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a b s t r a c t

A representative set of workflows found in bioinformatics pipelines must deal with large data sets. Most
scientific workflows are defined as Direct Acyclic Graphs (DAGs). Despite DAGs are useful to understand
dependence relationships, they do not provide any information about input, output and temporal data
files. This information about the location of files of data intensive applications helps to avoid performance
issues.

This paper presents a multiworkflow store-aware scheduler in a cluster environment called Critical
Path File Location (CPFL) policy where the access time to disk is more relevant than network, as an
extension of the classical list scheduling policies. Our purpose is to find the best location of data files
in a hierarchical storage system.

The resulting algorithm is tested in an HPC cluster and in a simulated cluster scenario with
bioinformatics synthetic workflows, and largely used benchmarks like Montage and Epigenomics. The
resulting simulator is tuned and validated with the first test results from the real infrastructure. The
evaluation of our proposal shows promising results up to 70% on benchmarks in real HPC clusters using
128 cores and up to 69% of makespan improvement on simulated 512 cores clusters with a deviation
between 0.9% and 3% regarding the real HPC cluster.

© 2017 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Current scientific applications must deal with large data sets,
usually demanding large amounts of computation and communi-
cation times. Schedulers are responsible for allocating applications
to processors and ensure the execution precedence. Applications in
a workflow are usually represented as a node in a graph.

Direct Acyclic Graphs (DAGs) are a good way of modeling task
dependency relationships like those typically found in a workflow.
Despite their wide usage to represent application stages, DAGs
lack relevant information on how to deal with data files. That is,
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they do not show any detail on how input, output, and temporal
data files are transferred to actual computational nodes where the
applications run.

Fig. 1 shows an example of the many combinations that can
be found when considering the possible locations of data files
and a common computational cluster system architecture. Cluster
nodes have their own memory hierarchy and their own secondary
storage subsystem where we can find hard drive disks and other
smaller but faster general purpose storage device. Also, nodes
are usually connected to a distributed file system via a fast
interconnection network. From the point of view of the data
handling, workflow stages need to manage input, output, and
many temporal files [1]. It becomes a challenge to determine
which is the best location for all the files needed for the different
computation steps defined in the workflow to get the best
performance of the system.
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Fig. 1. Application graph and its relationship with data localization.

Scheduling a workflow with precedence constraints is an
important problem in scheduling theory and has been shown to
be NP-Hard [2]. There are many studies on how to manage a
single workflow, specifically when trying to schedule tasks onto
heterogeneous domains [3]. There has been an increasing interest
in executing several workflows simultaneously. The problem of
defining which application from the multiple workflows is going
to be executed in a specific node of a cluster, has been described in
several works like [4–12].

Workflow-aware storage strategies study data file locations
in many levels of the storage and the memory hierarchy as
relevant criteria for the application scheduling. These strategies
have previously been used to reduce the I/O load of the network
of cloud [13] and grid systems. In these systems, when shared
files are read several times betweendifferent computational nodes,
the performance of the system depends on the interconnection
network capacity. In these cases, shared files are located on
local disks to reduce the amount of I/O operations. In a cluster
environment with a high-speed network the disk becomes the
demanding resource, which generates I/O waiting times when
many applications simultaneously request the access to files.
In HPC systems I/O performance has been studied by [14] that
proposes the use of Ramdisk as a storage systemwith data location
techniques on a section of the memory system.

When considering the data usage of common bioinformatics
workflows for common data analysis cases as variant analysis, read
mapping and sequence alignment, we find some common special
characteristics:

• Large volume of input data to be processed, starting at 2 GB for
bioinformatics data files.

• Large volume of data are sequentially processed in their
entirety, like input files for read mapping and data format
transformation.

• Important amount of data being shared by similar applications:
typically files like human genome indexes.

• Amount and volume of temporal files generated by some
applications. Input files of 2GB can generate between4 and6GB
of temporal files.

Due to the peculiarity of bioinformatics workflows that are
composed of many applications that share data files, we can take
advantage of keeping a cached version of input and temporal files.
Then, these files are kept in a highly accessible storage such as
ramdisk built in the main memory of the system or in a solid state
disk. From here, we propose an extension of the classic model to
a shared input file policy of execution and mapping of workflow
applications on this kind of system architectures.

In summary, we proposed at [15] a scheduling algorithm for
multiworkflows in a cluster environment called CPFL (Critical Path
File Location) that is a continuation of the work presented at [16].
Our objective is to improve the effective use of High Performance
Computing (HPC) platforms for the execution of Data Intensive
Applications (DIC) by extending the multiworkflow model on to
store-aware scheduling. Multiworkflow such as bioinformatic and
Epigenomics use shared input and temporal data files. Typical
bioinformatic workflow has input files starting at 2 GB that
generates temporal files of 6 GB. We realize that other workflows
such Montage [17] generate several shared temporal data files.
For a small Montage, 200 input files of 2 GB generate over 1000
shared temporal data files of up to 500 MB each. Due to that,
store-aware scheduling approach on cluster environment helps
to improve overall makespan. Keeping shared files on a storage
hierarchy system we reduce the time access to disk on regards to
network access.

We evaluate the effect of moving the execution of certain tasks
to nodes where needed data items are previously located. For
bioinformatics applications with input files in common, we move
those files to a fast memory storage level. As a result, we increase
locality and reduce the number of disk accesses. We also want
to support the execution of different workflows considering their
main resource limitations like Input/Output (I/O), memory or CPU.
To consider new technologies and different kind of workflows we
introduce a simulator and the extension needed to deploy the
scheduler on it.

