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Abstract

Given any uniform domain Ω, the Triebel-Lizorkin space F s
p,qpΩq with 0 ă s ă 1 and

1 ă p, q ă 8 can be equipped with a norm in terms of first order differences restricted to pairs
of points whose distance is comparable to their distance to the boundary.

Using this new characterization, we prove a T(1)-theorem for fractional Sobolev spaces
with 0 ă s ă 1 for any uniform domain and for a large family of Calderón-Zygmund operators
in any ambient space Rd as long as sp ą d.

1 Introduction

The aim of the present article is to find necessary and sufficient conditions on certain singular inte-
gral operators to be bounded in fractional Sobolev spaces of a uniform domain Ω with smoothness
0 ă s ă 1. However, the results are valid in F s

p,qpΩq, that is, the so-called Triebel-Lizorkin spaces,

when s ą max
!

0, dp ´ d
q

)

.

Consider 0 ă σ ď 1. An operator T defined for f P L1
locpRdq and x P Rdzsupppfq as

Tfpxq “

ż

Rd

Kpx´ yqfpyqdy,

is called a convolution Calderón-Zygmund operator of order σ if it is bounded on LppRdq for every
1 ă p ă 8 and its kernel K satisfies the size condition

|Kpxq| ď
CK

|x|d
for every x ‰ 0

and the Hölder smoothness condition

|Kpx´ yq ´Kpxq| ď
CK |y|σ

|x|d`σ
for every 0 ă 2|y| ď |x|

(see Section 5 for more details). In the present article we deal with some properties of the operator
T truncated to a domain Ω, defined as TΩpfq “ χΩ T pχΩ fq.

In the complex plane, for instance, the Beurling transform, which is defined as the principal
value

Bfpzq :“ ´
1

π
lim
εÑ0

ż

|w´z|ąε

fpwq

pz ´ wq2
dmpwq,

∗MP (Departament de Matemàtiques, Universitat Autònoma de Barcelona, Catalonia): mprats@mat.uab.cat.
ES (Department of Mathematics and Statistics, University of Helsinki, Finland): eero.saksman@helsinki.fi.

1



is a convolution Calderón-Zygmund operator of any order with kernel Kpzq “ ´ 1
π z2 .

In the article [CMO13], Vı́ctor Cruz, Joan Mateu and Joan Orobitg, seeking for some results
on the Sobolev smoothness of quasiconformal mappings proved the next theorem.

Theorem (see [CMO13]). Let Ω Ă Rd be a bounded C1`ε domain (i.e. a Lipschitz domain with
parameterizations of the boundary in C1`ε) for a given ε ą 0, and let 1 ă p ă 8 and 0 ă s ď 1
such that sp ą 2. Then any truncated Calderón-Zygmund operator TΩ with smooth, homogeneous
and even kernel is bounded in the Sobolev space W s,ppΩq if and only if T pχΩq P W s,ppΩq.

Later, Xavier Tolsa and the first author of the present paper, studied the case s P N, finding
the following T pP q Theorem.

Theorem (see [PT15]). Let Ω Ă Rd be a Lipschitz domain, T a convolution Calderón-Zygmund
operator with kernel K satisfying

|∇jKpxq| ď C
1

|x|d`j
for all 0 ď j ď n, x ‰ 0,

and p ą d. Then the following statements are equivalent:

a) The truncated operator TΩ is bounded in Wn,ppΩq.

b) For every polynomial P of degree n´ 1, we have that TΩpP q P Wn,ppΩq.

Note that the kernels are not assumed to be even, and the conditions on the smoothness of the
domain are relaxed. The authors assert that the theorem is valid even for uniform domains.

In the present paper we study again the fractional smoothness, but we deal with the case of uni-

form domains (see Section 2) for Triebel-Lizorkin spaces F s
p,q with 1 ă p, q ă 8, max

!

0, dp ´ d
q

)

ă

s ă 1. Let us note here to illustrate that in case q “ 2 we deal with the Sobolev fractional spaces
W s,p and in case q “ p then we deal with the Besov spaces Bs

p,p. To avoid misunderstandings, the
reader must be aware that the Bs

p,p spaces are called also Sobolev spaces in some books, while the
W s,p spaces are sometimes called Bessel potential spaces. See Section 3 for all the definitions of
these spaces.

Our main result is the following.

Theorem 1.1. Let Ω Ă Rd be a bounded uniform domain, T a convolution Calderón-Zygmund
operator of order 0 ă s ă 1. Consider indices p, q P p1,8q with s ą d

p . Then the truncated operator

TΩ is bounded in F s
p,qpΩq if and only if we have that TΩp1q P F s

p,qpΩq.

To prove this result we will need an equivalent norm for F s
p,q. The following result is not present

in the literature in its full generality, but it is found for the Sobolev case in [Ste61] and for the
general Triebel-Lizorkin case when s ą d

mintp,qu
in [Tri83, Theorem 2.5.10]. The result as stated

below will be a corollary of some results in [Tri06].

Theorem 1.2 (see Corollary 3.5). Let 1 ď p ă 8, 1 ď q ď 8 and 0 ă s ă 1 with s ą d
p ´ d

q .
Then,

F s
p,q “

$

&

%

f P Lmaxtp,qu : }f}Lp `

˜

ż

Rd

ˆ
ż

Rd

|fpxq ´ fpyq|q

|x´ y|sq`d
dy

˙

p
q

dx

¸
1
p

ă 8

,

.

-

,

(with the usual modification for q “ 8), in the sense of equivalent norms.
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The restriction s ą d
p ´ d

q is sharp, as we will see in Remark 3.8. One can find some equivalent
norms for Triebel-Lizorkin spaces in terms of differences using means on balls which avoid this
restriction. We refer the reader to [Str67] or [Tri83, Corollary 2.5.11].

Given a domain Ω and a locally integrable function f , we say that f P F s
p,qpΩq if there is a

function h P F s
p,qpRdq such that h|Ω “ f |Ω. The norm }f}F s

p,qpΩq will be defined as the infimum of

the norms }h}F s
p,qpRdq for all admissible h. Our method is based on an intrinsic characterization of

this norm, inspired by the previous theorem. We define

}f}As
p,qpΩq :“ }f}LppΩq `

˜

ż

Ω

ˆ
ż

Ω

|fpxq ´ fpyq|q

|x´ y|sq`d
dy

˙

p
q

dx

¸
1
p

.

Indeed, this norm will be equivalent to the Triebel-Lizorkin one for uniform domains:

Theorem 1.3. Let Ω Ă Rd be a bounded uniform domain, 1 ă p, q ă 8 and 0 ă s ă 1 with
s ą d

p ´ d
q . Then f P F s

p,qpΩq if and only if f P As
p,qpΩq and the norms are equivalent.

To prove this result we will use Theorem 1.2 and the following extension Theorem:

Theorem 1.4. Let Ω Ă Rd be a bounded uniform domain, 1 ă p, q ă 8 and 0 ă s ă 1 with
s ą d

p ´ d
q . Then there exists a bounded operator Λ0 : As

p,qpΩq Ñ F s
p,qpRdq such that Λ0f |Ω “ f for

every f P As
p,qpΩq.

However, in the proof of Theorem 1.1 we will make use of a functional which is closely related
to }¨}As

p,qpΩq. Call δpxq “ distpx, BΩq. Consider the Carleson boxes (or shadows) Shpxq :“ ty P Ω :

|y ´ x| ď cΩδpxqu with cΩ ą 1 to be fixed (see Section 2). Then we have the following reduction
for the Triebel-Lizorkin norm:

Theorem 1.5 (See Corollary 4.5.). Let Ω Ă Rd be a bounded uniform domain, 1 ă p ă q ă 8

and 0 ă s ă 1 with s ą d
p ´ d

q . Then f P F s
p,qpΩq if and only if

}f}LppΩq `

¨

˝

ż

Ω

˜

ż

Shpxq

|fpxq ´ fpyq|q

|x´ y|sq`d
dy

¸

p
q

dx

˛

‚

1
p

ă 8.

Furthermore, the left-hand side of the inequality above is equivalent to the norm }f}F s
p,qpΩq.

The situation is even better when p ě q:

Theorem 1.6 (See Corollary 4.5.). Let Ω Ă Rd be a bounded uniform domain, 1 ă q ď p ă 8,
0 ă s ă 1 and 0 ă ρ ă 1. Then f P F s

p,qpΩq if and only if

}f}LppΩq `

¨

˝

ż

Ω

˜

ż

Bpx,ρδpxqq

|fpxq ´ fpyq|q

|x´ y|sq`d
dy

¸

p
q

dx

˛

‚

1
p

ă 8.

Furthermore, the left-hand side of the inequality above is equivalent to the norm }f}F s
p,qpΩq.

In particular, for every 1 ă p ă 8, 0 ă s ă 1 and 0 ă ρ ă 1, we have that

}f}Bs
p,ppΩq « }f}LppΩq `

˜

ż

Ω

ż

Bρδpxqpxq

|fpxq ´ fpyq|p

|x´ y|sp`d
dy dx

¸
1
p

for all f P Bs
p,ppΩq.
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If in addition p ě 2 we have that

}f}W s,ppΩq « }f}LppΩq `

¨

˝

ż

Ω

˜

ż

Bρδpxqpxq

|fpxq ´ fpyq|2

|x´ y|2s`d
dy

¸

p
2

dx

˛

‚

1
p

for all f P W s,ppΩq,

and, if 1 ă p ă 2 with s ą d
p ´ d

2 , we have that

}f}W s,ppΩq « }f}LppΩq `

¨

˝

ż

Ω

˜

ż

Shpxq

|fpxq ´ fpyq|2

|x´ y|2s`d
dy

¸

p
2

dx

˛

‚

1
p

for all f P W s,ppΩq.

The plan of the paper is the following. In Section 2 we define uniform domains in the spirit of
[Jon81] but from a dyadic point of view and then we prove some basic properties of those domains.
The expert reader may skip this part. Section 3 begins with some remarks on Triebel-Lizorkin
spaces, followed by the proof of the implicit characterization of Triebel-Lizorkin spaces given in
Theorem 1.2, the Extension Theorem 1.4 and, as a corollary, Theorem 1.3. Section 4 is devoted
to proving Theorems 1.5 and 1.6 which are about the change of the domain of integration in the
norm As

p,qpΩq. Section 5 is the core of the paper, and it contains the proof of the T(1) Theorem
1.1. The key Lemma 5.6 is a discretization of the transform of a function and it is the cornerstone
of the mentioned theorem.

On notation: When comparing two quantities x1 and x2 that depend on some parameters
p1, . . . , pj we will write

x1 ď Cpi1
,...,pij

x2

if the constant Cpi1 ,...,pij
depends on pi1 , . . . , pij . We will also write x1 Àpi1 ,...,pij

x2 for short, or

simply x1 À x2 if the dependence is clear from the context or if the constants are universal. We
may omit some of these variables for the sake of simplicity. The notation x1 «pi1

,...,pij
x2 will

mean that x1 Àpi1
,...,pij

x2 and x2 Àpi1
,...,pij

x1.

Given a cube Q, we write ℓpQq for its side-length. Given two cubes Q,S, we define their long
distance as DpQ,Sq “ ℓpQq ` distpQ,Sq ` ℓpSq. Given a real number ρ, we define ρQ as the cube
concentric to Q, with ratio ρ and faces parallel to the faces of Q.

For any cube Q and any function f , we call fQ “
ffl
Q
f dm to the mean of f in Q.

Given 1 ď p ď 8 we write p1 for its Hölder conjugate, that is 1
p ` 1

p1 “ 1.

2 On uniform domains

There is a considerable literature on uniform domains and their properties, we refer the reader e.g.
to [GO79] and [Väi88].

Definition 2.1. Given a domain Ω, we say that a collection of open dyadic cubes W is a Whitney
covering of Ω if they are disjoint, the union of the cubes and their boundaries is Ω, there exists a
constant CW such that

CWℓpQq ď distpQ, BΩq ď 4CWℓpQq,

two neighbor cubes Q and R (i.e., Q X R ‰ H) satisfy ℓpQq ď 2ℓpRq, and the family t50QuQPW
has finite superposition. Moreover, we will assume that

S Ă 5Q ùñ ℓpSq ě
1

2
ℓpQq. (2.1)
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Figure 2.1: A Whitney decomposition of a uniform domain with and an ε-admissible chain. The
end-point cubes are colored in red and the central one in blue.

The existence of such a covering is granted for any open set different from Rd and in particular
for any domain as long as CW is big enough (see [Ste70, Chapter 1] for instance).

Definition 2.2. Let Ω be a domain, W a Whitney decomposition of Ω and Q,S P W. Given
M cubes Q1, . . . , QM P W with Q1 “ Q and QM “ S, the M -tuple pQ1, . . . , QM qMj“1 P WM

is a chain connecting Q and S if the cubes Qj and Qj`1 are neighbors for j ă M . We write
rQ,Ss “ pQ1, . . . , QM qMj“1 for short.

Let ε P R. We say that the chain rQ,Ss is ε-admissible if

• the length of the chain is bounded by

ℓprQ,Ssq :“
M
ÿ

j“1

ℓpQjq ď
1

ε
DpQ,Sq (2.2)

• and there exists j0 ă M such that the cubes in the chain satisfy

ℓpQjq ě εDpQ1, Qjq for all j ď j0 and ℓpQjq ě εDpQj , QM q for all j ě j0. (2.3)

The j0-th cube, which we call central, satisfies that ℓpQj0q Ád εDpQ,Sq by (2.3) and the triangle
inequality. We will write QS “ Qj0 . Note that this is an abuse of notation because the central cube
of rQ,Ss may vary for different ε-admissible chains joining Q and S.
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We write (abusing notation again) rQ,Ss also for the set tQjuMj“1. Thus, we will write P P

rQ,Ss if P appears in a coordinate of the M -tuple rQ,Ss. For any P P rQ,Ss we call NrQ,SspP q

to the following cube in the chain, that is, for j ă M we have that NrQ,SspQjq “ Qj`1. We will
write N pP q for short if the chain to which we are referring is clear from the context.

