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Abstract

Given any uniform domain €, the Triebel-Lizorkin space F, ,(2) with 0 < s < 1 and
1 < p,q < o can be equipped with a norm in terms of first order differences restricted to pairs
of points whose distance is comparable to their distance to the boundary.

Using this new characterization, we prove a T(1)-theorem for fractional Sobolev spaces
with 0 < s < 1 for any uniform domain and for a large family of Calderén-Zygmund operators
in any ambient space R? as long as sp > d.

1 Introduction

The aim of the present article is to find necessary and sufficient conditions on certain singular inte-
gral operators to be bounded in fractional Sobolev spaces of a uniform domain 2 with smoothness
0 < s < 1. However, the results are valid in F;’q(Q), that is, the so-called Triebel-Lizorkin spaces,

when s > max{O,% — g}.

Consider 0 < o < 1. An operator T' defined for f € L}, (R?) and z € R:\supp(f) as
Ti@) = | K@=y fydy,

is called a convolution Calderdén-Zygmund operator of order o if it is bounded on LP(R?) for every
1 < p < o0 and its kernel K satisfies the size condition

C
|K(x)] < ﬁ for every z # 0
T
and the Holder smoothness condition
C o
|K(z—y) — K(z)| < | Kgg' for every 0 < 2|y| < |z
€T o

(see Section 5 for more details). In the present article we deal with some properties of the operator
T truncated to a domain €2, defined as To(f) = xa T(xa f).
In the complex plane, for instance, the Beurling transform, which is defined as the principal

value
Bf(z) := 1 lim f(iw)z

T e20 Jlw—z|>e (Z - ’LU)

dm(w),
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is a convolution Calderén-Zygmund operator of any order with kernel K(z) = ——5.

In the article [CMO13], Victor Cruz, Joan Mateu and Joan Orobitg, seeking for some results
on the Sobolev smoothness of quasiconformal mappings proved the next theorem.

Theorem (see [CMO13]). Let Q = RY be a bounded C**¢ domain (i.e. a Lipschitz domain with
parameterizations of the boundary in C1*¢) for a given e >0, and let 1 <p <o and 0 < s < 1
such that sp > 2. Then any truncated Calderén-Zygmund operator Tq with smooth, homogeneous
and even kernel is bounded in the Sobolev space W*P(Q) if and only if T(xq) € W*P(£2).

Later, Xavier Tolsa and the first author of the present paper, studied the case s € N, finding
the following T'(P) Theorem.

Theorem (see [PT15]). Let Q = R? be a Lipschitz domain, T a convolution Calderén-Zygmund
operator with kernel K satisfying

. 1
‘VJK(QU)|<C|1‘|T+J forall()éjén,m#(),

and p > d. Then the following statements are equivalent:
a) The truncated operator Tq is bounded in W™P(Q).
b) For every polynomial P of degree n — 1, we have that To(P) € W™P(Q).

Note that the kernels are not assumed to be even, and the conditions on the smoothness of the
domain are relaxed. The authors assert that the theorem is valid even for uniform domains.

In the present paper we study again the fractional smoothness, but we deal with the case of uni-

form domains (see Section 2) for Triebel-Lizorkin spaces F; , with 1 < p, ¢ < o, max {0, % — %} <

s < 1. Let us note here to illustrate that in case ¢ = 2 we deal with the Sobolev fractional spaces
W#P and in case ¢ = p then we deal with the Besov spaces B, ,. To avoid misunderstandings, the
reader must be aware that the B, , spaces are called also Sobolev spaces in some books, while the
W#P spaces are sometimes called Bessel potential spaces. See Section 3 for all the definitions of
these spaces.

Our main result is the following.

Theorem 1.1. Let Q c R? be a bounded uniform domain, T a convolution Calderdn-Zygmund
operator of order 0 < s < 1. Consider indices p,q € (1,00) with s > 4 Then the truncated operator

Tq is bounded in F, (Q) if and only if we have that To(1) € F (€2).

To prove this result we will need an equivalent norm for F; .. The following result is not present
in the literature in its full generality, but it is found for the Sobolev case in [Ste61] and for the
general Triebel-Lizorkin case when s > ——f—v in [Tri83, Theorem 2.5.10]. The result as stated

below will be a corollary of some results in [Tri06].
Theorem 1.2 (see Corollary 3.5). Let 1 < p< o0, 1 <g< o0 and 0 < s <1 with s > % — g.
Then,

1

R (R e

(with the usual modification for ¢ = o), in the sense of equivalent norms.



The restriction s > ¢ — ¢ is sharp, as we will see in Remark 3.8. One can find some equivalent

norms for Triebel-Lizorkin spaces in terms of differences using means on balls which avoid this
restriction. We refer the reader to [Str67] or [Tri83, Corollary 2.5.11].

Given a domain ) and a locally integrable function f, we say that f € Fj () if there is a
function h € F (R?) such that hlo = f|o. The norm | f]|

the norms ||h|

F2 () will be defined as the infimum of

F: (raey for all admissible i. Our method is based on an intrinsic characterization of
p,q
this norm, inspired by the previous theorem. We define

Indeed, this norm will be equivalent to the Triebel-Lizorkin one for uniform domains:

| f]

Theorem 1.3. Let Q < R? be a bounded uniform domain, 1 < p,q < 00 and 0 < s < 1 with

5> % — g. Then f € F; ,(Q) if and only if f € A3 () and the norms are equivalent.

To prove this result we will use Theorem 1.2 and the following extension Theorem:

Theorem 1.4. Let Q < R? be a bounded uniform domain, 1 < p,q < o0 and 0 < s < 1 with
s> % - %. Then there exists a bounded operator Ag : A5 (Q) — F5 (RY) such that Ao f|o = f for
every f € Ay (Q).
However, in the proof of Theorem 1.1 we will make use of a functional which is closely related
t0 [ 45 (- Call 6(x) = dist(z, 0R2). Consider the Carleson boxes (or shadows) Sh(z) := {y € :
p,q

ly — x| < cqd(z)} with cq > 1 to be fixed (see Section 2). Then we have the following reduction
for the Triebel-Lizorkin norm:

Theorem 1.5 (See Corollary 4.5.). Let Q < R be a bounded uniform domain, 1 < p < q <
and 0 < s < 1 with s > % - g. Then f € F,; ,(Q) if and only if

f@ -l Y

Furthermore, the left-hand side of the inequality above is equivalent to the norm | f| p. -
p,q

The situation is even better when p > ¢:

Theorem 1.6 (See Corollary 4.5.). Let Q < R? be a bounded uniform domain, 1 < ¢ < p < o,
0<s<land0<p<1. Then fe F; () if and only if

2\t
|f(@) — fyl? . \°
f + J J dy| dx| < oo.
e IR U

Furthermore, the left-hand side of the inequality above is equivalent to the norm | f|

Fs ()"

In particular, for every 1 <p < 00,0 < s <1 and 0 < p <1, we have that

F)l” ’ .
15, @ |f||Lp(m+<f | . |$_y|ép+d dyde|  forall fe B, (9).
Bos(ay (@




If in addition p > 2 we have that

P
1@ - 1wl ' :
ey ~ W lircey + J;(L ) dn) o g )
pd(x) (T

and, if1<p<2withs>%f%,we have that

[N
3 =

f@) —fP  \° .
fwwm~fM@+‘LO¥)ﬁlW;§@ dr|  forall fe W)

The plan of the paper is the following. In Section 2 we define uniform domains in the spirit of
[Jon81] but from a dyadic point of view and then we prove some basic properties of those domains.
The expert reader may skip this part. Section 3 begins with some remarks on Triebel-Lizorkin
spaces, followed by the proof of the implicit characterization of Triebel-Lizorkin spaces given in
Theorem 1.2, the Extension Theorem 1.4 and, as a corollary, Theorem 1.3. Section 4 is devoted
to proving Theorems 1.5 and 1.6 which are about the change of the domain of integration in the
norm Ay (€2). Section 5 is the core of the paper, and it contains the proof of the T(1) Theorem
1.1. The key Lemma 5.6 is a discretization of the transform of a function and it is the cornerstone
of the mentioned theorem.

On notation: When comparing two quantities z; and x5 that depend on some parameters
Pi,-..,p; we will write

LATIES sz‘l ----- pi; L2

i

if the constant C]gi1 ,,,,, pi, depends on p;,,...,p;;. We will also write z1 <p, .., pi; T2 for short, or
simply z1 < x9 if the dependence is clear from the context or if the constants are universal. We
may omit some of these variables for the sake of simplicity. The notation x; Ropiyopr, T2 Will

WPi
J
mean that z; Spiy s, T2 and xo $piy i

i

i ; xIq.

Given a cube @, wé write £(Q) for its side-length. Given two cubes @, .S, we define their long
distance as D(Q, S) = ¢(Q) + dist(Q, S) + £(S). Given a real number p, we define pQ) as the cube
concentric to @, with ratio p and faces parallel to the faces of Q.

For any cube () and any function f, we call fg = fQ fdm to the mean of f in Q.
Given 1 < p < o0 we write p’ for its Holder conjugate, that is % + 1% =1.

2 On uniform domains

There is a considerable literature on uniform domains and their properties, we refer the reader e.g.
to [GOT79] and [VAi88].

