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Abstract

Let φ be a quasiconformal mapping, and let Tφ be the composition operator which maps
f to f ˝ φ. Since φ may not be bi-Lipschitz, the composition operator need not map Sobolev
spaces to themselves. The study begins with the behavior of Tφ on Lp andW 1,p for 1 ă p ă 8.
This cases are well understood but alternative proofs of some known results are provided.
Using interpolation techniques it is seen that compactly supported Bessel potential functions
in Hs,p are sent to Hs,q whenever 0 ă s ă 1 for appropriate values of q. The techniques used
lead to sharp results and they can be applied to Besov spaces as well.

Keywords: Sobolev spaces, fractional smoothness, quasiconformal mappings, composition
operator.

MSC 2010: 30C65, 46E35, 47A57.

1 Introduction

Given a quasiconformal homeomorphism φ : Ω Ñ Ω1 between domains in Rn, we consider the
composition operator Tφ which maps every measurable function f : Ω1 Ñ R to f˝φ. It is well known

that φ lies in a certain Sobolev space W 1,p
loc with p ą n, that is, the space of locally p-integrable

functions with locally p´integrable derivatives, and in some Hölder class Cs with 0 ă s ă 1, i.e. for
any K Ă Ω compact φ is bounded and continuous in K with |φpxq´φpyq| ď CK |x´y|

s for x, y P K.
The composition operator Tφ is a self-map of W 1,n. However, since φ may not be bi-Lipschitz, the
composition operator does not necessarily map other Sobolev spaces to themselves.

A characterization of homeomorphisms which give rise to bounded composition operators is
given in [Ukh93] and [Kle12].

Over the last decade, the study on the stability of the planar Calderón inverse conductivity
problem raised questions on the range of Tφ. The ground-breaking work of Astala and Päivärinta
[AP06] showing uniqueness of the solution to the problem was adapted by Barceló, Faraco and
Ruiz in [BFR07] to provide stability in Lipschitz domains with only Hölder a priori conditions on
the conductivities. Some years later, Clop, Faraco and Ruiz weakened the a priori assumption
on the conductivities to just a fractional Sobolev condition in [CFR10], allowing the method
to be applied to non-continuous conductivities, and later on the regularity assumptions on the
boundary of the domain where severely reduced in [FR13]. A deeper knowledge of the behavior
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of the composition operator may lead to better numerical methods for the electric impedance
tomography (see [AMPS10], for instance).

We study quasiconformal mappings φ whose Jacobian determinant Jφ satisfies the estimates

ˆ
ż

U

Jφpxq
a dx

˙
1
a

ď Ca, and

ˆ
ż

U

Jφpxq
´b dx

˙
1
b

ď Cb (1.1)

for values a ą 1 and b ą 0, where U Ă Rn is a certain domain (open and connected set).
The existence of these values for any domain U compactly contained in Ω can be derived from
quasiconformality itself, but we may have better exponents for particular mappings, and this will
imply better behavior of the composition operator.

In [HK08, Theorems 1.1 and 1.2], it is shown that, under the first condition in (1.1) the
composition operator Tφ sends compactly supported W 1,p functions to W 1,q for certain couples
n ď q ă p, that is, some integrability of the function and its gradient is lost. The main result of
the present paper shows that this loss of integrability is common to all the Bessel potential spaces
Hs,p with 0 ď s ď 1 and 1 ă p ă 8 and Besov spaces Bsp,r with 0 ă s ă 1, 1 ă p ă 8 and
0 ă r ď 8 (see Section 3 for the definitions). Note that H0,p “ Lp and H1,p “W 1,p.

Theorem 1.1. Let n ě 2, 0 ď s ď 1 and 1 ă p ă 8. Given a quasiconformal mapping φ : Ω Ñ Ω1

between two domains in Rn, a ball B with 2B Ă Ω, a ball B1 with φp2Bq Ă B1 and positive real

numbers a, b, Ca and Cb satisfying (1.1) for U “ 2B, let q be defined by 1
q “

1
p `

1
c

ˇ

ˇ

ˇ

s
n ´

1
p

ˇ

ˇ

ˇ
, where

we take c “ a if sp ě n and c “ b if sp ă n. If q ą 1, then there exists a constant C such that

}Tφf}Hs,qpBq ď C}f}Hs,ppB1q (1.2)

and, if in addition s R t0, 1u, then

}Tφf}Bsq,rpBq
ď C}f}Bsp,rpB1q (1.3)

for every locally integrable function f and every 0 ă r ď 8, with constants not depending on φ. If
s P t0, 1u and p “ 8, then (1.2) holds as well.

Previous results ([CFR10, Proposition 4.2] and [HK13, Theorem 1.2]) show that Tφ sends
compactly supported Hs,q X L8 functions (with 0 ă s ă 1) to Hβ,q functions for certain β ă s,
that is, with a loss on the smoothness parameter. More precisely, the statement of the latter
theorem settles that question for mappings between diagonal Besov spaces Bsq,q Ñ Bβq,q, and it

establishes the supremum of the admissible values of β as bs
b`1´ sqn

“
s
q

1
q`

1
b p

1
q´

s
n q

.

These results can be recovered from Theorem 1.1. Indeed, by [RS96, Theorem 2.2.5], for
0 ă s ă 8, 0 ă q ă 8, 0 ă r, ` ď 8 and 0 ă Θ ă 1,

}f}FΘs
q
Θ
,r

ď Cs,q,r,Θ}f}F sq,`
}f}L8 and }f}BΘs

q
Θ
, r
Θ

ď Cs,q,r,Θ}f}Bsq,r}f}L8 .

For sq ă n, taking β :“
s
q

1
q`

1
b p

1
q´

s
n q

and p so that 1
q “

1
p `

1
b

´

1
p ´

β
n

¯

one can check that β
s “

1{p
1{q .