Every now and then we will mention subchains. That is, for 1 ď j1 ď j2 ď M , the subchain
rQj1 , Qj2srQ,Ss Ă rQ,Ss is defined as pQj1 , Qj1`1, . . . , Qj2q. We will write rQj1 , Qj2s if there is no
risk of confusion.

Next we make some observations on the two subchains rQ,QSs and rQS , Ss.

Remark 2.3. Consider a domain Ω with covering W and two cubes Q,S P W with an ε-admissible
chain rQ,Ss. From Definition 2.2 it follows that

DpQ,Sq «ε,d ℓprQ,Ssq «ε,d ℓpQSq «ε,d DpQ,QSq «ε,d DpQS , Sq. (2.4)

If P P rQ,QSs, by (2.3) we have that

DpQ,P q «d,ε ℓpP q. (2.5)

On the other hand, by the triangular inequality, (2.2) and (2.3) we have that

DpP, Sq Àd ℓprP, Ssq ď ℓprQ,Ssq ď
DpQ,Sq

ε
Àd

DpQ,P q ` DpP, Sq

ε
Àd

1
ε ℓpP q ` DpP, Sq

ε
,

that is,
DpP, Sq «ε,d DpQ,Sq. (2.6)

Definition 2.4. We say that a domain Ω Ă Rd is a uniform domain if there exists a Whitney
covering W of Ω and ε P R such that for any pair of cubes Q,S P W, there exists an ε-admissible
chain rQ,Ss (see Figure 2.1). Sometimes will write ε-uniform domain to fix the constant ε.

Using (2.6) it is quite easy to see that a domain satisfying this definition satisfies to the one
given by Peter Jones in [Jon81] with δ “ 8 (changing the parameter ε if necessary). It is somewhat
more involved to prove the converse implication, but it can be done using the ideas of Remark
2.3. In any case it is not transcendent for the present paper to prove this fact, which is left for the
reader as an exercise.

Now we can define the shadows:

Definition 2.5. Let Ω be an ε-uniform domain with Whitney covering W. Given a cube P P W
centered at xP and a real number ρ, the ρ-shadow of P is the collection of cubes

SHρpP q “ tQ P W : Q Ă BpxP , ρ ℓpP qqu,

and its “realization” is the set
ShρpP q “

ď

QPSHρpP q

Q

(see Figure 2.2).
By the previous remark and the properties of the Whitney covering, we can define ρε ą 1 such

that the following properties hold:

• For every P P W, we have the estimate |diampBΩ X Shρε
pP qq| « ℓpP q.

• For every ε-admissible chain rQ,Ss, and every P P rQ,QSs we have that Q P SHρε
pP q.
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Figure 2.2: The shadow Sh13pP q.

• Moreover, every cube P belonging to an ε-admissible chain rQ,Ss belongs to the shadow
SHρεpQSq.

Note that the first property comes straight from the properties of the Whitney covering, while
the second is a consequence of (2.5) and the third holds because every cube P contained in the
chain rQ,Ss satisfies DpP,QSq Àd ℓprQ,Ssq « DpQ,Sq « ℓpQSq by (2.4).

Remark 2.6. Given an ε-uniform domain Ω we will write Sh for Shρε
. We will write also SH

for SHρε .
For Q P W and s ą 0, we have that

ÿ

L:QPSHpLq

ℓpLq´s À ℓpQq´s (2.7)

and, moreover, if Q P SHpP q, then

ÿ

LPrQ,P s

ℓpLqs À ℓpP qs and
ÿ

LPrQ,P s

ℓpLq´s À ℓpQq´s. (2.8)

Proof. Considering the definition of shadow we can deduce that there is a bounded number of
cubes with given side-length in the left-hand side of (2.7) and, therefore, the sum is a geometric
sum. Again by the definition of shadow we know that the smaller cube in that sum has side-length
comparable to ℓpQq.

To prove (2.8), first note that ℓpQP q « DpQ,P q « ℓpP q by (2.4) and Definition 2.5. For
every L P rQ,P s, although it may occur that L R SHpP q, we still have that by the triangle
inequality DpL,P q À ℓprQ,P sq « DpQ,P q and, thus, by the definition of shadow we have that
DpL,P q À ℓpP q, i.e.

DpL,P q « ℓpP q. (2.9)

When L P rQ,QP s, (2.5) reads as
ℓpLq « DpQ,Lq,

and when L P rQP , P s by (2.5) and (2.9), we have that

ℓpLq « DpL,P q « ℓpP q.
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In particular, the number of cubes in rQP , P s is uniformly bounded. Summing up, for L P rQ,P s

we have that ℓpQq À ℓpLq À ℓpP q and all the cubes of a given side-length r contained in rQ,P s

are situated at a distance from Q bounded by Cr, so the number of those cubes is uniformly
bounded. Therefore, the left-hand side of both inequalities in (2.8) are geometric sums, bounded
by a constant times the bigger term. The constant depends on s, but also on the uniformity
constant of the domain.

We recall the definition of the non-centered Hardy-Littlewood maximal operator. Given f P

L1
locpRdq and x P Rd, we define Mfpxq as the supremum of the mean of f in cubes containing x,

that is,

Mfpxq “ sup
Q:xPQ

1

|Q|

ż

Q

fpyq dy.

It is a well known fact that this operator is bounded in Lp for 1 ă p ă 8. The following lemma is
proven in [PT15] and will be used repeatedly along the proofs contained in the present text.

Lemma 2.7. Let Ω be a bounded uniform domain with an admissible Whitney covering W. Assume
that g P L1pΩq and r ą 0. For every η ą 0, Q P W and x P Rd, we have

1) The non-local inequality for the maximal operator

ż

|y´x|ąr

gpyq dy

|y ´ x|d`η
Àd

Mgpxq

rη
and

ÿ

S:DpQ,Sqąr

ş

S
gpyq dy

DpQ,Sqd`η
Àd

infyPQMgpyq

rη
. (2.10)

2) The local inequality for the maximal operator

ż

|y´x|ăr

gpyq dy

|y ´ x|d´η
Àd r

ηMgpxq and
ÿ

S:DpQ,Sqăr

ş

S
gpyq dy

DpQ,Sqd´η
Àd inf

yPQ
Mgpyq rη.

(2.11)

3) In particular we have
ÿ

SPW

ℓpSqd

DpQ,Sqd`η
Àd

1

ℓpQqη
(2.12)

and, by Definition 2.5,

ÿ

SPSHρpQq

ż

S

gpxq dx Àd,ρ inf
yPQ

Mgpyq ℓpQqd.

3 Fractional Sobolev spaces

First we recall some results on Triebel-Lizorkin spaces. We refer the reader to [Tri83].

Definition 3.1. Let ΦpRdq be the collection of all the families of smooth functions Ψ “ tψju8
j“0 Ă

C8
c pRdq such that

"

suppψ0 Ă Dp0, 2q,
suppψj Ă Dp0, 2j`1qzDp0, 2j´1q if j ě 1,

for every multiindex α P Nd there exists a constant cα such that

}Dαψj}
8

ď
cα

2j|α|
for every j ě 0
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and
8
ÿ

j“0

ψjpxq “ 1 for every x P Rd.

We will use the classical notation pf for the Fourier transform of a given Schwartz function,

pfpξq “

ż

Rd

e´2πix¨ξfpxq dx,

and qf will denote its inverse. It is well known that the Fourier transform can be extended to the
whole space of tempered distributions by duality and it induces an isometry in L2 (see for example
[Gra08, Chapter 2]).

Definition 3.2. Let s P R, 1 ď p ď 8, 1 ď q ď 8 and Ψ P ΦpRdq. For any tempered distribution
f P S 1pRdq we define its non-homogeneous Besov norm

}f}
Ψ
Bs

p,q
“

›

›

›

!

2sj
›

›

›

´

ψj
pf
¯

q

›

›

›

Lp

)
›

›

›

lq
,

and we call Bs
p,q Ă S 1 to the set of tempered distributions such that this norm is finite.

Let s P R, 1 ď p ă 8, 1 ď q ď 8 and Ψ P ΦpRdq. For any tempered distribution f P S 1pRdq we
define its non-homogeneous Triebel-Lizorkin norm

}f}
Ψ
F s

p,q
“

›

›

›

›

›

›

!

2sj
´

ψj
pf
¯

q

)
›

›

›

lq

›

›

›

Lp
,

and we call F s
p,q Ă S 1 to the set of tempered distributions such that this norm is finite.

These norms are equivalent for different choices of Ψ. Of course we will omit Ψ in our notation
since it plays no role (see [Tri83, Section 2.3]).

Remark 3.3. For q “ 2 and 1 ă p ă 8 the spaces F s
p,2 coincide with the so-called Bessel-potential

spaces W s,p. In addition, if s P N they coincide with the usual Sobolev spaces of functions in Lp

with weak derivatives up to order s in Lp, and they coincide with Lp for s “ 0 ([Tri83, Section
2.5.6]). In the present text, we call Sobolev space to any W s,p with s ą 0 and 1 ă p ă 8, even
if s is not a natural number. Note that complex interpolation between Sobolev spaces is a Sobolev
space (see [Tri78, Section 2.4.2, Theorem 1]).

To use the Sobolev embedding for Triebel-Lizorkin spaces, we will use the following proposition.

Proposition 3.4 (See [Tri83, Section 2.3.2].). Let 1 ď q ď 8 and 1 ď p ă 8, s P R and ε ą 0.
Then

F s`ε
p,q Ă W s,p. (3.1)

Next we will prove Theorem 1.2. Let us write ∆1
hfpxq :“ fpx`hq´fpxq and, if M P N with M ą

1 we define the M -th iterated difference as ∆M
h fpxq :“ ∆1

hp∆M´1
h fqpxq “

řM
j“0

`

M
j

˘

p´1qM´jfpx`

jhq. Given f P L1
loc, an index 0 ă u ď 8 and t P R, we write

dMt,ufpxq :“

˜

t´d

ż

|h|ďt

|∆M
h fpxq|u dh

¸
1
u

,

with the usual modification for u “ 8. In [Tri06, Theorem 1.116] we find the following result.
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Theorem (See [Tri06].). Given 1 ď r ď 8, 0 ă u ď r, 1 ď p ă 8, 1 ď q ď 8 and 0 ă s ă M
with d

mintp,qu
´ d

r ă s, we have that

F s
p,qpRdq “

$

’

&

’

%

f P Lmaxtp,ru : }f}Lp `

¨

˝

ż

Rd

˜

ż 1

0

dMt,ufpxqq

tsq`1
dt

¸

p
q

dx

˛

‚

1
p

ă 8

,

/

.

/

-

(with the usual modification for q “ 8), in the sense of equivalent quasinorms.

As an immediate consequence of this result, we get the following corollary.

Corollary 3.5. Let 1 ď p ă 8, 1 ď q ď 8 and 0 ă s ă 1 ď M with s ą d
p ´ d

q . Then

F s
p,qpRdq “

$

&

%

f P Lmaxtp,qu s.t. }f}As
p,qpRdq :“ }f}Lp `

˜

ż

Rd

ˆ
ż

Rd

|∆M
h fpxq|q

|h|sq`d
dh

˙

p
q

dx

¸

1
p

ă 8

,

.

-

(with the usual modification for q “ 8), in the sense of equivalent norms.

Proof. Let f P Lmaxtp,qu. Choosing q “ u “ r all the conditions in the theorem above are satisfied.
Therefore,

}f}F s
p,qpRdq « }f}Lp `

¨

˝

ż

Rd

˜

ż 1

0

dMt,qfpxqq

tsq`1
dt

¸

p
q

dx

˛

‚

1
p

. (3.2)

Since dMt,qfpxq “

´

t´d
ş

|h|ďt
|∆M

h fpxq|q dh
¯

1
q

for x P Rd, we can change the order of integration to

get that

ż

Rd

˜

ż 1

0

dMt,qfpxqq

tsq`1
dt

¸

p
q

dx “

ż

Rd

˜

ż

|h|ď1

ż

1ątą|h|

dt

tsq`1`d
|∆M

h fpxq|q dh

¸

p
q

dx

“

ż

Rd

˜

ż

|h|ď1

|∆M
h fpxq|q

sq ` d

ˆ

1

|h|sq`d
´ 1

˙

dh

¸

p
q

dx.

This shows that }f}F s
p,qpRdq À }f}As

p,qpRdq and also that

ż

Rd

˜

ż

|h|ă 1
2

|∆M
h fpxq|q

|h|sq`d
dh

¸

p
q

dx À

ż

Rd

˜

ż 1

0

dMt,qfpxqq

tsq`1
dt

¸

p
q

dx À }f}
p
F s

p,qpRdq
(3.3)

by (3.2). It remains to see that
ş

Rd

´

ş

|h|ą 1
2

|∆M
h fpxq|

q

|h|sq`d dh
¯

p
q

dx À }f}
p
F s

p,qpRdq
. Using appropriate

changes of variables and the triangle inequality, it is enough to check that

I :“

ż

Rd

ˆ
ż

Rd

|fpx` hq|q

p1 ` |h|qsq`d
dh

˙

p
q

dx À }f}
p
F s

p,qpRdq
. (3.4)

Let us assume first that p ě q. Then, since the measure p1 ` |h|q´psq`dq dh is finite, we may
apply Jensen’s inequality to the inner integral, and then Fubini to obtain

I À

ż

Rd

ż

Rd

|fpx` hq|p

p1 ` |h|qsp`d
dh dx À }f}

p
Lp ,

10



and (3.4) follows.
If, instead, p ă q, cover Rd with disjoint cubes Qj⃗ “ Q0 ` ℓ⃗j for j⃗ P Zd. Fix the side-length ℓ

of these cubes so that their diameter is 1{3. By the subadditivity of x ÞÑ |x|
p
q , we have that

I À
ÿ

k⃗

ż

Q
k⃗

ÿ

j⃗

˜

ż

Qj⃗

|fpyq|q

p1 ` |x´ y|qsq`d
dy

¸

p
q

dx «
ÿ

j⃗

˜

ż

Qj⃗

|fpyq|q dy

¸

p
q
ÿ

k⃗

1

p1 ` |⃗j ´ k⃗|q
sp`

dp
q

.