Definition 2.1. Given a domain 2, we say that a collection of open dyadic cubes VW is a Whitney
covering of ) if they are disjoint, the union of the cubes and their boundaries is ), there exists a
constant Cyy such that

Cwl(Q) < dist(Q, 0Q) < 4CwL(Q),

two neighbor cubes Q and R (i.e., Q n R # &) satisfy £(Q) < 2¢(R), and the family {50Q}gew
has finite superposition. Moreover, we will assume that

Sc5Q = £8) = ~4Q). (2.1)

DN | =



Figure 2.1: A Whitney decomposition of a uniform domain with and an e-admissible chain. The
end-point cubes are colored in red and the central one in blue.

The existence of such a covering is granted for any open set different from R? and in particular
for any domain as long as C)y is big enough (see [Ste70, Chapter 1] for instance).

Definition 2.2. Let Q be a domain, W a Whitney decomposition of Q and Q,S € W. Given
M cubes Q1,...,Qpn € W with Q1 = Q and Qp = S, the M-tuple (Ql,...,QM)j]Vil e WM
is a chain connecting @ and S if the cubes Q); and Qj41 are neighbors for j < M. We write

[Q7 S] = <Q17 (R 7QM>§M:1 fO'f' short.
Let € e R. We say that the chain [Q, S] is e-admissible if

e the length of the chain is bounded by

S

D(@, S) (2.2)

M | =

(@, 5]) = ), Q) <
1

J

o and there exists jo < M such that the cubes in the chain satisfy
UQ;) 2 eD(Q1,Qy) for all j <jo  and UQj) = eD(Q;, Q) for all j = jo. (2.3)

The jo-th cube, which we call central, satisfies that ¢(Q;,) Za eD(Q,S) by (2.8) and the triangle
inequality. We will write Qs = Q,. Note that this is an abuse of notation because the central cube
of [Q, S] may vary for different e-admissible chains joining Q and S.



We write (abusing notation again) [Q,S] also for the set {Q;}},. Thus, we will write P €

[Q, S] if P appears in a coordinate of the M-tuple [Q,S]. For any P € [Q,S] we call Nig s(P)
to the following cube in the chain, that is, for j < M we have that Nig,s1(Q;) = Qj+1. We will
write N'(P) for short if the chain to which we are referring is clear from the context.

Every now and then we will mention subchains. That is, for 1 < j; < jo < M, the subchain

[Qj,, Q10,51 © (@, S] is defined as (Qj,, Qj,+1,--.,Qj,). We will write [Q;,,Qj,] if there is no
risk of confusion.

Next we make some observations on the two subchains [@, Qs] and [Qs, S].

Remark 2.3. Consider a domain Q with covering W and two cubes Q, S € W with an e-admissible
chain [@Q, S]. From Definition 2.2 it follows that

D(Q,S) ~ea £([Q,S]) ~c,a {(Qs) ~ca D(Q,Qs) ~c.a D(Qs,5). (2.4)
If Pe[Q,Qs], by (2.3) we have that
D(Q, P) =4 ((P). (2.5)

On the other hand, by the triangular inequality, (2.2) and (2.3) we have that

D(P,5) sa ([P, S]) < ([Q, S])

~d ’

<P@5) D@ P)+D(PS) 2U(P) + D(P,S)
9 3 9

that is,
D(P,S) ~cqa D(Q,S). (2.6)

Definition 2.4. We say that a domain Q < R is a uniform domain if there exists a Whitney
covering W of Q and € € R such that for any pair of cubes Q,S € W, there exists an e-admissible
chain [Q, S] (see Figure 2.1). Sometimes will write e-uniform domain to fix the constant e.

Using (2.6) it is quite easy to see that a domain satisfying this definition satisfies to the one
given by Peter Jones in [Jon81] with § = oo (changing the parameter ¢ if necessary). It is somewhat
more involved to prove the converse implication, but it can be done using the ideas of Remark
2.3. In any case it is not transcendent for the present paper to prove this fact, which is left for the
reader as an exercise.

Now we can define the shadows:

Definition 2.5. Let Q be an e-uniform domain with Whitney covering W. Given a cube P € W
centered at xp and a real number p, the p-shadow of P is the collection of cubes

SH,(P) ={QeW:Q c B(xp,pl(P))},

and its “realization” is the set

sh(P) = | @

QeSH,(P)

(see Figure 2.2).
By the previous remark and the properties of the Whitney covering, we can define p. > 1 such
that the following properties hold:

e For every P € W, we have the estimate |diam(0Q2 n Sh,_(P))| ~ £(P).
e For every e-admissible chain [Q, S], and every P € [Q,Qgs]| we have that Q € SH,_(P).



Figure 2.2: The shadow Shy3(P).

e Moreover, every cube P belonging to an e-admissible chain [Q,S] belongs to the shadow

SH,.(Q@s)-

Note that the first property comes straight from the properties of the Whitney covering, while
the second is a consequence of (2.5) and the third holds because every cube P contained in the
chain [Q, S] satisfies D(P,Qs) <a ¢([Q,S]) = D(Q,S) ~ £(Qs) by (2.4).

Remark 2.6. Given an c-uniform domain Q we will write Sh for Sh, . We will write also SH

for SH,_.
For Q € W and s > 0, we have that
D, UL TR (2.7)
L:QeSH(L)
and, moreover, if Q € SH(P), then
D UL Py and DoUL) T s UQ) . (2.8)
Le[Q,P] Le[Q,P]

Proof. Considering the definition of shadow we can deduce that there is a bounded number of
cubes with given side-length in the left-hand side of (2.7) and, therefore, the sum is a geometric
sum. Again by the definition of shadow we know that the smaller cube in that sum has side-length
comparable to £(Q).

To prove (2.8), first note that £(Qp) ~ D(Q,P) ~ ¢(P) by (2.4) and Definition 2.5. For
every L € [Q, P], although it may occur that L ¢ SH(P), we still have that by the triangle
inequality D(L, P) < ¢([Q, P]) =~ D(Q, P) and, thus, by the definition of shadow we have that
D(L,P) <4(P), ie.

D(L, P) ~ £(P). (2.9)

When L € [Q,Qp], (2.5) reads as
(L) ~D(Q, L),

and when L € [Qp, P] by (2.5) and (2.9), we have that

{L) ~D(L,P) ~ ¢(P).



In particular, the number of cubes in [Qp, P] is uniformly bounded. Summing up, for L € [Q, P]
we have that £(Q) < ¢(L) < ¢(P) and all the cubes of a given side-length r contained in [Q, P]
are situated at a distance from @ bounded by Cr, so the number of those cubes is uniformly
bounded. Therefore, the left-hand side of both inequalities in (2.8) are geometric sums, bounded
by a constant times the bigger term. The constant depends on s, but also on the uniformity
constant of the domain. O

We recall the definition of the non-centered Hardy-Littlewood maximal operator. Given f €
L} (R?) and z € R?, we define M f(z) as the supremum of the mean of f in cubes containing z,
that is,

M(w) = QSEEQ Q] j Ut

It is a well known fact that this operator is bounded in L? for 1 < p < c. The following lemma is
proven in [PT15] and will be used repeatedly along the proofs contained in the present text.

Lemma 2.7. Let Q be a bounded uniform domain with an admissible Whitney covering W. Assume
that g € LY () and r > 0. For everyn >0, Q € W and x € R?, we have

1) The non-local inequality for the maximal operator

J gy Mgl) D SsoWydy _ infyeq Myly) .,
|ly—z|>r |y - x‘dJrn ~ 7 5:D(Q,S)>r (QaS)dJrn = v . -
2) The local inequality for the mazimal operator
gWdy _ Ss9)dy _ .
——— <y r"Mg(x and " <, inf Mg(y)r"
Jy—z|<r ly — = @ S:D%:S)q D@, 85)n =" veq v
(2.11)
3) In particular we have
0(S)? 1
> GO (2.12)

d '\»d
& D@9 S Q)
and, by Definition 2.5,

Z f x)dr <ap 1nf Mg(y) £(Q)<.

SeSH,(Q)

3 Fractional Sobolev spaces

First we recall some results on Triebel-Lizorkin spaces. We refer the reader to [Tri83].

Definition 3.1. Let ®(R%) be the collection of all the families of smooth functions ¥ = {1; };C‘zo c
C*(R?) such that
supp to = (0, 2),
{ supp ¥; < D(0,27FN\D(0,2771)  ifj=>1

for every multiindex o € N? there exists a constant c, such that

C .
[ D%jl,, < 2TO;‘ for every 5 =0



and

o0
Z Yi(x) =1 for every x € RY,
§=0
We will use the classical notation f for the Fourier transform of a given Schwartz function,
flor = | et
Rd

and f will denote its inverse. It is well known that the Fourier transform can be extended to the
whole space of tempered distributions by duality and it induces an isometry in L? (see for example
[Gra08, Chapter 2]).

Definition 3.2. Let se R, 1 <p <, 1 <q< 0 and ¥ e ®R?). For any tempered distribution
f e 8'(R?) we define its non-homogeneous Besov norm
)

(viF)

and we call By, , < S’ to the set of tempered distributions such that this norm is finite.
Let seR, 1<p<ow,1<q< o and ¥ e ®R?). For any tempered distribution f € S'(R?) we
define its non-homogeneous Triebel-Lizorkin norm

5=l (wd)

and we call F; , = 8" to the set of tempered distributions such that this norm is finite.

v s7
I£15; , = | {2

9
la

| f]

)

lallpr

These norms are equivalent for different choices of ¥. Of course we will omit ¥ in our notation
since it plays no role (see [Tri83, Section 2.3]).

