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Abstract

This paper analyzes the surface of CDS implied firm’s asset volatility at
the aggregate market level, using a sample of European investment-grade
firms during the 2007-2014 period. The term structure of asset implied
volatilities is backed-out from the term structure of CDS spreads, while the
moneyness dimension is proxied by the ratio of the default barrier to asset
value. We find both a downward sloping term structure and a negative skew.
Principal component analysis on the entire volatility surface shows that the
first four components interpreted as a level, a term structure, a skew and
a moneyness-related curvature mode capture 86% of the daily variation in
asset implied volatility. We also find that the term structure slope is related
to market and funding illiquidity, investors’ risk aversion, informational fric-
tions, demand/supply factors and momentum.
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1. Introduction

Equity implied volatility has been thoroughly studied in the literature
(Heynen et al., 1994; Avellaneda and Zhu., 1997; Peña et al., 1999; Fen-
gler et al., 2002, among others). In particular, it is common to plot im-
plied volatilities against the option’s strike price and against time to matu-
rity, which results in a volatility surface. Although the Black-Scholes model
predicts a flat profile for the implied volatility surface (i.e., all options on
the same underlying should provide the same implied volatility), empirical
studies have found that implied volatilities from stock options exhibit both
smiles/smirks and term structure. Moreover, the level of implied volatilities
is found to change over time, changing the shape of the implied volatility sur-
face (Cont and da Fonseca, 2002; Andersen et al., 2015). On the contrary,
despite the fact that the volatility of the underlying firm’s assets is one of the
key determinants of default probabilities and therefore, of the price of credit
sensitive instruments, surprisingly little is known about the behavior of this
key parameter. In particular, Choi and Richardson (2016) argue that more
emphasis in research should be put on understanding the cross-sectional and
time-series behavior of unlevered firm’s asset volatility. In this paper, we
contribute to the scarce existing literature on firm’s asset volatility by study-
ing the dynamics of the market-wide Credit Default Swap (henceforth CDS)
implied asset volatility as a function of time to maturity and moneyness.

The main difficulty inherent in the examination of firm’s asset volatility
is the latent nature of the underlying value of the firm’s assets. In order
to overcome this problem several approaches have been considered: to proxy
firm’s asset volatility with some measure of equity volatility (either historical
or implied), to deleverage equity volatility (either historical or implied), or
to estimate firm’s asset volatility using historical equity and bond returns
as well as their covariance.1 These approaches however, carry several draw-
backs. First, using only equity volatility overlooks an important theoretical
relation in which equity volatility is not only a function of asset volatil-
ity, but also a function of leverage. Empirical evidence suggests that asset
volatility and leverage tend to be negatively related, that equity volatility
positively depends on leverage, and that equity and asset volatility have dif-
ferent time-series properties due to leverage (Choi and Richardson, 2016).

1See for example: Collin-Dufresne et al. (2001), Alexander and Kaeck (2008), Correia
et al. (2013), Schaefer and Strebulaev (2008), and Choi and Richardson (2016).
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Second, deleveraging implied equity volatility could only be done by using
current leverage (not the expected future leverage), and only for the short
end of the maturity space (equity options are normally traded for maturities
lower than 1 year). In credit risk management, however, medium and long
maturities are equally important. In fact, one of the key inputs in the struc-
tural models of default is precisely the long-run estimate of the firm’s asset
volatility. Finally, some of the methods rely on historical volatility, while
when estimating asset volatility for pricing purposes one has to bear in mind
the fact that the theoretical value of credit sensitive instruments depends on
the expected (forward-looking) volatility over its lifetime.

The theoretical analogy of corporate securities with stock options allows
us to see that CDS contracts embed a short position in out-of-the money
puts, with the firm’s asset value as the underlying state variable. Therefore,
we can borrow the basic idea from the literature on stock options and use
structural models of default to back-out the volatility of the firm’s assets from
observable CDS spreads. Such an approach is interesting for several reasons.
First, it allows us to study the volatility of the underlying state variable
that reflects the whole capital structure of the firm. Second, in this way we
obtain a forward-looking asset volatility measure, as opposed to historical-
based measures studied so far in the literature (e.g.,Choi and Richardson,
2016).2 Third, this approach allows us to investigate differences in market
participants’ perceptions of uncertainty over longer time horizons, up to 10
years. This contrasts with the relatively short maturities of stock options
commonly explored in equity implied volatilities (up to 1 year). Finally,
equity implied volatility is typically obtained from stock options traded in
organized markets, whereas CDS contracts are traded in opaque over-the-
counter (OTC) markets. Therefore, we could expect that peculiarities of the
CDS market affect the shape of the implied asset volatility surface.

In this paper, we consider a sample of non-financial investment-grade
companies that belonged to the iTraxx European index during the 2007-
2014 period. The term structure of implied firm’s asset return volatilities is
backed-out from the whole term structure of CDS spreads (1 to 10-year ma-
turity). The moneyness dimension in the equity implied volatility literature
is given by the strike price or the delta. For asset implied volatility, we proxy

2Choi and Richardson (2016) compute asset volatility on the basis of historical equity,
bond and loan returns.
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moneyness by the ratio of the default threshold to the asset value (a measure
of how close the option is to being exercised).

We obtain several novel results. First, principal component analysis
(henceforth PCA) for the term structure of asset implied volatilities shows
that the first three principal components interpreted as the level, shift and
curvature components are enough to explain most of the variation in daily
changes of asset implied volatilities (more than 99%). As for the moneyness
dimension, we perform PCA separately for each of the 7 maturities avail-
able. Similarly to the PCA on the maturity dimension, we find that the first
three principal components correspond to a level, shift and curvature mode.
Together, these three components explain between 86% of the smirk varia-
tion, for 1-year maturity, and 90% for 10-year maturity, with an explanatory
power increasing with maturity. Finally, PCA on the entire surface shows
that the first four principal components explain 86% of the surface variation
and they can be interpreted as a level mode, a term structure mode, a skew
mode, and a moneyness-related curvature mode.

Second, we find a downward sloping term structure of asset implied
volatilities, irrespective of the time period, even when the term structure
of CDS spreads inverts. Moreover, the term structure gets steeper during
crises and flatter in tranquil periods. This is in contrast with the typical
equity implied volatility curve which is usually found to be upward sloping
(Alexander, 2008) because of the natural uncertainty associated with longer
time horizons (the market perceives much less risk for the short-term).3 With
respect to moneyness, we find a negative skew, in line with evidence on eq-
uity implied volatility. The skew gets steeper during crises and is flatter for
longer-term maturities.

Third, to understand the nature of the information embedded in the asset
volatility term structure, we study variables potentially associated with the
term structure slope. We find that the downward sloping term structure is
associated to more insider trading occurring on CDS contracts with short
maturities, and more demand for credit protection on the short term due to
risk aversion, especially during crises. Overall, our results indicate that the
information in the volatility term structure is related to market and funding
illiquidity, investors’ risk aversion, informational frictions, demand/supply

3Nevertheless, downward sloping and flat term structures have also been detected es-
pecially in times of crisis (Andersen et al., 2015; Cont and da Fonseca, 2002).
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factors, and momentum.
Finally, we have estimated asset implied volatility using the structural

model of Forte (2011) and the estimation procedure proposed by Forte and
Lovreta (2012). To verify the robustness of our findings to different modeling
and estimation procedure assumptions, we perform a variety of robustness
checks. The results confirm the robustness of our findings.

The rest of the paper is organized as follows. Section 2 summarizes the
estimation of the firm’s asset value and asset implied volatility. Section 3
offers a full description of our data set. Section 4 provides our empirical
results on the surface of the asset implied volatility, the factors associated
with the term structure slope and robustness checks for different model and
estimation specifications. Finally, Section 5 concludes.

2. Implied firm’s asset volatility

Market participants track on regularly bases implied equity volatilities
from stock options. However, in the case of stock options, the implied equity
volatility is the only unobservable variable out of the five needed to price an
option. The stock price, strike price, time to maturity and interest rate could
be obtained from market data. To back-out implied asset volatilities from
CDS spreads, however, we need to cope with one additional problem: the
underlying firm’s asset value is not observable. To overcome this problem
we need to define not only a structural model at hand together with the
default barrier specification, but also an appropriate estimation procedure.
We proceed in two steps. First, we use a structural credit risk model to assess
the firm’s asset value using only information on the market capitalization,
1-10 year swap rates, and a sub-set of accounting items: short and long-
term liabilities, interest expenses and cash dividends. In the second step, we
determine the implied firm’s asset volatility from CDS spreads.