Thus, chosing Θ “
q
p , r :“ q and given a function f P Bsq,q X L8 with compact support, we have

that }f}Bβp,p ď C}f}Bsq,q}f}L8 . Using Theorem 1.1, it follows that

}Tφf}Bβq,ppBq ď Cs,p,q}f}Bβp,ppBq ď C}f}Bsq,q}f}L8 ,

recovering [HK13, Theorem 1.2] by elementary embeddings and obtaining the end-point with a
change on the secondary integrability index. In Bessel potential spaces the estimate reads as

}Tφf}Hβ,qpBq ď Cs,p,q}f}Hβ,ppBq ď C}f}Hs,q}f}L8 .
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However, the result in [HK13, Theorem 1.1] can only be partially recovered. Indeed, condition

(1.1) implies that φ´1 PW 1,npb`1qpUq, arguing as in (2.2) below. Thus, φ´1 P C
b
b`1 pUq. Therefore,

φ satisfies that
|φpBq| ě C|B|α (1.4)

for every ball B Ă U , with α “ b`1
b . According to [HK13, Theorem 1.1] this implies that given

a function f P Bsq,qpφpBqq, the composition operator maps it to f ˝ φ P Bβq,qpBq, where β “
n
q ´ α

´

n
q ´ s

¯

. As before, one can check that this statement when α “ b`1
b is a consequence of

Theorem 1.1 using the embeddings

}f}Fβp,r ď Cs,q,r,`}f}F sq,`
and }f}Bβp,r ď Cs,q,r}f}Bsq,r ,

which hold because β “ s ´ n
q `

n
p (see [Tri83, Theorem 2.7.1]). As the reader may note, there

may be values of α ă b`1
b for which (1.4) holds but with no counterpart in the spirit of (1.1). The

planar case illustrates how this result must be taken into account.
Indeed, given a K-quasiconformal mapping φ : CÑ C, we may choose

´bK ă ´b ă 0 ă a ă aK

where bK :“ 1
K´1 and let aK :“ K

K´1 . In [AIM09, Theorem 13.4.2] it is shown that Jaφ and J´bφ
are locally integrable, with  

B

Jaφ ď
CK

1´ a
aK

ˆ

|φpBq|

|B|

˙a

,

and  
B

J´bφ ď
CK

1´ b
bK

ˆ

|B|

|φpBq|

˙b

.

On the other hand, although for b “ bK this integral may blow up (see [AIM09, Theorem 13.2.3],
for instance), still we have the end-point Hölder regularity

|φpBq| ě C|B|K .

Combining Theorem 1.1 and [HK13, Theorem 1.1] we get the following corollary.

Corollary 1.2. Let K ě 1. Let 0 ď s ď 1 and 1 ă p ă 8. Given domains Ω,Ω1 Ă C, a
K-quasiconformal mapping φ : Ω Ñ Ω1, a ball B with 2B Ă Ω, a ball B1 with φp2Bq Ă B1, if

1 ą 1
q ą

1
p `

1
cK

ˇ

ˇ

ˇ

s
2 ´

1
p

ˇ

ˇ

ˇ
(where we take cK “ aK if sp ě 2 and cK “ bK if sp ă 2), there exists a

constant C such that
}Tφf}Hs,qpBq ď C}f}Hs,ppB1q

and, if s R t0, 1u, then
}Tφf}Bsq,rpBq

ď C}f}Bsp,rpB1q.

Moreover, whenever sp ă 2 and β “ s´ pK ´ 1q
´

2
p ´ s

¯

ą 0, we have that

}Tφf}Bβp,ppBq ď C}f}Bsp,ppB1q.

The results in Theorem 1.1 and Corollary 1.2 are sharp concerning the loss of integrability. In
the critical setting (sp “ n), this fact is obvious since the composition is a self-map for these spaces.
Both examples presented in [HK13] illustrate the sharpness of the subcritical setting (sp ă n),
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adapting the arguments above. In Section 4 we check that this extends to the Bessel-potential
subcritical setting and we adapt one of these examples to the supercritical setting (sp ą n).

In conclusion, we have seen that better integrability properties of the derivatives of quasicon-
formal mappings imply less loss of integrability in the composition, while better Hölder regularity
implies less loss of smoothness. In general, we expect the integrability properties to be an open
condition for higher dimensions as it happens in dimension 2 (see [AIM09, Section 13.4.1]). In
higher dimensions, it is conjectured that one can take b ă bK :“ 1

Kp1{n´1q´1
in (1.1). If this is the

case, the Hölder condition of the inverse mapping of exponent K´1{pn´1q, which coincides with the
Sobolev embedding of the conjectured endpoint Sobolev space for the inverse mapping, is reached
by quasisymmetry (see [Kos]), that is, a closed condition for the loss of smoothness. It remains
to see if this extends to the supercritical case and what happens in the fractional spaces between
both end-points. We believe that these techniques can be applied to the finite distortion setting
described in [Kle12].

The paper is structured as follows. In Section 2 we revisit the proofs of the loss of integrability
in the classical Lebesgue and Sobolev spaces. In Section 3, we derive the proof of Theorem 1.1 by
a subtle interpolation of those classical results. Finally, in Section 4, we check the sharpness of the
main theorem.

2 Classical spaces

2.1 Composition in Lebesgue spaces

Definition 2.1. Let 1 ď K ă 8 and let Ω,Ω1 be two domains in Rn. We say that a homeomor-
phism φ : Ω Ñ Ω1 is a K-quasiconformal mapping if φ PW 1,1

loc pΩq, and the distributional Jacobian
matrix Dφ satisfies the distortion inequality

|Dφpxq|n ď K|Jφpxq| a.e. x P Ω,

where Jφ stands for the Jacobian determinant of φ and |A| “ sup|h|“1 |A ¨ h| stands for the usual
operator norm of a matrix A.

We recall some properties of K-quasiconformal mappings.

Theorem 2.2 (see [Kos, Remark 6.1, Theorem 6.3]). Let φ : Ω Ñ Ω1 be a K-quasiconformal
mapping between planar domains. Then

1. φ PW 1,p
loc for some p ą n depending on K.

2. Either Jφ ą 0 almost everywhere or Jφ ă 0 almost everywhere.

3. For E Ă Ω measurable, |E| “ 0 if and only if |φpEq| “ 0.

4. Given a ball B Ă 2B Ă Ω and a measurable set E Ă B, there are constants C and α
depending on n and K such that

|φpEq|

|φpBq|
ď C

ˆ

|E|

|B|

˙α

.