Remark 3.3. Forq =2 and1 <p < o the spaces F; 5 coincide with the so-called Bessel-potential
spaces WP, In addition, if s € N they coincide with the usual Sobolev spaces of functions in LP
with weak derivatives up to order s in LP, and they coincide with LP for s = 0 ([Tri83, Section
2.5.6]). In the present text, we call Sobolev space to any W*P with s > 0 and 1 < p < 0, even
if s is mot a natural number. Note that complex interpolation between Sobolev spaces is a Sobolev
space (see [Tri78, Section 2.4.2, Theorem 1]).

To use the Sobolev embedding for Triebel-Lizorkin spaces, we will use the following proposition.

Proposition 3.4 (See [Tri83, Section 2.3.2].). Let 1 < ¢g< w and 1 < p < w0, se R and e > 0.
Then

Fyat e wer, (3.1)

Next we will prove Theorem 1.2. Let us write A} f(z) := f(x+h)— f(z) and, if M € N with M >

1 we define the M-th iterated difference as AM f(z) := A}L(AN 1 f)(z) = ij\io (]JV»[)(—l)M_jf(x +

jh). Given fe L}, ., an index 0 < u < o0 and t € R, we write

u

4 f (@) = (t_df Ath(x)I“dh> 7
|h|<t

with the usual modification for « = co. In [Tri06, Theorem 1.116] we find the following result.



Theorem (See [Tri06].). Given 1 < r<w,0<u<r,1<p<ow,1<g<0andd<s<M
with —4— — g < s, we have that

Qs
S

FS Rd o Lmax{pr} 1d% ( ) dt d
p,q( ) - f € HfHLP Ra o W T < 00

(with the usual modification for ¢ = o), in the sense of equivalent quasinorms.
As an immediate consequence of this result, we get the following corollary.
Corollary 3.5. Let 1 <p<o0,1<g< and0<5<1<Mwiths>gf§. Then

1

AM Pt \T )T
@) = | flee + (JRd (Jw Wdh dr ) <o

(with the usual modification for ¢ = ), in the sense of equivalent norms.

s d max{p,
Fi (RY) =< ferm>vat g ||

Proof. Let f e L™®{r.4}, Choosing ¢ = u = r all the conditions in the theorem above are satisfied.

Therefore,
O RY
g ey~ oo+ | [ ([ el ) ) (3:2)

Since d}} f(x) = (t*d S|h\<t |AM f(x)]4 dh) for x € R%, we can change the order of integration to

get that
LM @)\ dt
ra \Jo ¢ rd \Jjnj<t Jistsin ¢
M q
:J J A} f()] ( L dl) dh)| de.
Rd |n|<1 Sq+d |h|‘5q+

As (R4 and also that

Qs

S

This shows that || f|

s &1y S /]

AMf()e \* LaM () )¢
J]Rd (Jhl<§ Wdh s Re \ Jo Wdt dz 5 1f

M
by (3.2). It remains to see that {, (S‘h|> IL\W&% dh) dz < || f|5. (ray- Using appropriate
p,q

Forey  (33)

changes of variables and the triangle inequality, it is enough to check that

D= [ ([, 2 )" < 111 ey 54

Let us assume first that p > ¢. Then, since the measure (1 + |h|)~(¢*9 dh is finite, we may
apply Jensen’s inequality to the inner integral, and then Fubini to obtain

|f(x + h)|P
dhdx <
@ JRd J\Rd 1+ |h‘ sp+d HfHLPa

10



and (3.4) follows.
If, instead, p < ¢, cover R? with disjoint cubes Q; = Qo + /j for j € Z. Fix the side-length ¢

of these cubes so that their diameter is 1/3. By the subadditivity of 2 — |2|, we have that

|f(y)]? : . . L 1
OF ;fm; (fcz; (1+ [z —y[)sate dy) ‘ N; (Lz; sl dy) Z (L+|f =K+

k

Since s + g > 4, the last sum is finite and does not depend on ; By (3.3) we have that

OF Z(J quy> <ZJ (J () |qdy> dx+ZJ (J |qdy>§dx

< 115

F;YQ(Rd)'

In the last step we have used that 35§, (SQ, [f(z)]2 dy) " dr ~ | £]¥ » because all the cubes have
J J
side-length comparable to 1, and the fact that s < 1 to use first order differences in | f| O

p
s dy-
Fy o (R?)

Definition 3.6. Let X (R?) be a Banach space of measurable functions in R%. Let U < R? be a
open set. Then for every measurable function f:U — C we define

= inf -
”f”X(U) geX (RI): glu=F Hg”X(]R")

Next we introduce a norm which will be the main tool for the proofs in this paper.

Definition 3.7. Consider 1 < p < o0, 1 < q<ooand0<s<1withs>%—§. Let U be an

open set in RY. We say that a locally integrable function f € A;yq(U) if
e The function f e LP(U), and

e the seminorm .

Bl (L (], st ) dw) ; (35)

1£1as ) = Il oy + 1£]

In some situations, the classical Besov spaces B, (U) = A7 (U) and the fractional Sobolev
spaces W*P(U) = A; ,(U). For instance, when ) is a Lipschitz domain then A3 ,(Q2) = W*P(Q)
(see [Str67]). We will see that this is a property of all uniform domains.

Remark 3.8. The condition s > % — g ensures that the C°-functions are in the class A;Q(Rd).

| f]

18 finite.

We define the norm

A5.4(U)

Proof. Indeed, given a bump function ¢ € C* (D),

1
(@) =) N, \"°
Ao = <f(2m>)c ( p |z —ylsatd dv)
g v
N sa(y)wdy) L
<J(2]D))C <fD |x|‘9p+d7

which is finite if and only if % <5+ g. The converse implication is an exercise. O

[l

11



Consider a given e-uniform domain Q. In [Jon81] Peter Jones defines an extension operator
Ag : WHP(Q) — WEP(R?) for 1 < p < oo, that is, a bounded operator such that Agf|q = f|q for
every f e W1P(Q). This extension operator is used to prove that the intrinsic characterization of
WLP(Q) given by

HfHWLp(Q) ~ HfHLp(Q) + HVfHLp(Q)

is equivalent to the restriction norm.

Next we will see that the same operator is an extension operator for A; (Q) for 0 < s <1
with s > 4 — 4 To define it we need a Whitney covering W of Q (see Definition 2.1), a Whitney
covering Wy of Q¢ and we define W3 to be the collection of cubes in W, with side-lengths small
enough, so that for any @ € W5 there is a S € Wy with D(Q, S) < C¢(Q) and £(Q) = ¢(S) (see
[Jon81, Lemma 2.4]). We define the symmetrized cube Q* as one of the cubes satisfying these
properties. Note that the number of possible choices for Q* is uniformly bounded and, if Q is an
unbounded uniform domain, then

Wy = Ws. (3.6)

Lemma 3.9. [see [Jon81]] For cubes Q1,Q2 € W5 and S € Wy we have that

o The symmetrized cubes have finite overlapping: there exists a constant C' depending on the
parameter & and the dimension d such that #{Q € W5 : Q* = S} < C.

e The long distance is invariant in the following sense:
D(QT, Q%) ~ D(Q1,Q2) and D(QF,S) ~ D(Q4,95) (3.7)

o In particular, if Q1 N2Q2 # & (Q1 and Q2 are neighbors by (2.1)), then D(QT, Q%) ~ £(Q1).

We define the family of bump functions {1)g}gew, to be a partition of the unity associated to
{QQ}QeW , that is their sum > ¢ = 1, they satisfy the pointwise inequalities 0 < 1o < X11q

and |Vl We can define the operator

© S E(Q)

Aof(x) = f(@)xa(x) + ) volx)fos for any f e Li,.()
QeWs

(recall that fy stands for the mean of a function f in a set U). This function is defined almost
everywhere because the boundary of the domain €2 has zero Lebesgue measure (see [Jon81, Lemma
2.3]).

Lemma 3.10. Let Q be a uniform domain, let 1 < p,q < o0 and 0 < s < 1 with s > % — g.

Then, Ao : A ,(2) — F;q(Rd) is an extension operator. Furthermore, Ao f € L™P%} for every
feA; ().