2.1. Estimation of firm’s asset value

The structural model in our baseline case is the one suggested by Forte
(2011). This model represents the debt structure as the sum of an arbitrary
number of coupon bonds, each with its own principal, coupon, and maturity;
therefore, the model is flexible enough to accommodate any possible debt
profile. The market value of total assets at any time t, Vt, is assumed to
evolve according to the continuous diffusion process:
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dVt = (µ− δ)Vtdt+ σVtdz, (1)

where µ is the expected rate of return on the asset value, δ is the fraction
of the asset value paid out to investors, σ is the asset return volatility, and z
is a standard Brownian motion. Default occurs whenever Vt reaches a specific
critical point Vb, defined as a fraction β of the nominal value of total debt P :

Vb = βP. (2)

The value of an individual bond dn, with maturity τn, principal pn, and
constant coupon flow cn, is given by:

dn(Vt, τn) =
cn
r

+ e−rτn
[
pn −

cn
r

]
[1− Ft(τn)] +

[
(1− α)βpn −

cn
r

]
Gt(τn),

(3)
for n = {1, ..., N}, where r is the risk-free rate, α represents bankruptcy

costs, and the expressions for Ft(τn) and Gt(τn) are given in the Appendix
A.

The total debt value is then represented by the sum of all outstanding
bonds:

D(Vt) =
N∑
n=1

dn(Vt, τn), (4)

and the equity value is given by:

St = g(Vt) = Vt −D(Vt|α = 0), (5)

where D(Vt|α = 0) is the market value of total debt when bankruptcy
costs equal zero (see Forte, 2011).

To resemble the true debt structure as much as possible, we assume that
at each instant t the company has ten bonds - one with a maturity of one
year and principal equal to the short-term liabilities and nine with maturity
ranging from two to ten years, each with principal equal to 1/9 of the long-
term liabilities. The coupon of each bond is determined as 1/10 of the total
interest expenses. The total principal is defined as the sum of the short-term
liabilities (STL) and long-term liabilities (LTL). Daily data on the principal
value of debt, as well as daily data on interest expenses is determined using
linear interpolation between yearly data. The equity value is proxied with
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the market capitalization. The payout rate δ is computed as the average
annualized payment of interest expenses and cash dividends divided by the
value of the firm proxied by the sum of the market value of equity and the
book value of total liabilities.

For the assessment of hidden parameters in the structural credit risk
model we start from the Maximization Maximization (MM) algorithm pro-
posed by Forte and Lovreta (2012). This procedure assumes that the com-
pany determines the default policy in the best interest of the equity holders.
It is practically implemented in two maximization steps. Step 1 updates the
value, volatility, and expected return on the firm’s assets by maximizing the
log-likelihood function for the time series of equity prices. Step 2 updates
the default barrier by maximizing the average equity holders’ participation
in the firm’s asset value. The algorithm is successively repeated until con-
vergence is achieved. Forte and Lovreta (2012) demonstrate that theoretical
credit spreads based on this estimation procedure offer the lowest CDS pric-
ing errors when compared to other, traditional default barrier specifications:
the smooth-pasting condition value, maximum likelihood estimate, KMV’s
default point, and nominal debt.

The log-likelihood function for the time series of equity prices in the first
step of the MM algorithm requires that the default barrier is constant along
the sample period. For the time period of 7 years considered in this study
this would not be a reasonable assumption. We replace the first step with the
common recursive procedure of estimating the constant volatility parameter
which is based on the following algorithm for an assumed value of the default
barrier parameter β:4

1. Proposing an initial value for σ, σ0;

2. Estimating Vt series using the information on the stock market capital-
ization St, so that (5) holds for all t;

3. Estimating new volatility σ1 from the obtained Vt series;

4. End of the process if σ1 = σ0. Otherwise, σ1 is proposed at step 1.

The process is repeated until convergence is achieved. In the second step,
for the asset value series Vt and volatility σ1 obtained in the first step, we
verify as in Forte and Lovreta (2012) whether the initially assumed default
barrier parameter β maximizes the average equity holders’ participation in

4The same modification is used in Forte and Lovreta (2016).
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the firm’s asset value. Finally, β is updated and the whole two-step algorithm
is repeated until convergence.

2.2. Estimation of firm’s asset implied volatility

Having estimated the series of firm’s asset value, we now obtain asset
implied volatilities by matching the theoretical credit spread to our time-
series of observable CDS spreads. The theoretical credit spread at time t is
determined as the premium from issuing at par value a hypothetical bond
with the same maturity as the corresponding CDS contract. This bond is
assumed to pay a coupon ct (τ, p), so that the following equation holds:

d(Vt, τ |p) = p. (6)

Accordingly, the bond yield is:

yt(τ) =
ct(τ, p)

p
, (7)

and consequently the theoretical credit spread is determined as the dif-
ference between the yield of this hypothetical bond and the corresponding
risk-free rate:

CDSt = h(Vt, β, σ) = yt(τ)− rt. (8)

The firm’s asset implied volatility is therefore given by:

σimpt = h−1(CDSt|Vt, β)

The estimation of asset implied volatility requires that we define a value
for the bankruptcy costs parameter α which impacts the debt value by af-
fecting the recovery rate (1 − α)β. To facilitate comparisons with previous
studies we follow the common market practice for CDS spreads valuation of
assuming a recovery rate of 40%. A recovery rate of 40% is also used in Forte
and Lovreta (2012), Correia et al. (2013), and Ericsson et al. (2015), among
others, and is consistent with the average Moody’s (2015) historical recovery
rate on senior unsecured bonds, 37.4% during the 1982-2014 period.
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3. Data

In this paper we use a sample of non-financial companies that belong to
the iTraxx Europe index, which we track during the December 2007 - De-
cember 2014 period. The iTraxx Europe index comprises the most liquid
125 CDS referencing European investment-grade companies. We consider
Euro-denominated CDS contracts on senior unsecured debt for maturities of
1, 2, 3, 4, 5, 7 and 10 years. Daily data on CDS spreads, market capitaliza-
tion and 1-10 year swap rates, as well as yearly data on current liabilities,
total liabilities, interest expenses and cash dividends are downloaded from
Datastream. We exclude companies in the banking and financial sector due
their different capital structure, private companies, and companies for which
we lack data on either market capitalization or CDS spreads for the overall
sample period. Additionally, we exclude all companies involved in corporate
operations that resulted in significant modification of their capital structure.
The final sample includes 55 actively traded firms which are tracked during
the entire 2007-2014 period.5 The complete list of companies considered is
provided in Table B.1 (see Appendix B). The average company in the sample
has a market capitalization of e23.7 billion, leverage of 0.53, and a historical
equity volatility of 29.6%.6

The main descriptive statistics for a sample of CDS spreads that we use
to derive the time-series of asset implied volatilities are presented in Table 1.
The term structure of CDS spreads averaged over the entire sample period
is upward sloping, with spreads ranging from 82 basis points (bp hereafter)
for 1-year maturity contracts to 166 bp for 10-year maturity contracts. The
standard deviation, skewness and kurtosis decrease with maturity. This im-
plies that for longer maturities the distribution of CDS spreads becomes
less asymmetric and has thinner tails, having less probability of observing
extreme values. In Figure 1 we plot the time-series evolution of the cross-
sectional mean of firm-specific CDS spreads across different maturities. We
notice that although the term structure is in general upward sloping, during
the crisis it gets inverted. Specifically, the term structure of CDS spreads
exhibits a decreasing slope only during the period that spans from November

5In this way we avoid the possibility of obtaining spurious results due to changes in the
sample composition over time.

6Leverage is calculated as the ratio of the book value of total liabilities to the sum of
the market value of equity and the book value of total liabilities.
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2008 to June 2009. The inversion of the term structure during crisis periods
has already been documented in the literature (see Pan and Singleton, 2008).

[Table 1 about here.]