This approach has been evaluated with an initial set of
experimental environments: a batch of workflows statically
merged into a meta-workflow and then applied a classic List
Scheduling like Heterogeneous Earliest Finish Time (HEFT). This
heuristic is typically used to schedule a set of dependent tasks
onto a network of heterogeneous workers taking computation
time into account. In our case, we have introduced the use of a
Network File System (NFS) as the storage system for all the data
files. This is compared against a new List Scheduling heuristic for
data-aware multiworkflows with a critical path using a local disk
and local Ramdisk as storage hierarchy. In our experiments, we
use synthetic bioinformatics workflows as a benchmark to test
our proposals as well as Montage and Epigenomics benchmarks
because they typically produce plenty of temporal files. The results
showperformance improvements up to 70% against HEFTmodified
for multiworkflow with better usage of storage hierarchy such as
local disk and ramdisk.

The rest of the paper is organized as follows. State of the
art is discussed in Section 2. Then, we give an overview of
the scheduler architecture in Section 3. Section 4 describes
WorkFlowSim simulation environment and introduces its use to
validate schedulers scalability. Section 5 elaborates the experiment
design and evaluates the performance of proposed algorithm in
the experimental platforms presented. Finally, in Section 6 we
summarize the results obtained and lay out the future work.

2. Related work

The scheduling problem, understood as the task of allocating
computational jobs to processors to define their order of execu-
tion without restrictions, is NP-complete [2]. As a relevant prob-
lem, many heuristics have been proposed for its resolution [18].
Among the most important we can find: clustering heuristics [19],
duplication based heuristics [20], meta heuristics (Genetic Al-
gorithms, Simulated Annealing, tabu search) and list scheduling
heuristics [21] based in assigning priorities depending on the crit-
ical path length associated to each node [3].

In our work, we are considering a generalization of the problem
taking scientific workflow tasks as jobs to manage. This case of
workflow scheduling has been widely studied and we can find
many algorithms based on DAG list scheduling heuristics. Some
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of the most relevant proposals are: Predict Earliest Finish Time
(PEFT) [22], Lookahead [23] and Heterogeneous Earliest Finish
Time (HEFT) [24]. The HEFT algorithm proposes to select the
application with the highest rank at each level of the graph. This
rank is the position of the application along with the critical path
of the whole workflow, using computation time as a cost. Then
it assigns applications to processors in order to minimize the
execution time. TheHEFT algorithm is the best proposal in terms of
robustness and schedule length. Its also very relevant considering
its temporal complexity O(n2

∗ m) where n is the number of jobs
andm is the number of processors.

When we consider the increase in computational resources
available at today’s servers, the execution of a single workflow
might not need all computational resources in the system, such as
CPU cores. This opens the door for attending multiple workflows
simultaneously. From here, we need to re-evaluate the classical
scheduling solutions for the concurrent execution of multiple
workflows.

Workflow schedulingmethods have beenwell studied [25]. The
majority of proposals apply a similar principle of transforming a
multi-workflow into a single one by connecting a given number
of dummy nodes at both extremes of the graph. Then, we find
different strategies of managing the obtained group of connected
tasks.

It is very common to find list-based heuristics for solving mul-
tiworkflow scheduling problems. List-based heuristics maintain a
list of all tasks of a specific DAG according to their priorities. Ev-
ery task of the graph is given a priority. Then, a task list is built
considering a decreasing order of priority. Last, following the list
of precedence given by the graph, the best computational resource
is selected for the task with the highest priority, considering a cost
function previously defined.

We are concentrating our work in analyzing bioinformatics
workflow jobs. These usually make extensive use of certain
types of applications that typically share data files between
them. Our proposal applies a well-known list-based heuristic
(HEFT), adapting its use to the multiworkflow context by merging
workflows into a meta-workflow.

Finally, we want to improve the performance of bioinformatics
workflows by carefully analyzing their I/O behavior. Bioinformatics
applications usually process input and output temporal files
sequentially. That is, input files are entirely processed from the
beginning to the end. Moreover, some of those files are shared by
several applications, so they are accessed several times during the
execution. Here, our objective is to make good use of the memory
hierarchy to cache commondata files and executing applications in
nodes where data files are located. We are interested in evaluating
the performance of a current systemwith different levels of storage
hierarchy such as distributed file system, local disk, local ramdisk
and main memory.

Initially, we modify most relevant list scheduler, HEFT, to
consider communication costs in the implementation of the rank
formula of the critical path.We calculate newcommunication costs
by finding the cost of accessing files being placed at any folder
of the storage hierarchy. Then, we obtain our CPFL policy that
considers computation and communication costs.

Although we can find many studies that make reference to
workflow schedulingmethods [25], there is room for improvement
in the multi-workflow scheduling case [8] that group individual
applications of multiple workflows into a ready-application pool
and then apply a simple HEFT to that pool. For [6] the approach is
to compose workflows with the objective of combining multiple
DAGs in one before applying static algorithms, considering that all
representative parameters of the different graphs are previously
known. In the sameway, Hönig et al. [7] describe ameta-scheduler
for multiple DAGs that implies the fusion of these multiple DAGs
in just one, to improve global parallelism and minimize the
inactivity time of resources. Studies like [26] extend HEFT to
the multiworkflow context in a grid environment. In this way,
they generate a single aggregated workflow composed of the
composition of all workflows given.

As an initial approach, we considered a batch of workflows
as the workload, defined as a group of workflows ready to be
scheduled on the system. When new workflows arrive, they are
treated as a new batch to be scheduled. This approach transforms
the scheduling of dynamically arriving new workflow tasks into a
static problem. This static approach gives us the ability to ensure
that applications of multiple workflows are going to be grouped
in batches according to how many resources are needed such as
storage capacity and computation time. The admission function
ensures that waiting time will not exceed execution time of the
applications. Many studies [27–29] show that the static strategy
can potentially obtain a nearly optimal result for synthetic and real
workflows [30]. Simulation studies such as [27] also suggest that
the static algorithms provide good results for intensive workflow
applications even when future job information is not complete.