Proof. We have to check that

Aof(x) — Aof()]7 , V7 )"
||AofA;,q<Rd)—|Aopr+(de (f pamre ) B N V] PRES

First, note that [Aof|.» < [fllzo) + [AoflLr(qe)- By Jensen’s inequality, we have that

d
0f i <0 3 aslally < 3 sl flinae (54@) -

QeWs QeWs

12



By the finite overlapping of the symmetrized cubes,

[80f Iz ey S 1F 1o

The same can be said about L? when ¢ > p. In that case, moreover, one can cover 2 with balls
b
{B;} es with radius one such that |B; n Q| ~ 1. Then, using the subadditivity of z — |z|« we get

#1500 < (}jj‘ |qdy>q (3.5)

P
q

Sq Z fBjm (JBN |f(y) — f(x)lqdy> % dx + ]i]m (JBN |f(x)qdy> dz

J
(@) ~ 1) )
SL<Qp%M%d@)M+umm 171

As ()

by Definition 3.7.
It remains to check that

Aof(x) — Aof@)lF N\E 7

More precisely, we will prove that

@+®)+©@ < 1% )

Ao f|

Apq (D)

where

e v =
O [, (], M5 ) e

Let us begin with

Q

- ([ 1B

Call Wy := {S € W5 : all the neighbors of S are in Ws}. Given y € S where S € W,, we have
that 3 pcyy, ¥p(y) = 1 and, otherwise 0 <1 -3 5y ¥p(y) < 1. Thus

@= 2 ], (S]N Q)sjﬁiillswsu»dy> s

cS LS L e ) e @@

QeW, SeW2\W4 ¥ 10

13



In by the choice of the symmetrized cube we have that S%Sz/)g(y) dy ~ £(S*)?. Jensen’s

inequality implies that |f(z) — fex|? < W g [f(x) — f(E)]|9dE. By (3.7) and the finite over-
lapping of the symmetrized cubes, we get that

.< 2, J (SZW J Q S*) quZ df) dz <115,

QeWr

To bound just note that for @ € Wy and S € Wr\W,, we have that S is far from the
boundary, say £(S) = £y, where ¢y, depends only on diam(2) and e and, if 2 is unbounded, then
£y = oo and = 0 by (3.6). Thus, we have that

@< 3 |

QEWl SGWZ\W

d
| des [ 2 O )y,

DO S)sq+d sq+d
L Q S q+ ST, D(Q, S)sa+

Recall that Whitney cubes have side-length equivalent to their distance to 0£2. Moreover, the
number of cubes of a given side-length bigger than ¢; is uniformly bounded when €2 is bounded,

d
S0 Y. SeW,\ Wy e(é()% is a geometric sum. Therefore,

E

@< X M})sq 11 < Cotinmen 51 £ 12

SEWQ\W4

Next, note that, using the same decomposition as above, we have that

_ |ZQ6W3 wQ( )fQ* — f(y)e g i
@ a J e (J — y|satd dy) d
o) for — W'\

QEW3 6@ Sew, J5
+ Z J- (1— Z Yoz ) dm(Z J PSSqud y) ::+.
PeW,\Wy QeWs SeW,

We have that

@< 5 ror (5 [ Lo,

QeWs SeW,

and, thus, by Minkowsky’s integral inequality (see [Ste70, Appendix Al]), we have that
1

Q)" ) = ) ’
$Q§V3K<Q>dp JQ*<E =T dy) “

SEW] S

By Holder’s inequality and the finite overlapping of symmetrized cubes, we get that
1£(§) — fy)* ) dp J ( 1£€) — fFW)* )"
e Ly el dee(Q)» Ly ! dg,
Z d(p ) Lg* ( 0 J€—y|srtd Yy §UQ) > o Uy e = ylsatd Y 3

14



that is,

(1) < |11

As ()
To bound , note that as before, if €2 is unbounded, then = 0 and, otherwise, we have that

N : (Q)
~ douQ) <ZJ qu+ddy> S 2] At (Q. Q)P

QEWQ\W4 QEWQ\W4

Now, since s > g — g we have that sp + %p > d. Therefore,

@y ! do

A sp+ﬂ ~ sp-‘r@—d < CE,diam(Q)e
0ewa\w, dist(Q, Q) ey, £(Q)FT
On the other hand, if  is bounded and ¢ < p, then ||fHLq(Q) < HfHLp(Q) by the Holder inequality
and, if p < ¢, then | f| () < HfHAg’q(Q) by (3.8).
Let us focus on @ We have that

(j | 2 pew, VP (@) fpx — Dgew, Ys(y) fsx|? J >§
y| dx.

o =y

@:

Given x € % where @ € W, and y € Q° n B(x, 10) then neither x nor y are in the support of

any bump function of a cube in Wo\Ws, 50 > p .y, ¥p(y) =1 and Zpew p(x) = 1. Therefore
Dy vp@)fer — D) bsWfex = D, D vp(@)ds(y) (frx — fsx).
PeWs SeWs Pn2Q+# SeEW3

If, moreover, y € B( x, 10((@)), since the points are ‘close’ to each other, we will use the Holder
regularity of the bump functions, so we write

Mowp@)fer — ) vs@)fsx = . (Wp(x) = ¢p(y)) fps.

Pews SEWs PeWs

This decomposition is still valid if @Q € Wo\W, and y € B ( x, 10€(Q)), that is, y € B ( , 10) but
we will treat this case apart since we lose the cancellation of the sums of bump functions but we
gain a uniform lower bound on the 51de—1engths of the cubes involved. Finally, we will group the
remaining cases, when z € Q¢ and y ¢ B(x, 10) in an error term. Considering all these facts we get

GEH (JW i) wp(zws(ynmdy) dr

QEW, Pn2Q#J SeWs

| 2isn20-0 (Us(@) — ¥s(y)) fsx|? “ )
+ Q;v4 fQ (J B(z,754(Q)) |z — y[satd dy) d

Ly Mj ZSGWBISQQWws(x)—ws(y))fs*wdy)qdx

e |z — y|satd

Mof(2) — Aof W), \ "
d d
" Jﬂ“ (fQL\B( %) |x — y|5q+d y) X

=D+ @)+ @)+ (D)

15



where the last two terms vanish in case €2 is bounded.
Using the same arguments as in and we have that

ORI

As (@)

Also combining the arguments used to bound and we get that if Q is bounded, then

p
< (Ifln@y + 1fliae) -
and it vanishes otherwise.

The novelty comes from the fact that we are integrating in Q¢ both terms in (c), so the
variables in the integrals @ and @ can get as close as one can imagine. Here we need to use

the smoothness of the bump functions, but also the smoothness of f itself. The trick for @ is

to use that {1} is a partition of the unity with ¢¢ supported in 1—0 , that is, Digeyy, ¥s(x) =
Yisno0p ¥s(@) =1ifze 10Q with Q € Wy. Thus,

| Sssoug Gs@) —vs@)) (Fsx — for) 11\ "
@ ZJU 156(Q)) |z — y|rtd W)

QeEWy

and using the fact that [|[Viygql —Q) and (2.11), we have that

> [z —y|* 1 a
Js = Jox QJ —— dy | dx
QEWJ <Snzc2;e@’ o Bz gu@) Q)T |x—ylsatd

<. Z é(Q)d <ZSm2Q¢ZC’Qf>i:_fQ*|> ~ Z E(Q)d< Z m) ,

QEW, QEW, SN2Q#

which can be bounded as @

Finally, we bound the error term @, assuming 2 to be a bounded domain. Here we cannot
use the cancellation of the partition of the unity anymore. Instead, we will use the LP norm of f,
the Holder regularity of the bump functions and the fact that all the cubes considered are roughly
of the same size:

| Ssmsous (s(@) — ¥s(y)) foxlt
@ Z J(J s Q#Quiy‘sﬁdsy s dy) i

QGWQ\W4

P
1 1 B
< | % sy (f dy) da
GZV:VQ Q o, B(a:,%) Kg |g§—y|(s 1)g+d

<UQ)<2t  SN2Q+P

se,fo,q,p Z HfHLp(s*) S Hf“ip Q
S€W3
L <o(8)<to
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Corollary 3.11. Let Q2 be a uniform domain with an admissible Whitney covering W. Given

l<p<ow,l<g<owand0<s<1 withs> % - %, we have that Ay (Q) = Fj (), and

Hf”p;yq(g) ~ HfHA;‘q(Q) for all f € Fy ().
Proof. By Corollary 3.5, given f € F; () we have that
11

Az (@) S inf ; l9la; @y =

pemoid nfEf HgHF;YQ(]Rd) = | flps Q)"

i
g9l P

By the Lemma 3.10 we have the converse. Given f € A7 (£2) we have that
171

Fp @) =, im;f I91 5 way < [Aoflps (may > [Aofllas @y < ClS]

As (Q)*
gle 5q (&)

O

4 Equivalent norms with reduction of the integration do-
main.

Next we present an equivalent norm for F; (£2) in terms of differences but reducing the domain
of integration of the inner variable to the shadow of the outer variable in the seminorm ||-|

defined in (3.5).

As (Q)

Lemma 4.1. Let ) be a uniform domain with an admissible Whitney covering W, let 1 < p,q < o0

and 0 < s <1 with s > % — %. Then, f € F,; ,(Q) if and only if

If

@ - rwre N\
Az (@) T HfHLP(Q) + QZW JQ (-[Sh(@) W dy | dx < Q0. (4.1)
€

This quantity defines a norm which is equivalent to || f|'. (@) and, moreover, we have that f €
p,q
LmaX{nq}(Q),

Proof. Let © be an e-uniform domain. Recall that in (3.5) we defined

@)~ fwl  \E )
““m:<L<Q e ) m)'

e\ °
e @ = 2 J J ) {q(-?:Zl‘ dy | da.
gavJe \Usn@ &yl

To prove the converse inequality, we will use the seminorm in the duality form

/() ~ S )]
Iy @ = sup QLL)x_myﬂ%w@Mw (42)

d
s+q

171

Trivially

| f]

lgl Lo (L9 (@)

Let g > 0 be an L}, function with HgHLp/(Lq/(Q)) < 1. Since the shadow of every cube @ contains

2@, we just use Holder’s inequality to find that

2 L? LQ Wg(% pdude S (QEZW f@ (LQ W dy) % dx) % - (43)

QeW
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Therefore, we only need to prove the estimate

|f(z) — f)] M ] i P
C;;L? JS\QQ o — gt e i< Q;WJQ (Lh(@) |z — ysatd dy) dr | . (44)

If x € Q, y € S\2Q, then |z — y| ~ D(Q,S), so we can write

7(z) — F) i
QSJ L\262 |z — y|5+d et 1Y dydx<ZJJ s+d g(m y) dy dz. (4.5)