Since s` d
q ą d

p , the last sum is finite and does not depend on j⃗. By (3.3) we have that

I À
ÿ

j⃗

˜

ż

Qj⃗

|fpyq|q dy

¸

p
q

À
ÿ

j⃗

ż

Qj⃗

˜

ż

Qj⃗

|fpyq ´ fpxq|q dy

¸

p
q

dx`
ÿ

j⃗

ż

Qj⃗

˜

ż

Qj⃗

|fpxq|q dy

¸

p
q

dx

À }f}
p
F s

p,qpRdq
.

In the last step we have used that
ř

j⃗

ş

Qj⃗

´

ş

Qj⃗
|fpxq|q dy

¯

p
q

dx « }f}
p
Lp because all the cubes have

side-length comparable to 1, and the fact that s ă 1 to use first order differences in }f}
p
F s

p,qpRdq
.

Definition 3.6. Let XpRdq be a Banach space of measurable functions in Rd. Let U Ă Rd be a
open set. Then for every measurable function f : U Ñ C we define

}f}XpUq :“ inf
gPXpRdq: g|U”f

}g}XpRdq.

Next we introduce a norm which will be the main tool for the proofs in this paper.

Definition 3.7. Consider 1 ď p ă 8, 1 ď q ď 8 and 0 ă s ă 1 with s ą d
p ´ d

q . Let U be an

open set in Rd. We say that a locally integrable function f P As
p,qpUq if

• The function f P LppUq, and

• the seminorm

}f} 9As
p,qpUq

:“

˜

ż

U

ˆ
ż

U

|fpxq ´ fpyq|q

|x´ y|sq`d
dy

˙

p
q

dx

¸
1
p

(3.5)

is finite.

We define the norm
}f}As

p,qpUq :“ }f}LppUq ` }f} 9As
p,qpUq

.

In some situations, the classical Besov spaces Bs
p,ppUq “ As

p,ppUq and the fractional Sobolev
spaces W s,ppUq “ As

p,2pUq. For instance, when Ω is a Lipschitz domain then As
p,2pΩq “ W s,ppΩq

(see [Str67]). We will see that this is a property of all uniform domains.

Remark 3.8. The condition s ą d
p ´ d

q ensures that the C8
c -functions are in the class As

p,qpRdq.

Proof. Indeed, given a bump function φ P C8
c pDq,

}φ}As
p,qpRdq ě

˜

ż

p2Dqc

ˆ
ż

D

|φpxq ´ φpyq|q

|x´ y|sq`d
dy

˙

p
q

dx

¸
1
p

«

˜

ż

p2Dqc

ˆ
ż

D
|φpyq|q dy

˙

p
q 1

|x|
sp`

dp
q

dx

¸
1
p

which is finite if and only if d
p ă s` d

q . The converse implication is an exercise.
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Consider a given ε-uniform domain Ω. In [Jon81] Peter Jones defines an extension operator
Λ0 : W 1,ppΩq Ñ W 1,ppRdq for 1 ă p ă 8, that is, a bounded operator such that Λ0f |Ω ” f |Ω for
every f P W 1,ppΩq. This extension operator is used to prove that the intrinsic characterization of
W 1,ppΩq given by

}f}W 1,ppΩq « }f}LppΩq ` }∇f}LppΩq

is equivalent to the restriction norm.
Next we will see that the same operator is an extension operator for As

p,qpΩq for 0 ă s ă 1

with s ą d
p ´ d

q . To define it we need a Whitney covering W1 of Ω (see Definition 2.1), a Whitney
covering W2 of Ωc and we define W3 to be the collection of cubes in W2 with side-lengths small
enough, so that for any Q P W3 there is a S P W1 with DpQ,Sq ď CℓpQq and ℓpQq “ ℓpSq (see
[Jon81, Lemma 2.4]). We define the symmetrized cube Q˚ as one of the cubes satisfying these
properties. Note that the number of possible choices for Q˚ is uniformly bounded and, if Ω is an
unbounded uniform domain, then

W2 “ W3. (3.6)

Lemma 3.9. [see [Jon81]] For cubes Q1, Q2 P W3 and S P W1 we have that

• The symmetrized cubes have finite overlapping: there exists a constant C depending on the
parameter ε and the dimension d such that #tQ P W3 : Q˚ “ Su ď C.

• The long distance is invariant in the following sense:

DpQ˚
1 , Q

˚
2 q « DpQ1, Q2q and DpQ˚

1 , Sq « DpQ1, Sq (3.7)

• In particular, if Q1X2Q2 ‰ H (Q1 and Q2 are neighbors by (2.1)), then DpQ˚
1 , Q

˚
2 q « ℓpQ1q.

We define the family of bump functions tψQuQPW2
to be a partition of the unity associated to

␣

11
10Q

(

QPW2
, that is, their sum

ř

ψQ ” 1, they satisfy the pointwise inequalities 0 ď ψQ ď χ 11
10Q

and }∇ψQ}
8

À 1
ℓpQq

. We can define the operator

Λ0fpxq “ fpxqχΩpxq `
ÿ

QPW3

ψQpxqfQ˚ for any f P L1
locpΩq

(recall that fU stands for the mean of a function f in a set U). This function is defined almost
everywhere because the boundary of the domain Ω has zero Lebesgue measure (see [Jon81, Lemma
2.3]).

Lemma 3.10. Let Ω be a uniform domain, let 1 ă p, q ă 8 and 0 ă s ă 1 with s ą d
p ´ d

q .

Then, Λ0 : As
p,qpΩq Ñ F s

p,qpRdq is an extension operator. Furthermore, Λ0f P Lmaxtp,qu for every
f P As

p,qpΩq.

Proof. We have to check that

}Λ0f}As
p,qpRdq “ }Λ0f}Lp `

˜

ż

Rd

ˆ
ż

Rd

|Λ0fpxq ´ Λ0fpyq|q

|x´ y|sq`d
dy

˙

p
q

dx

¸
1
p

À }f}As
p,qpΩq.

First, note that }Λ0f}Lp ď }f}LppΩq ` }Λ0f}LppΩcq. By Jensen’s inequality, we have that

}Λ0f}
p
LppΩcq

Àp

ÿ

QPW3

|fQ˚ |p}ψQ}
p
Lp ď

ÿ

QPW3

1

ℓpQqd
}f}

p
LppQ˚q

ˆ

11

10
ℓpQq

˙d

.
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By the finite overlapping of the symmetrized cubes,

}Λ0f}
p
LppΩcq

À }f}
p
LppΩq

.

The same can be said about Lq when q ą p. In that case, moreover, one can cover Ω with balls
tBjujPJ with radius one such that |Bj X Ω| « 1. Then, using the subadditivity of x ÞÑ |x|

p
q we get

}f}
p
LqpΩq

ď

˜

ÿ

j

ż

BjXΩ

|fpyq|q dy

¸

p
q

(3.8)

Àq

ÿ

j

¨

˝

 
BjXΩ

˜

ż

BjXΩ

|fpyq ´ fpxq|q dy

¸

p
q

dx`

 
BjXΩ

˜

ż

BjXΩ

|fpxq|q dy

¸

p
q

dx

˛

‚

À

ż

Ω

ˆ
ż

Ω

|fpxq ´ fpyq|q

|x´ y|sq`d
dy

˙

p
q

dx` }f}
p
LppΩq

« }f}
p
As

p,qpΩq
,

by Definition 3.7.
It remains to check that

}Λ0f} 9As
p,qpRdq

“

˜

ż

Rd

ˆ
ż

Rd

|Λ0fpxq ´ Λ0fpyq|q

|x´ y|sq`d
dy

˙

p
q

dx

¸
1
p

À }f}As
p,qpΩq.

More precisely, we will prove that

a ` b ` c À }f}
p
As

p,qpΩq
,

where

a :“

ż

Ω

ˆ
ż

Ωc

|fpxq ´ Λ0fpyq|q

|x´ y|sq`d
dy

˙

p
q

dx, b :“

ż

Ωc

ˆ
ż

Ω

|Λ0fpxq ´ fpyq|q

|x´ y|sq`d
dy

˙

p
q

dx and

c :“

ż

Ωc

ˆ
ż

Ωc

|Λ0fpxq ´ Λ0fpyq|q

|x´ y|sq`d
dy

˙

p
q

dx.

Let us begin with

a “

ż

Ω

ˆ
ż

Ωc

|fpxq ´
ř

SPW3
ψSpyqfS˚ |q

|x´ y|sq`d
dy

˙

p
q

dx.

Call W4 :“ tS P W3 : all the neighbors of S are in W3u. Given y P 11
10S, where S P W4, we have

that
ř

PPW3
ψP pyq ” 1 and, otherwise 0 ď 1 ´

ř

PPW3
ψP pyq ď 1. Thus

a À
ÿ

QPW1

ż

Q

˜

ÿ

SPW3

|fpxq ´ fS˚ |
q

DpQ,Sqsq`d

ż

11
10S

ψSpyq dy

¸

p
q

dx

`
ÿ

QPW1

ż

Q

¨

˝

ÿ

SPW2zW4

ż

11
10S

ˇ

ˇ

`

1 ´
ř

PPW3
ψP pyq

˘

fpxq
ˇ

ˇ

q

DpQ,Sqsq`d
dy

˛

‚

p
q

dx “: a1 ` a2 .
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In a1 by the choice of the symmetrized cube we have that
ş

11
10S

ψSpyq dy « ℓpS˚qd. Jensen’s

inequality implies that |fpxq ´ fS˚ |
q

ď 1
ℓpS˚qd

ş

S˚ |fpxq ´ fpξq|q dξ. By (3.7) and the finite over-

lapping of the symmetrized cubes, we get that

a1 À
ÿ

QPW1

ż

Q

˜

ÿ

SPW3

ż

S˚

|fpxq ´ fpξq|
q

DpQ,S˚qsq`d
dξ

¸

p
q

dx À }f}
p
9As
p,qpΩq

.

To bound a2 just note that for Q P W1 and S P W2zW4, we have that S is far from the

boundary, say ℓpSq ě ℓ0, where ℓ0 depends only on diampΩq and ε and, if Ω is unbounded, then

ℓ0 “ 8 and a2 “ 0 by (3.6). Thus, we have that

a2 À
ÿ

QPW1

ż

Q

¨

˝

ÿ

SPW2zW4

ż

11
10S

|fpxq|
q

DpQ,Sqsq`d
dy

˛

‚

p
q

dx À

¨

˝

ÿ

SPW2zW4

ℓpSqd

DpΩ, Sqsq`d

˛

‚

p
q

}f}
p
Lp .

Recall that Whitney cubes have side-length equivalent to their distance to BΩ. Moreover, the
number of cubes of a given side-length bigger than ℓ0 is uniformly bounded when Ω is bounded,

so
ř

SPW2zW4

ℓpSq
d

ℓpSqsq`d is a geometric sum. Therefore,

a2 À

¨

˝

ÿ

SPW2zW4

1

ℓpSqsq

˛

‚

p
q

}f}
p
Lp ď Cε,diampΩqℓ

´sp
0 }f}

p
Lp .

Next, note that, using the same decomposition as above, we have that

b “

ż

Ωc

ˆ
ż

Ω

|
ř

QPW3
ψQpxqfQ˚ ´ fpyq|q

|x´ y|sq`d
dy

˙

p
q

dx

À
ÿ

QPW3

ż

11
10Q

ψQpxqp dx

˜

ÿ

SPW1

ż

S

ˇ

ˇfQ˚ ´ fpyq
ˇ

ˇ

q

DpQ,Sqsq`d
dy

¸

p
q

`
ÿ

PPW2zW4

ż

P

˜

1 ´
ÿ

QPW3

ψQpxq

¸p

dx

˜

ÿ

SPW1

ż

S

|fpyq|
q

DpP, Sqsq`d
dy

¸

p
q

“: b1 ` b2 .

We have that

b1 À
ÿ

QPW3

ℓpQqd

¨

˝

ÿ

SPW1

ż

S

´

1
ℓpQqd

ş

Q˚ |fpξq ´ fpyq| dξ
¯q

DpQ˚, Sqsq`d
dy

˛

‚

p
q

and, thus, by Minkowsky’s integral inequality (see [Ste70, Appendix A1]), we have that

b1 À
ÿ

QPW3

ℓpQqd

ℓpQqdp

¨

˝

ż

Q˚

˜

ÿ

SPW1

ż

S

|fpξq ´ fpyq|
q

|ξ ´ y|sq`d
dy

¸
1
q

dξ

˛

‚

p

.

By Hölder’s inequality and the finite overlapping of symmetrized cubes, we get that

b1 À
ÿ

QPW3

1

ℓpQqdpp´1q

ż

Q˚

ˆ
ż

Ω

|fpξq ´ fpyq|
q

|ξ ´ y|sq`d
dy

˙

p
q

dξℓpQq
dp

p1 À

ż

Ω

ˆ
ż

Ω

|fpξq ´ fpyq|
q

|ξ ´ y|sq`d
dy

˙

p
q

dξ,
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that is,

b1 À }f}
p
9As
p,qpΩq

.

To bound b2 , note that as before, if Ω is unbounded, then b2 “ 0 and, otherwise, we have that

b2 «
ÿ

QPW2zW4

ℓpQqd

˜

ÿ

SPW1

ż

S

|fpyq|
q

DpQ,Ωqsq`d
dy

¸

p
q

À }f}
p
LqpΩq

ÿ

QPW2zW4

ℓpQqd

distpQ,Ωq
sp`

dp
q

.