5. φ´1 is a Kn´1-quasiconformal mapping.

6. Moreover, given f P L1pΩ1q, we have that f ˝ φ |Jφ| P L
1pΩq with

ż

Ω

fpφpzqq|Jφpzq| dmpzq “

ż

Ω1
fpwq dmpwq. (2.1)
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From now on we assume Jφ ą 0 almost everywhere.

Corollary 2.3. There exist a “ aK ą 1 and b “ bK ą 0 such that for every K-quasiconformal
mapping φ : Ω Ñ Ω1 and every measurable set U contained in a ball B with 2B Ă Ω, there exist
constants Ca, Cb depending on K, a (resp. b), |B| and |φpBq|, such that (1.1) holds.

Proof. Take aK “
p
n from the first property in the theorem above.

ż

B

Jφpxq
aK dmpxq ď }Dφ}LppBq ď Ca.

Take bK “ aKn´1 ´ 1 and the last item above:
ż

B

Jφpxq
´bK dmpxq “

ż

B

JφpxqJφpxq
´bK´1 dmpxq “

ż

φpBq

Jφ´1pxqbK`1 dmpxq ď Cb. (2.2)

By the fifth property, the corollary follows.

Next we see how does interact the composition operator with Lebesgue spaces.

Lp Lq

1
p

1
q

1
bp

Figure 2.1: Action of the composition operator described in Lemma 2.4. The gap (loss of integra-
bility) is proportional to 1

p .

Lemma 2.4. Let n ě 2, K ě 1 and 0 ă p ď 8. Given a K-quasiconformal mapping φ : Ω Ñ Ω1

between two domains in Rn and a function f P LppΩ1q, let b and Cb satisfy (1.1) for U “ Ω and
let q be defined as 1

q “
1
p `

1
b

1
p . We have that

}f ˝ φ}LqpΩq ď C
1
p

b }f}LppΩ1q.

Proof. The case p “ 8 being trivial, let us assume that p ă 8. By the Hölder inequality

}f ˝ φ}LqpΩq “

›

›

›

›

f ˝ φJ
1
p

φ J
´ 1
p

φ

›

›

›

›

LqpΩq

ď

ˆ
ż

Ω

|f ˝ φpxq|pJφpxq dmpxq

˙
1
p
ˆ
ż

Ω

Jφpxq
´b dmpxq

˙
1
b

1
p

.

Note that φ acts as a change of variables by Theorem 2.2, so

}f ˝ φ}LqpΩq ď C
1
p

b }f}LppφpΩqq.

Let us write B1 for the ball with radius 1 centered at the origin. There exists a bump function
ϕ P C8c p2B1q, such that χB1

ď ϕ ď χ2B1
. For every ball B we define ϕB by precomposing ϕ with

an appropriate affine mapping, so that χB ď ϕB ď χ2B .
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Definition 2.5. Let φ : Ω Ñ Ω1 be a K-quasiconformal mapping. Then, the composition operator

Tφ : L
1` 1

bK

loc pΩ1q Ñ L1
locpΩq is defined as

Tφf :“ f ˝ φ.

Moreover, for every ball B with 2B Ă Ω, we define

TBφ f :“ ϕB ¨ f ˝ φ.

Corollary 2.6. Let K ě 1 and 0 ă p ď 8. Suppose that φ : Ω Ñ Ω1 is a K-quasiconformal
mapping and f P LppΩ1q. Let B be a ball with 2B Ă Ω, and let b and Cb satisfy (1.1) for U “ 2B.
If 1

q “
1
p `

1
pb , then

›

›TBφ
›

›

LpÑLq
ď C

1
p

b .

2.2 Composition in classical Sobolev spaces

In this section we study the behavior of the composition operator in Sobolev spaces W 1,p with
1 ď p ď 8. The following is partially contained in [HK08, Theorems 1.1 and 1.2]. In that case
only the critical and supercritical cases are covered.

W 1,p W 1,q

sp “ n
s

1
bd

1
n

1
p

1
q

d

(a) Subcritical setting.

W 1,p W 1,q

sp “ n
s

1
ad

1
p

1
q

1
n

(b) Supercritical setting.

Figure 2.2: Action of the composition operator described in Theorem 2.7. The gap (loss of in-
tegrability) is proportional to d, i.e. to the horizontal distance to the critical line (which is the
homogeneity of the space seminorm under rescaling divided by n).

Next we present a particular case of [Kle12, Theorem 1.3], which we prove for the sake of
completeness and to keep control on the constants.

Theorem 2.7. Let n ě 2, K ě 1 and 1 ă p ď 8. Given a K-quasiconformal mapping φ : Ω Ñ Ω1

between two domains in Rn and a function f P W 1,ppΩ1q, let a, b, Ca and Cb be real numbers
satisfying (1.1) for U “ Ω and let q be defined as follows:

• If n ă p ď 8, 1
q “

1
p `

1
a

´

1
n ´

1
p

¯

.

• If p “ n, 1
q “

1
p .

• If 1` n´1
nb`1 ď p ă n, 1

q “
1
p `

1
b

´

1
p ´

1
n

¯
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(see Figure 2.2). We have that

}∇pf ˝ φq}LqpΩq ď K
1
nC
| 1
n´

1
p |

c }∇f}LppΩ1q, (2.3)

where c stands for a (resp. b or 1 with C1 “ 1) if we are in the supercritical (resp. subcritical or
critical) case.

Note that 1 ě 1
q is granted in the supercritical and the critical cases, while in the subcritical it

is equivalent to p ě 1` n´1
nb`1 .

Proof. By the chain rule (use that |Dφ|n

Jφ
P L8 and apply [Kle12, Theorem 1.3] for instance) we

have that

}∇pf ˝ φq}LqpΩq ď
ˆ
ż

Ω

|∇fpφpzqq|q|Dφpzq|q
˙

1
q

ď K
1
n

ˆ
ż

Ω

|∇fpφpzqq|q|Jφpzq|
q
n

˙
1
q

.