Since 2 is a uniform domain, for every pair of cubes @) and S in this sum, there exists an admissible
chain [@, S] joining them. Thus, writing fo = JCQ f dm for the mean of f in @, the right-hand side
of (4.5) can be split as follows:

LOES A @) —fal
C;J ) dy ZJJ +r,g( ) dy

s D(Q,9)°*F
IR e ffjdg< D dyda

e 165 o
+;JQ S 9@y dyda

=O+@+0G). (4.6)

Note that the definition of Qg depends on the chosen chain.
The first term can be immediately bounded by the Cauchy-Schwarz inequality. Namely, writing
G(z) = [9(z,")| (), by (2.12) we have that

¢ v £(8)4 z
@ Z J |f(x) = fql (ngjsg(x’y) dy) (Z W) dx

QeW Sew
§o1f(x) = folG(x) dx
&

1
By Jensen'’s inequality, | () ~ fol < (e S 1£(@) — F@)]*dy) " and thus, since 6(Q) 2a [z —y
for z,y € QQ, we have that

O

Since |G| = HgHLp/(Lq/) < 1, this finishes this part.
For the second one, for all cubes @ and S we consider the subchain [@, Qs) < [@, S]. Then

@<21, Lo

> L, dy)gdxynem. (@.7)

QeW

— = dydr Y |fe— fve)l
D( Q S ta Pe[Q.Qs)
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Recall that all the cubes P € [Q, Qs] contain Q in their shadow and the properties of the Whitney
covering grant that A (P) < 5P. Moreover, by (2.6) we have that D(Q,S) ~ D(P, S). Thus,

S f -0 B[ 5 [ S8

QeSH(P

and, using Holder’s inequality and (2.12), we have that

1

@<Xf f 11O -s@lica 3 J (]« ”qdy)%&;vn Sq+d>qu

QEeSH(P)

sd,s,qg]i]épf( Olacds Y fc

QeSH(P)
By (2.11) we have that {g, p) G(2) dz <4, infyep MG(y)t(P)%, so
o(pyi-s

© <Zf | 1= snacaree aetar
1

) | ( f NICRGH dc) "yt ol de gepras

Note that for &, ¢ € 5P, we have that |€ — (| <4 £(P). Thus, using Holder’s inequality again and
the fact that |[MG|,,» <p |G| » <1, we bound the second term by

@3 ([, 1029 ) woqas< (3] ([, 1049 ) )

(4.8)

Now we face the boundedness of

@ ZJ |st — )| ( )dydx.

g\
SDQSSM

Given two cubes @ and S, we have that for every admissible chain [@, S] the cubes @, S € SH(Qg)
by Definition 2.4 and D(Q, S) ~ £(Qs) by (2.4). Thus, we can reorder the sum, writing

®<3 ¥ 3 [ [k 'g@,y)dydx 49

R QeSH(R) SeSH(R)

<Zf

R QeSH(R) SeSH(R)

f TN y) dy e de.

s+ 141 )dg

Using Holder’s inequality, Lemma 2.7 and the fact that for S € SH(R) one has ¢(R) ~ D(S, R),

19



we get that

@<ZJ 1+q Ja JQ > (J £ (€) quy>; <Lg(ﬂc7y)q, dy) dx dg

QeSH(R) “¥ SeSH(R)
> J @) dx dé

<Zf e (f h(R)If(E)*f(y)lqdy> X

©—fwlr .\ 1
<ZJ (JSh(R R)Stl-*-ddy> K(R)d (g)E(R)ddf

and, using the Holder inequality again and the boundedness of the maximal operator in ¥ we
get

»a\‘ —

= ZJ (f (R)Wdy> de | MG,

ZJ (Lh( e g )__|fq<ff)1 dy> de | . (4.10)

Thus, by (4.6), (4.7), (4.8) and (4.10), we have that

JJfQSS+d s ZJ (J (R)Wdy>gdf ;

This fact, together with (4.5) proves (4.4) and thus, using (4.2) and (4.3), we get that

HfHA () Se.s.p.a.d Hf|,43 ()

Finally, by (3.8) we have that f e L™x{r.a}((Q). O

Remark 4.2. Note that we have proven that the homogeneous seminorms are equivalent, that is,

@ - fwl\"
QEZW JQ (JSh(Q) W dy) dx ~ Hf”AS (Q

which improves (4.1).
In some situations we can refine Lemma 4.1.

Lemma 4.3. Let Q) be a uniform domain with an admissible Whitney covering W, let 1 < q¢ <
p < o0 and max{é — 3,0} <s<1. Then, fe F; (Q) if and only if

(@)~ Il )'5 A
|prQ)+<Q;WJ <LQ |z — y[setd dy d) < 0.

Furthermore, this quantity defines a norm which is equivalent to | f|

Fy (@)
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Proof. Arguing as before by duality, we consider a function g > 0 with [g| 1z ()
bining (4.7) and (4.8) we know that

1
— fos| fI N\
QZ;?j S)s+i ol dyde = Q;W 5Q \x— |satd W)
and, thus, we have

< 1. Com-

Q’J S|1J;((C;S)()| (atydyda:~<z (fQ =)

sq(+()1|q dy> ! dx) p + @ (4.11)
where
|st - )|
=3,

SDQS%dg ydyde <y, ) J |fR_q+d|g( ) dy dx

QeWw

R Q,SeSH(R
by (4.9).

Using Hélder’s inequality and Lemma 2.7 we get that

ORD e (SZH] | =1 quy)q > | cwa

QeSH(R)
1

( J|fR— qd) Sy MG(E) d€
SeSH(R)

UR)*Ha
and, using the Holder inequality again, we get

p

T me
< fr— f)rdy | —0D
@ R(SGS% f " y) é(

i | MGl

<1
R, S € W there exists an admissible chain [S, R], and we can decompose the previous expression
as

Now, given
wz( 5

SeSH(R)

By the boundedness of the maximal operator in L? we have that |[MG|,, < 1

B {(P)s
Pe[zs:,R) (e =fwve) (P)s

+Z ( Z J |fs — qdy) g(R)d—sp—dg _ @Jr@,
SeSH(R
where'we wrote [S, R) = [S, R|\{R}.

Using Holder’s inequality

(4.12)

Z 0P+
SeSH(R) P<[S,R) €[S,R)

Gosy| 3 3 Progank ( )
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Sq,

But for S € SH(R) by Remark 2.6 we have that Y pcg gy €(P) @ < ((R)"& . Moreover, by (2.9)

there exists a ratio py such that for P € [S,R] we have that S € SH?(P) := SH,,(P) and
P e SH?*(R). We also know that 2ISeSH2(P) £(S)¢ < £(P)4, so writing Up for the union of the
neighbors of P, we get

(o, 1960 — fola) epy\*
< = R)™ a0
O e L

PeSH2(R)

Recall that p > ¢ and, therefore, by Holder’s inequality and (2.7) we have that

» (1-3)%
fu, 1F(&) — frldE) £(P)? sp_dp
Ghey, 3 Ueroo i) ( 5 ) e

R PeSH2(R PeSH2?(R)

(fUP|f ~ felde) Py o (f 179 fp|d5) (py!
NZ (P)% Z N; (P)sp

R:PGSHQ(R)

Using Jensen’s inequality we get
P
J f P‘ de, (4.13)
Up

and Jensen’s inequality again leads to

@ s JUP (SP lf(fz(;{d@'q dc>z E(Ii)sp A5 ZL <S5P lféf_) E|£E£1)|q d() ' d¢. (4.14)

To bound @ we follow the same scheme. Since p > ¢ we have that

@-3(

R

(1-)\* ,
Z J\fsf |qdyg)d(1_q)> ((R)oP= 44

SeSH(R)

SZ( 2 (Ss|fs )\qdy)

R \ SeSH(R) é(S)d(g_l)

a\r
q

(1-%)
( 2 €<S>d) (R,

SeSH(R)

<3
v
1S

and, since Y gegri(r) £(S)4 ~ £(R)?, reordering and using (2.7) we get that

S ‘fs_ |qdy)§ —sp S |fS_ |qdy :ZE(S)d
D T = e R I 22

R:SeSH(R)

Thus, by Jensen’s inequality,

S |fs— If’dy (s)
69=3* 5
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and, arguing as in (4.13), we get that

@<z, (o,

Thus, by (4.11), (4.12), (4.14) and (4.15), we have that

1

Zfs§g$i%@y@M<@U<L|gM$Y®Y@y

Q.8
This fact, together with (4.2), (4.3) and (4.5) finishes the proof of Lemma 4.3. O

Remark 4.4. An analogous result to Lemma 4.3 for Besov spaces B, , can be found in [Dyd06,
Proposition 5] where it is stated in the case of Lipschitz domains.