Now, since s ą d
p ´ d

q we have that sp`
dp
q ą d. Therefore,

ÿ

QPW2zW4

ℓpQqd

distpQ,Ωq
sp`

dp
q

«
ÿ

QPW2zW4

1

ℓpQq
sp`

dp
q ´d

ď Cε,diampΩqℓ
d´sp´

dp
q

0 .

On the other hand, if Ω is bounded and q ď p, then }f}LqpΩq À }f}LppΩq by the Hölder inequality

and, if p ă q, then }f}LqpΩq À }f}As
p,qpΩq by (3.8).

Let us focus on c . We have that

c “

ż

Ωc

ˆ
ż

Ωc

|
ř

PPW3
ψP pxqfP˚ ´

ř

SPW3
ψSpyqfS˚ |q

|x´ y|sq`d
dy

˙

p
q

dx.

Given x P 11
10Q where Q P W4 and y P Ωc X Bpx, ℓ0

10 q, then neither x nor y are in the support of
any bump function of a cube in W2zW3, so

ř

PPW3
ψP pyq ” 1 and

ř

PPW3
ψP pxq ” 1. Therefore

ÿ

PPW3

ψP pxqfP˚ ´
ÿ

SPW3

ψSpyqfS˚ “
ÿ

PX2Q‰H

ÿ

SPW3

ψP pxqψSpyq pfP˚ ´ fS˚ q .

If, moreover, y P B
`

x, 1
10ℓpQq

˘

, since the points are ‘close’ to each other, we will use the Hölder
regularity of the bump functions, so we write

ÿ

PPW3

ψP pxqfP˚ ´
ÿ

SPW3

ψSpyqfS˚ “
ÿ

PPW3

pψP pxq ´ ψP pyqq fP˚ .

This decomposition is still valid if Q P W2zW4 and y P B
`

x, 1
10ℓpQq

˘

, that is, y P B
`

x, ℓ0
10

˘

, but
we will treat this case apart since we lose the cancellation of the sums of bump functions but we
gain a uniform lower bound on the side-lengths of the cubes involved. Finally, we will group the
remaining cases, when x P Ωc and y R Bpx, ℓ0

10 q in an error term. Considering all these facts we get

c À
ÿ

QPW4

ż

Q

˜

ż

ΩczBpx, 1
10 ℓpQqq

ÿ

PX2Q‰H

ÿ

SPW3

|ψP pxqψSpyq|
|fP˚ ´ fS˚ |

q

DpP˚, S˚qsq`d
dy

¸

p
q

dx

`
ÿ

QPW4

ż

Q

˜

ż

Bpx, 1
10 ℓpQqq

|
ř

SX2Q‰H pψSpxq ´ ψSpyqq fS˚ |q

|x´ y|sq`d
dy

¸

p
q

dx

`
ÿ

QPW2zW4

ż

Q

˜

ż

Bpx,
ℓ0
10 q

|
ř

SPW3:SX2Q‰H pψSpxq ´ ψSpyqq fS˚ |q

|x´ y|sq`d
dy

¸

p
q

dx

`

ż

Ωc

˜

ż

ΩczBpx,
ℓ0
10 q

|Λ0fpxq ´ Λ0fpyq|q

|x´ y|sq`d
dy

¸

p
q

dx

“: c1 ` c2 ` c3 ` c4 ,
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where the last two terms vanish in case Ω is bounded.

Using the same arguments as in a1 and b1 we have that

c1 À }f}
p
9As
p,qpΩq

.

Also combining the arguments used to bound a2 and b2 we get that if Ω is bounded, then

c4 À

´

}f}LppΩq ` }f}LqpΩq

¯p

,

and it vanishes otherwise.
The novelty comes from the fact that we are integrating in Ωc both terms in c , so the

variables in the integrals c2 and c3 can get as close as one can imagine. Here we need to use

the smoothness of the bump functions, but also the smoothness of f itself. The trick for c2 is

to use that tψQu is a partition of the unity with ψQ supported in 11
10Q, that is,

ř

SPW3
ψSpxq “

ř

SX2Q‰H ψSpxq “ 1 if x P 11
10Q with Q P W4. Thus,

c2 “
ÿ

QPW4

ż

Q

˜

ż

Bpx, 1
10 ℓpQqq

|
ř

SX2Q‰H pψSpxq ´ ψSpyqq
`

fS˚ ´ fQ˚

˘

|q

|x´ y|sq`d
dy

¸

p
q

dx,

and using the fact that }∇ψQ}
8

À 1
ℓpQq

and (2.11), we have that

c2 Àq

ÿ

QPW4

ż

Q

˜

ÿ

SX2Q‰H

ˇ

ˇfS˚ ´ fQ˚

ˇ

ˇ

q
ż

Bpx, 1
10 ℓpQqq

|x´ y|
q

ℓpQqq

1

|x´ y|sq`d
dy

¸

p
q

dx

Às

ÿ

QPW4

ℓpQqd

˜

ř

SX2Q‰H

ˇ

ˇfS˚ ´ fQ˚

ˇ

ˇ

q

ℓpQqsq

¸

p
q

«
ÿ

QPW4

ℓpQqd

˜

ÿ

SX2Q‰H

ˇ

ˇfS˚ ´ fQ˚

ˇ

ˇ

q

DpQ˚, S˚qsq

¸

p
q

,

which can be bounded as c1 .

Finally, we bound the error term c3 , assuming Ω to be a bounded domain. Here we cannot

use the cancellation of the partition of the unity anymore. Instead, we will use the Lp norm of f ,
the Hölder regularity of the bump functions and the fact that all the cubes considered are roughly
of the same size:

c3 “
ÿ

QPW2zW4

ż

Q

˜

ż

Bpx,
ℓ0
10 q

|
ř

SX2Q‰H pψSpxq ´ ψSpyqq fS˚ |q

|x´ y|sq`d
dy

¸

p
q

dx

À
ÿ

QPW2

ℓ0ďℓpQqď2ℓ0

ż

Q

ÿ

SPW3
SX2Q‰H

|fS˚ |
p

˜

ż

Bpx,
ℓ0
10 q

1

ℓq0

1

|x´ y|ps´1qq`d
dy

¸

p
q

dx

Àε,ℓ0,q,p

ÿ

SPW3
ℓ0
2 ďℓpSqďℓ0

}f}
p
LppS˚q

À }f}
p
LppΩq

.
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Corollary 3.11. Let Ω be a uniform domain with an admissible Whitney covering W. Given
1 ă p ă 8, 1 ă q ă 8 and 0 ă s ă 1 with s ą d

p ´ d
q , we have that As

p,qpΩq “ F s
p,qpΩq, and

}f}F s
p,qpΩq « }f}As

p,qpΩq for all f P F s
p,qpΩq.

Proof. By Corollary 3.5, given f P F s
p,qpΩq we have that

}f}As
p,qpΩq ď inf

gPLmaxtp,qu:g|Ω”f
}g}As

p,qpRdq « inf
g:g|Ω”f

}g}F s
p,qpRdq “ }f}F s

p,qpΩq.

By the Lemma 3.10 we have the converse. Given f P As
p,qpΩq we have that

}f}F s
p,qpΩq “ inf

g:g|Ω”f
}g}F s

p,qpRdq ď }Λ0f}F s
p,qpRdq « }Λ0f}As

p,qpRdq ď C}f}As
p,qpΩq.

4 Equivalent norms with reduction of the integration do-
main.

Next we present an equivalent norm for F s
p,qpΩq in terms of differences but reducing the domain

of integration of the inner variable to the shadow of the outer variable in the seminorm }¨} 9As
p,qpΩq

defined in (3.5).

Lemma 4.1. Let Ω be a uniform domain with an admissible Whitney covering W, let 1 ă p, q ă 8

and 0 ă s ă 1 with s ą d
p ´ d

q . Then, f P F s
p,qpΩq if and only if

}f}
rAs
p,qpΩq

“ }f}LppΩq `

¨

˝

ÿ

QPW

ż

Q

˜

ż

ShpQq

|fpxq ´ fpyq|q

|x´ y|sq`d
dy

¸

p
q

dx

˛

‚

1
p

ă 8. (4.1)

This quantity defines a norm which is equivalent to }f}
p
F s

p,qpΩq
and, moreover, we have that f P

Lmaxtp,qupΩq.

Proof. Let Ω be an ε-uniform domain. Recall that in (3.5) we defined

}f} 9As
p,qpΩq

“

˜

ż

Ω

ˆ
ż

Ω

|fpxq ´ fpyq|q

|x´ y|sq`d
dy

˙

p
q

dx

¸
1
p

.

Trivially

}f}
p
9As
p,qpΩq

Á
ÿ

QPW

ż

Q

˜

ż

ShpQq

|fpxq ´ fpyq|q

|x´ y|sq`d
dy

¸

p
q

dx.

To prove the converse inequality, we will use the seminorm in the duality form

}f} 9As
p,qpΩq

“ sup
}g}

Lp1
pLq1

pΩqq
ď1

ż

Ω

ż

Ω

|fpxq ´ fpyq|

|x´ y|
s` d

q

gpx, yq dy dx. (4.2)

Let g ą 0 be an L1
loc function with }g}Lp1

pLq1
pΩqq ď 1. Since the shadow of every cube Q contains

2Q, we just use Hölder’s inequality to find that

ÿ

QPW

ż

Q

ż

2Q

|fpxq ´ fpyq|

|x´ y|
s` d

q

gpx, yq dy dx ď

˜

ÿ

QPW

ż

Q

ˆ
ż

2Q

|fpxq ´ fpyq|q

|x´ y|sq`d
dy

˙

p
q

dx

¸
1
p

. (4.3)
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Therefore, we only need to prove the estimate

ÿ

Q,S

ż

Q

ż

Sz2Q

|fpxq ´ fpyq|

|x´ y|
s` d

q

gpx, yq dy dx À

¨

˝

ÿ

QPW

ż

Q

˜

ż

ShpQq

|fpxq ´ fpyq|q

|x´ y|sq`d
dy

¸

p
q

dx

˛

‚

1
p

. (4.4)

If x P Q, y P Sz2Q, then |x´ y| « DpQ,Sq, so we can write

ÿ

Q,S

ż

Q

ż

Sz2Q

|fpxq ´ fpyq|

|x´ y|
s` d

q

gpx, yq dy dx À
ÿ

Q,S

ż

Q

ż

S

|fpxq ´ fpyq|

DpQ,Sq
s` d

q

gpx, yq dy dx. (4.5)

Since Ω is a uniform domain, for every pair of cubes Q and S in this sum, there exists an admissible
chain rQ,Ss joining them. Thus, writing fQ “

ffl
Q
f dm for the mean of f in Q, the right-hand side

of (4.5) can be split as follows:

ÿ

Q,S

ż

Q

ż

S

|fpxq ´ fpyq|

DpQ,Sq
s` d

q

gpx, yq dy dx ď
ÿ

Q,S

ż

Q

ż

S

|fpxq ´ fQ|

DpQ,Sq
s` d

q

gpx, yq dy dx

`
ÿ

Q,S

ż

Q

ż

S

|fQ ´ fQS
|

DpQ,Sq
s` d

q

gpx, yq dy dx

`
ÿ

Q,S

ż

Q

ż

S

|fQS
´ fpyq|

DpQ,Sq
s` d

q

gpx, yq dy dx

“: 1 ` 2 ` 3 . (4.6)

Note that the definition of QS depends on the chosen chain.
The first term can be immediately bounded by the Cauchy-Schwarz inequality. Namely, writing

Gpxq “ }gpx, ¨q}Lq1
pΩq, by (2.12) we have that

1 ď
ÿ

QPW

ż

Q

|fpxq ´ fQ|

˜

ÿ

SPW

ż

S

gpx, yqq
1

dy

¸
1
q1
˜

ÿ

SPW

ℓpSqd

DpQ,Sqsq`d

¸
1
q

dx

ď
ÿ

QPW

ş

Q
|fpxq ´ fQ|Gpxq dx

ℓpQqs
.

By Jensen’s inequality, |fpxq ´ fQ| ď

´

1
ℓpQqd

ş

Q
|fpxq ´ fpyq|q dy

¯
1
q

and thus, since ℓpQq Ád |x´ y|

for x, y P Q, we have that

1 À

˜

ÿ

QPW

ż

Q

ˆ
ż

Q

|fpxq ´ fpyq|q

|x´ y|sq`d
dy

˙

p
q

dx

¸
1
p

}G}Lp1 . (4.7)

Since }G}Lp1 “ }g}Lp1
pLq1

q ď 1, this finishes this part.

For the second one, for all cubes Q and S we consider the subchain rQ,QSq Ă rQ,Ss. Then

2 ď
ÿ

Q,S

ż

Q

ż

S

gpx, yq

DpQ,Sq
s` d

q

dy dx
ÿ

PPrQ,QSq

|fP ´ fN pP q|.
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Recall that all the cubes P P rQ,QSs contain Q in their shadow and the properties of the Whitney
covering grant that N pP q Ă 5P . Moreover, by (2.6) we have that DpQ,Sq « DpP, Sq. Thus,

2 Àd

ÿ

P

 
P

 
5P

|fpξq ´ fpζq| dζ dξ
ÿ

QPSHpP q

ż

Q

ÿ

SPW

ż

S

gpx, yq

DpP, Sq
s` d

q

dy dx

and, using Hölder’s inequality and (2.12), we have that

2 À
ÿ

P

 
P

 
5P

|fpξq ´ fpζq| dζ dξ
ÿ

QPSHpP q

ż

Q

ˆ
ż

Ω

gpx, yqq
1

dy

˙
1
q1

˜

ÿ

SPW

ℓpSqd

DpP, Sqsq`d

¸
1
q

dx

Àd,s,q

ÿ

P

 
P

 
5P

|fpξq ´ fpζq| dζ dξ
ÿ

QPSHpP q

ż

Q

Gpxq dx
1

ℓpP qs
.