The relevance of data storage for scheduling has already been
introduced by Bent et al. [31] when presenting the batch-aware
distributed file system (BAD-FS). Its objective was to propose
that the file system could export some architecture and behavior
features that could be considered when designing the scheduler.
Moreover, [32] introduces the concept of an indexing framework,
focuses on data distribution for big data applications over a
distributed file system. The approach of SmallClient and others
nevertheless refers to the idea of splitting data files into smaller
chunks of data, stored in a key–value format on a distributed file
system. Finally, we do not need to split data files into chunks,
but we do need to retrieve the complete data files several times
in case of shared input files and temporal files to read once and
used several times. In that case, even when we are working with a
high-speed network we want to avoid the need of reading from
distributed file system or a local disk where I/O bottlenecks are
present. We look for exploiting the cached data file in the main
memory using a local ramdisk and submitting applications that
share data file to be executed in the same execution node. Due to
the inability of having unlimited ramdisk, we introduce the use of
hierarchical storage levels with Distributed File System, Local Disk,
and Local ramdisk,which SmallClient and other frameworks do not
take into account.

Data transfers between nodes of a system can become themajor
overhead when network bandwidth limits are met. Stork [33],
describes a scheduler that focus the problem of transferring k
files from m sources to n destinations. Stork is focused on finding
the best protocols, the parameters to tune the transferences and
the order of the transfer requests, among others. In our case, our
limiting factor is the disk, not the network, so we need to study
alternative techniques to keep data close to the computational
nodes in multi-level fast storage systems.

In a similar scenario, there are models like [34] that evaluate
the performance of cloud and clusters attending their storage
systems. In this case, a global storage backup procedure is used
to compare the execution time between cloud and cluster systems
when both systems process the same amount of data requests. This
work states the relevance of adequatelymanage the requestswhen
the network is the limiting resource. In contrast, our objective
is to benefit from the locality patterns commonly shown by the
scientific applications in study. In this sense, our limiting resource
is the disk andweneed to optimizememory access to common files
to improve the performance of the applications. Nevertheless, [35]
propose the use of cloud computing for data analysis of weather.
Taking advantage of data distribution on private clouds to improve
velocity on thousands of data to be processed, analyzed and
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(a) Sequential
pattern.

(b) Parallel pattern.

Fig. 2. Bioinformatics workflow patterns.

visualized simultaneously. Contributing to a affordable technology
and to the society by inform the general public about the impacts
to their schedules due to the sudden change of the weathers. In
this approach our main contribution is a scheduler that allow the
use of existing storage technology and prepare to deal with new
ones by reducing makespan of bioinformatic multiworkflow on
cluster. The possibility of using clusters, allows the bioinformatic
society, where most of the data has privacy, nontransferable and
secret policy to take advantage of the available computational
resources. Finally, another contribution is to provide solutions to
similar technologies such as CloudSim to extend themechanism of
simulating workflow execution in order to reduce cloud storage
hierarchy costs and to provide a method on WorkflowSim to
researchers that wants to probe or develop new store-aware
heuristics.

Few previous works have considered the location of input,
output and temporal data files in shared clusters environments.
All these aspects have proven to be critical in the management of
workflows of data intensive applications (DIC) [36,37] as is the case
of this work.

In our case, we want to present a scheduler that is able to
coordinately deal with multiple workflows for shared cluster
environments and that takes into account the localization of input,
output and temporal files.

3. Scheduler architecture

In this section we are going to describe our scheduler proposal
to improve the performance of bioinformatics workflows. First, we
are going to give somedetails on the application data dependencies
found in the workflows. Then, we describe how meta-workflows
are built and how we can use data dependencies information to
locate files in the storage hierarchy. Finally, we provide a basic
description of how data files are stored in the different hierarchy
layers using a prefetching algorithm.

As shown in Fig. 2, based on the type of real bioinformatics
data analysis executed in the cluster, we found two main patterns
of workflow execution: sequential and parallel branch. We can
see that one input data file for one application could generate
several temporal shared files. Then, we could have a depending
tree of different applications for the case of a parallel branch. In
this work, we are going to study a list of bioinformatics workflows
such as genome alignment, variant analysis, and data file format
transformation. In these workflows, applications can be well
characterized and we can determine which data files are shared.

To achieve our objective, we first create a single meta workflow
to evaluate a priority list according to a critical path based heuristic
using computation time and communication cost. Second,with the
information exposed from the meta workflow, we know which
applications are using the same data file as shared input, and
shared temporal files. Information about shared input files helps us
to locate data files at local ramdisk, local hard disk or distributed
file system as levels of the hierarchical storage system. Lastly, we
keep a list of locations of data input files and use a priority list to
execute applications that share files at the nodes where the files
are located.

The main idea of the solution, first, is to determine the
location of the data files and use a bioinformatics application
characterization, that provides execution time, I/O reads, I/O
writes, RSS, and CPUutilizationmetrics. The algorithmwill retrieve
information from the workflow pattern about shared input files as
their sizes and current location. Initially, all data files are located at
theDistributed File System. In thismoment,we apply a prefetching
algorithm that moves data files to ramdisk when the data file is
bigger than 1024 MB and it is shared as input or temporal file
from more than one application. The ramdisk has 6 GB at each
computational node. If there is no enough space, it will use a lower
storage level as local disk or the distributed file system. Any other
data files are stored directly in the distributed file system. This
prefetching is useful to minimize data loading times and allows
the distribution of needed data files to network file systems that
provide better latency than actual disks.