Corollary 4.5. Let Q be a uniform domain. Let §(x) := dist(x, 0Q) for every x € C.
Given 1 <p<g<ow and 0 < s <1 with s > %_5’ we have that A; () = F () and,

moreover, for p1 > 1 big enough, we have that

I£

F@ -\ )
@)~ ooy + f f dy| do for all f € FE,(Q),
B0 () e o \JB, sy @)na |z —ylsrtd P

Given 1 < ¢ < p < @ and 0 < s < 1, we have that A, (Q) = F; (Q) and, moreover, for
0 < po <1 we have that

P

f@ -\
fllpe fll» J J 2 D gy | da for all f € F?_(Q).
H ‘F (Q) H HL (Q o BPO&@)@) |Z‘ . y|sq+d p,q( )

Proof. This comes straight forward from Corollary 3.11, Lemma 4.1 and Lemma 4.3, taking smaller
cubes in the Whitney covering if necessary when pg << 1. O

5 Calderon-Zygmund operators

Definition 5.1. We say that a measurable function K € L} _(R?\{0}) is an admissible convolution
Calderén-Zygmund kernel of order o < 1 if it satisfies the size condition

C
|K(z)] < ﬁ forx #0, (5.1)
and the Hélder smoothness condition
Cklyl?
Ko=)~ K(@)| < 5 for0 < 2] < . (5.2

for a positive constant Cx and that kernel can be extended to a convolution with a tempered
distribution Wx in R? in the sense that for every Schwartz functions f,g € S with supp(f) N

supp(g) = &, one has
Wk = f,9) = K(z) (f- *g) () dz. (5-3)



Remark 5.2. We are using the notion of distributional convolution. Given Schwartz functions f
and g, the convolution coincides with multiplication at the Fourier side, that is, f = g(x) = (f-g)"
Given a tempered distribution W, a function f € S and x € R, the tempered distribution W = f is
defined as

~
~

(W f,g):=d(W-\9>=W,F- 5 =(W,f-xg)  foreverygeS.

Note that f— * g(z) = § f(—y)g(x — y) dy, so in case supp(f) nsupp(g) = & then f_xg=01ina
neighborhood of 0 and, therefore, the integral in (5.3) is absolutely convergent by (5.1).

In any case, the distribution W = f is reqular (i.e., it can be expressed as an L}, function) and
it coincides with the C® function W« f(x) = (W, mp f_), where T, f_(y) = f-(y — x) (see [SWT1,
Chapter I, Theorem 3.13]).

There are some cancellation conditions that one can impose to a kernel satisfying the size
condition (5.1) to grant that it can be extended to a convolution with a tempered distribution.
For instance, if K satisfies (5.1) and Wy is a principal value operator in the sense that

Wk, py = lim K(z)p(z)dx forall p € S, (5.4)

120 Jjz|=4;
for a certain sequence d; \, 0, then Wi satisfies (5.3) (see [Gra08, Section 4.3.2]).

Definition 5.3. We say that an operator T : S — 8’ is a convolution Calderén-Zygmund operator
of order o € (0, 1] with kernel K if

1. K is an admissible convolution Calderdn-Zygmund kernel of order o which can be extended
to a convolution with a tempered distribution Wy,

2. T satisfies that Tf = Wi = f for all f€ S and
3. T extends to an operator bounded in L?.

Remark 5.4. Using the Calderon-Zygmund decomposition one can see that T is also bounded
on L? for 1 < p < o (see [Gra08, proof of Theorem 4.3.3]). Thus, the Fourier transform of a
convolution Calderon-Zygmund operator T is a Fourier multiplier for LP. We refer the reader to
[Tri83, Section 2.6].

These operators are bounded in LP(w) for every w € A, (see [Duo01, Definition 5.11 and
Theorem 7.11], for instance). Now, [FJ90, Theorem 10.17 combined with Section 12] grants that
they are Fourier multipliers for ng for every pair 1 < p,q < o0 as well.

Therefore, such an operator is always a Fourier multiplier for Fﬁq. But being a Fourier mul-
tiplier for Fz?,q implies being a Fourier multiplier also for FJ - for every s (see [Tri83, Section

2.6)).

It is a well-known fact that the Schwartz class is dense in LP for 1 < p < oo. Thus, if f € LP
and z ¢ supp(f), then

Tf(z) = j K(x— ) (y)dy. (5.5)

To prove Theorem 1.1 we need the following lemma which says that it is equivalent to bound
the transform of a function and its approximation by constants on Whitney cubes.
To do so, we define the fractional derivative,
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Definition 5.5. Given a uniform domain @ with Whitney covering W and f € LP(Q) for certain
values 0 < s <1 and 1 < q < o, the s-th fractional gradient of index q of f in a point x € Q € W

18
) HOENIOAN
qu( ) : (JSh(Q) |33 _ y‘sq-kd dy) '

Then, by Corollary 3.11 and Lemma 4.1, for 1 < p < oo with % — % < s, we have that

1£7s. o = 1 lzncey + V55 ] oy (5.6)

The following result is the key to Theorem 1.1. Recall that To(f) = xa T(xa f). Note that
X« is not in LP if Q is unbounded. However, ViTo1(x) can be defined for x,y € Q using a bump
function ¢,,, compactly supported in €2 with value 1 in an open set containing both of them

Txo(z) = Txa(y) := Tpay(x) = Tpay(y) + L((l = Py (W) (K (2 —w) = K(y —w)) dm(w), (5.7)

which is well defined by (5.2) and does not depend on the particular choice of ¢,,.

Key Lemma 5.6. Let Q be a uniform domain with Whitney covering W, let T be a convolution
Calderon-Zygmund operator of order 0 < s <1, 1 <p <o and 1 < q < o0 with s > % — %. The

following statements are equivalent:

i) For every f € F,; (Q) one has

Tl o < Il o
with C independent from f.

ii) For every f € I (Q) one has

> 1ol IViTxelL, o) < CIf Iy @)
Qew
with C independent from f.

Moreover,

> V3Tl = fa)lhugy < (Cx + 1T sy e 1T + 1Tl g ) 1]
QeW

Fo@ (58)

Proof. Let © be an e-uniform domain. The core of the proof is showing that (5.8) holds. Once
this is settled, since we have that

Q;W IViTaf [0 o) <o Q;W IVaTalf = fa)l7, o) + Z falPIViTal]7, o

and

X 1l IViTall, o) <o D) IViTalfe = Dl + 20 IViTaf |1, o)
QeWw QeEW Qew

inequality (5.8) proves that

S VTl o S I o == O Ul VTl 0 < 17 -
QeW Qew
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On the other hand, by assumption T is bounded on L? and we have that |To f[ 1.y < [/l -
Since HTwa:;q(Q ~ | Tafll}, r) T §o |ViTaf(x)[P dz by (5.6), the lemma follows.

Ag/ain we use duality. That is, to prove (5.8) it suffices to prove that given a positive function
g€ LP (LT (Q))) with HgHLp/(Lq/(Q)) = 1, we have that

ff Ta (f = fo) (x) — Tn(f fo) )|
Sh(Q

|z —y[**

9(z,y) dy dz < || f| Fs ()

Given a cube @ e W, we can define a bump function ¢g such that xsg < pgo < x7g and
IVl < CUQ)™ . Given a cube S < 5Q we define pgs := ¢q. Otherwise, take ¢gs = @s.
Note that in both situautions7 by (2.1) we have that supppgs < 23S. Then, we can express the
difference between T (f — fg) evaluated at x € Q and in y € S as

To(f = fo)(@) = Ta(f = fo)(y) = Ta [(f — fo) vel (x) = Ta [(f — fQ) pas] (v) (5.9)
+Ta[(f = fo) (1 = Q)] (x) = Ta [(f — fq) (1 — ¢q@s)] (v),

where all the terms must be understood in the sense of (5.7). Note that the first two terms in
the right-hand side of (5.9) are ‘local’ terms in the sense that the functions to which we apply the
operator T, are supported in a small neighborhood of the point of evaluation (and are globally
F; ., as we will check later on) and the other two terms are ‘non-local’. What we will prove is that
the local part

lzf

Q seSH(Q)

f Ta [(f — fa) eal () — Ta [(f — fo) pas] (y)|g(x’y)dydx,

‘ |s+d

and the non-local part

D=2, 2

are both bounded as

sz (f — fa) (1 — 0] (&) - [(f*f@)(lfws)](y)lg(x ) dy de

SeSH(Q) \ y|

W+RI< Clflpy @ (5.10)

We begin by the local part, that is, we want to prove that [ < Hf”ps ()" Note that for x € Q
and y € S e SH(Q), if y € 3Q) then pgs = ¢ and, otherwise |z — y| » E( ). Thus,

< ZJ J IT[(f - fQ)SDQ]izMHEj(f—fQ)SDQ] (y)lg(x’y) dy de (511)
f J = fQS)ﬁQ]( )|g(x,y) dy dx
Sh(Q (Q)** 4
|T (f = fQ pas] (vl B
+ZL o g(z,y) dy dv =: [LI] + [L.2] + [L3]
SeSH(Q

Of course, by Hélder’s inequality we have that

[(f = fo) val (@) = TI(f — f) el @I* N7\ 1w
OIF <3 [, (f @eel{t) LT =Jo ol E ) aslglf
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By Corollary 3.11 we get

Fg ,(RY)"

LI < ) ITI(f - fo) vallls
Q
Now, the operator 7" is bounded on F}; , by assumption (see Definition 5.3 and Remark 5.4). Thus,

P
<11 e, DS~ fa) vl ey

Consider the characterization of the FJ -norm given in Corollary 3.5. Since ¢q < Xx7q, the first
term Yo [(f — fo) (,DQHLP ga) is bounded by a constant times | fll,» by the finite overlapping of
the Whitney cubes and the Jensen inequality, and the second is

% f ( f (£ (@) = fa) po(@) = (F(y) — fo) ea)!" dy) " e

|z — ylsatd

where the integrand vanishes if both x,y ¢ 8Q. Therefore, we can write

LT <151 + 3, J ( J fw@'i ) miﬂi)_f‘”*"@(”' dy)qu
) = fo) eaW)l’ N7 .
" % JRd\@@ U?@ |z — y[sa+d dy) d (5.12)

@) - fQ)ee@l® '
+EJ Uw\sg oy dy) de =: | f|,, + 11+ T2 + [T13],

where the constant depends linearly on the operator norm |T'|%., .. .
p,q p,q

Adding and subtracting (f(z) — fg) po(y) in the numerator of the integral in |[1.1.1] we get
that
T _ AN
5[ ([, M=t egte—cowl ),
Q |£C - y|sq+d

+%LQ (LQ Wdy>q de.