By (2.11) we have that
ş

ShpP q
Gpxq dx Àd,ε infyPP MGpyqℓpP qd, so

2 À
ÿ

P

ż

P

ż

5P

|fpξq ´ fpζq| dζMGpξq dξ
ℓpP qd´s

ℓpP q2d

Àd,p

ÿ

P

ż

P

ˆ
ż

5P

|fpξq ´ fpζq|q dζ

˙
1
q

ℓpP q
d
q1 MGpξq dξ

1

ℓpP qd`s
.

Note that for ξ, ζ P 5P , we have that |ξ ´ ζ| Àd ℓpP q. Thus, using Hölder’s inequality again and
the fact that }MG}Lp1 Àp }G}Lp1 ď 1, we bound the second term by

2 À
ÿ

P

ż

P

ˆ
ż

5P

|fpξq ´ fpζq|q

|ξ ´ ζ|sq`d
dζ

˙
1
q

MGpξq dξ À

˜

ÿ

P

ż

P

ˆ
ż

5P

|fpξq ´ fpζq|q

|ξ ´ ζ|sq`d
dζ

˙

p
q

dξ

¸
1
p

.

(4.8)

Now we face the boundedness of

3 “
ÿ

Q,S

ż

Q

ż

S

|fQS
´ fpyq|

DpQ,Sq
s` d

q

gpx, yq dy dx.

Given two cubes Q and S, we have that for every admissible chain rQ,Ss the cubes Q,S P SHpQSq

by Definition 2.4 and DpQ,Sq « ℓpQSq by (2.4). Thus, we can reorder the sum, writing

3 À
ÿ

R

ÿ

QPSHpRq

ÿ

SPSHpRq

ż

Q

ż

S

|fR ´ fpyq|

ℓpRq
s` d

q

gpx, yq dy dx (4.9)

ď
ÿ

R

ż

R

ÿ

QPSHpRq

ÿ

SPSHpRq

ż

Q

ż

S

|fpξq ´ fpyq|

ℓpRq
s`p1` 1

q qd
gpx, yq dy dx dξ.

Using Hölder’s inequality, Lemma 2.7 and the fact that for S P SHpRq one has ℓpRq « DpS,Rq,
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we get that

3 À
ÿ

R

ż

R

1

ℓpRq
s`p1` 1

q qd

ÿ

QPSHpRq

ż

Q

ÿ

SPSHpRq

ˆ
ż

S

|fpξq ´ fpyq|q dy

˙
1
q
ˆ
ż

S

gpx, yqq
1

dy

˙
1
q1

dx dξ

ď
ÿ

R

ż

R

1

ℓpRq
s`p1` 1

q qd

˜

ż

ShpRq

|fpξq ´ fpyq|q dy

¸
1
q

ÿ

QPSHpRq

ż

Q

Gpxq dx dξ

À
ÿ

R

ż

R

˜

ż

ShpRq

|fpξq ´ fpyq|q

ℓpRqsq`d
dy

¸
1
q

1

ℓpRqd
MGpξqℓpRqd dξ

and, using the Hölder inequality again and the boundedness of the maximal operator in Lp1

, we
get

3 À

¨

˝

ÿ

R

ż

R

˜

ż

ShpRq

|fpξq ´ fpyq|q

|ξ ´ y|sq`d
dy

¸

p
q

dξ

˛

‚

1
p

}MG}Lp1

À

¨

˝

ÿ

R

ż

R

˜

ż

ShpRq

|fpξq ´ fpyq|q

|ξ ´ y|sq`d
dy

¸

p
q

dξ

˛

‚

1
p

. (4.10)

Thus, by (4.6), (4.7), (4.8) and (4.10), we have that

ÿ

Q,S

ż

Q

ż

S

|fpxq ´ fpyq|

DpQ,Sq
s` d

q

gpx, yq dy dx À

¨

˝

ÿ

R

ż

R

˜

ż

ShpRq

|fpξq ´ fpyq|q

|ξ ´ y|sq`d
dy

¸

p
q

dξ

˛

‚

1
p

.

This fact, together with (4.5) proves (4.4) and thus, using (4.2) and (4.3), we get that

}f}As
p,qpΩq Àε,s,p,q,d }f}

rAs
p,qpΩq

.

Finally, by (3.8) we have that f P Lmaxtp,qupΩq.

Remark 4.2. Note that we have proven that the homogeneous seminorms are equivalent, that is,

ÿ

QPW

ż

Q

˜

ż

ShpQq

|fpxq ´ fpyq|q

|x´ y|sq`d
dy

¸

p
q

dx « }f}
p
9As
p,qpΩq

,

which improves (4.1).

In some situations we can refine Lemma 4.1.

Lemma 4.3. Let Ω be a uniform domain with an admissible Whitney covering W, let 1 ă q ď

p ă 8 and max
!

d
p ´ d

q , 0
)

ă s ă 1. Then, f P F s
p,qpΩq if and only if

}f}LppΩq `

˜

ÿ

QPW

ż

Q

ˆ
ż

5Q

|fpxq ´ fpyq|q

|x´ y|sq`d
dy

˙

p
q

dx

¸
1
p

ă 8.

Furthermore, this quantity defines a norm which is equivalent to }f}F s
p,qpΩq.
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Proof. Arguing as before by duality, we consider a function g ą 0 with }g}Lp1
pLq1

pΩqq ď 1. Com-

bining (4.7) and (4.8) we know that

ÿ

Q,S

ż

Q

ż

S

|fpxq ´ fQS
|

DpQ,Sq
s` d

q

gpx, yq dy dx À

˜

ÿ

QPW

ż

Q

ˆ
ż

5Q

|fpxq ´ fpyq|q

|x´ y|sq`d
dy

˙

p
q

dx

¸
1
p

and, thus, we have

ÿ

Q,S

ż

Q

ż

S

|fpxq ´ fpyq|

DpQ,Sq
s` d

q

gpx, yq dy dx «

˜

ÿ

QPW

ż

Q

ˆ
ż

5Q

|fpxq ´ fpyq|q

|x´ y|sq`d
dy

˙

p
q

dx

¸
1
p

` 3 . (4.11)

where

3 :“
ÿ

Q,S

ż

Q

ż

S

|fQS
´ fpyq|

DpQ,Sq
s` d

q

gpx, yq dy dx À
ÿ

R

ÿ

Q,SPSHpRq

ż

Q

ż

S

|fR ´ fpyq|

ℓpRq
s` d

q

gpx, yq dy dx

by (4.9).
Using Hölder’s inequality and Lemma 2.7 we get that

3 À
ÿ

R

1

ℓpRq
s` d

q

¨

˝

ÿ

SPSHpRq

ż

S

|fR ´ fpyq|q dy

˛

‚

1
q

ÿ

QPSHpRq

ż

Q

Gpxq dx

À
ÿ

R

¨

˝

ÿ

SPSHpRq

ż

S

|fR ´ fpyq|q dy

˛

‚

1
q ş

R
MGpξq dξ

ℓpRq
s` d

q

and, using the Hölder inequality again, we get

3 À

¨

˚

˝

ÿ

R

¨

˝

ÿ

SPSHpRq

ż

S

|fR ´ fpyq|q dy

˛

‚

p
q

ℓpRqd

ℓpRq
sp`

dp
q

˛

‹

‚

1
p

}MG}Lp1 .

By the boundedness of the maximal operator in Lp1

we have that }MG}Lp1 À 1. Now, given
R,S P W there exists an admissible chain rS,Rs, and we can decompose the previous expression
as

3
p

À
ÿ

R

¨

˝

ÿ

SPSHpRq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

PPrS,Rq

`

fP ´ fN pP q

˘ ℓpP q
s
q

ℓpP q
s
q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

q

ℓpSqd

˛

‚

p
q

ℓpRq
d´sp´d p

q (4.12)

`
ÿ

R

¨

˝

ÿ

SPSHpRq

ż

S

|fS ´ fpyq|q dy

˛

‚

p
q

ℓpRq
d´sp´d p

q “: 3.1 ` 3.2 ,

where we wrote rS,Rq “ rS,RsztRu.
Using Hölder’s inequality

3.1 À
ÿ

R

¨

˚

˝

ÿ

SPSHpRq

ÿ

PPrS,Rq

|fP ´ fN pP q|q

ℓpP qs

¨

˝

ÿ

PPrS,Rq

ℓpP q
sq1

q

˛

‚

q

q1

ℓpSqd

˛

‹

‚

p
q

ℓpRq
d´sp´d p

q .
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But for S P SHpRq by Remark 2.6 we have that
ř

PPrS,Rq ℓpP q
sq1

q À ℓpRq
sq1

q . Moreover, by (2.9)

there exists a ratio ρ2 such that for P P rS,Rs we have that S P SH2
pP q :“ SHρ2pP q and

P P SH2
pRq. We also know that

ř

SPSH2pP q ℓpSqd À ℓpP qd, so writing UP for the union of the
neighbors of P , we get

3.1 À
ÿ

R

¨

˝

ÿ

PPSH2pRq

´ffl
UP

|fpξq ´ fP | dξ
¯q

ℓpP qd

ℓpP qs

˛

‚

p
q

ℓpRq
d`

sp
q ´sp´

dp
q .

Recall that p ě q and, therefore, by Hölder’s inequality and (2.7) we have that

3.1 À
ÿ

R

ÿ

PPSH2pRq

´ffl
UP

|fpξq ´ fP | dξ
¯p

ℓpP qd

ℓpP q
sp
q

¨

˝

ÿ

PPSH2pRq

ℓpP qd

˛

‚

p1´
q
p q p

q

ℓpRq
d´

sp

q1 ´
dp
q

À
ÿ

P

´ffl
UP

|fpξq ´ fP | dξ
¯p

ℓpP qd

ℓpP q
sp
q

ÿ

R:PPSH2pRq

ℓpRq
´

sp

q1 «
ÿ

P

´ffl
UP

|fpξq ´ fP | dξ
¯p

ℓpP qd

ℓpP qsp

Using Jensen’s inequality we get

3.1 À
ÿ

P

ż

UP

|fpξq ´ fP |p

ℓpP qsp
dξ, (4.13)

and Jensen’s inequality again leads to

3.1 À
ÿ

P

ż

UP

ˆ

ş

P
|fpξq ´ fpζq|q dζ

ℓpP qd

˙

p
q 1

ℓpP qsp
dξ À

ÿ

P

ż

P

ˆ

ş

5P
|fpξq ´ fpζq|q dζ

|ξ ´ ζ|sq`d

˙

p
q

dξ. (4.14)

To bound 3.2 we follow the same scheme. Since p ě q we have that

3.2 “
ÿ

R

¨

˝

ÿ

SPSHpRq

ż

S

|fS ´ fpyq|q dy
ℓpSq

dp1´
q
p q

ℓpSq
dp1´

q
p q

˛

‚

p
q

ℓpRq
d´sp´d p

q

ď
ÿ

R

¨

˝

ÿ

SPSHpRq

`ş

S
|fS ´ fpyq|q dy

˘

p
q

ℓpSq
dp p

q ´1q

˛

‚

q
p ¨

p
q
¨

˝

ÿ

SPSHpRq

ℓpSqd

˛

‚

p1´
q
p q p

q

ℓpRq
d´sp´d p

q ,

and, since
ř

SPSHpRq ℓpSqd « ℓpRqd, reordering and using (2.7) we get that

3.2 À
ÿ

S

`ş

S
|fS ´ fpyq|q dy

˘

p
q

ℓpSq
dp p

q ´1q

ÿ

R:SPSHpRq

ℓpRq´sp À
ÿ

S

ˆ

ş

S
|fS ´ fpyq|q dy

ℓpSqd

˙

p
q ℓpSqd

ℓpSqsp
.

Thus, by Jensen’s inequality,

3.2 À
ÿ

S

ş

S
|fS ´ fpyq|p dy

ℓpSqd

ℓpSqd

ℓpSqsp

22



and, arguing as in (4.13), we get that

3.2 À
ÿ

S

ż

S

ˆ

ş

S
|fpyq ´ fpζq|q dζ

|y ´ ζ|sq`d

˙

p
q

dy. (4.15)

Thus, by (4.11), (4.12), (4.14) and (4.15), we have that

ÿ

Q,S

ż

Q

ż

S

|fpxq ´ fpyq|

DpQ,Sq
s` d

q

gpx, yq dy dx À

˜

ÿ

S

ż

S

ˆ
ż

5S

|fpξq ´ fpyq|q

|ξ ´ y|sq`d
dy

˙

p
q

dξ

¸
1
p

.

This fact, together with (4.2), (4.3) and (4.5) finishes the proof of Lemma 4.3.

Remark 4.4. An analogous result to Lemma 4.3 for Besov spaces Bs
p,p can be found in [Dyd06,

Proposition 5] where it is stated in the case of Lipschitz domains.

Corollary 4.5. Let Ω be a uniform domain. Let δpxq :“ distpx, BΩq for every x P C.
Given 1 ă p ă q ă 8 and 0 ă s ă 1 with s ą d

p ´ d
q , we have that As

p,qpΩq “ F s
p,qpΩq and,

moreover, for ρ1 ą 1 big enough, we have that

}f}F s
p,qpΩq « }f}LppΩq `

¨

˝

ż

Ω

˜

ż

Bρ1δpxqpxqXΩ

|fpxq ´ fpyq|q

|x´ y|sq`d
dy

¸

p
q

dx

˛

‚

1
p

for all f P F s
p,qpΩq.

Given 1 ă q ď p ă 8 and 0 ă s ă 1, we have that As
p,qpΩq “ F s

p,qpΩq and, moreover, for
0 ă ρ0 ă 1 we have that

}f}F s
p,qpΩq « }f}LppΩq `

¨

˝

ż

Ω

˜

ż

Bρ0δpxqpxq

|fpxq ´ fpyq|q

|x´ y|sq`d
dy

¸

p
q

dx

˛

‚

1
p

for all f P F s
p,qpΩq.

Proof. This comes straight forward from Corollary 3.11, Lemma 4.1 and Lemma 4.3, taking smaller
cubes in the Whitney covering if necessary when ρ0 ăă 1.