We present the design of the architecture that composes the
system that implements our solution. For practical purposes, we
are going to describe each of the 3 layers of the architecture shown
in Fig. 3 User-Level, Prescheduling, Scheduler and their modules.

3.1. User-level

Each scientist can design their workflows in a scientific work-
flow management tool such as graphical web-based applications,
scripting or any other workflow composition tool independent
from our scheduler. In this layer, workflow characteristics meta-
data is defined and is encapsulated in an XML file to provide to the
next layers.

3.1.1. Workflow characteristics
For our initial approach we prepare a set of characteristic

application of workflows. The workflow management tool log
feeds the scheduler with a Workflow Characteristics set. The
metadata generated contains Application Names, Application
Version, Command Line, Data Files Used, Data Files Sizes, Execution
Time.

3.1.2. Submit WF
By the user-level workflow management tool it can submit the

workflow created to the system.

3.2. Prescheduling

We evaluate the attributes of the workflow pattern design
received from the user-level and define where to locate data files
in the storage hierarchy previous to create the list of applications
to schedule with priority based on the critical path.

3.2.1. WF merge
In this module all applications from the studied workflows that

arrive at the system are merged into a single meta workflow. The
meta workflow generated is implemented with two dummy initial
and final node to evaluate a priority list according to a critical path
based heuristic. We use computation and communication times
obtained from user-level workflow characteristics.
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3.2.2. Data placement
This module is in charge of locating the data files to a

specific storage hierarchy level. With the information exposed
from merging the workflows at WF Merge Module, we know how
many applications are using the same data files as shared input
files. We use local Ramdisk, local hard disk or distributed file
system as target locations in the hierarchical storage system to
allocate them. At the very beginning, input data files are located
in the distributed file system and copied to the local disk of the
cluster node where the applications are going to be executed. All
temporal data files produced by the applications for nextworkflow
stages should be stored in the same local disk or Ramdisk.

3.2.3. The App Controller
We have a group of workflow batches to schedule. Initially,

we apply critical path to the first batch of workflows and prepare
their execution. When a new batch of workflows is scheduled,
the App Controller re-runs the critical path algorithm to the new
applications in the system, but without changing the state of
those applications that are already executing. No applications
are assigned to any computational unit if there are previous
applications in the workflow dependency not yet finished.

3.2.4. Order App List
Once the App Controller finishes the critical path of a batch

of workflows, the Order App List is in charge of keep a queue of
applications to submit to the execution node.

3.3. Scheduler

The scheduler assigns applications to specific nodes of the clus-
ter following the priority list calculated at App Controller module
and provided by the Order App List module. The assignments con-
sider which node holds the input data for those applications.

3.3.1. Resource manager system
This module takes care of the status of computational resources

of the system and the applications running on the platform.

3.3.1.1. App scheduling. This module manages the interdependent
applications of workflows and is where the scheduling is done.
The list of applications provided by Order App List Module is
sorted in one unique list of ready applications. The highest priority
application will be on the top of the list waiting to be mapped to
a resource. It will be sent to the Application Executor when all the
parents of the application are done. The priority of an application
can change dynamically while it remains in the queue without
being executed, no matter if it belongs to different workflows or
users. In this first approach, we do not perform an analysis to select
the exact amount of computational resources needed; Instead, we
limit the maximum selection to the maximum branch factor of the
workflow. Branch factor is calculated at WF Merge Module at Pre-
scheduling level.

3.3.1.2. App executor. This module submits the first application of
the list provided by the Order App List Module. In this module,
the application is finally submitted through the DRM to a specific
computational node that contains all data files needed for the
execution.

3.3.1.3. DRM. For regular HPC applications, the management of
resources is done through a Distributed Resource Management
(DRM) system that provides information about the cluster and
applications, so this can schedule at the internal application queue.
We take advantage of the DRM by processing information logs of
the system and scripts provided by aworkflow engine. Instructions
about which node and resource to use is provided here to the
App Controller. In the meanwhile, the Data Placement use the
information provided by the DRM to move data files through the
different levels of the storage hierarchy system.

Finally, we introduce some implementation details of the
module implementation with the objective of providing more
details on how the algorithm works on each stage.

The user-level module has no algorithm because it depends on
the workflow management tool that user wants to use to create
the patterns. Workflows characteristics in provided by an XML
historical log.

In the pre-scheduling stage, we use algorithm 1. We use lines
1–3we initialize values for theworkflowcharacterizationprovided
by user definition. In lines 5–9, we merge all workflows into one
meta-workflow adding two dummy nodes for start and end nodes.
Following line 10 applies a critical path analysis to this new meta-
workflow.

Data placement implementation is described from line 14. Here
we classify data files to keep small files (<1 MB) in the distributed
file system. Also, we decide which larger shared files such as
medium (>512 MB) and big (>1028 MB) need to be copied to
the local storage system. In line 21, we describe a file replacement
policy when local storage locations are full. In those cases, we need
to copy data files back to the distributed file system to free local
storage space. Finally, in line 33, we describe how all output files
are going to be written into the NFS file system.