[Figure 1 about here.]

The analysis could also be done considering the bond market. However,
we refrain from this approach for a couple of reasons. First, the CDS market
is more liquid than the bond market, and CDS contracts are typically traded
on standardized terms, have a fixed maturity structure, and are not affected
by callability. As a result, the CDS market tends to be less influenced by
non-default factors such as taxes, illiquidity, and market microstructure ef-
fects, documented to substantially affect bond prices (Longstaff et al., 2005;
Ericsson and Renault, 2006). Second, a number of studies have undoubtedly
shown that CDS spreads reflect changes in credit risk more accurately and
quickly than corporate bond yield spreads (Blanco et al., 2005; Forte and
Peña, 2009; Norden and Weber, 2009). As a result, CDS spreads are used as
a preferred market benchmark for credit risk (Blanco et al., 2005; Longstaff
et al., 2005).

4. Empirical Results

4.1. Preliminary analysis

In the literature on equity implied volatility it is quite common to study
the dynamics of the market-wide volatility rather than to focus on the firm-
specific one (Skiadopoulos et al., 2000; Cont and da Fonseca, 2002; Fengler
et al., 2002; Andersen et al., 2015, among others). That is, equity implied
volatilities are usually extracted from option prices having as an underlying
a market index such as S&P500 or FTSE100. However, a similar analysis for
the asset implied volatility is not that straightforward: not only is the un-
derlying index unobservable, but also the associated capital structure and its
dynamics over time, needed to convert CDS prices into implied volatilities.
To assess the market-wide asset volatility we take an alternative approach
and first analyze the systematic variation in firm-level implied volatility for
our sample of 55 firms. We perform PCA on daily changes in firm-level im-
plied volatilities, separately for each maturity from 1 to 10 years. Table 2
shows the explanatory power of the first principal component across matu-
rities. Interestingly, we can see that the explanatory power increases with
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maturity, ranging from 24% of the variation for 1-year maturity to 34% of
the variation for 10-year maturity. Secondly, we show that this systematic
variation is well captured by changes in the cross-sectional mean of firm-level
volatilities. The last column of Table 2 shows that the two variables are al-
most perfectly correlated. This implies that by taking the changes in the
mean implied volatility for the whole sample of firms, we are actually cap-
turing the first principal component that drives the variation of individual
firm-level volatility. Accordingly, in the subsequent analysis we use the mean
implied volatility as a measure of asset volatility at the index level.

[Table 2 about here.]

Table 3 presents the descriptive statistics of the market-wide asset im-
plied volatility over different maturities. The mean ranges from 0.263 for
1-year maturity to 0.168 for 10-year maturity, showing a clearly decreasing
pattern. The median asset implied volatility is very close to the mean for all
maturities. The shortest and longest maturity implied volatilities are more
volatile than medium maturity volatilities. A possible explanation for this
could be the fact that extreme maturities CDSs are traded less often as com-
pared to medium maturity CDSs. Indeed, according to Blanco et al. (2005),
Alexander and Kaeck (2008), and Pan and Singleton (2008), the 5-year ma-
turity “is by far the most liquid maturity in the CDS market”. Moreover,
Arakelyan et al. (2013) analyze the illiquidity of the CDS market and find
that the shortest maturity CDSs are relatively highly illiquid contracts, with
5-year maturity contracts being the most liquid in general. They document
an asymmetric U-shaped pattern for the slope of the term structure of bid-
ask illiquidity for CDS spreads. Regarding skewness and kurtosis, as in the
case of the CDS spreads, we observe that they are both decreasing in ma-
turity. Therefore, the distribution becomes less asymmetric and has thinner
tails for longer maturities.

[Table 3 about here.]

Finally, in the last two columns of Table 3, we estimate the fractional
degree of persistence, d, using two commonly applied semi-parametric ap-
proaches: the Geweke and Porter-Hudak (1983), and the exact local Whittle
estimator (ELW) of Shimotsu and Phillips (2005), here labeled as GPH and
ELW, respectively. The GPH statistics is estimated using differenced data
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and the bandwidth parameter m is set in both cases to T 0.5, where T is the
number of observations. The results show that the parameter d lies in the
non-stationary region for all implied volatility series, that is, across all ma-
turities, and that mean-reversion tends to disappear with maturity. To be
specific, the GPH (ELW) degree of persistence rises from 0.8 (0.9) for 1-year
maturity, to 1.1 (0.97) for 10-year maturity. This is in line with the find-
ings on equity implied volatility where long-term volatilities are usually less
volatile and more persistent as compared to short-term volatilities (Alexan-
der, 2008; Guo et al., 2014). Although the order of integration is in general
lower than 1 implying that a shock in the process eventually dies in the long-
run, statistically, the unit root null cannot be rejected in any of the series
when judged by the standard errors of the estimates.7

The evolution of the mean asset volatility over the whole period analyzed,
and for the seven different maturities is plotted in Figure 2. First of all, we
notice that there exists a high correlation among implied volatilities for all
maturities. This will allow us to use principal component analysis to find
the uncorrelated sources of risk which drive the evolution of asset implied
volatilities. Secondly, we can observe that the asset implied volatilities for
shorter maturities are higher than those for longer maturities. Fixing a date
and looking across maturities we note that we have a downward sloping term
structure for asset implied volatility.8 This slope is steeper for short-term
maturities and quite smooth for longer-term maturities. On the other hand,
if we study the evolution across time, we observe higher implied volatilities
for all maturities at the beginning of our chosen period (during the financial
crisis), with lower values towards the end of the period analyzed.

[Figure 2 about here.]

4.2. Principal component analysis

Having defined the proxy for volatility at the index level, in this section
we apply PCA to daily changes in asset implied volatility.9 We use changes

7The standard error of the GPH estimates of d is 0.114 and are calculated using the
asymptotic variance (π2/6). The asymptotic standard error of the ELW estimates is
(4m)1/2 and equals 0.077.

8We verified that the term structure of asset implied volatility is downward sloping for
every single day in our sample that covers the period 2007-2014.

9We have also performed an analysis for weekly and monthly data and obtained similar
results as reported in the online appendix.
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in implied volatilities rather than levels given that our preliminary analysis
shows that asset implied volatility lies in the non-stationary region. More-
over, this is in line with the literature on equity implied volatilities which
has mainly applied PCA to daily changes in equity implied volatility. We
proceed as follows: we first apply PCA on the maturity dimension, analyzing
the term structure of asset implied volatilities. We then perform PCA on the
second dimension, moneyness, proxied by the ratio of the default barrier to
asset value. Finally, we apply PCA on the entire implied volatility surface,
analyzing both dimensions simultaneously.

4.2.1. PCA on maturity

The correlation matrix for the changes in mean asset implied volatilities
is shown in Table 4. We can see that correlations are highest for adjacent
maturities and decrease as the maturity difference between the volatilities
increases. At the same time, the 1-year implied volatility has a lower cor-
relation with the other rates. The results of the PCA performed on the
correlation matrix are shown in Table 5.10

[Table 4 about here.]

The largest eigenvalue is 6.4031, thus the proportion of the total varia-
tion that it explains is of 91.47%, given that the total variation is given by
the trace of the matrix, equal to 7. The second largest eigenvalue, 0.4915,
explains a further 7.02%, and the third largest eigenvalue, 0.0484, explains
another 0.69% of the total variation. Taken together, the first three largest
eigenvalues explain 99.19% of the total variation in the changes of asset im-
plied volatility. Panel a) of Figure 3 shows that the eigenvalues indeed decay
quickly and that with only three eigenvalues we can account for most of this
variation.11

10We obtain similar results for the PCA performed on the covariance matrix (see the
online appendix).

11To be consistent with the previous literature on equity implied volatility and interest
rates, we discuss the first three principal components which are usually identified as the
level, slope and curvature components, respectively. Nevertheless, we have also applied
several criteria such as the Gutman-Kaiser criterion (also known as the mean eigenvalue
rule of thumb), Velicer’s MAP criterion, Catell’s Scree test, Horn’s Parallel Analysis, and
the proportion of variance explained rule of thumb. The majority of these criteria indicates
that two principal components should be retained.
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[Table 5 about here.]