5 Calderón-Zygmund operators

Definition 5.1. We say that a measurable function K P L1
locpRdzt0uq is an admissible convolution

Calderón-Zygmund kernel of order σ ď 1 if it satisfies the size condition

|Kpxq| ď
CK

|x|d
for x ‰ 0, (5.1)

and the Hölder smoothness condition

|Kpx´ yq ´Kpxq| ď
CK |y|σ

|x|d`σ
for 0 ă 2|y| ď |x|, (5.2)

for a positive constant CK and that kernel can be extended to a convolution with a tempered
distribution WK in Rd in the sense that for every Schwartz functions f, g P S with supppfq X

supppgq “ H, one has

xWK ˚ f, gy “

ż

Rdzt0u

Kpxq pf´ ˚ gq pxq dx. (5.3)
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Remark 5.2. We are using the notion of distributional convolution. Given Schwartz functions f
and g, the convolution coincides with multiplication at the Fourier side, that is, f ˚ gpxq “ p pf ¨ pgqq.
Given a tempered distribution W , a function f P S and x P Rd, the tempered distribution W ˚ f is
defined as

xW ˚ f, gy :“ xpxW ¨ pfqq, gy “ xxW, pf ¨ qgy “ xW, f´ ˚ gy for every g P S.

Note that f´ ˚ gpxq “
ş

fp´yqgpx ´ yq dy, so in case supppfq X supppgq “ H then f´ ˚ g ” 0 in a
neighborhood of 0 and, therefore, the integral in (5.3) is absolutely convergent by (5.1).

In any case, the distribution W ˚ f is regular (i.e., it can be expressed as an L1
loc function) and

it coincides with the C8 function W ˚ fpxq “ xW, τxf´y, where τxf´pyq “ f´py ´ xq (see [SW71,
Chapter I, Theorem 3.13]).

There are some cancellation conditions that one can impose to a kernel satisfying the size
condition (5.1) to grant that it can be extended to a convolution with a tempered distribution.
For instance, if K satisfies (5.1) and WK is a principal value operator in the sense that

xWK , φy “ lim
jÑ8

ż

|x|ěδj

Kpxqφpxq dx for all φ P S, (5.4)

for a certain sequence δj Œ 0, then WK satisfies (5.3) (see [Gra08, Section 4.3.2]).

Definition 5.3. We say that an operator T : S Ñ S 1 is a convolution Calderón-Zygmund operator
of order σ P p0, 1s with kernel K if

1. K is an admissible convolution Calderón-Zygmund kernel of order σ which can be extended
to a convolution with a tempered distribution WK ,

2. T satisfies that Tf “ WK ˚ f for all f P S and

3. T extends to an operator bounded in L2.

Remark 5.4. Using the Calderón-Zygmund decomposition one can see that T is also bounded
on Lp for 1 ă p ă 8 (see [Gra08, proof of Theorem 4.3.3]). Thus, the Fourier transform of a
convolution Calderón-Zygmund operator T is a Fourier multiplier for Lp. We refer the reader to
[Tri83, Section 2.6].

These operators are bounded in Lppwq for every w P Ap (see [Duo01, Definition 5.11 and
Theorem 7.11], for instance). Now, [FJ90, Theorem 10.17 combined with Section 12] grants that
they are Fourier multipliers for F 0

p,q for every pair 1 ă p, q ă 8 as well.
Therefore, such an operator is always a Fourier multiplier for F 0

p,q. But being a Fourier mul-
tiplier for F 0

p,q implies being a Fourier multiplier also for F s
p,q for every s (see [Tri83, Section

2.6]).

It is a well-known fact that the Schwartz class is dense in Lp for 1 ď p ă 8. Thus, if f P Lp

and x R supppfq, then

Tfpxq “

ż

Kpx´ yqfpyqdy. (5.5)

To prove Theorem 1.1 we need the following lemma which says that it is equivalent to bound
the transform of a function and its approximation by constants on Whitney cubes.

To do so, we define the fractional derivative,
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Definition 5.5. Given a uniform domain Ω with Whitney covering W and f P LppΩq for certain
values 0 ă s ă 1 and 1 ă q ă 8, the s-th fractional gradient of index q of f in a point x P Q P W
is

∇s
qfpxq :“

˜

ż

ShpQq

|fpxq ´ fpyq|q

|x´ y|sq`d
dy

¸
1
q

.

Then, by Corollary 3.11 and Lemma 4.1, for 1 ă p ă 8 with d
p ´ d

q ă s, we have that

}f}F s
p,qpΩq « }f}LppΩq `

›

›∇s
qf
›

›

LppΩq
. (5.6)

The following result is the key to Theorem 1.1. Recall that TΩpfq “ χΩ T pχΩ fq. Note that
χΩ is not in Lp if Ω is unbounded. However, ∇s

qTΩ1pxq can be defined for x, y P Ω using a bump
function φxy, compactly supported in Ω with value 1 in an open set containing both of them

TχΩpxq ´ TχΩpyq :“ Tφxypxq ´ Tφxypyq `

ż

Ω

pp1 ´φxypwqqpKpx´wq ´Kpy ´wqq dmpwq, (5.7)

which is well defined by (5.2) and does not depend on the particular choice of φxy.

Key Lemma 5.6. Let Ω be a uniform domain with Whitney covering W, let T be a convolution
Calderón-Zygmund operator of order 0 ă s ă 1, 1 ă p ă 8 and 1 ă q ă 8 with s ą d

p ´ d
q . The

following statements are equivalent:

i) For every f P F s
p,qpΩq one has

}TΩf}F s
p,qpΩq ď C}f}F s

p,qpΩq,

with C independent from f .

ii) For every f P F s
p,qpΩq one has

ÿ

QPW
|fQ|p

›

›∇s
qTχΩ

›

›

p

LppQq
ď C}f}

p
F s

p,qpΩq
,

with C independent from f .

Moreover,

ÿ

QPW

›

›∇s
qTΩpf ´ fQq

›

›

p

LppQq
À

´

CK ` }T }F s
p,qÑF s

p,q
` }T }LpÑLp ` }T }LqÑLq

¯p

}f}
p
F s

p,qpΩq
. (5.8)

Proof. Let Ω be an ε-uniform domain. The core of the proof is showing that (5.8) holds. Once
this is settled, since we have that

ÿ

QPW

›

›∇s
qTΩf

›

›

p

LppQq
Àp

ÿ

QPW

›

›∇s
qTΩpf ´ fQq

›

›

p

LppQq
`

ÿ

QPW
|fQ|p

›

›∇s
qTΩ1

›

›

p

LppQq
,

and
ÿ

QPW
|fQ|p

›

›∇s
qTΩ1

›

›

p

LppQq
Àp

ÿ

QPW

›

›∇s
qTΩpfQ ´ fq

›

›

p

LppQq
`

ÿ

QPW

›

›∇s
qTΩf

›

›

p

LppQq
,

inequality (5.8) proves that
ÿ

QPW

›

›∇s
qTΩf

›

›

p

LppQq
À }f}

p
F s

p,qpΩq
ðñ

ÿ

QPW
|fQ|p

›

›∇s
qTΩ1

›

›

p

LppQq
À }f}

p
F s

p,qpΩq
.
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On the other hand, by assumption T is bounded on Lp and we have that }TΩf}LppΩq À }f}LppΩq.

Since }TΩf}
p
F s

p,qpΩq
« }TΩf}

p
LppΩq

`
ş

Ω
|∇s

qTΩfpxq|p dx by (5.6), the lemma follows.

Again we use duality. That is, to prove (5.8) it suffices to prove that given a positive function
g P Lp1

pLq1

pΩqq with }g}Lp1
pLq1

pΩqq “ 1, we have that

ÿ

Q

ż

Q

ż

ShpQq

|TΩ pf ´ fQq pxq ´ TΩ pf ´ fQq pyq|

|x´ y|
s` d

q

gpx, yq dy dx À }f}F s
p,qpΩq.

Given a cube Q P W, we can define a bump function φQ such that χ6Q ď φQ ď χ7Q and
}∇φQ}L8 ď CℓpQq´1. Given a cube S Ă 5Q we define φQS :“ φQ. Otherwise, take φQS :“ φS .
Note that in both situations, by (2.1) we have that suppφQS Ă 23S. Then, we can express the
difference between TΩpf ´ fQq evaluated at x P Q and in y P S as

TΩpf ´ fQqpxq ´ TΩpf ´ fQqpyq “ TΩ rpf ´ fQqφQs pxq ´ TΩ rpf ´ fQqφQSs pyq (5.9)

` TΩ rpf ´ fQq p1 ´ φQqs pxq ´ TΩ rpf ´ fQq p1 ´ φQSqs pyq,

where all the terms must be understood in the sense of (5.7). Note that the first two terms in
the right-hand side of (5.9) are ‘local’ terms in the sense that the functions to which we apply the
operator TΩ are supported in a small neighborhood of the point of evaluation (and are globally
F s
p,q, as we will check later on) and the other two terms are ‘non-local’. What we will prove is that

the local part

11 :“
ÿ

Q

ż

Q

ÿ

SPSHpQq

ż

S

|TΩ rpf ´ fQqφQs pxq ´ TΩ rpf ´ fQqφQSs pyq|

|x´ y|
s` d

q

gpx, yq dy dx,

and the non-local part

22 :“
ÿ

Q

ż

Q

ÿ

SPSHpQq

ż

S

|TΩ rpf ´ fQq p1 ´ φQqs pxq ´ TΩ rpf ´ fQq p1 ´ φQSqs pyq|

|x´ y|
s` d

q

gpx, yq dy dx,

are both bounded as
11 ` 22 ď C}f}F s

p,qpΩq. (5.10)

We begin by the local part, that is, we want to prove that 11 À }f}F s
p,qpΩq. Note that for x P Q

and y P S P SHpQq, if y P 3Q then φQS “ φQ and, otherwise |x´ y| « ℓpQq. Thus,

11 ď
ÿ

Q

ż

Q

ż

3Q

|T rpf ´ fQqφQs pxq ´ T rpf ´ fQqφQs pyq|

|x´ y|
s` d

q

gpx, yq dy dx (5.11)

`
ÿ

Q

ż

Q

ż

ShpQq

|T rpf ´ fQqφQs pxq|

ℓpQq
s` d

q

gpx, yq dy dx

`
ÿ

Q

ż

Q

ÿ

SPSHpQq

ż

S

|T rpf ´ fQqφQSs pyq|

ℓpQq
s` d

q

gpx, yq dy dx “: 1.11.1 ` 1.21.2 ` 1.31.3 .

Of course, by Hölder’s inequality we have that

1.11.1
p

ď
ÿ

Q

ż

Q

ˆ
ż

3Q

|T rpf ´ fQqφQs pxq ´ T rpf ´ fQqφQs pyq|
q

|x´ y|sq`d
dy

˙

p
q

dx}g}
p

Lp1
pLq1

pΩqq
.

26



By Corollary 3.11 we get

1.11.1
p

À
ÿ

Q

}T rpf ´ fQqφQs}
p
F s

p,qpRdq
.

Now, the operator T is bounded on F s
p,q by assumption (see Definition 5.3 and Remark 5.4). Thus,

1.11.1
p

À }T }
p
F s

p,qÑF s
p,q

ÿ

Q

}pf ´ fQqφQ}
p
F s

p,qpRdq
.

Consider the characterization of the F s
p,q-norm given in Corollary 3.5. Since φQ ď χ7Q, the first

term
ř

Q }pf ´ fQqφQ}
p
LppRdq

is bounded by a constant times }f}Lp by the finite overlapping of

the Whitney cubes and the Jensen inequality, and the second is

ÿ

Q

ż

Rd

ˆ
ż

Rd

|pfpxq ´ fQqφQpxq ´ pfpyq ´ fQqφQpyq|
q

|x´ y|sq`d
dy

˙

p
q

dx,

where the integrand vanishes if both x, y R 8Q. Therefore, we can write

1.11.1
p

À }f}Lp `
ÿ

Q

ż

8Q

ˆ
ż

8Q

|pfpxq ´ fQqφQpxq ´ pfpyq ´ fQqφQpyq|
q

|x´ y|sq`d
dy

˙

p
q

dx

`
ÿ

Q

ż

Rdz8Q

ˆ
ż

7Q

|pfpyq ´ fQqφQpyq|
q

|x´ y|sq`d
dy

˙

p
q

dx (5.12)

`
ÿ

Q

ż

7Q

˜

ż

Rdz8Q

|pfpxq ´ fQqφQpxq|
q

|x´ y|sq`d
dy

¸

p
q

dx “: }f}Lp ` 1.1.11.1.1 ` 1.1.21.1.2 ` 1.1.31.1.3 ,

where the constant depends linearly on the operator norm }T }
p
F s

p,qÑF s
p,q

.

Adding and subtracting pfpxq ´ fQqφQpyq in the numerator of the integral in 1.1.11.1.1 we get
that

1.1.11.1.1 À
ÿ

Q

ż

8Q

ˆ
ż

8Q

|fpxq ´ fQ|
q

|φQpxq ´ φQpyq|
q

|x´ y|sq`d
dy

˙

p
q

dx

`
ÿ

Q

ż

8Q

ˆ
ż

8Q

|fpxq ´ fpyq|
q

|x´ y|sq`d
dy

˙

p
q

dx.

The second term is bounded by a constant times }f}
p
F s

p,qpΩq
, so

1.1.11.1.1 À
ÿ

Q

ż

8Q

ˆ
ż

8Q

}∇φQ}
q
L8 |x´ y|q

|x´ y|sq`d
dy

˙

p
q

|fpxq ´ fQ|
p
dx` }f}

p
F s

p,qpΩq
.