Algorithm 1: Pre Scheduling Stage
input : NewWorkFlow, User WF Characterizations
output: Updated Meta Workflow, List Scheduling

1 for All Applications on New Workflow do
2 User Wf Characterization ; // Characteristics provided at the

User Level Layer
3 User Application Characterization ; // Application

characteristics, Data Files with sizes, and Application
Parents and Branch Factors are provided by the User Level

4 end
/* The initial batch of Workflows arrive at the system and

are merged at prescheduling layer through the WF Merge
Module here */

5 while NewWorkflow Applications are not in Meta Workflow do
6 Add New Applications to Meta Workflow;
7 end
8 List = CriticalPath on Meta Workflow ; // The App Controller execute a
CriticalPath algorithm to the Meta Workflow to generate the
Priority List
/* Data Placement Module, locate each data file of the

Priority List Applications */
9 if fileInSize = SMALL then

10 keep file on Distributed File System ; // Third Level of Storage
Hierarchy

11 end
/* BranchBrothers used to determine Application using

shared files */
12 if (fileInSize = MEDIUM or BIG) and Shared then

/* Ramdisk or Local Disk is selected as storage */
13 Select Storage Hierarchy according to storage availability;
14 end

/* Output Data Files goes to the Distributed File System
always */

15 if FileOut is from Last Application then
16 Copy FileOut to Distributed File System;
17 end

Next stage, for Scheduler level, we apply a scheduling heuristic
to the list of applications described in algorithm 2. Initially, all
applications arrive as READY to be schedule. In line 1 we receive
resource status from DRM and process log analysis. Once we have
all the information about resources availability, at line 3 and 4
we sort the list of priorities and upgrade all applications status to
STANDBY. In this way, we describe which applications are ready to
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Fig. 3. Architecture modules.
run but are not allocated yet to a computational unit. We select the
target computational resources in line 5 considering themaximum
branch of the workflow of the current application. From lines
6 to 17 we make effective the resource assignment and change
application status to RUNNING which means that the application
is correctly assigned to a computational unit. If all parents of the
application are DONE, that is, these applications finish execution
correctly, we move them to the end of the list to control the
status later. If the status of one of the parents is not DONE, then
the application is moved it to the first position to wait for all
precedence to be checked and resources to be free. At the end, from
lines 18 to 24 we control if all the applications are DONE. A stop
control upgrading status to READY/STANDBY/RUNNING OR DONE
for each application is performed.

Algorithm 2: Scheduler
input : Meta Workflow, List Scheduling, Available Resources

1 Available Resources = Resource Status through the Distributed Resource
Management and read process log;

2 while List of Priorities not empty do
3 upgrade application status to STANDBY ;
4 Sort List of Priorities ; // Internal List of Applications
5 Select Resources = Max(BranchBrothers of first on List) ; // Maximum

cores according to parallelism
6 for i = All Applications in List do
7 if all Parents of application == DONE and Selected Resources != 0 then
8 if fileInput of Application[i] already on place then

/* If precedence is complete then send
application to resource */

9 execute Application on Selected Resource;
10 end
11 end
12 else
13 add to List of Priorities at first;
14 end
15 end

/* State machine should be always updated */
16 for all applications in List do
17 if application status is DONE then
18 remove application from List;
19 end
20 upgrade application status to READY/STANDBY/RUNNING/DONE;
21 end
22 end

4. Policy scalability using WorkflowSim extension

To verify if the Data-Aware Multiworkflow Cluster Sched-
uler [15] is scalable in larger clusters, we decided to use a well-
known workflow simulator. WorkflowSim [38] is an open source
simulation tool developed at the University of Southern California
and is an extension of previous CloudSim simulator. Is used to sim-
ulate workflows that have beenmodeled by DAGs defined through
XML files and implements various classic scheduling algorithms
like HEFT, Min–Min, Max–Min, FCFS.

In the Fig. 4 as we can see, the simulator has two main groups
of modules, Submit host and Execution Site. We highlight those
modules that we extended to scale our proposal.
Table 1
Cluster simulation specs.

Specs Standard simulator Simulator (IBM-like)

Nodes p/Cluster 4 32
Processors p/Node 1 4
Processors Freq. 1000 MIPS 6000 MIPS
RAM p/Node 2 GB 12 GB
Disk capacity p/Node 1 TB 10 TB
Ramdisk – 6.2 GB
Net latency 0.2 ms 0 ms
Internal latency 0.05 ms 0.05 ms

At Submit host, theworkflowmapper is responsible for import-
ing several DAGs which are concatenated for multiworkflow exe-
cution. Then, it creates a list of applications to be assigned to avail-
able resources. In any case, we must enforce applications original
dependencies to respect the workflow natural execution order of
predecessors.

When needed, the clustering engine is responsible for encapsu-
lating multiple applications within a single job. A workflow sched-
uler, according to user-defined criteria, effectively adds every job
or application to a queue of ready applications to be assigned to
worker nodes.

We introduced CPFL (Critical file Path Location) in theworkflow
Scheduler component following the guide for extensions of
WorkflowSim by adding a Java CPFLScheduler file implementing
the CPFL data-aware scheduler described above.

Our objective again is to take advantage of data locality
to reduce the cost of communication in the storage hierarchy
(distributed file system, local disk, and Ramdisk). When a job
reaches the remote scheduler, it has to wait until the assigned
worker node is free but with the required data already there.

We modified the Execution Site module of WorkFlowSim,
specifically the representation of the worker nodes.

Infrastructure parameters like a number of processors, RAM
capacity, local storage capacity, types of local storage are defined at
worker node. We needed to add a new storage type, the Ramdisk,
to evaluate our proposal. Once we had the new storage type, a
new cluster was created with a given amount of workers, with
defined parameters like operating system and communication
costs between the storage hierarchy levels.

The next step was to adjust the parameters of the simulator
to behave as close as possible to our local IBM cluster, both are
compared in Table 1.

5. Experiment design and evaluation

In this section, we introduce an experimental design to evaluate
the CPFLMultiWorkflow Data-Aware Scheduler proposal. First, we
comparatively evaluate our approach against the HEFT classic list
scheduling on a distributed file system (NFS) of our local cluster.
The impact of the hierarchical storage system when we do not
use critical path is done with a random scheduling approach of
applications and just allocating data files in the Ramdisk and/or
Local Disk, this comparative is done under Without Critical Path
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Fig. 4. WorkflowSim components [38].
File Location (SCPFL) name. Additionally, we also evaluate CPFL on
Local Ramdisk and Local Disk storage with Shared Input File in our
experimental cluster.