In case p “ q “ n, by (2.1) we have shown that

}∇pf ˝ φq}LppΩq ď K
1
n }∇f}LppφpΩqq.

We need to study the supercritical and the subcritical cases. Let 1 ă p ă 8 with p ‰ n (the
case p “ 8 follows by an analogous reasoning). The Hölder inequality implies that

}∇pf ˝ φq}LqpΩq ď K
1
n

ˆ
ż

Ω

|∇fpφpzqq|p|Jφpzq|
˙

1
p
ˆ
ż

Ω

Jφpzq
p qn´

q
p q

p
p´q

˙

p´q
pq

ď K
1
n

ˆ
ż

Ω

Jφpzq
p´n
n

q
p´q

˙

p´q
pq

}∇f}LppφpΩqq,

and it remains to control the integral of the Jacobian. For (1.1) to apply we need that p´n
n

q
p´q

equals a or ´b depending on the setting.
First we study the supercritical case, p ą n. Since p ą q, we have that p´n

n
q
p´q ą 0, and we

only need to check that
p´ n

n

q

p´ q
“ a,

that is, p´q
pq “

p´n
nap , which is equivalent to our first assumption

1

q
“

1

p
`

1

a

ˆ

1

n
´

1

p

˙

.

Next we study the case p ă n and p ą q. Here p´n
n

q
p´q ă 0, and we will check the other

equality, that is p´n
n

q
p´q “ ´b, or, changing signs,

n´ p

n

q

p´ q
“ b,

which is equivalent to p´q
pq “

n´p
nbp and finally, to

1

q
“

1

p
`

1

b

ˆ

1

p
´

1

n

˙

.
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Corollary 2.8. Let K ě 1 and 1 ă p ď 8. Given a K-quasiconformal mapping φ : Ω Ñ Ω1, let
B be a ball with 2B Ă Ω, let B1 a ball with φp2Bq Ă B1, and let b ą 0 and Cb satisfy (1.1) for
U “ 2B. Let q be defined as before. If p ą n, then

›

›TBφ
›

›

W 1,pÑW 1,q ď CK,n,p,q,|B|,|B1|

ˆ

1` C
1
n´

1
p

a

˙

.

If p “ n, then
›

›TBφ
›

›

W 1,nÑW 1,n ď CK,n,b,Cb,|B|,|B1|.

If 1` n´1
nb`1 ď p ă n, then

›

›TBφ
›

›

W 1,pÑW 1,q ď CK,n,p,q,|B|,|B1|C
1
p´

1
n

b .

Proof. We will assume that B “ B1 “ B1, which can be achieved by translation and rescaling. Let
f PW 1,p. First take n ą p ą q, and let 1

q˚ “
1
q ´

1
n . By Leibniz’ rule and Hölder’s inequality,

}∇pϕ ¨ f ˝ φq}Lqp2B1q
ď }∇ϕ ¨ f ˝ φ}Lqp2B1q

` }ϕ ¨∇pf ˝ φq}Lqp2B1q

ď }∇ϕ}Ln}f ˝ φ}Lq˚ p2B1q
` }ϕ}L8}∇pf ˝ φq}Lqp2B1q

. (2.4)

Since 1
q˚ “

1
q ´

1
n “

1
p˚ `

1
b

1
p˚ , Lemma 2.4 and the Gagliardo-Nirenberg-Sobolev inequality (see

[Eva98, Theorem 5.6.1/2], for instance) give

}f ˝ φ}Lq˚ p2B1q
ď C

1
p˚

b }f}Lp˚ pφp2B1qq
ď C

1
p´

1
n

b }f}Lp˚ pB1q
ď Cp,nC

1
p´

1
n

b }f}W 1,ppB1q
.

Theorem 2.7 gives

}∇pf ˝ φq}Lqp2B1q
ď K

1
nC

1
p´

1
n

b }∇f}Lppφp2B1qq
.

Back to (2.4), we have shown that

}∇pϕB ¨ f ˝ φq}Lqp2B1q
ď CK,n,pC

1
p´

1
n

b }f}W 1,p .

By the Poincaré inequality,

}ϕ ¨ f ˝ φ}W 1,q ď C}∇pϕ ¨ f ˝ φq}Lqp2B1q
ď CK,n,pC

1
p´

1
n

b }f}W 1,p .

The critical case, p “ q “ n, instead of (2.4) we use

}∇pϕ ¨ f ˝ φq}Lnp2B1q
ď }∇ϕ}L8}f ˝ φ}Lnp2B1q

` }ϕ}L8}∇pf ˝ φq}Lnp2B1q
.

Theorem 2.7 gives

}∇pf ˝ φq}Lnp2B1q
ď K

1
n }∇f}Lnpφp2B1qq

ď K
1
n }∇f}Ln

and using Lemma 2.4 and the continuous embedding W 1,npB1q Ă L
pb`1qn
b pB1q we obtain

}f ˝ φ}Lnp2B1q
ď C

b
b`1

1
n

b }f}
L
pb`1qn
b pφp2B1qq

ď C
b
b`1

1
n

b }f}
L
pb`1qn
b pB1q

ď Cb,n,Cb}f}W 1,n .

Using again the Poincaré inequality we end the proof.
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In the supercritical case, we can use the algebra structure of W 1,qp2B1q (see [RS96, Section
4.6.4], for instance) to get

}ϕ ¨ f ˝ φ}W 1,q ď Cn,q}ϕ}W 1,qp2B1q
}f ˝ φ}W 1,qp2B1q

“ Cn,q

´

}f ˝ φ}Lqp2B1q
` }∇pf ˝ φq}Lqp2B1q

¯

.

By Theorem 2.7 we obtain that

}ϕ ¨ f ˝ φ}W 1,q ď Cn,q

ˆ

}f}L8pB1q
`K

1
nC

1
n´

1
p

a }∇f}Lppφp2B1qq

˙

ď CK,n,p,q

ˆ

1` C
1
n´

1
p

a

˙

}f}W 1,p .