Using }∇φQ}L8 À 1
ℓpQq

and the local inequality for the maximal operator (2.11) we get that

1.1.11.1.1 À
ÿ

Q

ż

8Q

ℓpQqp1´sqp |fpxq ´ fQ|
p

ℓpQqp
dx` }f}

p
F s

p,qpΩq
(5.13)

À
ÿ

Q

ż

8Q

˜
ş

Q
|fpxq ´ fpξq| dξ

ℓpQqs`d

¸p

dx` }f}
p
F s

p,qpΩq
.
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By Jensen’s inequality 1
ℓpQqd

ş

Q
|fpxq ´ fpξq| dξ À

´

ş

Q
1

ℓpQqd
|fpxq ´ fpξq|

q
dξ
¯

1
q

and, therefore,

1.1.11.1.1 À }f}
p
F s

p,qpΩq
. (5.14)

Now we undertake the task of bounding 1.1.21.1.2 in (5.12). Writing xQ for the center of a given
cube Q, we have that

1.1.21.1.2 À
ÿ

Q

ż

Rdz8Q

dx

|x´ xQ|
sp`

dp
q

ˆ
ż

7Q

|fpyq ´ fQ|
q
dy

˙

p
q

.

Since s ą d
p ´ d

q we have that sp`
dp
q ą d. Thus, by (2.12)

1.1.21.1.2 À
ÿ

Q

1

ℓpQq
sp`

dp
q ´d

ˆ
ż

7Q

|fpyq ´ fQ|
q
dy

˙

p
q

ď
ÿ

Q

´

ş

7Q

´

ş

Q
|fpyq ´ fpξq| dξ

¯q

dy
¯

p
q

ℓpQq
sp`

dp
q ´d`dp

.

By Minkowski’s inequality we have that

1.1.21.1.2 À
ÿ

Q

ˆ

ş

Q

´

ş

7Q
|fpyq ´ fpξq|

q
dy
¯

1
q

dξ

˙p

ℓpQq
sp`

dp
q `dpp´1q

,

and by Hölder’s inequality, using that p´ 1 “
p
p1 we get that

1.1.21.1.2 À
ÿ

Q

ş

Q

´

ş

7Q
|fpyq ´ fpξq|

q
dy
¯

p
q

dξℓpQq
dp

p1

ℓpQq
sp`

dp
q `

dp

p1

À
ÿ

Q

ż

Q

ˆ
ż

7Q

|fpyq ´ fpξq|
q
dy

|y ´ ξ|sq`d

˙

p
q

dξ

and

1.1.21.1.2 À }f}
p
F s

p,qpΩq
. (5.15)

Dealing with the last term in (5.12) is somewhat easier. Note that by (2.12) we have that

1.1.31.1.3 ď
ÿ

Q

ż

7Q

|fpxq ´ fQ|
p

˜

ż

Rdz8Q

1

|x´ y|sq`d
dy

¸

p
q

dx ď
ÿ

Q

ż

7Q

|fpxq ´ fQ|
p

ℓpQqsp
dx

and, since this quantity is bounded by the right-hand side of (5.13), it follows that

1.1.31.1.3 À }f}
p
F s

p,qpΩq
. (5.16)

Summing up, by (5.12), (5.14), (5.15) and (5.16) we get

1.11.1 À }T }F s
p,qÑF s

p,q
}f}F s

p,qpΩq. (5.17)

Back to (5.11), it remains to bound 1.21.2 and 1.31.3 . Recall that

1.21.2 “
ÿ

Q

ż

Q

|T rpf ´ fQqφQs pxq|

ℓpQq
s` d

q

ż

ShpQq

gpx, yq dy dx.
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Writing Gpxq “ }gpx, ¨q}Lq1
pΩq and using Hölder’s inequality we get

ż

ShpQq

gpx, yq dy ď

˜

ż

ShpQq

gpx, yqq
1

dy

¸
1
q1

|ShpQq|
1
q Àρε,d GpxqℓpQq

d
q ,

and using again Hölder’s inequality it follows that

1.21.2 À

˜

ÿ

Q

ż

Q

|T rpf ´ fQqφQs pxq|
p

ℓpQqsp
dx

¸
1
p

}G}Lp1
pΩq.

Of course, }G}Lp1
pΩq ď 1. Now, by Definition 5.3 we can use the boundedness of T in Lp to find

that

1.21.2 À }T }LpÑLp

˜

ÿ

Q

}pf ´ fQqφQ}
p
LppRdq

ℓpQqsp

¸
1
p

À

˜

ÿ

Q

}f ´ fQ}
p
Lpp7Qq

ℓpQqsp

¸
1
p

,

and we can argue again as in (5.13) to prove that

1.21.2 À }T }LpÑLp}f}F s
p,qpΩq. (5.18)

Finally, for the last term in (5.11), that is, for

1.31.3 “
ÿ

Q

ż

Q

ÿ

SPSHpQq

ż

S

|T rpf ´ fQqφQSs pyq|

ℓpQq
s` d

q

gpx, yq dy dx,

by Hölder’s inequality we have that

1.31.3 ď
ÿ

Q

ż

Q

¨

˝

ÿ

SPSHpQq

ż

S

|T rpf ´ fQqφQSs pyq|
q

ℓpQqsq`d
dy

˛

‚

1
q

Gpxq dx.

The boundedness of T in Lq leads to

1.31.3 ď }T }LqÑLq

ÿ

Q

¨

˝

ÿ

SPSHpQq

ż

supppφQSq

|pfpyq ´ fQqφQSpyq|
q

ℓpQqsq`d
dy

˛

‚

1
q

ℓpQqd inf
Q
MG.

Given a cube Q, the finite overlapping of the family t50SuSPW (see Definition 2.1) implies the
finite overlapping of the supports of the family tφQSu (recall that supppφQSq Ă 23S), so there is
a certain ratio ρ3 such that naming Sh3

pQq :“ Shρ3pQq we have that

1.31.3 À
ÿ

Q

˜

ż

Sh3pQq

|fpyq ´ fQ|
q

ℓpQqsq`d´dq
dy

¸
1
q

inf
Q
MG

ď
ÿ

Q

˜

ż

Sh3pQq

˜

ż

Q

|fpyq ´ fpξq|

ℓpQq
s` d

q ´d`d
dξ

¸q

dy

¸

1
q

inf
Q
MG.

Finally, using Minkowski’s inequality and Hölder’s inequality we get that

1.31.3 À
ÿ

Q

ż

Q

˜

ż

Sh3pQq

|fpyq ´ fpξq|
q

ℓpQqsq`d
dy

¸
1
q

MGpξq dξ À

˜

ÿ

Q

ż

Q

ˆ
ż

Ω

|fpyq ´ fpξq|
q

|x´ y|sq`d
dy

˙

p
q

dξ

¸
1
p

,
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that is,

1.31.3 À }T }LqÑLq}f}F s
p,qpΩq. (5.19)

Now, by (5.11), (5.17), (5.18) and (5.19) we have that

11 À

´

}T }F s
p,qÑF s

p,q
` }T }LpÑLp ` }T }LqÑLq

¯

}f}F s
p,qpΩq, (5.20)

and we have finished with the local part.
Now we bound the non-local part in (5.10). Consider x P Q P W. By (5.5) (and (5.7) for

unbounded domains), since x is not in the support of pf ´ fQq p1 ´ φQq, we have that

TΩ rpf ´ fQq p1 ´ φQqs pxq “

ż

Ω

Kpx´ zq pfpzq ´ fQq p1 ´ φQpzqq dmpzq,

and by the same token for y P S P SHpQq

TΩ rpf ´ fQq p1 ´ φQSqs pyq “

ż

Ω

Kpy ´ zq pfpzq ´ fQq p1 ´ φQSpzqq dmpzq.

To shorten the notation, we will write

λQSpz1, z2q “ Kpz1 ´ z2q pfpz2q ´ fQq p1 ´ φQSpz2qq ,

for z1 ‰ z2. Then we have that

ˇ

ˇ

ˇ
TΩ rpf ´ fQq p1 ´ φQqs pxq ´ TΩ rpf ´ fQq p1 ´ φQSqs pyq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ż

Ω

pλQQpx, zq ´ λQSpy, zqq dmpzq

ˇ

ˇ

ˇ

ˇ

,

that is,

22 “
ÿ

Q

ż

Q

ÿ

SPSHpQq

ż

S

ˇ

ˇ

ş

Ω
pλQQpx, zq ´ λQSpy, zqq dz

ˇ

ˇ

|x´ y|
s` d

q

gpx, yq dy dx.

For ρ4 big enough, Sh4
pQq :“ Shρ4pQq Ą

Ť

SPSHpQq ShpSq (call SH4
pQq :“ SHρ4pQq), we can

decompose

22 ď
ÿ

Q

ż

Q

ÿ

SĂShpQqz2Q

ż

S

ş

Sh4pQq
|λQQpx, zq ´ λQSpy, zq| dz

|x´ y|
s` d

q

gpx, yq dy dx (5.21)

`
ÿ

Q

ż

Q

ÿ

SĂShpQqz2Q

ż

S

ş

ΩzSh4pQq
|λQQpx, zq ´ λQSpy, zq| dz

|x´ y|
s` d

q

gpx, yq dy dx

`
ÿ

Q

ż

Q

ż

5Q

ş

Ω
|λQQpx, zq ´ λQQpy, zq| dz

|x´ y|
s` d

q

gpx, yq dy dx “: AA ` BB ` CC .

In the first term in the right-hand side of (5.21) the variable z is ‘close’ to either x or y, so
smoothness does not help. Thus, we will take absolute values, giving rise to two terms separating
λQQ and λQS . That is, we use that

AA ď
ÿ

Q

ż

Q

ÿ

SĂShpQqz2Q

ż

S

ş

Sh4pQq
p|λQQpx, zq| ` |λQSpy, zq|q dz

|x´ y|
s` d

q

gpx, yq dy dx.
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Using the size condition (5.1),

|λQQpx, zq| ď CK
|fpzq ´ fQ|

|x´ z|d
|1 ´ φQpzq|

and

|λQSpy, zq| ď CK
|fpzq ´ fQ|

|y ´ z|d
|1 ´ φQSpzq|.

Summing up,

AA ÀCK

ÿ

Q

ż

Q

ż

ShpQqz2Q

ż

Sh4pQq

|fpzq ´ fQ| |1 ´ φQpzq| dz

|x´ y|
s` d

q |x´ z|d
gpx, yq dy dx (5.22)

`
ÿ

Q

ż

Q

ÿ

SĂShpQqz2Q

ż

S

ż

Sh4pQq

|fpzq ´ fQ| |1 ´ φQSpzq| dz

|x´ y|
s` d

q |y ´ z|d
gpx, yq dy dx “: 2.12.1 ` 2.22.2 ,

with constants depending linearly on the Calderón-Zygmund constant CK .
We begin by the shorter part, that is

2.12.1 “
ÿ

Q

ż

Q

ż

ShpQqz2Q

ż

Sh4pQq

|fpzq ´ fQ| |1 ´ φQpzq| dz

|x´ y|
s` d

q |x´ z|d
gpx, yq dy dx.

Using the fact that 1 ´ φQpzq “ 0 when z is close to the cube Q, we can say that

2.12.1 À
ÿ

Q

1

ℓpQq
s` d

q `d

ż

Sh4pQqz6Q

|fpzq ´ fQ|

ż

Q

ż

ShpQqz2Q

gpx, yq dy dx dz.

Now, by the Hölder inequality we have that
ż

ShpQqz2Q

gpx, yq dy Àρε,d GpxqℓpQq
d
q ,

where Gpxq “ }gpx, ¨q}Lq1 . Thus,

2.12.1 À
ÿ

Q

ż

Sh4pQq

|fpzq ´ fQ|

ℓpQqs`d

ż

Q

Gpxq dx dz À
ÿ

Q

ż

Q

ż

Sh4pQq

|fpzq ´ fpξq|

ℓpQqs`d
MGpξq dz dξ.

Finally, by Jensen’s inequality and the boundedness of the maximal operator in Lp1

we have that

ÿ

Q

ż

Q

ż

Sh4pQq

|fpzq ´ fpξq|

ℓpQqs`d
MGpξq dz dξ À

ÿ

Q

ż

Q

˜

ż

Sh4pQq

|fpzq ´ fpξq|
q

ℓpQqsq`d
dz

¸
1
q

MGpξq dξ (5.23)

À

˜

ż

Ω

ˆ
ż

Ω

|fpzq ´ fpξq|
q

|z ´ ξ|sq`d
dz

˙

p
q

dξ

¸
1
p

}MG}Lp1 ,

that is,
2.12.1 À }f}F s

p,qpΩq. (5.24)

The second term in (5.22) is the most delicate one. Given cubes Q, S and P and points y P S
and z P P with 1 ´ φQSpzq ‰ 0, we have that |z ´ y| « DpS, P q. Therefore, we can write

2.22.2 “
ÿ

Q

ż

Q

ÿ

SĂShpQqz2Q

ż

S

ż

Sh4pQq

|fpzq ´ fQ| |1 ´ φQSpzq| dz

|x´ y|
s` d

q |y ´ z|d
gpx, yq dy dx

À
ÿ

Q

ż

Q

ÿ

SPSHpQq

ż

S

ÿ

PPSH4pQq

ż

P

|fpzq ´ fQ| dz

ℓpQq
s` d

q DpS, P qd
gpx, yq dy dx.
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Next, we change the focus on the sum. Consider an admissible chain connecting two given
cubes S and P both in SH4

pQq. Then DpS, P q « ℓpSP q. Of course, using (2.4) and the fact that
S and P are in SH4

pQq we get

DpQ,SP q À DpQ,Sq ` DpS, SP q « DpQ,Sq ` DpS, P q À 2DpQ,Sq ` DpQ,P q À ℓpQq

and, therefore, the cube SP is contained in some SHρ5
pQq for a certain constant ρ5 depending on

d and ε. For short, we write L :“ SP P SH5
pQq and Sh5

pQq :“ Shρ5
pQq. Then

2.22.2 À
ÿ

Q

ż

Q

ÿ

LPSh5pQq

ÿ

SPSHpLq

ż

S

ÿ

PPSHpLq

ż

P

|fpzq ´ fQ| dz

ℓpQq
s` d

q ℓpLqd
gpx, yq dy dx

“
ÿ

Q

1

ℓpQq
s` d

q

ż

Q

ÿ

LPSH5pQq

ż

ShpLq

|fpzq ´ fQ| dz
1

ℓpLqd

ż

ShpLq

gpx, yq dy dx. (5.25)

If we write gxpyq “ gpx, yq, we have that for any cube L the integral

ż

ShpLq

gpx, yq dy ď ℓpLqd inf
L
Mgx.