Panel b) of Figure 3 plots the first three eigenvectors corresponding to
the three largest eigenvalues. The fact that the correlations are quite high
is reflected in the similarity of the weights on the first principal component,
except for the 1-year maturity which has a lower correlation with the rest of
the system. All of the components of the first eigenvector are positive. Thus
a positive shock in the first principal component (an upward shift) induces a
roughly parallel shift in the term structure of the implied volatility, resulting
in a global increase of all the implied volatilities. Therefore, the first principal
component can be interpreted as a “level” or a “trend” component of the
implied volatility term structure. For the overall sample period, 91.47%
of the total variation in the term structure can be attributed to (roughly)
parallel shifts.

[Figure 3 about here.]

The factor weights on the second principal component change sign, de-
creasing monotonically from 0.60 for the 1-year maturity to -0.56 for the
10-year maturity. Therefore, a positive shock in the second principal compo-
nent leads to a change in the slope of the term structure of implied volatilities,
with short maturities moving up and long ones moving down. We thus inter-
pret the second principal component as a “slope” or “tilt” component which
explains 7.02% of the total variation.

The third eigenvector has a positive weight for the shortest maturity,
with decreasing and negative weights for the medium-term volatilities, and
positive and increasing weights for the longer maturities. Thus, the third
principal component is interpreted as a “convexity” component, influencing
the convexity of the term structure. For our sample period 0.69% of the total
variation is due to changes in convexity.

To better understand the evolution of asset implied volatility during tran-
quil and volatile periods, we perform dynamic PCA using a rolling window
of 252 days. The evolution of the explanatory power of the first principal
component is plotted in Figure 4 (left axis). In 2008-2009 the proportion of
the variation in daily changes of asset implied volatilities explained by the
first principal component alone peaks to more than 94%, showing a high sys-

14



tematic risk.12 Another period characterized by high volatility and elevated
systematic risk is 2011-2012, when the first principal component has an ex-
planatory power above 92%. This period was marked by a volatility spike
following the US Treasury bonds downgrade from their AAA rating, and the
fears of contagion in the European sovereign debt crisis. Nevertheless, in the
more tranquil periods the first principal component explains at least 81.6%
of the variation in daily changes of asset implied volatility.

[Figure 4 about here.]

We also analyze the correlation between the movements in asset implied
volatilities and the underlying asset returns using the same rolling window.
The time evolution of the correlation between the first principal component
and the underlying asset returns is shown in Figure 4 (right axis). We ob-
serve a strong positive correlation between the underlying asset returns and
the first principal component of implied volatilities. This correlation varies
from around 35% in tranquil periods to almost 80% in highly volatile pe-
riods. Our findings contrast with the empirical evidence on the correlation
between stock returns and equity implied volatility. Indeed, several studies
on the equity implied volatility find evidence of the so-called leverage ef-
fect: the negative correlation of equity implied volatility and asset returns
(see for example Cont and da Fonseca, 2002 and Choi and Richardson, 2016,
among others).13 Nevertheless, our results are not surprising given that asset
volatility and leverage tend to be negatively related, while equity volatility
positively depends on leverage (Choi and Richardson, 2016).

Finally, we plot in Figure 5 the evolution of the empirical term structure
slope of asset volatility (right axis), computed as the difference between asset
implied volatility for 10-year maturity and asset implied volatility for 1-year
maturity. We find a very strong correlation of -0.97 between the second prin-
cipal component and changes in the empirical term structure slope, further
confirming that PC2 is indeed a slope factor.14 We can observe that the term

12Note that the first point on the graph corresponds to an estimation period from
December 14, 2007 to December 1, 2008, given our rolling window of 252 days.

13A large sudden fall in the stock price increases the debt to equity ratio and the firm’s
leverage increases. Thus equity volatility tends to increase following a large sudden fall in
the stock price.

14The negative sign is simply due to the fact that the principal component estimator
allows us to identify factors up to a change of sign (see Bai and Ng, 2002).
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structure of asset implied volatilities is downward sloping every single day in
our sample period (negative slope), and that during the financial crisis the
term structure becomes steeper. To shed more light on this result, we also
plot in Figure 5 (left axis) the slope of the term structure of CDS spreads
(computed as the difference between 10-year maturity and 1-year maturity
CDS spreads) for our portfolio of 55 firms. We note that the term structure
of CDS spreads is in general upward sloping (positive slope), although it gets
inverted during the period November 2008 - June 2009.

[Figure 5 about here.]

4.2.2. PCA on moneyness

In the literature on equity implied volatility, moneyness is proxied either
by the relative position of the stock price with respect to the strike price or
by the delta. In our case, for asset implied volatility, moneyness is proxied
by Vb/Vt, the ratio between the default barrier and the firm’s asset value.
However, unlike stock options where option prices with different strikes and
maturities on the same underlying are available at a given moment, for asset
implied volatility we observe CDS prices for different maturities, but for a
single ratio of the default barrier to asset value for a certain company at a
given moment in time. To overcome this difficulty, we group firms into mon-
eyness bins (buckets), forming sub-groups or sub-indices for different ranges
of the ratio of the default barrier to asset value.15 We fix the intervals as fol-
lows: < 0.3, [0.3, 0.4), [0.4, 0.5), [0.5, 0.6), [0.6, 0.7), > 0.7.16 The dynamics
of the moneyness smirks are analyzed by applying PCA separately to each
maturity level from 1 to 10 years.

We now define our measure for market-wide volatility for each moneyness
bin. Similarly to the approach taken before, we proxy the market-wide im-
plied volatility by the mean of firm-level implied volatilities across all firms
belonging to a given moneyness bin. Table 6 shows the correlation between

15Skiadopoulos et al. (2000) analyze implied equity volatility for different maturity buck-
ets.

16The moneyness bins were chosen to guarantee a minimum of two observations for each
range. A slightly different division of the form [0.35−0.45) would not affect our results (see
the online appendix). Given that volatility changes daily, there is the possibility that firms
change bins over time. This rarely happens in the sample, since in general all volatilities
tend to move in tandem, and an increase in the volatility of the first bin is accompanied
by an increase in the volatility of the rest of the bins.
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changes in the mean implied volatility across firms in a given bin and the
first principal component of a PCA performed on changes in individual firm-
level volatilities (the analysis is carried out separately for each bin). We can
observe that indeed the two variables are very strongly correlated.

[Table 6 about here.]

For the moneyness dimension, a further issue with respect to the maturity
dimension is that we are considering the implied volatility for different sub-
indices (composed of firms belonging to the same moneyness bin) rather than
the implied volatility for the entire index (consisting of the entire sample of
55 firms). This is why we verify (for every maturity level) that the changes in
the mean volatility for the different sub-indices are strongly correlated with
the changes in the mean volatility for the index level, as shown in Table 7.

[Table 7 about here.]

We perform PCA on the moneyness dimension separately for each matu-
rity from 1 to 10 years. Table 8 presents the cumulative explanatory power of
the first three principal components. The first principal component explains
between 69% and 77% of the variation in implied asset volatilities, depending
on maturity. The second component explains between 8% and 10% of the
variation, and the third one between 5% and 7%. In total, the first three
principal components explain 86% of the variation in asset implied volatility
for 1-year maturity. The explanatory power of the first three principal com-
ponents is increasing with maturity, reaching a total of 90% of the variation
for the 10-year maturity.17

[Table 8 about here.]

Figure 6 plots the first three eigenvectors corresponding to the largest
three eigenvalues, for all available maturities ranging from 1 year (panel
a) to 10 years (panel g). The figure shows that, for every maturity, the
first PC represents a near parallel shift. Therefore, an upward shift in the

17As for the PCA on maturity, most of the previously mentioned criteria for the num-
ber of components, indicate that the first two principal components should be retained.
However, we report the first three to facilitate comparisons with the literature on equity
volatility.
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first principal component would lead to a near parallel shift in the smirk
of the implied volatility. We can thus interpret it as a “level” component.
Furthermore, the factor loadings are very similar across all maturities.