Remark 2.9. The proof given above gives constants which blow up when p Ñ n, because they
depend on Gagliardo-Niremberg and Morrey inequalities. However, one can show using the (exact)
real interpolation functor with the critical case (see [BL76, Theorems 4.1.2 (5) and 3.1.2]) that

there exists a constant C “ CK,n,p,b,Cb,a,Ca,|B|,|B1| which depends continuously on p P
”

nb`n
nb`1 ,8

¯

such that
›

›TBφ
›

›

W 1,pÑW 1,q ď C.

3 Fractional Spaces

3.1 A note on interpolation

When dealing with fractional smoothness there are two families which are studied the most, the
Besov and the Triebel-Lizorkin scale, which include a number of classical function spaces, as the
Hölder-Zygmund class, the Bessel potentials, the Sobolev traces... (see [Tri83, Section 2.3.5]). We
recall their definition:

Definition 3.1. Let ΦpRnq be the collection of all the families Ψ “ tψju
8
j“0 Ă C8c pRnq such that

"

suppψ0 Ă Dp0, 2q,
suppψj Ă Dp0, 2j`1qzDp0, 2j´1q if j ě 1,

for all multiindex α P Nn there exists a constant cα such that

}Dαψj}8 ď
cα

2j|α|
for every j ě 0

and
8
ÿ

j“0

ψjpxq “ 1 for every x P Rn.

Definition 3.2. Given any Schwartz function ψ P SpRnq, its Fourier transform is

Fψpζq “

ż

Rn
e´2πix¨ζψpxqdmpxq.

This notion extends to the tempered distributions SpRnq1 by duality (see [Gra08, Definition 2.3.7]).

9



Definition 3.3. Let s P R, 1 ď p ď 8, 1 ď q ď 8 and Ψ P ΦpRnq. For any tempered distribution
f P S 1pRnq we define its non-homogeneous Besov norm

}f}
Ψ
Bsp,q

“

›

›

›

!

2sj
›

›

›

´

ψj pf
¯

q

›

›

›

Lp

)
›

›

›

lq
,

and we call Bsp,q Ă S 1 to the set of tempered distributions such that this norm is finite.
Let s P R, 1 ď p ă 8, 1 ď q ď 8 and Ψ P ΦpRnq. For any tempered distribution f P S 1pRnq

we define its non-homogeneous Triebel-Lizorkin norm

}f}
Ψ
F sp,q

“

›

›

›

›

›

›

!

2sj
´

ψj pf
¯

q

)
›

›

›

lq

›

›

›

Lp
,

and we call F sp,q Ă S 1 to the set of tempered distributions such that this norm is finite.

These norms are equivalent for different choices of Ψ. Usually one works with radial ψj and
such that ψj`1pxq “ ψjpx{2q for j ě 1. Of course we will omit Ψ in our notation since it plays no
role (see [Tri83, Section 2.3]).

We will work with the so-called Bessel potential spaces

Hs,p :“ F sp,2.

For s P N and 1 ă p ă 8 we have that W s,p “ Hs,p and Lp “ H0,p.
We recall a result from interpolation theory.

Theorem 3.4 (see [BL76, Theorem 6.4.5 - (7)]). Let 0 ă s ă 1, let 1 ă p0, p1 ă 8. Let

1

p
“

1´ s

p0
`

s

p1
.

Then
pLp0 ,W 1,p1qrss “ Hs,p,

where the interpolation space p¨, ¨qrss is defined as in [BL76, Chapter 4].

Next, the interpolation property.

Theorem 3.5 (See [BL76, Theorem 4.1.2]). Let 0 ă s ă 1, let 1 ă p0, p1, q0, q1 ă 8. Let

1

p
“

1´ s

p0
`

s

p1
,

1

q
“

1´ s

q0
`

s

q1
.

Then, given a linear operator T : Lp0 `W 1,p1 Ñ Lq0 `W 1,q1 , it satisfies that

}T }Hs,p,Hs,q ď }T }
1´s
Lp0 ,Lq0 }T }

s
W 1,p1 ,W 1,q1 .

3.2 Composition in Bessel potential spaces

Proposition 3.6. Let n ě 2, K ě 1, 0 ď s ď 1 and 1` n´1
nb`1 ď p ă n

s . Given a K-quasiconformal
mapping φ : Ω Ñ Ω1 between two domains in Rn, with 2B1 Ă Ω and φp2B1q Ă B1, and real

numbers b and Cb satisfying (1.1) for U “ 2B, if 1
q :“ 1

p `
1
b

´

1
p ´

s
n

¯

ă 1, then there exists a

constant C “ CK,n,s,p,q such that

›

›

›
TB1

φ

›

›

›

Hs,pÑHs,q
ď CC

1
p´

s
n

b . (3.1)
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Proof. Since p ą q, we will argue as follows: we will find indices pλ, qλ for λ P t0, 1u, so that

1

p
“

1´ s

p0
`

s

p1
(3.2)

and
1

q
“

1´ s

q0
`

s

q1
. (3.3)

Moreover, we will need that pp0, q0q satisfy the condition in Corollary 2.6 and pp1, q1q satisfy the
condition in Corollary 2.8 . Then we will use interpolation.

We define p0, p1, q0 and q1 by the following relations:

1´ 1
p

n´ s
“

1´ 1
pλ

n´ λ
and

1´ 1
q

n´ s
“

1´ 1
qλ

n´ λ
(3.4)

for λ P t0, 1u (see Figure 3.1). It follows immediately that 1
pλ
ă 1

qλ
ă 1. It is a routine to check

that (3.3) and (3.2) are satisfied. Indeed, using (3.4) we have that

1´
1

p
“ p1´ sq

ˆ

1´
1

p

˙

` s

ˆ

1´
1

p

˙

“ p1´ sq
´

1´
s

n

¯

ˆ

1´
1

p0

˙

` s

ˆ

1`
1´ s

n´ 1

˙ˆ

1´
1

p1

˙

.

Rearranging and using (3.4) again, we get

1´
1

p
“ p1´ sq

ˆ

1´
1

p0

˙

` s

ˆ

1´
1

p1

˙

` sp1´ sq

˜

´
1´ 1

p0

n
`

1´ 1
p1

n´ 1

¸

“ p1´ sq

ˆ

1´
1

p0

˙

` s

ˆ

1´
1

p1

˙

,

showing (3.2). The counterpart (3.3) is proven using the same reasoning. Next we see that

1

q
´

1

p
“

1

b

ˆ

1

p
´
s

n

˙

ùñ
1

qλ
´

1

pλ
“

1

b

ˆ

1

pλ
´
λ

n

˙

.