The cluster environment has 32 nodes, and each of the nodes
has a CPU with 4 cores at 2.0 GHz, 12 GB of main memory, and a
local Ramdisk of 6.2 GB. The file systems that we are using are NFS
as distributed file system, an EXT4 local disk format, and a TMPFS
Ramdisk.

In the cluster that we use, a large amount of data analysis
is done by running bioinformatics applications. In the example
provided by Fig. 5 we describe a workflow where a representative
trait of workflow structures found in bioinformatics applications
is in use of the same data input for different applications. Most
workflow work is applied to different bioinformatics data analysis
as genome alignment, variant analysis, and common data file
format transformations.

We use a list of commonly used and well characterized
bioinformatics applications to test the workflow management
system and then analyze a repository of historical execution times
to develop a synthetic workflow that behaves as a bioinformatic
workflow.

Considering these applications as nodes and their dependencies
as inputs, we have designed a synthetic workflow pattern that we
will use for our experiments. Applications shown in Table 2 were
selected as well to extrapolate relevant execution times, commu-
nication costs and resource usage in Table 3. They are the elements
that compose the synthetic workflows for our experimentation.

For validation purposes, we have selected well-known exper-
imental data intensive application public workflows [39]. In this
case, we have selected Montage [17], an I/O-bound workflow used
in astronomy to generatemosaics of the sky, and Epigenomics CPU-
bound bioinformatics workflows.

In Table 3 we describe a list of metrics ranges applications
that compose Montage and Epigenomics as well as the synthetic
workflow application develop according to 5 and their application
analysis on Table 2.

We show in Fig. 6, the graph schemas corresponding to the
describedworkflows. The first is a syntheticworkflowbased on the
type of bioinformatics data analysis done in the cluster. The second
is the Epigenomics and third is the Montage workflow schemas
obtained from the Workflow Gallery [40].

Synthetic workflow at Fig. 6(a) helps us to relate Fig. 5 and
Table 2 with the synthetic workflow generation. We need to
represent 3 types of data files (Input, Shared Input/Temporal,
and Output) and their possible location on the storage hierarchy
system. At first, input data files will be at Distributed File System.
Shared Input Files and Temporal Data files will be located at
Local Ramdisk or Local Disk according to space availability. Output
Data files are directly located at Distributed File System. The real
applications are represented with synthetic applications as shown
in the same figure to simplify the installation of applications and
Fig. 5. Shared input bioinformatics workflow example.

the excessive execution time by extrapolating the computation
time. We define a branch factor of 6 because bioinformatic
applications usually have input files of 2 GB, generating temporal
files of up to 6 GB that will be enough to stress our 6 GB on Local
Ramdisk with 32 files of 2 GB, one for each node (192 GB is the
total size of ramdisk combining the 32 nodes of the cluster). The
fallowing 18 input files has no space on the Ramdisk and they are
located on Local Disk. On each synthetic workflow, we introduce 2
shared input files that produce 6more temporal files of up to 6 GB,
provoking that the local Ramdisk and local disk becomes stressed,
forcing to use NFS.

We analyzed the workflow execution makespan times as the
main result of the policies in the study using our experimental
cluster defined above. Then, we are proposing the use of
WorkflowSim Simulator to evaluate how CPFL scales on larger
clusters.

We considered the execution of each of the workflows pre-
sented using different shared input file sizes. Our experimentation
considered 512, 1024, and 2048 MB input file sizes. We found that
the results obtained were very similar. Hence, we are showing the
figures for one case for each combination of data size and computa-
tional resources. For initial scheduler heuristic profile which sup-
port experimental scenarios, tabular information is provided in the
Appendix.

For all experimental cases, we considered the need of schedul-
ing multiworkflows. To do so, we used a list of combinations as
workloads: (A) 50 synthetic workflows (B) A group of 10 Epige-
nomics workflows, (C) A group of 10 Montage Workflows. For real
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Table 2
Workflow applications considered.

Apps Exec time (s) IO (Mb) RSS (Mb) CPU util (%) Resource bound Objective
Read Write

BWA (b,c,d) 11400 197 304 800 45 CPU Alignment
Fast2Sanger (a) 1 440 67 69 180 98 I/O Format transformation
Sam2Bam (h) 1 020 160 54 480 99 I/O Format transformation
Gatk (e,f,g) 1 380 10 47 300 99 CPU Variant analysis
Table 3
Montage/Epigenomics/Synthetic execution metrics.

Workflow Exec time (s) IO read (Mb) IO write (Mb) CPU util (%)
Min–Max Min–Max Min–Max Min–Max

Montage 1–5 1–29 1–83 2–100
Epigenomics 1–4065 12–14676 10–103821 4–100
Synthetic 7–179 2–201 0–305 3–98
(a) Synthetic workflow pattern. (b) Epigenomics benchmark.

(c) Montage benchmark.

Fig. 6. Workflow patterns considered in the experimentation.
cluster case, we made up to 10 executions with a deviation of no
more than 6%. For case B and C the execution made in a simula-
tor, the results were the same always due to the hard definition of
attributes.
5.1. Real cluster experimental scenario

We found that executing type (A) 50 synthetic workflows
due to resource assignment for parallel branch factors. We
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Fig. 7. Synthetic workflow makespan with 2048 MB of shared input files.