The factor weights on the second principal component change sign, in-
creasing from around -0.4 for the lowest moneyness bin to around 0.8 for the
highest moneyness bin. The second component corresponds then to a change
in the slope of the asset volatility smirk, with volatilities corresponding to low
moneyness bins moving down and those corresponding to high ones moving
up. As before, the factor loadings for the second PC are very similar across
all maturities. Similar to the maturity dimension, we obtain that this second
principal component is highly correlated with changes in the empirical slope
of the moneyness smirk (defined as the difference in the implied volatility of
firms in the highest moneyness bin and that of firms in the lowest moneyness
bin). Table 9 shows these correlations across all maturities.

[Table 9 about here.]

The third eigenvector however differs across maturities. For very short
or very long maturities, i.e., 1 and 10 years, it has a positive weight for the
smallest moneyness, with decreasing and negative weights for the medium
levels of moneyness, and positive and increasing weights for the highest mon-
eyness bin. On the contrary, for intermediate maturities ranging from 2 to
7 years, we have quite the opposite behavior: a negative weight for the first
moneyness bin, with increasing and positive weights for medium bins, and
negative and decreasing weights for the highest moneyness bins. Thus, the
third principal component is interpreted as a “convexity” component irre-
spective of maturity. Nevertheless, the influence that the third PC has on
the convexity of the volatility smirk differs for very short/long maturities and
for intermediate maturities.

[Figure 6 about here.]

4.2.3. PCA on the asset implied volatility surface

We now analyze the dynamics of the entire volatility surface. Figure
7 plots the asset implied volatility surface as a function of moneyness and
maturity. We can see that asset implied volatility decreases both across the
moneyness bins and across maturity. Since more indebted firms are more
likely to be in a high moneyness bin, the negative skew obtained could be
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explained by the negative relationship between asset volatility and leverage.
As Choi and Richardson (2016) suggest, firm’s asset volatility decreases with
leverage (and thus with moneyness) since firms with lower asset volatility
can probably better exploit the tax advantage of debt while maintaining a
relatively low cost of financial distress.

The shape of the asset implied volatility surface could also be related to
the tendency of borrowing-constrained investors to overweight riskier assets
which ultimately leads to a low-risk anomaly evidenced across a broad range
of asset classes including corporate bonds (Ilmanen et al., 2004; Kozhemiakin,
2007; Frazzini and Pedersen, 2014; Houweling and Van Zundert, 2017).18 If
investors seeking to get exposure to credit risk perceive the CDS market
as an alternative to the bond market, the tendency to overweight riskier
assets would translate into higher selling pressure for CDS contracts at longer
maturities and for lower-rated issuers (which are more likely to be in high
moneyness bins). Alternatively, the shape of the asset implied volatility
surface could be related to investors’ preference for lottery-like assets (Boyer
and Vorkink, 2014; Bali et al., 2016). In particular, Boyer and Vorkink (2014)
find that options trading out-of-the money offer substantially more skewness
(a proxy for lottery-like characteristics) than in-the-money options, especially
as maturity decreases. This would in contrast, translate into higher buying
pressure for CDS contracts at shorter maturities and for lower moneyness bins
(which are deeper out-of-the-money). However, both effects would produce
a downward sloping term structure and moneyness smirk, in line with our
shape of the asset volatility surface.

Comparing to the findings on equity volatility, a similar negative skew
is found for equity implied volatility (Cont and da Fonseca, 2002; Andersen
et al., 2015). However, a downward sloping term structure of equity implied
volatility is not common, especially during tranquil periods. We will address
this issue in more detail at the end of this section and in Section 4.3.

[Figure 7 about here.]

We next pool together the maturity levels and perform PCA on the entire
data set. The results of the PCA on the volatility surface are presented in
Figure 8 and Table 10. The factor loadings of the first principal component

18These studies show that short-dated and/or high-rated bonds earn higher risk-adjusted
returns.
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(panel a) of Figure 8) show an almost parallel shift in the entire volatility
surface. The first factor explains 68% of the surface variation (see Table
10). The factor loadings of the second principal component indicate that
this is a skew factor, with volatilities in low moneyness bins moving in the
opposite direction from those in higher moneyness bins, with little variation
across maturity. This factor explains 7.69% of the surface variation. Panel
c) of Figure 8 plots the factor loadings for the third principal component
which appears to be a term mode, with short term volatilities moving in the
opposite direction from longer term ones. Finally, the fourth factor plotted in
panel d) appears to be a curvature mode related to moneyness.19 Together,
the first four principal components explain 85.85% of the surface variation.20

[Table 10 about here.]

[Figure 8 about here.]

Finally, we look at the dynamics of the asset implied volatility surface.
Given that the second principal components for both the maturity and mon-
eyness analyses are highly correlated with changes in the empirical term
structure and moneyness smirk slopes, respectively, we will use the latter
ones to study the evolution of the surface across time. Panel a) of Figure 9
shows the evolution of the term structure slope for different moneyness bins.
We observe that for all moneyness bins except the last one, the term struc-
ture is downward sloping during the whole sample period. For the highest
moneyness bin (firms with asset value closer to default barrier, thus the put
option is near the money) the term structure is sometimes slightly upward
sloping. This is closer to the term slope behavior observed in the equity
options market as previously discussed. Moreover, we can see that in gen-
eral during the financial crisis of 2008-2009 the term structure became more
steeply negative. Since our sample consists of investment-grade companies,

19In the literature on equity implied volatility surfaces the first principal component is
found to be a level mode. According to some studies the second and third one correspond
to a term structure and to a skew mode, respectively (see Derman and Kamal, 1997).
According to other studies however, the second mode is found to be a skew mode, and the
third one another skew-related curvature mode (see Cont and da Fonseca, 2002).

20The majority of the criteria applied show that the first six principal components
should be retained. The fifth and sixth eigenvectors reported in the online appendix have
the shape of a quartic and a quintic polynomial, respectively.
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at the index level the options considered are deep out-of-the money with an
average moneyness of 0.488. The previous findings for the highest moneyness
bin seem to indicate that opposite results might be obtained for high yield
firms.

In panel b) of the same figure we observe that the moneyness slope is
always negative during the sample period and this holds for all maturities.
The shorter the maturity the steeper the moneyness smirk. This is in line
with evidence on equity implied volatility by Peña et al. (1999) who find that
equity implied volatility with shorter term maturity have steeper moneyness
slopes. Furthermore, during the financial crisis of 2008-2010, we observe that
the moneyness smirk of asset implied volatility becomes much steeper. This
is consistent with the evidence of Han (2008) who finds that the index option
volatility smile is steeper when market sentiment becomes more bearish.

In the remainder of this section, given that our result of a downward slop-
ing term structure contrasts with a typically upward sloping one found for
equity volatility, we would like to further analyze this issue. As mentioned
in the introduction, one of the approaches used in the literature to estimate
implied asset volatility is simply deleveraging equity volatility implied from
equity options data. One could then wonder if similar term structures would
be obtained for asset volatility implied from equity options data compared
to credit markets data. To shed some light on this issue, we note that the-
oretically equity volatility is a function of asset volatility and the leverage
component.21 Therefore, implied equity volatility in addition to information
about expected future asset volatility possibly contains information about
expected future leverage. In contrast, in empirical applications, when the
equity implied volatility is deleveraged in order to calculate asset volatility,
this is done by assuming current leverage, not the expected future leverage.
This means that equity volatility implied from stock options would be sim-
ply divided by the current leverage component which is the same across the
maturity structure on the same day. Given that the leverage multiplier has
a positive value, such a calculation would lead to the same term structure
(upward or downward sloping) for asset volatility, as the one of equity volatil-
ity. Abstracting from the leverage effect, the direct comparison of the term

21This relation could be represented as in Choi and Richardson (2016): σE = (V/E ∗
∂E/∂V )σV , where V is the market value of firm’s assets, E is the market value of equity
and the term within the brackets represents the leverage component (or leverage multiplier)
in which the derivative depends on the structural model at hand.
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structures implied from the two markets is unfortunately not straightforward
and poses two additional major problems: a maturity and moneyness mis-
match. Indeed, most papers on equity implied volatility consider very short
maturities of up to 1 year in general, and many focus exclusively on at-the-
money options ( Heynen et al., 1994; Avellaneda and Zhu., 1997, among
others). This contrasts with the CDS market which is a natural environment
precisely for the opposite, long dated OTM options. For a proper compari-
son, one would need to analyze the term structure of asset volatility implied
from deep out-of-the-money put options with longer maturities. Therefore,
strictly speaking, our results are not directly comparable to the existing ev-
idence from the equity implied volatility literature.