So we assume the condition and plugging (3.4) we get

1

qλ
´

1

pλ
“

ˆ

1´
1

pλ

˙

´

ˆ

1´
1

qλ

˙

“
n´ λ

n´ s

ˆ

1

q
´

1

p

˙

“
n´ λ

n´ s

1

b

ˆ

1

p
´
s

n

˙

“
1

b

ˆ

n´ λ

n´ s

ˆ

1

p
´ 1

˙

`
n´ λ

n´ s
´
pn´ λqs

pn´ sqn

˙

.

Again by (3.4) we obtain

1

qλ
´

1

pλ
“

1

b

ˆ

1

pλ
´ 1`

n´ λ

n´ s
´
pn´ λqs

pn´ sqn

˙

“
1

b

ˆ

1

pλ
`
´n2 ` ns` n2 ´ nλ´ ns` λs

pn´ sqn

˙

“
1

b

ˆ

1

pλ
´
λ

n

˙

.

Thus, we can use again both Corollary 2.6 to establish

›

›

›
TB1

φ

›

›

›

Lp0ÑLq0
ď C

1
p 0

b (3.5)
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and Corollary 2.8 to find that

›

›

›
TB1

φ

›

›

›

W 1,p1ÑW 1,q1
ď CK,n,p,qC

1
p1
´ 1
n

b . (3.6)

Estimate (3.1) follows by the interpolation property in Theorem 3.5. Namely,

›

›

›
TB1

φ

›

›

›

Hs,pÑHs,q
ď

›

›

›
TB1

φ

›

›

›

1´s

Lp0ÑLq0

›

›

›
TB1

φ

›

›

›

s

W 1,p1ÑW 1,q1
ď CsK,n,p1,q1C

1
p0
p1´sq`

´

1
p1
´ 1
n

¯

s

b .

W 1,p1 W 1,q1

sp “ ns

Lp0 Lq0

Hs,p Hs,q

(a) Subcritical setting.

W 1,p1 W 1,q1

sp “ ns

L8

Hs,p Hs,q

(b) Supercritical setting.

Figure 3.1: Interpolation in the proofs of Propositions 3.6 and 3.9.

Proposition 3.6 is proven by an interpolation argument, which is summarized in Figure 3.1 (a).
The idea behind is just the Thales Theorem: horizontal lines correspond to a given smoothness
parameter s. The homogeneity in the critical line is 0, and therefore, any pair of straight lines
which intersect at the critical line will be suitable for interpolating the results in Lemma 2.4 and
Theorem 2.7. When using lines intersecting at p1, nq, we make sure that q0 ą 1 and q1 ą 1, which
is necessary for the interpolation to make sense.

Next we study the critical case. This case was studied previously in [KYZ11, Theorem 1.1], and
we provide an alternative proof by means of interpolation. Here the interpolation limits according
to the previous argument should be L8 and W 1,n. But this is not a complex interpolation couple,
so we will get uniform bounds by an interpolation of Lq0 and W 1,n and then we will use Lemma
3.7 below to end the proof.

Lemma 3.7. Let 0 ă s ă 8 and let 1 ă p0 ă 8. Let f P S 1 satisfy that for every ε, there exists
p with |p´ p0| ă ε such that

}f}Hs,p ď 1.

Then,
}f}Hs,p0 ď C,

with C depending on s and p0.

12



Proof. By the lifting property (see [Tri83, Theorem 2.3.8]), the linear map Is “ F´1p1` |x|2q
s
2F

induces an isomorphism between Hs,r and Lr. By interpolation, the norm of this map varies
continuously on 1 ă r ă 8. Let ε ą 0 and let p with |p´ p0| ă ε such that

}f}Hs,p ď 1.

Thus,
}f}Hs,p0 ď Cs,p0

}Isf}Lp0 “ Cs,p0
p}Isf}Lp0 ´ }Isf}Lpq ` Cs,p0

}Isf}Lp .

The last term in the right-hand side above is uniformly bounded by the continuity of Is and our
hypothesis. Namely, for ε small enough, we can grant

}Isf}Lp ď Cs,p0
}f}Hs,p ď Cs,p0 .

On the other hand, by the monotone convergence theorem
ż

|Isf |
p “

ż

|Isf |ě1

|Isf |
p `

ż

|Isf |ă1

|Isf |
p pÑp0
ÝÝÝÑ

ż

|Isf |ě1

|Isf |
p0 `

ż

|Isf |ă1

|Isf |
p0 “

ż

|Isf |
p0 .

Proposition 3.8. Let n ě 2, K ě 1, 0 ď s ď 1. Given a K-quasiconformal mapping φ : Ω Ñ Ω1

between two domains in Rn, φ : Ω Ñ Ω1 with 2B1 Ă Ω and φp2B1q Ă B1, and real numbers b and
Cb satisfying (1.1) for U “ 2B, there exists a constant C “ CK,n,s,b,Cb such that

›

›

›
TB1

φ

›

›

›

Hs,
n
sÑHs,

n
s
ď CK,n,s,b,Cb . (3.7)

Proof. Let q be such that 0 ă 1
q ´

s
n ă ε0 with ε0 small enough. Let us define p P pq, ns q by the

relation
1

q
“:

1

p
`

1

b

ˆ

1

p
´
s

n

˙

. (3.8)

Let us define p0 and q0 by the following relations:

ˆ

1

n
´

1

p

˙

1

1´ s
“

1

n
´

1

p0
and

ˆ

1

n
´

1

q

˙

1

1´ s
“

1

n
´

1

q0
. (3.9)

It follows immediately that p0 ą q0 ą n ą 1. Let p1 “ q1 “ n. Note that (3.2) is equivalent to

1

n
´

1

p
“ p1´ sq

ˆ

1

n
´

1

p0

˙

` s

ˆ

1

n
´

1

p1

˙

,

and this holds trivially. The same happens with (3.3). Let us show that TBφ : Lp0 Ñ Lq0 . Using
identities (3.8) and (3.9) we get