Fig. 8. Synthetic workflow makespan on 128 cores.

prepare a workload of 5 batches of 10 workflows each with the
corresponding 2 shared files on each batch. Initially for 2 different
shared input files of 512MB, 1024MB, and 2048MB sizes each.We
decide to initiate the experiment with 2 shared files to correspond
a bioinformatic reference and query files.

The results on next experiments were similar, so we just show
the last case in Fig. 7. Considering the use of HEFT algorithm on a
shared file system (NFS) using between 8 and 128 cores, the CPFL
obtained up to 50% better makespan when 2 storage levels were
used (local disk+ Ramdisk).When only one storage level was used
(local disk), CPFL was 15% faster.

Continuing with type (A) 50 synthetic workflows and only
on real IBM cluster in Fig. 8 once again the results were similar
considering 8, 16, 32, 64 and 128 cores. We present the results for
128 cores where the gain of makespan is up to 70% when shared
input files is 2048 MB and 40% for 512 MB using 2 storage levels
(Ramdisk+ Local Disk), and gains of 20% for 2048MB files and 12%
for files of 512 MB when we use just local disk.

In Fig. 9 we can evaluate the impact of reading the same data
file many times in the makespan of the multiworkflow execution.
We extend the initial number of shared data files to each of the 5
batches of 10 workflows. Each batch now has from 2 to 4 and 8
shared files. For 128 cores and data files size of 2048 MB, we have
a gain of up to 78% for 8 shared files on CPFL using Local Disk and
Local Ramdisk approach versus a HEFT on NFS storage.

As we have found so far, the profits on synthetic workflows
are between 12% and 78%, so it is necessary to contrast this
Fig. 9. Synthetic workflow makespan on 128 cores with many 2048 MB shared
input files.

performance with well-known benchmarks as Montage and
Epigenomics.

Using a set of workflows defined as (B) 10 Epigenomics
workflows and (C) 10 Montage workflows. The workload was
divided into 5 batches of 2 workflows each. We compared the
execution of HEFT vs. CPFL algorithms.We also consider the impact
of not using critical path (SCPFL) for the allocation of files in
the storage hierarchy. In SCPFL case applications are assigned
randomly to a resource but still using the storage hierarchy.

The results from Epigenomics and Montage were similars. We
will present on Fig. 10 the results from Epigenomics. As we can
evaluate the gain against NFS and 8 cores is 7.5% from 15458 to
14300 s and using Ramdisk and Local Disk as storage hierarchy on
128 cores gain is up to 68% reducing from 1209 to 384 s with CPFL
and the gain is up to 38% from 649 to 1069 s by using local disk to
local disk + ramdisk when we used SCPFL.

Of the 68% gain, CPFL has a 2% of the impact, due to the previous
allocation of data files to the correct computation node avoiding
waiting times while files are copied or moved from one storage to
another. The local disk has an impact of 11%. Ramdisk has 41%. The
combination of Local disk+ Ramdisk has 46%, because of the high-
speed storage at a higher level of the storage hierarchy systems.

Montage as well with 8 to 128 cores on real IBM cluster has
a gain on NFS and 8 cores of 9.5% and using storage hierarchy
combining Local disk and Ramdisk on 128 cores gain is up to 71%.
SCPFL has a gain up to 19% from using local disk and using local
disk + ramdisk on 128 cores, because not using a scheduler to
determine which node has the data file, produce a slowdown at
the gain even when the storage hierarchy is in use.

5.2. WorkflowSim cluster scenario

For our next experiment,wewant to consider a 512-core cluster
architecture. For that, we propose the use of WorkflowSim to
evaluate CPFL scalability for hundreds of cores and for a large
number of workflows executing at the same time in the system.

First, we validate WorkflowSim platform parameters, using the
same workload of our previous real cluster scenario.

In Fig. 11 we show the behavior of type (B) group of 10
Epigenomics workflows on WorkflowSim. We can evaluate the
error percentage on the simulation has a maximum 0.9% for
CPFL. We believe that this error is due to the implementation
of CPFL on the simulator because some parameters such weight
of communication are not applied correctly to the scheduler
comparing to CPFL implementation. The accuracy is calculated
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Fig. 10. Epigenomics makespan results in experimental cluster.

Fig. 11. Epigenomics WorkflowSim makespan simulation vs. real.

according to WorkflownSim formula Simulation Time over Real
Time.

In Montage case, WorkflowSim has an error percentage of 2%
for CPFL.

After we have set the parameters and validated the simulation
conditions on WorkflowSim, we use the same platform for larger
experiments.

Our objective is to evaluate CPFL scalability on a simulatedmod-
ern cluster environment.We increased the amount of Epigenomics
workflows from10 to 20 to test howCPFLworkswith an increasing
number of workflows and resources. We define a newworkload of
20workflows to provide a large task load for the simulated cluster.
Additionally, the maximum parallel degree of Epigenomic was 5
and increasing the number of coreswithout increasing the number
of workflowswould not show any effect. Fig. 12 finally presents re-
sults of executing 20 Epigenomic workflows on a simulated cluster
of 8, 16, 32, 64, 128, 256 and 512 cores. We compare against other
states of art heuristics such as HEFT. As a result, we obtained a gain
of 1.69% when we compare the use of HEFT and CPFL on NFS on 64
cores from 9099 to 8945 s. Using CPFL on local disk + Ramdisk the
makespan has been reduced to 4210 s. Due to the new improve-
ment, the gain is 53% against HEFT.

6. Conclusions and open lines

We have studied the state of the art of schedulers for
multiworkflows and their taxonomies, and then focus our work in
the field of data-aware policies for clusters.
Fig. 12. Epigenomics CPFL simulation scaling to 512 cores versus HEFT algorithm.