[Figure 9 about here.]

4.3. Determinants of the empirical term structure slope

In this section we extend the previous analysis by examining a set of vari-
ables potentially associated with the term structure slope of asset implied
volatilities. Our interest in this issue is motivated by several reasons. First,
our finding of the downward sloping term structure of asset implied volatil-
ities contrasts with the commonly reported upward sloping term structure
of equity volatilities implied from stock options. Second, the equity implied
volatility literature shows that the surface of equity implied volatilities is af-
fected by a number of factors which are primarily related to different aspects
of liquidity and to characteristics of the underlying stock returns (Peña et al.,
1999; Amin et al., 2004; Bollen and Whaley, 2004; Chou et al., 2011; Deuskar
et al., 2011, among others). Third, Ericsson and Renault (2006) find support-
ing evidence for the downward-sloping term structure of liquidity spread in
the corporate bond yield spreads. That is, these authors find that illiquidity
represents a substantial part of the credit spread for short maturities while
the illiquidity component is much smaller for long-term maturities. Fourth,
if present in the CDS market, the tendency of borrowing-constrained in-
vestors to overweight riskier assets (Frazzini and Pedersen, 2014) and/or the
investors’ preference for lottery-like assets (Boyer and Vorkink, 2014; Bali
et al., 2016) could result in excess supply of long-term CDS contracts and/or
excess demand for short-term CDS contracts, respectively. Finally, Pan and
Singleton (2008) study the term structure of sovereign CDS spreads and re-
port higher mispricing at shorter maturities, probably related to liquidity
and demand/supply factors.
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Taking all pieces together, these findings suggest that larger asset volatili-
ties are needed in order to match observed CDS spreads for shorter maturities
(and vice versa) resulting in a downward sloping term structure. Since mis-
pricing seems to be less severe at the long end of the maturity spectrum,
this could further explain a steeper downward slope at the short-end and
relatively flat term structure on the long-end.22 These findings also point to
the possible existence of factors associated with the term-structure slope of
asset implied volatilities especially in the context of the highly concentrated
CDS OTC market in which participants are mainly insiders. In line with
the existing literature on equity implied volatility and our own findings, we
consider variables related to the market and funding illiquidity of the CDS
market, as well as variables related to the underlying firm’s asset returns and
investor’s risk aversion. A detailed description follows:

Momentum (MOM). Amin et al. (2004) argue that momentum can change
investor’s risk aversion and their perception of the distribution of the under-
lying asset return and therefore affect the supply and demand for options.
For example, if past returns are negative, investors expect future stock re-
turns to be lower than average and, accordingly, create an upward pressure
on put prices. Amin et al. (2004) find that equity implied volatility estimates
increase with declining stock prices and that implied volatility increases are
more pronounced for short-maturity options. Likewise, Peña et al. (1999)
find market momentum to be a relevant factor associated with the shape
of the equity volatility smile. We construct the market momentum variable
on the basis of the most recent index returns, in line with Han (2008). We
first form an equally-weighted index from individual firm’s asset values of all
companies in the sample and then construct the time-series momentum or
“trend” as the cumulative excess return on the index over the previous 60
days.23

22An upward sloping term structure of CDS spreads reflects the larger default probability
normally associated with longer maturities for investment-grade firms. At first sight, the
natural uncertainty associated with longer horizons might lead one to expect an upward
sloping term structure for asset implied volatility. In the context of our application, this
would imply higher upward (downward) pressure on CDS spreads at the long-run (short-
run), which would not be in line with findings across corporate bond, option and CDS
markets.

23Alternatively, for robustness purposes, we have considered a value-weighted index (see
the online appendix).
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Dealer funding costs (TED). Brunnermeier and Pedersen (2009) show that
the availability of the speculator’s capital affects the discrepancy between
prices and fundamentals. An adverse shock to speculators’ funding liquid-
ity (availability of funding) forces speculators to provide less liquidity to the
markets. In the CDS market, liquidity providers are primarily the sellers of
CDS contracts (Bongaerts et al., 2011), and therefore, worsening aggregate
funding conditions might result in the overall decrease in the supply of credit
protection. However, a contrary effect might occur through the bond market
channel: when funding costs are high, investors might prefer selling CDS
contracts to buying bonds, and ultimately increase the supply of credit pro-
tection. We proxy the availability of the speculator’s capital with the TED
spread (the spread between the 3-month LIBOR rate and the 3-month T-Bill
yield), usually considered as the funding liquidity indicator.

Investors’ risk appetite (RA). Investors’ risk appetite or, alternatively, in-
vestors’ risk aversion, affects investors’ hedging-related demand for credit
protection as well as their willingness to take on credit risk. Garleanu et al.
(2009) model the demand pressure effect on option prices and find that the
impact of demand pressure increases with dealers’ risk-aversion. In addition,
these authors find empirical support for the hypothesis that the market-
makers’ risk aversion plays an important role in pricing options and that
this effect is stronger when their risk aversion is higher. We proxy shifts in
the global investors’ risk appetite with the difference between the yield of
the iBoxx index of BBB and the yield of the iBoxx index of AAA European
corporate bonds. A widening of the spread between BBB and AAA yield
signals decreasing risk appetite (i.e., increasing risk aversion) and shifts of
investors preferences towards safer assets.

Relative bid-ask spread slope (RBAS). The bid-ask spread is the most com-
mon proxy for market liquidity used by numerous studies in the equity op-
tions literature. Peña et al. (1999) and Chou et al. (2011) find that option
bid-ask spread seem to be a key determinant of the curvature of the equity
volatility smile. Deuskar et al. (2011) show that in the OTC derivative mar-
kets illiquidity has an opposite effect to that found in markets for assets in
positive net supply (equities and bonds). That is, in the OTC derivative
markets illiquid options (high bid-ask spread) trade at higher prices than liq-
uid options (low bid-ask spread). To capture the effect of market illiquidity
on the term-structure slope of asset implied volatilities, we define the RBAS
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variable as the difference between the relative bid-ask spread of the 10-year
and 3-year CDS iTraxx index.24 The relative bid-ask spread is calculated as
the ratio of the difference between bid and ask quotes to the mid-quote. We
additionally control for the general market level of liquidity with the relative
bid-ask of the most liquid 5-year CDS iTraxx index.

Adverse shocks slope (ADS). Han and Zhou (2014) show that information
asymmetry affects yield spreads for both long-term and short-term bonds,
and that the effect is much stronger for the short-term sample. Yu (2005)
studies the effect of perceived accounting transparency on the term structure
of credit spreads and finds that the transparency spread is especially large
for short-term bonds. Finally, Acharya and Johnson (2007) show that insider
trading in the CDS market is asymmetric consisting mainly of bad news (i.e.,
severe negative shocks). We proxy informational frictions with large positive
jumps in the CDS prices. Following Acharya and Johnson (2007) we define
an adverse shock as a daily increase in the CDS spread level of 50 bp or
more. To capture the term structure effect we further calculate the slope
variable, ADS, as the difference between the frequency of adverse shocks of
the 10-year and 1-year contracts for a cross-section of 55 companies. We
additionally control for the general market level of extreme upward jumps
in the CDS spreads with the average frequency of adverse shocks across the
whole term structure.

Buying pressure slope (BPS). Bollen and Whaley (2004) show that net buy-
ing pressure, defined as the difference between the number of buyer-motivated
and seller-motivated contracts, significantly affects the shape of the implied
volatility function for S&P 500 index options and that the effect is espe-
cially pronounced for index puts. Since we do not have transaction data we
take an alternative approach and approximate buying pressure as the differ-
ence between the mid and efficient price.25 We use the idea that bid and
ask quotes are not necessarily symmetric around the efficient price and, the
higher the demand pressure, the closer the efficient price will be to the bid
quote. We determine the efficient price from bid and ask quotes using the
Gonzalo and Granger (1995) permanent-transitory decomposition under the

24The iTraxx index for 1-year maturity contracts is not available.
25Note that we have used the mid quote as the hypothetical transaction price when

deriving implied volatilities.
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long-run equilibrium VECM framework. To capture the slope effect, we fur-
ther define the BPS variable as the difference between the relative demand
pressure of the 10-year and 3-year iTraxx index contracts.26 We control for
the aggregate market demand pressure with the relative demand pressure of
the 5-year iTraxx index contracts.