The second term is bounded by a constant times | f|*.. (@) S0
p,q

Vool e -yl \*
szLQ (LQ e S dy) 1)~ Solf da + |11
Q

1.

;_n

.1

A

Fs (Q)

Using Vg - < 7 ﬁ and the local inequality for the maximal operator (2.11) we get that

_ep
<3 [ e@e-rlG e iy, o (5.13)
o /() — f(6)] €
NEJ (Q = )dmnf%;,q(m.
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By Jensen’s inequality W SQ |f(z) — F(&)| d€ < (SQ @ If(z) — f(9)| df) ‘ and, therefore,

< |f]

B (@) (5.14)

Now we undertake the task of bounding in (5.12). Writing z¢ for the center of a given
cube @, we have that

dzx a
112 < ZJ _— (J 1f(y) = fol dy)
Q JRNSQ |z —zo[TT e \J7Q

Since s > % — % we have that sp + %p > d. Thus, by (2.12)

Qs

]

<3 Lo ([ - sar dy>z -y (o (lo 10 - 501 6)" )

) e(Q)SIH_?_d ) E(Q)sp-i—%—d-&-dp

By Minkowski’s inequality we have that

(SQ (Vo lF @) = F()" dy)% d&)p

1.1.2] < Er— ,
) 0(Q)*P+ -
and by Holder’s inequality, using that p — 1 = —, we get that

T (o |F0) = FOI" dy) " det(@)¥ W) = FOI dy\§
Y
13 < - J ( J ) s
%1 K(Q)sp+dff+‘;—€’ %3 0 ly — £[satd
and
S Hf|1;ﬂ;‘q(9)- (5.15)

Dealing with the last term in (5.12) is somewhat easier. Note that by (2.12) we have that

fQ|p
i3 < f (@) = fol? J ay | do < f iz
% 7Q ¢ Ri\8Q [T — y|sq+d Z
and, since this quantity is bounded by the right-hand side of (5.13), it follows that
< 141, 0 (516)

Summing up, by (5.12), (5.14), (5.15) and (5.16) we get

S 1Tl g iy 0 (517)

Back to (5.11), it remains to bound and [1.3]. Recall that

- Zf ‘T f fQS @Q](m” g(m,y)dydm.

+a Sh(Q)
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Writing G(z) = |9(@, )| v () and using Hélder’s inequality we get

1
PY

d
q

f gz, y)dy < (J g(af,y)q/dy) Sh(Q)|+ <p..a G(2)UQ)7,
Sh(Q) Sh(Q)

and using again Holder’s inequality it follows that

. aF  \F
S<Z Qm(f fo) ol () dz) Gl o
Q

(Q)

Of course, |G| gy < 1. Now, by Definition 5.3 we can use the boundedness of T in L? to find
that ) )
I(f = fo) pal L@ \ 7 If = faltomg) \ "
STl o e ~HE ) < S )
H HL L Z K(Q)ép Z E(Q)ép

Q Q
and we can argue again as in (5.13) to prove that

YA T . (518)
Finally, for the last term in (5.11), that is, for
T[(f — fQ) vas
-—EJ | stdQ Ll g5 ) aya,
@ 5esH(Q)
by Hélder’s inequality we have that
T[(f - fo) ves] (W)
<ZJ ‘ quﬁt]( ol dy | G(z)dz.
SeSH(Q)
The boundedness of T" in L7 leads to
fq) pas(y .
<l S| 3 [ ) -Jo) eosil o, | uiq)t iyt .
SeSH(Q) supp(¥qQs)

Given a cube @Q, the finite overlapping of the family {50S}secyy (see Definition 2.1) implies the
finite overlapping of the supports of the family {pgs} (recall that supp(¢gs) < 235), so there is
a certain ratio ps such that naming Sh*(Q) := Sh,,(Q) we have that

) fQ|

@\ )
) %: (JSWQ) (fcz oQ)*+ia—d+d d§> dy) uf MG.

Finally, using Minkowski’s inequality and Hoélder’s inequality we get that

m3=3), (fhs(@W@ et df<<2f (|y|()"y)d5>
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that is,
S EA P . (5.19)

Now, by (5.11), (5.17), (5.18) and (5.19) we have that

3 (N PR 4 P L T P (5.20)

and we have finished with the local part.
Now we bound the non-local part in (5.10). Consider x € @ € W. By (5.5) (and (5.7) for
unbounded domains), since z is not in the support of (f — fo) (1 — @), we have that

Tallf = fo) (L= )} (2) = | K(e=2)(7(2) ~ fo) (1 = ¢(2) dm(z),
and by the same token for y € S € SH(Q)
Tallf = 1) (1= 9as)] ) = | K(y=2)(F(2) = fo) (1= pas(:) dm(2).

To shorten the notation, we will write

A@s(z1,22) = K (21 — 22) (f(22) — f@) (1 — p@s(22)),

for z1 # z3. Then we have that

To [(f = fo) (1= 9)] (2) = Tal(f — fo) (1 — vas)l (4)] =

fﬂ (Mao(®.2) — s (. 2)) dm(z)]

that is,

ZJ 3 J §o (Moq(, 2) i@;(yaz)) dz|g(x’y) dy d.

@ 5esH(Q |5E - ?J\

For p, big enough, Sh*(Q) := Sh,, (Q) Usesm(q) Sh(S) (call SH*(Q) := SH,, (Q)), we can
decompose

[Aaq(;2) = A s(yw)l dz
: ng f o Pl - 9(@,y) dy dx (5.21)
Qe SCsh(Q)\2Q x -yl
Sovsni(g) Nee(@,2) — Ags(y, 2)| dz
+§SJ‘ J‘ — o 9(z,y) dy dx
QScSMQ\@Q |z —y[*"

Agq(z,2) = Agq(y, 2)| d
o3[ [ deleele = Aaqn By ) gy, @+ [B)+ D)
Q YR J5Q

|z —y|**

In the first term in the right-hand side of (5.21) the variable z is ‘close’ to either x or y, so
smoothness does not help. Thus, we will take absolute values, giving rise to two terms separating
Agq and Ags. That is, we use that

2o ([A T,z A ,2)|) dz
i gz 2 SSh @ (Aeal >|+| @s(y,2))) o) dy dz.
Q

ScSh(Q)\2Q |z — y\
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Using the size condition (5.1),

=Ll — g

Aq(7,2)| < Ok

and

Phas(v.2) < O L2 - pos (o).

Summing up,

=0x ZJ Lh@ )\2Q Lm Q) ST |1; - dzg(x’ v dyde 522

\w—y|5+Q|w—Z\d
+ZJ

1-— d
QSCSh Q\2Q Sh*

—y*Tily - Zld

with constants depending linearly on the Calderén—Zygmund constant Ck.
We begin by the shorter part, that is

-

Using the fact that 1 — @Q(z) = 0 when z is close to the cube @, we can say that

21 < |f(2) = f IJ f g(x,y) dy dx dz.
Z )stia+d Lh‘*(@)\ﬁ@ “o Jsnaneo

Now, by the Holder 1nequahty we have that

f(z)— fol |l — z)|dz
[IRLCENLEZC L.
Sh(Q)\2Q Jsh* (@) |z —y|* T |w — 2|

d
j o, y) dy <. a G@)UQ)S,
Sh(Q)\2Q

where G(z) = |g(z, -)HLq/. Thus,
1) — fol FE) O] e 4o
<Zf e CCLEEDY f Jowoy " i@e MO dzde

Finally, by Jensen’s inequality and the boundedness of the maximal operator in L*" we have that

HORNG] e s .\’
ZJ Jsr#(@) T MY dZd£<ZJ (Lm(@) ((Q)ra+d d) et 62

ORGP
s (L( Q|z_g|sq+ddz> df) IMG|,,,

< 1flles o (5.24)

The second term in (5.22) is the most delicate one. Given cubes @), S and P and points y € S
and z € P with 1 — ¢gg(z) # 0, we have that \z - y| ~ D(S, P). Therefore, we can write

that is,

Q@ 5csn(Q)\2Q |9U —yl® |y - Z\d
dz
< ZJ J J |/(2) = — fol g(z,y) dy dz.
Q 5eSH(Q) VS pesht (@) Y F (@ qDSP)
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Next, we change the focus on the sum. Consider an admissible chain connecting two given
cubes S and P both in SH*(Q). Then D(S, P) ~ £(Sp). Of course, using (2.4) and the fact that
S and P are in SH*(Q) we get

D(Q,Sp) <D(Q,S) + D(S, Sp) ~ D(Q, S) + D(S, P) < 2D(Q, S) + D(Q, P) < Q)

and, therefore, the cube Sp is contained in some SH (@) for a certain constant ps depending on
d and e. For short, we write L := Sp € SH?(Q) and Sh®(Q) := Sh,_(Q). Then

|f(2) — fol dz
PRI —g(m,y) dy dx
ZJQ LeSh?(Q) SeSH(L L PeSH(L) Q)Sﬂg( )d
1 1
T L0ptE — faol dz g dy da. 2
%g(Q)ngd JQ LeSHO(Q) Lh(L) J& - fal ZK(L)d Lh(L)g(ﬂa,y) e (5:25)