We concentrated our efforts in studying disk I/O cluster
bottlenecks. We characterized bioinformatics applications where
some of them use the same data files as input. Techniques like
shared input files are desirable to prevent multiple file reads and
to improve the performance of the system I/O.

We presented a set of synthetic workflows based on bioinfor-
matics applications and a set ofwell-knownworkflowbenchmarks
to test CPFL against other well-known scheduling techniques.

We have considered a list of options for data replacement
policies in Ramdisk or local disk. To further increase the efficiency
of the policies, we should consider a better prediction technique of
how many nodes, processors, and cores are needed.

When data files grow to 2048 MB as we see on Section 5.1 the
makespan starts to increase. This is due to the need of CPFL to
find the location on storage hierarchy for large files. To improve
the makespan we can introduce different types of storage such
as operating system cache, SSD disks, and other new storage
technology.

To evaluate the behavior of CPFL in larger systems, we used
WorkflowSim.We configured the simulator to use a larger number
of cores and storage levels. Increasing the number of coreswill help
us to determine the behavior of CPFL but currently, we are having
some problems with the WorkflowSim code, preventing us from
scaling further than 512 cores.

We are working to extend WorkflowSim to other several
storage hierarchies such as cache Linux, SSD disks, distributed
disks and distributed ramdisk.

Looking forward, as [41] propose disaster recovery for all data
processing and storage with a ‘‘multi-purpose’’ approach to ensure
that restored data can be fully recovered from multiple sites on.
This could be integrated into the workflow management system.
Due to our approach of keeping copies of data files on several
storage hierarchy, we could ensure data redundancy on a future
work. Currently we are using DRMAA [42] as an API to implement
our scheduler independently of the distributed resource manager,
this allow the use of a implement a statemachine to ensure disaster
recovery over several computation technology.

Finally, in Chang [43] they discuss security since hacking has
been common in HPC, scheduling, and Cloud. Integration with
classic security technology such as LDAP is ongoing and ready to
integrate into the system, with LDAP technology we move the
responsibility to the system admin that is in charge of the CCAF
security layers. The CPFL scheduler is ready to be integrated into a
scientific workflowmanager like Galaxy [44] which is aweb-based
workflow manager widely used in the bioinformatics community
that allows the use of LDAP security technology.
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Table A.4
Scheduling policies profiling.

Policy CPU (%) Net/Total (MB) Disk/Total (MB) Mem usage (MB)
Util Wait Recv. Send Read Write Used Free

HEFT NFS 94 6.32 13255 3650 0.074 4.023 257–789 9981–10337
CPFL NFS 96 5.43 12848 3893 0.058 4.106 232–803 9923–11004
CPFL Disk 98 2.42 2373 239 1.838 7742 242–817 9846–10801
CPFL Disk + Ramdisk 99 0.08 712 57 0.269 51.068 9674–11325 122–1849
Table A.5
Batches profiling by nodes on CPFL Disk + RamDisk.

Batch Nodes Net/Total (MB) Disk/Total (MB) Mem usage (MB)
Recv. Send Read Write Used Free

0 5, 9, 11, 16, 20, 21, 23, 27, 30 180 15 276 14379 9674–11280 123–1849
1 4, 9, 12, 15, 17, 18, 19, 24, 25, 31 203 17 275 16071 9675–11325 122–1848
2 1, 2, 7, 10, 14, 21, 22, 26, 29, 30 231 18 0.3 16435 9674–11247 270–1838
3 3, 4, 5, 6, 8, 13, 18, 23, 25, 28 231 18 275 17442 10464–11325 123–1086
4 9, 11, 12, 15, 17, 19, 20, 21, 24, 31 231.5 19 0.32 16725 9675–11211 281–1838
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Appendix

In order to substantiate the comparative effectiveness of the
proposed heuristic, in Table A.4 we present the results of profiling
the system according to the execution of workload of 5 batches
of 10 workflows each with the corresponding 2 shared files of
2048 MB on each batch.

We show an example of how storage hierarchies helps to
improve makespan by allocating data files previous to execution.
That is, an initial profile of the storage performance. For CPFL
compared to HEFT a small gain has been found when both are
using NFS as main storage. Looking forward, when CPFL uses only
local Disk, the network access is reduced on 70%. If CPFL uses Local
Disk and Ramdisk the access to disk is reduced on up to 80%, from
13255 MB to 712 MB on network data transfer at execution time.
According to the experiment 2 shared data files of 2048 MB each
generates at least 12 GB of output data file. TheMemUsage column
reflects the total size of data files on a period of time corresponding
to the makespan.

Table A.5 illustrates the case when 5 batches of 10 workflows
are executed on a 32 nodes cluster. The table shows how CPFL
Disk + Ramdisk uses resources. The whole 32 nodes are busy. We
have parallel factor of 6 on eachworkflow, that is, 300 applications
for 128 cores. Once again, two shared input files of 2048 MB
generate 12 GB of shared temporal files. We cannot see significant
network activity because the relevant resource access on CPFL are
local storages such Local Disk and Ramdisk. Column Disk/Total,
shows that in some cases the total size of data write is near 17 GB
for each batch. Mem Usage column shows that each batch allocate
12 GB of data files to be accessed reducing the access time. As
Ramdisk size is 6 GB and we do not have a distributed Ramdisk,
this for sure, generate paging between Disk and Ramdisk, but we
do not have the impact factor here.

Finally, Fig. A.13 has initial results that provides the idea of
using a general purpose storage system. The impact of caching two
shared input data files on local disk to be used by 10 applications.
Caching shared data files previous to execution reduces the access
time to disk and or low level storage systems. We get better
performance when shared data files are bigger.
Fig. A.13. Impact of caching 2 shared data files on local disk.
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