We formally test for the presence of unit roots in the empirical term
structure slope series using the Augmented Dickey-Fuller (ADF) test. We
fail to reject the null hypothesis of the presence of unit-roots for the entire
term structure slope as well as for the long-end of the term structure. For the
short-end, we can reject the null hypothesis only at the 10% significance level.
In contrast, the null hypothesis of non-stationarity for the first differences
in the empirical slope series is rejected at 1% significance level in all of the
cases (see the online appendix). Test statistics for the ADF test for the level
of the series are reported in Panel A of Table 11 (the results on the first
differences are reported in the online appendix). Descriptive statistics of the
above-mentioned variables are provided in Panel B of Table 11.

[Table 11 about here.]

We specify the regression model as follows:

∆Slopet = β0 + β1MOMt + β2∆TEDt + β4∆RBASt + β5ADSt (9)

+β6BPSt + β7∆Slopet−1 + Controlst + εt

were Slopet refers to the empirical term structure slope, that is, the dif-
ference between the 10-year and 1-year maturity implied volatilities and ∆
denotes the first difference operator. We consider slope changes rather than
levels given the results of the ADF test and also include as a regressor the
one-period lag of the dependent variable. The results of the OLS time-series
regression with Newey-West standard errors are presented in Table 12. We
report results for the entire term structure slope as well as results for the
short-end (5-year minus 1-year implied volatility) and long-end (10-year mi-
nus 5-year implied volatility) of the term structure. To differentiate between

26We define the relative demand pressure as the difference between the mid-quote and
the efficient price scaled by the mid-quote.
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effects in crisis and non-crisis periods we determine endogenously the timing
of the structural break using the Quandt-Andrews test with 15% trimming.
The endogenously estimated break date falls on the 5th of February 2009, a
date which we use to divide the sample into crisis and post-crisis periods.

[Table 12 about here.]

We can notice first that momentum is positively related to the term struc-
ture slope.27 That is, the term structure slope is flatter in bullish markets,
and steeper in bearish markets.28 If we additionally consider the results
from Figure 5 that the term structure is steeper during the crisis, we can
conclude that highly volatile periods with negative momentum have steeper
term structure slopes. Looking at columns two and three we see that this
effect is stronger at the short-end of the curve. Moreover, the effect is higher
in the crisis sub-sample (columns four and five). Intuitively, in periods with
negative momentum there is an increase in the demand for credit protection,
and this is particularly important for short-term maturities, as investors be-
lieve that crises eventually end.

Regarding the TED spread, we find that an increase in funding costs is as-
sociated with a flatter term structure. This could be due to two reasons. On
the one hand, with higher funding costs a flight to quality might occur from
the long-term CDS contracts to the short ones, since the speculators’ capital
deteriorates which induces them to provide liquidity in the short-term less
risky securities. On the other hand, anecdotal evidence suggests that short
dated CDS contracts are used by large institutional money management firms
to express their views (Pan and Singleton, 2008). This evidence, combined
with the fact that the primary motive for trading in this market is gambling
(Crotty, 2009), could imply that in times of higher funding costs these institu-
tions could reduce their speculation-related demand for short term maturity
CDS contracts (thus focusing on their function of liquidity suppliers). Both
channels would lead to a flatter term structure. Our results regarding the
TED spread are also consistent with those of Frazzini and Pedersen (2014),
who find a negative relation between BAB (betting against beta) returns and

27We simply look at the association measures between variables, we do not attempt to
identify causality.

28We remind the reader that we have a downward sloping term structure, thus a negative
slope. Therefore, an increase in the slope implies that the term structure becomes flatter.
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the TED spread. As before, we obtain stronger results at the short-end of
the curve, and importantly this variable is only significant during the crisis.

An increase in risk aversion is associated with a steeper term structure, is
driven by the short-end of the curve, and is only significant during the crisis
sub-sample. A higher risk aversion (higher default risk/premium) indicates
that investors en masse are worried about credit events, and therefore they
buy credit protection. Since this is only significant in the crisis sub-sample,
the results suggest that investors worry over the near term, driving up the
implied volatility curve at its short-end.

The last three explanatory variables represent the slopes in transaction
costs, adverse shocks and buying pressure, all measured as the difference
between the long-end (10-year maturity) and short-end of the curve (3 or 1-
year maturity depending on data availability). We obtain positive coefficients
for all of them. First, when there are changes in transaction costs (bid-ask
spread) such that long-term contracts become more illiquid as compared to
short-term ones, the term structure of asset implied volatility becomes flatter.
Put differently, the more illiquid short-term contracts become relative to
long-term ones, the steeper the implied volatility term structure. This is in
line with the evidence of Bongaerts et al. (2011) who show that in the CDS
markets it is the protection seller that earns the illiquidity premium, i.e.,
more illiquid contracts are more expensive. Unlike most of the variables, the
relative bid-ask spread slope effect is driven by the long-end of the curve and
is only significant in the post-crisis sub-sample.

Second, regarding the term structure of adverse shocks, surprisingly we
find that in general it is downward sloping, despite the fact that short-term
credit spreads are in general lower than long-term ones (upward sloping term
structure of CDS spreads). This might indicate that there exists more in-
formed trading at the short-end of the curve. The positive coefficient for
the ADS variable indicates that a steeper term structure of adverse shocks is
associated with a steeper implied volatility term structure. Third, the term
structure slope of asset implied volatility is also driven by the buying pres-
sure slope. An increase in the buying pressure at the short-end relative to
the long-end of the curve pushes CDS spreads up at the short-end, leading
to a steeper term structure of implied volatility. Similarly, the net demand
skew was found to be positively and significantly associated with the equity
implied volatility skew for S&P 500 index options (Garleanu et al., 2009).
As in most cases, the results are driven by the short-end of the curve and are
stronger for the crisis subsample.
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4.4. Robustness checks
It could be argued, however, that the level of implied volatility is sensitive

to the specific set of modeling assumptions and the estimation procedure. In
particular, extracting implied volatilities from observable CDS spreads ba-
sically requires the estimates of: the firm’s asset value, default barrier and
recovery rate. Therefore, in order to mitigate these concerns and verify the
robustness of the main findings of the paper, we conduct several robustness
checks along these three dimensions, structured along five robustness sets.
For each robustness check, we present the mean implied volatility across
maturity, main descriptive statistics for the empirical term structure slope,
correlations with our baseline specification (Table 13), as well as term struc-
ture and moneyness smirk slopes (Table 14). For the ease of comparison,
Panel A of each table presents the results for our baseline framework (MM).
A detailed description follows.

We first confirm that results are robust to other default barrier specifica-
tions plausible within our baseline framework. Specifically, we replicate the
analysis using the smooth-pasting (SP) condition (Leland and Toft, 1996)
and the principal (P) value of the debt as these are shown to provide sensible
credit spread estimates in line with those observed in the CDS market (see
Forte and Lovreta, 2012 for a discussion). Moreover, in that way we actually
consider the lower and the upper bound for the default barrier parameter.
The lower bound is defined by the smooth-pasting condition value that pro-
vides the lowest possible default barrier that guaranties nonnegative equity
values. The upper bound is represented by the face value of debt. For il-
lustrative purposes, we plot in Figure 10 the empirical term structure slope
(i.e., the difference between 10-year and 1-year asset implied volatility) for
the three different default barrier specifications. First, we can notice that
the smooth-pasting condition value and the principal value of debt provide
the upper and the lower bound, respectively, for the slope of asset implied
volatility (and the level of asset implied volatility itself). Second, the em-
pirical term structure slope is negative for all days during our sample period
irrespective of the default point assumption. Finally, we can notice that
the time-series evolution of our baseline term structure slope (based on the
empirically optimal default boundary value) is almost mirrored for different
default barrier assumptions, which further confirms the robustness of our
findings. This first set of results is reported in Panel B of Table 13 and Table
14, with the corresponding notation SP and P for the two robustness checks
performed.
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[Figure 10 about here.]