1

n
´

1

q0
“

1

1´ s

ˆ

1

n
´

1

q

˙

“
1

1´ s

ˆ

1

n
´

1

p
´

1

b

ˆ

1

p
´

1

n
`

1

n
´
s

n

˙˙

“
1

n
´

1

p0
´

1

b

ˆ

1

p0
´

1

n

˙

´
1

1´ s

ˆ

1

b

ˆ

1´ s

n

˙˙

“
1

n
´

1

p0
´

1

b

1

p0
,

so 1
q0
“ 1

p0
` 1

b
1
p0

with q0 ą 1. By Corollary 2.6, we get

›

›

›
TB1

φ

›

›

›

Lp0ÑLq0
ď C

1
p0

b .
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By Corollary 2.8 we also have that

›

›

›
TB1

φ

›

›

›

W 1,p1ÑW 1,q1
“

›

›

›
TB1

φ

›

›

›

W 1,nÑW 1,n
ď CK,n,b,Cb .

Since (3.2) and (3.3) hold, using Theorem 3.5,

›

›

›
TB1

φ

›

›

›

Hs,pÑHs,q
ď

›

›

›
TB1

φ

›

›

›

1´s

Lp0ÑLq0

›

›

›
TB1

φ

›

›

›

s

W 1,p1ÑW 1,q1
ď C

1´s
p0

b CsK,n,b,Cb .

Note that 1
p0
ă 1

q0
“ 1

n ´
1

p1´sqn `
1

qp1´sq “
1

1´s

´

1
q ´

s
n

¯

ă ε0
1´s . Thus, C

1´s
p0

b ď 2 for ε0 ă
logp2q

logpCbq
.

Take ϕB1
and let rf “ ϕB1

f . Then TB1

φ f “ TB1

φ
rf . Thus, writing c0 “ 2CsK,n,b,Cb , we get

›

›

›
TB1

φ f
›

›

›

Hs,q
“

›

›

›
TB1

φ
rf
›

›

›

Hs,q
ď c0

›

›

›

rf
›

›

›

Hs,p
ď c0Cn,s

›

›

›

rf
›

›

›

Hs,
n
s

ď c0Cn,s}ϕB1
¨}
Hs,

n
sÑHs,

n
s
}f}

Hs,
n
s
,

where ϕB1 ¨ : f ÞÑ ϕB1f stands for the pointwise multiplication operator, which has norm one in
every Lp. Thus, by the interpolation property, it can be uniformly bounded by a constant C, so

›

›

›
TB1

φ

›

›

›

Hs,
n
sÑHs,q

ď CsK,n,b,CbCn,s.

Lemma 3.7 implies that this uniform bound applies to the limit case, modulo constants depending
on n and s.

The supercritical case follows the same pattern. The interpolation limits according to the
previous argument should be L8 for the 0-indices and W 1,sp or W 1,sq for the 1-indices (see Figure
3.1 (b)). Again, this is not a complex interpolation couple, so we will follow the approximation
procedure above. Moreover, in this context we need to use the parameter a for the classical Sobolev
spaces, while we are forced to use the parameter b in the Lebesgue spaces. When taking limits,
however, the parameter b will vanish.

Proposition 3.9. Let n ě 2, K ě 1, 0 ď s ď 1 and n
s ă p ă 8. Given a K-quasiconformal

mapping φ : Ω Ñ Ω1 between two domains in Rn, with 2B1 Ă Ω and φp2B1q Ă B1, and positive

real numbers a, b, Ca and Cb satisfying (1.1) for U “ 2B, if 1
q :“ 1

p `
1
a

´

s
n ´

1
p

¯

ă 1, then there

exists a constant C “ CK,n,s,p,a such that

›

›

›
TB1

φ

›

›

›

Hs,pÑHs,q
ď C

ˆ

1` C
s
n´

1
p

a

˙

. (3.10)

Proof. Let 0 ă 1
q0
ă ε0 ă

1
p with ε0 small enough. Let us define p0 by the relation

1

q0
“

1

p0
`

1

b

1

p0
.

Note that 1
p0
ă 1

q0
ă 1

p . Next, we define p1 by imposing (3.2), that is, 1
p “

1´s
p0
` s
p1

. In particular,

1
p1
“ 1

sp ´
1´s
sp0

ă 1
n . Thus, we are in the supercritical range and

ˇ

ˇ

ˇ

1
p1
´ 1

sp

ˇ

ˇ

ˇ
ă
p1´sqε0

s . Let us define

q1 such that TB1

φ maps W 1,p1 to W 1,q1 , that is,

1

q1
:“

1

p1
`

1

a

ˆ

1

n
´

1

p1

˙

.
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Using the definitions we get

ˇ

ˇ

ˇ

ˇ

1

q1
´

1

sq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1

p1

ˆ

1´
1

a

˙

`
1

an
´

1

sp

ˆ

1´
1

a

˙

´
s

san

ˇ

ˇ

ˇ

ˇ

ă
p1´ sqε0

s

a´ 1

a
.

Finally, we define rq via (3.3), that is

1

rq
“

1´ s

q0
`

s

q1
. (3.11)

Note that
ˇ

ˇ

ˇ

ˇ

1

rq
´

1

q

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1´ s

q0
`

s

q1
´

1

q

ˇ

ˇ

ˇ

ˇ

ď
1´ s

q0
` s

ˇ

ˇ

ˇ

ˇ

1

q1
´

1

sq

ˇ

ˇ

ˇ

ˇ

ď ε0p1´ sq
2a´ 1

a
.

From Corollary 2.6 we have that

›

›

›
TB1

φ

›

›

›

Lp0ÑLq0
ď C

1
p0

b ,

and from Corollary 2.8 we have that

›

›

›
TB1

φ

›

›

›

W 1,p1ÑW 1,q1
ď CK,n,p1,q1

ˆ

1` C
1
n´

1
p1

a

˙

.

