = L(x, y, px, py) is some polynomial of degree two in the variables x, y, px, py

and that we can take as in (20).
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We write g as g =
∑n

j=0 gj(x, y, px, py) where each gj is a homogeneous polynomial
of degree j. Without loss of generality we can assume that gn ̸= 0 with n > 0.

Assume n ≥ 3. Then computing the terms of degree n + 2 in (21) we get (8). Now
proceeding as we did in the proof of Theorem 2 we get gn is as in (9). Then the terms
of degree n in (21) (since n ≥ 3) they satisfy equation (10) which, again in view of
the proof of Theorem 2 they must be zero. Then g has degree at most two. In this
case we write it as in (18). Then imposing that g satisfies (21) and solving it with
an algebraic manipulator we conclude that

g = a0 + b1px +
b7

2
p2

x + a4py + b8pxpy + a14p
2
y + a10(ypx − Qxpy).

This concludes the proof of the theorem.

6. Proof of Theorem 6

In order to proof Theorem 6 we need the following result whose proof is given in
[6].

Theorem 12. Suppose that system (2) admits p Darboux polynomials and with cofac-
tors Ki and q exponential factors Fj with cofactors Lj. Then there exists λj, µj ∈ C
not all zero such that

q∑

i=1

λkKi +

q∑

i=1

µiLi = 0

if and only if the function G given in (7) (called of Darboux type) is a first integral
of system (2).

In view of Theorem 12 to characterize the Darboux first integrals we need to com-
pute the Darboux polynomials and the exponential factors. Then, using Theorems
2, 4 and 5 if G is a Darboux first integral of system (2) it must be of the form (7),
i.e.

G = (1 + x2 + y2)λeµ1px+µ2p2
x+µ3pxpy+µ4py+µ5p2

y+µ6(ypx−Qxpy)

and the cofactors must satisfy

−2λ(xpx + Qypy) + µ1x + 2µ2xpx + µ3(xpy + ypx) + µ4y + 2µ5ypy + µ6(1 − Q)xy = 0.

Solving this system we have either µ1 = µ3 = µ4 = µ6 = 0 and µ2 = λ, µ5 = Qλ.
From (3) this yields

G =
[
(1 + x2 + y2)e(p2

x+Qp2
y)

]λ
= Hλ

0 .

That is, all the Darboux first integrals of system (2) are Darboux functions in the
variable H0. This concludes the proof of Theorem 6.
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