If we write g, (y) = g(x,y), we have that for any cube L the integral

| swdy < qn)igt M.
Sh(L) L

Arguing as before, for pg big enough we have that if L € SH*(Q), then Sh(L) < Sh,, (Q) =:
Sh®(Q) and therefore

| U@ = faldz= [ 1)~ fol xswi@ (@) d < | MI(F = fo)xsw(@)(€)de.
Sh(L) Sh(L) L
Back to (5.25) we have that

2.2

-a\m

JQ 2 fo fQ)xswo (@)1 (€) Mg, (€) dé da

1
Q)(H_ LeSH5(Q)

1
= — M — . M, (€) dé d
%E(Q)S Ta J\Q J-ShS(Q) [(f = fa)xsn (Q)](f) 9:(§) d€ dx

and, by Holder’s inequality and the boundedness of the maximal operator in L? and Lq', we have
that

a1
a’

1 q 1 q x
SZWL (Lm(@M[(f_fQ)XShG(Q>](€) d€> (th@) Mg, (€) d&) d

Q

“ Yol <th(Q) £6)~ fal dg)le ([ otrertae)”

o !
Again, we write G(z) = |g(x, )|, and by Minkowski’s integral inequality we get that

BT <X o (L ([ o -sorac) d§>; | ¢
<3 M; J. (JShG(Q) 70~ SO d£> e i
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Thus,

_ @ \NEO\*®
< < [ ([ it a) dc> MGl <1l o (5.26)

Back to (5.21), it remains to bound and . For the first one,

-3,

just note that if z € Q, y € S € SH(Q) and z ¢ Sh*(Q) we have that pgq(2) = pgs(z) = 0 and,
if p4 is big enough, |x — z| > 2|z — y|. Thus, we can use the smoothness condition (5.2), that is,
Mo (@,2) = Aas(y, 2)| < K (z — 2) — K(y — 2)| | f(2) — fol < CicLETelemvl,

In the last term in (5.21),

SQ Sh* ‘)‘QQ(% z) — )\QS@’ z)| dz
J \Sh(Q) 9(z,y) dy dz,

ScSh(Q)\2Q |z — Zl|s+‘1

§o Moo, 2) — Ago(y, 2)| dz
@-> ], <

g(x,y) dy dz,
|z —y|*"

we are integrating in the region where x € @), y € 5Q and z ¢ 6@ because otherwise 1 — ¢g(z)
would vanish. Also |z —z| > Cy|z —y| and |z — z| ~ |y — z|. Thus, we have again that |A\gg(z, z) —

Moy, 2)| < |K(x —2) — K(y—2)||f(2) - fal < Ci MESalevl" 1y (59) and (5.1) (one may

[z —z]4+e
use the last one when 2|z — y| = |z — z| > Cy|lz — y|, that is |z —y| = | — 2| ~ |y — 2|).
Summing up,

—yl°dz
B+ Bsee B, [0 ho iy s den vt =BT 520
Sh(Q) JO\6Q |x

Y[t |z — 2t

with constants depending linearly on the Calderén-Zygmund constant C'x. Reordering,

o3,

Q\6Q hQ) |z — y|
The last integral above is easy to bound by the same techniques as before: Given x € Q) € W, since

% < d, by (2.11), Holder’s Inequality and the boundedness of the maximal operator in L7 we have
that

d

| 9@y Q)% inf My, <U@ [ Mo < Mgl %4 Glo).
Sh(Q) |z —y| Q Q

Thus,

E3<S[, 5, Biros cw

For every pair of cubes P,Q € W, there exists an admissible chain [P, Q] and, writing [P, Pgy) for
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the subchain [P, Po]\{Pg} and [Py, Q) for [Py, QI\{Q}, we get

|f(z) — fpld
%‘AJQZJ D(P,Q) };-SZG(‘T) dx (5.28)
= InwlePy
+Z Q P Le[ PPQ) D(P,Q)d*s ()
+Z o = Sv)|4P) G(x) dz = 231 + 232] + 2:33]
Q P Le| PQ Q) D(P, Q)+

The first term in (5.28) can be bounded by reordering and using (2.10). Indeed, we have that

<ZJJ | f(2) |d€dzzj de+s~ZfJ |f(2) IiiWG()dz’

and, by (5.23) we have that

<1 (@ (5.29)

For the second term in (5.28) note that given cubes L € [P, Pg] we have that D(P, Q) ~ D(L, Q)
by (2.6) and P € Sh(L) by Definition 2.5. Therefore, by (2.10) we have that

<ZZ QdJJ 17(§) |d<d£ZDLQ)d+5JG(1)d1 Z ((P)?

PeSH( L)
MG 1£(€) = FIOIMG(Q)
— d dée(L d¢d
< gy ), [, 10 - syt acaseny = 3 [ | ORI acae
and, again by (5.23), we have that
< g (5.30)

Finally, the last term of (5.28) can be bounded analogously: Given cubes L € [Py, Q] we have
that D(Q, P) ~ D(L, P) by (2.6), and

sZ“%LLW) Qicas 3| oy gt i

QeSH(L)

<ZJI |F(€) — F(OIMG(C) dgdf Ef LL dlfm( )dcdf,

and
S ey, @ (5.31)
Now, putting together (5 21), (5.22), (5.27) and (5.28) we have that
Bl <c,. 21+ [22] + 231 + 232] + 233,
and by (5.24), (5.26), (5.29), (5.30) and (5.31) we have that
S Okl fllps () (5.32)

with constants depending on €, s, p, ¢ and d. Estimates (5.20) and (5.32) prove (5.8). O
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Proof of Theorem 1.1. Let € be a bounded e-uniform domain. Note that since s > % > % — %, we
can use the Key Lemma 5.6, that is, we have that Ty is bounded if and only if for every f € F}; ()

we have that

>, FalIViTxal}, g, < CIfI
QeW

Lo (5.33)

with C independent from f. Since sp > d, by Lemma 3.10 and Proposition 3.4 combined with the
Sobolev Embedding Theorem, we have the continuous embedding F;  (©2) = L*. Therefore, given
a cube @ we have that | fo| < [[f] ;=) < |f|Fs (o) and (5.33) holds as long as T'xq € Fy;,(€2). O

To end, we make some observations.

Remark 5.7. In the Key Lemma we have seen that

QZW [VaTa(f = fo)l ) < (Cx + 1T
€

P
T PR 4 PR W T PR G 1)

Thus, for unbounded domains, we have a T1 theorem as well: Let Q < R? be a uniform domain, T

a convolution Calderén-Zygmund operator of order 0 < s < 1. Consider indices p,q € (1,00) and

% < s. Then the truncated operator T is bounded in F; () if and only if
ViTale Fy (Q)

in the sense of (5.7).

Remark 5.8. The Key Lemma is valid in a wider range of indices than Theorem 1.1 because
in the second case we have the restriction of the Sobolev embedding. In the cases where the Key
Lemma can be applied but not the theorem above, that is, when

{of i <x el
max<{0,— — —» <s<min<o,— ¢,
P q p

there is room to do some steps forward.

In [PT15, Theorems 1.2 and 1.3/, the authors consider the measures pup(z) = |V TqP(z)|P dx
for polinomials P of degree smaller than the smoothness s € N (here the s-th gradient has its usual
meaning). They conclude that if up is a p-Carleson measure for every such P, that is, if

JN dist(z, 0Q) @ 0=2) (4 p(Sh(z) ~ Sh(a)))”’ d < Cup(Sh(a)),

Sh(a) dist(z, 0Q)4

then Tq is bounded in WP (Q), and, in case s = 1, the condition is necessary and sufficient.

Some similar result can be found in the case max {O, % — g} < s < min {O’, %}, but is out of
the scope of the present article.

Furthermore, the restriction 4 — % < s comes from the intrinsic characterization that we use for
the present article, which we think is the easier to handle in our proofs. However, there are other
characterizations (see [Str67] or [Tri06, Section 1.11.9]) which cover all the range of indices. There
is hope that this characterizations may be used to obtain a result analogous to the Key Lemma 5.6

for a wider range.

Remark 5.9. Forl <p,gq <o and0 < s < %, we have that the multiplication by the characteristic

functions of a half plane is bounded in F§7Q(Rd). This implies that for domains  whose boundary
consists on a finite number of polygonal boundaries, the pointwise multiplication with xq is also
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bounded and, using characterizations by differences, this property can be seen to be stable under
bi-Lipschitz changes of coordinates. Summing up, given any Lipschitz domain Q and any function
f e Fs (R, we have that

Ixe flles ey S 1flEs @ay-

Therefore, if s > % — g and T' is an operator bounded in F; ., using the extension Ag : F; () —
s d s
Fj (R?) (see Corollary 3.11), for every f € F,; () we have that

1T f|

Fs (@)~ 1T (xa Aof)|

S e @

F;,Q(Q) < ”T(XQ Aof)\ Es, < HTHF;anF;YqHXQ Aof”F;q < ||A0f\ Fs .

In particular, given a convolution Calderdon-Zygmund operator T and a Lipschitz domain ) we
have that Tq is bounded in F; () for any 0 < s < %.
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