Using Theorem 3.5,

›

›

›
TB1

φ

›

›

›

Hs,pÑHs, rq
ď

›

›

›
TB1

φ

›

›

›

1´s

Lp0ÑLq0

›

›

›
TB1

φ

›

›

›

s

Hs,p1ÑHs,q1
ď C

1´s
p0

b CsK,n,p1,a

´

1` C
s
n´

s
p1

a

¯

.

On one hand, we have that C
1´s
p0

b ď 2 for ε0 ă logp2q{ logpC1´s
b q. On the other hand, from

Remark 2.9, the constant CsK,n,p1,a
appearing in Corollary 2.8 is uniformly bounded in p1 for

ˇ

ˇ

ˇ

1
p1
´ 1

sp

ˇ

ˇ

ˇ
ă
p1´sqε0

s ă 1
2

ˇ

ˇ

ˇ

1
sp ´

1
n

ˇ

ˇ

ˇ
. Thus

›

›

›
TB1

φ

›

›

›

Hs,pÑHs, rq
ď CK,n,s,p,a

ˆ

1` C
s
n´

1
p

a

˙

.

Lemma 3.7 implies that this uniform bound applies to the limit case, modulo constants depending
on n and s.

Proof of (1.2). Propositions 3.6, 3.8 and 3.9 show that (1.2) holds for B “ B1 “ B1. Otherwise,
estimate (1.2) follows by composing φ with convenient translations and homotheties.

3.3 Other fractional spaces

Theorem 3.10 (see [Tri83, Theorems 2.4.2, 2.4.3, 2.4.7 and remark 2.4.7/2]). Let ´8 ă s0, s1 ă

8, let 0 ă r ď 8, 0 ă p ă 8 and 0 ă Θ ă 1. Let

s “ p1´Θqs0 `Θs1.

If s0 ‰ s1, then
pHs0,p, Hs1,pqΘ,r “ Bsp,r, (3.12)

where p¨, ¨qΘ,r stands for the real interpolation functor described in [BL76].
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Proof of (1.3). The functor p¨, ¨qΘ,r is an exact interpolation functor of exponent Θ, i.e. it satisfies
the interpolation property described in Theorem 3.5. Thus, when 0 ă s ă 1 and the exponents
p and q satisfy the hypothesis of Theorem 1.1, using (3.12), estimate (1.2) on neighboring H rs,p

spaces, and a limiting argument with a Besov version of Lemma 3.7 we can argue as in the previous
section, to get

›

›TBφ
›

›

Bsp,rÑB
s
q,r

ď C

for any 0 ă r ď 8.

4 Sharpness

In this section we provide examples that show the sharpness of Theorem 1.1.
For k ą 0, let φkpxq :“ x|x|k´1. We have that

Dφpxq “ |x|k´1

ˆ

pα´ 1q
xxt

|x|2
` Id

˙

.

Hence, we obtain Jφkpxq “ k|x|npk´1q, and, therefore, φk is kn´1-quasiconformal if k ě 1 and
p2´kqn

k -quasiconformal if k ă 1. It also satisfies (1.1) for a ă 1
1´k and b ą 0 if k ă 1 and for a ą 1

and 0 ă b ă 1
k´1 if k ą 1 regardless of the chosen domain U .

Next we recover the example given in [HK13] to show the sharpness on the subcritical set-
ting (that is, when sp ă n) for the composition of an unbounded Bsp,p function function with a
quasiconformal mapping. Let

fρpxq :“ maxt|x|´ρ ´ 1, 0u with ρ ą 0.

It is known that fρ belongs to the space Hs,p if and only if 0 ă ρ ă n
p ´ s (see [RS96, Lemma

2.3.1]). Let b ą 0 and q ě 1 such that 1
q ă

1
p `

1
b

´

1
p ´

s
n

¯

, let

ε :“
1

p
`

1

b

ˆ

1

p
´
s

n

˙

´
1

q
ą 0 (4.1)

and δ ą 0 such that

p1´ δq2
ˆ

n

q
´ s` nε

˙

ą
n

q
´ s.

Define

k :“ p1´ δq

ˆ

1

b
` 1

˙

(4.2)

and ρ such that

p1´ δq

ˆ

n

p
´ s

˙

ă ρ ă
n

p
´ s. (4.3)

Then, φk satisfies (1.1) for b, and fρ P H
s,p. On the other hand we have fρ ˝ φk “ fkρ and

combining (4.2) and (4.3) with (4.1), we get

kρ´

ˆ

n

q
´ s

˙

ą p1´ δq2
ˆ

1

b
` 1

˙ˆ

n

p
´ s

˙

´

ˆ

n

q
´ s

˙

“ p1´ δq2
ˆ

n

q
´ s` nε

˙

´

ˆ

n

q
´ s

˙

ą 0.
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Therefore, fρ ˝ φk R H
s,q. The interested reader may find in [HK13, Lemma 4.2] an example of a

bounded function satisfying the same.
For the supercritical case, i.e. sp ą n, we define

gρpxq :“ maxt1´ |x|ρ, 0u with ρ ą 0.

Then, using again [RS96, Lemma 2.3.1] we have that gρ belongs to the Triebel-Lizorkin space Hs,p

if and only if s´ n
p ă ρ. Let a ą 1 and q ě 1 such that 1

q ă
1
p `

1
a

´

s
n ´

1
p

¯

, let

ε :“
1

p
`

1

a

ˆ

s

n
´

1

p

˙

´
1

q

and δ ą 0 such that

p1` δq2
ˆ

s´
n

q
´ nε

˙

ă s´
n

q
.

Define

k :“ p1` δq

ˆ

1´
1

a

˙

with sufficient small δ to have k ă 1, and ρ such that

s´
n

p
ă ρ ă p1` δq

ˆ

s´
n

p

˙

.

Then, φk satisfies (1.1) for a, and gρ P H
s,p. On the other hand we have gρ ˝φk “ gkρ and arguing

as before we obtain

s´
n

q
´ kρ ą s´

n

q
´ p1` δq2

ˆ

1´
1

a

˙ˆ

s´
n

p

˙

“ s´
n

q
´ p1` δq2

ˆ

s´
n

q
´ nε

˙

ą 0.

Therefore, fρ ˝ φk R H
s,q.
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