Arguing as before, for ρ6 big enough we have that if L P SH4pQq, then ShpLq Ă Shρ6
pQq “:

Sh6
pQq and therefore

ż

ShpLq

|fpzq ´ fQ| dz “

ż

ShpLq

|fpzq ´ fQ|χSh6pQqpzq dz À

ż

L

M rpf ´ fQqχSh6pQqspξq dξ.

Back to (5.25) we have that

2.22.2 À
ÿ

Q

1

ℓpQq
s` d

q

ż

Q

ÿ

LPSH5pQq

ż

L

M rpf ´ fQqχSh6pQqspξqMgxpξq dξ dx

“
ÿ

Q

1

ℓpQq
s` d

q

ż

Q

ż

Sh5pQq

M rpf ´ fQqχSh6pQqspξqMgxpξq dξ dx

and, by Hölder’s inequality and the boundedness of the maximal operator in Lq and Lq1

, we have
that

2.22.2 À
ÿ

Q

1

ℓpQq
s` d

q

ż

Q

˜

ż

Sh5pQq

M rpf ´ fQqχSh6pQqspξqq dξ

¸
1
q
˜

ż

Sh5pQq

Mgxpξqq
1

dξ

¸
1
q1

dx

Àq

ÿ

Q

1

ℓpQq
s` d

q

ż

Q

˜

ż

Sh6pQq

|fpξq ´ fQ|
q
dξ

¸
1
q ˆż

Ω

gpx, ξqq
1

dξ

˙
1
q1

dx.

Again, we write Gpxq “ }gpx, ¨q}Lq1 and by Minkowski’s integral inequality we get that

2.22.2 À
ÿ

Q

1

ℓpQq
s` d

q `d

˜

ż

Sh6pQq

ˆ
ż

Q

|fpξq ´ fpζq| dζ

˙q

dξ

¸
1
q ż

Q

Gpxq dx

À
ÿ

Q

1

ℓpQq
s` d

q

ż

Q

˜

ż

Sh6pQq

|fpξq ´ fpζq|
q
dξ

¸
1
q

MGpζq dζ.
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Thus,

2.22.2 À

˜

ż

Ω

ˆ
ż

Ω

|fpξq ´ fpζq|
q

|ξ ´ ζ|sq`d
dξ

˙

p
q

dζ

¸
1
p

}MG}Lp1 À }f}F s
p,qpΩq. (5.26)

Back to (5.21), it remains to bound BB and CC . For the first one,

BB “
ÿ

Q

ż

Q

ÿ

SĂShpQqz2Q

ż

S

ş

ΩzSh4pQq
|λQQpx, zq ´ λQSpy, zq| dz

|x´ y|
s` d

q

gpx, yq dy dx,

just note that if x P Q, y P S P SHpQq and z R Sh4
pQq we have that φQQpzq “ φQSpzq “ 0 and,

if ρ4 is big enough, |x ´ z| ą 2|x ´ y|. Thus, we can use the smoothness condition (5.2), that is,

|λQQpx, zq ´ λQSpy, zq| ď |Kpx´ zq ´Kpy ´ zq| |fpzq ´ fQ| ď CK
|fpzq´fQ||x´y|

s

|x´z|d`s .

In the last term in (5.21),

CC “
ÿ

Q

ż

Q

ż

5Q

ş

Ω
|λQQpx, zq ´ λQQpy, zq| dz

|x´ y|
s` d

q

gpx, yq dy dx,

we are integrating in the region where x P Q, y P 5Q and z R 6Q because otherwise 1 ´ φQpzq

would vanish. Also |x´ z| ą Cd|x´y| and |x´ z| « |y´ z|. Thus, we have again that |λQQpx, zq ´

λQQpy, zq| ď |Kpx´ zq ´Kpy ´ zq| |fpzq ´ fQ| À CK
|fpzq´fQ||x´y|

s

|x´z|d`s by (5.2) and (5.1) (one may

use the last one when 2|x´ y| ě |x´ z| ą Cd|x´ y|, that is |x´ y| « |x´ z| « |y ´ z|).
Summing up,

BB ` CC ÀCK

ÿ

Q

ż

Q

ż

ShpQq

ż

Ωz6Q

|fpzq ´ fQ||x´ y|s dz

|x´ y|
s` d

q |x´ z|d`s
gpx, yq dy dx “: 2.32.3 . (5.27)

with constants depending linearly on the Calderón-Zygmund constant CK . Reordering,

2.32.3 “
ÿ

Q

ż

Q

ż

Ωz6Q

|fpzq ´ fQ| dz

|x´ z|d`s

ż

ShpQq

gpx, yq dy

|x´ y|
d
q

dx.

The last integral above is easy to bound by the same techniques as before: Given x P Q P W, since
d
q ă d, by (2.11), Hölder’s Inequality and the boundedness of the maximal operator in Lq1

we have
that

ż

ShpQq

gpx, yq dy

|x´ y|
d
q

À ℓpQq
d´ d

q inf
Q
Mgx ď ℓpQq

´ d
q

ż

Q

Mgx ď }Mgx}Lq1 Àq Gpxq.

Thus,

2.32.3 À
ÿ

Q

ż

Q

ÿ

P

ż

P

|fpzq ´ fQ| dz

DpP,Qqd`s
Gpxq dx.

For every pair of cubes P,Q P W, there exists an admissible chain rP,Qs and, writing rP, PQq for
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the subchain rP, PQsztPQu and rPQ, Qq for rPQ, QsztQu, we get

2.32.3 À
ÿ

Q

ż

Q

ÿ

P

ż

P

|fpzq ´ fP | dz

DpP,Qqd`s
Gpxq dx (5.28)

`
ÿ

Q

ż

Q

ÿ

P

ÿ

LPrP,PQq

|fL ´ fN pLq|ℓpP qd

DpP,Qqd`s
Gpxq dx

`
ÿ

Q

ż

Q

ÿ

P

ÿ

LPrPQ,Qq

|fL ´ fN pLq|ℓpP qd

DpP,Qqd`s
Gpxq dx “: 2.3.12.3.1 ` 2.3.22.3.2 ` 2.3.32.3.3 .

The first term in (5.28) can be bounded by reordering and using (2.10). Indeed, we have that

2.3.12.3.1 ď
ÿ

P

ż

P

ż

P

|fpzq ´ fpξq| dξ dz

ℓpP qd

ÿ

Q

ż

Q

Gpxq dx

DpP,Qqd`s
À
ÿ

P

ż

P

ż

P

|fpzq ´ fpξq| dξMGpzq dz

ℓpP qd`s
,

and, by (5.23) we have that

2.3.12.3.1 À }f}F s
p,qpΩq. (5.29)

For the second term in (5.28) note that given cubes L P rP, PQs we have that DpP,Qq « DpL,Qq

by (2.6) and P P ShpLq by Definition 2.5. Therefore, by (2.10) we have that

2.3.22.3.2 À
ÿ

L

1

ℓpLq2d

ż

L

ż

5L

|fpξq ´ fpζq| dζ dξ
ÿ

Q

1

DpL,Qqd`s

ż

Q

Gpxq dx
ÿ

PPSHpLq

ℓpP qd

À
ÿ

L

1

ℓpLq2d

ż

L

ż

5L

|fpξq ´ fpζq|
MGpζq

ℓpLqs
dζ dξℓpLqd “

ÿ

L

ż

L

ż

5L

|fpξq ´ fpζq|MGpζq

ℓpLqd`s
dζ dξ,

and, again by (5.23), we have that

2.3.22.3.2 À }f}F s
p,qpΩq. (5.30)

Finally, the last term of (5.28) can be bounded analogously: Given cubes L P rPQ, Qs we have
that DpQ,P q « DpL,P q by (2.6), and

2.3.32.3.3 À
ÿ

L

1

ℓpLq2d

ż

L

ż

5L

|fpξq ´ fpζq| dζ dξ
ÿ

QPSHpLq

ż

Q

Gpxq dx
ÿ

P

ℓpP qd

DpP,Lqd`s

À
ÿ

L

ż

L

ż

5L

|fpξq ´ fpζq|MGpζq dζ dξ
ℓpLqd´s

ℓpLq2d
“
ÿ

L

ż

L

ż

5L

|fpξq ´ fpζq|MGpζq

ℓpLqd`s
dζ dξ,

and

2.3.32.3.3 À }f}F s
p,qpΩq. (5.31)

Now, putting together (5.21), (5.22), (5.27) and (5.28) we have that

22 ÀCK
2.12.1 ` 2.22.2 ` 2.3.12.3.1 ` 2.3.22.3.2 ` 2.3.32.3.3 ,

and by (5.24), (5.26), (5.29), (5.30) and (5.31) we have that

22 À CK}f}F s
p,qpΩq, (5.32)

with constants depending on ε, s, p, q and d. Estimates (5.20) and (5.32) prove (5.8).
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Proof of Theorem 1.1. Let Ω be a bounded ε-uniform domain. Note that since s ą d
p ą d

p ´ d
q , we

can use the Key Lemma 5.6, that is, we have that TΩ is bounded if and only if for every f P F s
p,qpΩq

we have that
ÿ

QPW
|fQ|p

›

›∇s
qTχΩ

›

›

p

LppQq
ď C}f}

p
F s

p,qpΩq
, (5.33)

with C independent from f . Since sp ą d, by Lemma 3.10 and Proposition 3.4 combined with the
Sobolev Embedding Theorem, we have the continuous embedding F s

p,qpΩq Ă L8. Therefore, given
a cube Q we have that |fQ| ď }f}L8pΩq À }f}F s

p,qpΩq and (5.33) holds as long as TχΩ P F s
p,qpΩq.

To end, we make some observations.

Remark 5.7. In the Key Lemma we have seen that

ÿ

QPW

›

›∇s
qTΩpf ´ fQq

›

›

p

LppQq
À

´

CK ` }T }F s
p,qÑF s

p,q
` }T }LpÑLp ` }T }LqÑLq

¯p

}f}
p
¨As

p,qpΩq
. (5.34)

Thus, for unbounded domains, we have a T1 theorem as well: Let Ω Ă Rd be a uniform domain, T
a convolution Calderón-Zygmund operator of order 0 ă s ă 1. Consider indices p, q P p1,8q and
d
p ă s. Then the truncated operator TΩ is bounded in F s

p,qpΩq if and only if

∇s
qTΩ1 P F s

p,qpΩq

in the sense of (5.7).

Remark 5.8. The Key Lemma is valid in a wider range of indices than Theorem 1.1 because
in the second case we have the restriction of the Sobolev embedding. In the cases where the Key
Lemma can be applied but not the theorem above, that is, when

max

"

0,
d

p
´
d

q

*

ă s ď min

"

σ,
d

p

*

,

there is room to do some steps forward.
In [PT15, Theorems 1.2 and 1.3], the authors consider the measures µP pxq “ |∇sTΩP pxq|p dx

for polinomials P of degree smaller than the smoothness s P N (here the s-th gradient has its usual
meaning). They conclude that if µP is a p-Carleson measure for every such P , that is, if

ż

ĂShpaq

distpx, BΩqpd´pqp1´p1
qpµP pShpxq X Shpaqqqp

1 dx

distpx, BΩqd
ď CµP pShpaqq,

then TΩ is bounded in W s,ppΩq, and, in case s “ 1, the condition is necessary and sufficient.

Some similar result can be found in the case max
!

0, dp ´ d
q

)

ă s ď min
!

σ, dp

)

, but is out of

the scope of the present article.
Furthermore, the restriction d

p ´ d
q ă s comes from the intrinsic characterization that we use for

the present article, which we think is the easier to handle in our proofs. However, there are other
characterizations (see [Str67] or [Tri06, Section 1.11.9]) which cover all the range of indices. There
is hope that this characterizations may be used to obtain a result analogous to the Key Lemma 5.6
for a wider range.

Remark 5.9. For 1 ă p, q ă 8 and 0 ă s ă 1
p , we have that the multiplication by the characteristic

functions of a half plane is bounded in F s
p,qpRdq. This implies that for domains Ω whose boundary

consists on a finite number of polygonal boundaries, the pointwise multiplication with χΩ is also
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bounded and, using characterizations by differences, this property can be seen to be stable under
bi-Lipschitz changes of coordinates. Summing up, given any Lipschitz domain Ω and any function
f P F s

p,qpRdq, we have that
}χΩ f}F s

p,qpRdq À }f}F s
p,qpRdq.

Therefore, if s ą d
p ´ d

q and T is an operator bounded in F s
p,q, using the extension Λ0 : F s

p,qpΩq Ñ

F s
p,qpRdq (see Corollary 3.11), for every f P F s

p,qpΩq we have that

}TΩf}F s
p,qpΩq “ }T pχΩ Λ0fq}F s

p,qpΩq ď }T pχΩ Λ0fq}F s
p,q

ď }T }F s
p,qÑF s

p,q
}χΩ Λ0f}F s

p,q
À }Λ0f}F s

p,q

À }f}F s
p,qpΩq.

In particular, given a convolution Calderón-Zygmund operator T and a Lipschitz domain Ω we
have that TΩ is bounded in F s

p,qpΩq for any 0 ă s ă 1
p .

Acknowledgements

The authors want to express their gratitude towards Hans Triebel who gave them some
hints on how to extend their results on W s,p and Bs

p,p to the wider class of spaces F s
p,qpΩq

when s ą max
!

0, d
p

´ d
q

)

. We are also grateful to Antti Vähäkangas who brought the reference
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[Väi88] Jussi Väisälä. Uniform domains. Tohoku Math. J. (2), 40(1):101–118, 1988.

37