We next verify that the results of the paper are not materially affected by
the interpolation of accounting data. In this exercise, instead of data inter-
polation, we consider constant values per year reported in the last available
annual firm’s balance sheet and income statement. These results are reported
in Panel C of Table 13 and Table 14, with the corresponding notation PC.

Third, in our baseline implementation we have used a fixed recovery rate
of 40%. Although, this is usually considered as a market convention, we
account for the possible time-series and cross-sectional differences within two
robustness checks. On the one hand, to reflect the findings in the literature
that recovery rates change with economic cycles (Altman et al., 2005) we
rely on Moody’s (2015) historical recovery rates (RRH) for senior unsecured
bonds. On the other hand, to account for the cross-sectional dimension we
rely on the result of Glover (2016) who finds that the costs used ex ante by
credit markets in pricing debt amount to 44.5% of the firm value in default.
That is, we now fix the costs that the firm expects to incur in the case of
default, α, and allow recovery rates to differ among the companies (RRC). In
both robustness tests, the firm’s asset value and default barrier are estimated
following the two-step procedure described in the main body of the paper.
The results of these two tests are reported in Panel D of Table 13 and Table
14, with the corresponding notation RRH and RRC .

Fourth, we consider the possibility to treat the firm’s asset value and
the default barrier as “observables”, and, consequently, to avoid relying on
any specific structural model or estimation procedure to assess their values
(Charitou et al., 2013; Bharath and Shumway, 2008). Within this robustness
set we consider: a) The approach of Charitou et al. (2013), labeled as CDLT,
in which firm’s asset value is proxied with the sum of the market value of
equity and book value of total liabilities and the default barrier is set to
the level of total liabilities (STL+ 1LTL); b) The approach of Bharath and
Shumway (2008), labeled as BS, in which the firm’s asset value is proxied with
the sum of the market value of equity and default barrier, set as in KMV to
the value of STL+0.5LTL. c) For completeness, we also consider Afik et al.
(2016), labeled as AAG, who suggest a default barrier of STL+0.1LTL. We
set the asset value as before to the sum of the market value of equity and the
default barrier. This “selection” of ad hoc default boundaries are indicative
of an upper (Charitou et al., 2013) and lower (Afik et al., 2016) bound for the
term structure slope, respectively, when the default barriers are exogenous
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and predefined. The results of these three approaches are reported in Panel
E of Table 13 and Table 14, with the corresponding notation CDLT, BS and
AAG.29

Finally, in the fifth robustness set, we consider the model of Leland and
Toft (1996) that includes endogenous default, taxes and arbitrary maturity of
the firm’s aggregate debt. Following Ericsson et al. (2015) we consider three
different choices for the maturity of the firm’s aggregate debt: 5, 6.76 and 10
years, to which we refer for the sake of brevity as short (LTS), medium (LTM)
and long (LTL). We also set the tax rate to 20%, realized costs of financial
distress to 15%, and the CDS recovery rate to 40%.30 The nominal amount of
debt, the coupon paid to all the firm’s debt holders, and the payout ratio are
set as in our base case. It is worth noting that the average payout ratio for
our sample of companies (2.76%) is very close to the average payout ratio of
2.65% reported in Ericsson et al. (2015). The firm’s asset value is estimated
using the two-step procedure applied in the main body of the paper with
the difference that the Step 2 of the procedure is replaced by estimating the
default barrier using the smooth-pasting condition value. This set of results
is reported in Panel F of Table 13 and Table 14.

[Table 13 about here.]

[Table 14 about here.]

The main results of the paper are robust to all these different specifi-
cations as we can observe in Table 13 and Table 14. We can see that the
term-structure is on average downward sloping. Moreover, the first three
principal components obtained with the different robustness specifications
are very highly correlated with those obtained with our baseline model. The
same holds for the changes in the empirical term structure slope. When
taking a closer look on the term structure slope across moneyness bins, we
observe that for all the robustness specifications the slope is more negative for
low moneyness bins (deep-out-of-the-money put options) and as we move to
higher bins (the options are closer to being at-the-money), the slope gets less

29The default barrier, or more generally the default barrier-to-asset value ratio, could
also be related to other accounting variables (see for example Dionne and Laajimi, 2012
and Li and Miu, 2010).

30 We refer the reader to the original papers of Leland and Toft (1996) and Ericsson
et al. (2015) for details.
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negative or even positive in the case of the last moneyness bin, confirming our
results for the baseline model. Finally, regarding the moneyness smirk slope,
we note that it is negative for all maturities and we confirm our finding that
the shorter the maturity the steeper the moneyness smirk. Detailed results,
including the replication of Figure 3 (PCA analysis on maturity), Figure 7
(asset implied volatility surface), Figure 9 (term structure and moneyness
smirk slopes), and Table 12 (determinants of the term structure slope) for
all five robustness sets are provided in the online appendix.

5. Conclusions

In this paper, we analyze the surface of asset implied volatility, as a
function of maturity (term structure) and as a function of moneyness (proxied
by the ratio of the default barrier to asset value). We estimate the firm’s
asset value in the framework of a structural model of default and back-out
asset implied volatility from observed CDS spreads. Our sample includes 55
non-financial investment-grade companies that belong to the iTraxx Europe
index, and spans over the 2007-2014 period.

Principal component analysis on both the term structure and moneyness
dimension shows that three factors (level, slope and curvature) are enough
to capture most of the variation in daily changes of the asset implied volatil-
ity. In a dynamic framework, the first principal component on the term
structure dimension has higher explanatory power during periods of elevated
systematic risk, and lower explanatory power during tranquil periods. PCA
on the entire volatility surface shows that the first principal component is a
level mode that makes the entire surface move up or down, while the second
principal component is a term structure mode. The third principal compo-
nent corresponds to a skew mode, and the fourth one to a moneyness-related
curvature mode.

Unlike the typical term structure of equity implied volatility, we find a
downward sloping term structure of asset implied volatility both averaging
across the whole sample period and for every single day in our sample. In
times of crisis, when the term structure of CDS spreads inverts, the term
structure of asset implied volatility becomes steeper. To better understand
this novel finding, we have analyzed the variables potentially associated with
the empirical term structure slope. Our results suggest that the downward
sloping term structure of asset implied volatility is associated with market
and funding illiquidity, investors’ risk aversion, informational frictions, de-
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mand/supply factors, and momentum. These variables have higher explana-
tory power precisely in crisis periods. Regarding the moneyness dimension,
in line with evidence on equity implied volatility, we find a negative skew.
This skew is steeper for short-term maturities, and gets steeper during crises.
Finally, less indebted firms with low moneyness exhibit steeper negative term
structure slopes.

Given the important differences found in the dynamics of asset implied
volatility compared to equity implied volatility, we conclude that the lat-
ter one should not be used as a proxy for asset implied volatility in pricing
credit sensitive instruments. On the contrary, further research on asset im-
plied volatility is needed to better understand its behavior and how the latter
differs from the evolution of equity implied volatility. In particular, it would
be interesting to know if the identified differences in the term structure of
asset and equity implied volatility are due to differences in moneyness and
maturity,31 or to the different informational content of credit markets com-
pared to options markets. An interesting avenue for future research that
could shed some light on this issue would be to analyze high-yield firms, as
opposed to our study that focuses on investment-grade firms. The compari-
son could then be done starting from equal grounds at least regarding mon-
eyness, since in high-yield firms CDS contracts are near the money options,
similar to at-the-money equity options used in the equity implied volatility
literature.

Appendix A.

The expressions for Ft(τn) and Gt(τn) are as follows:

Ft(τn) = Φ [h1t(τn)] +

(
Vt
Vb

)−2a

Φ [h2t(τn)] ;

Gt(τn) =

(
Vt
Vb

)−a+z

Φ [q1t(τn)] +

(
Vt
Vb

)−a−z

Φ [q2t(τn)] ;

where

31As previously mentioned, the moneyness and maturity mismatch impede a direct
comparison of the two.
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q1t =
−bt − zσ2τn

σ
√
τn

; q2t =
−bt + zσ2τn

σ
√
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;

h1t =
−bt − aσ2τn

σ
√
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; h2t =
−bt + aσ2τn

σ
√
τn

;

a =
r − δ − σ2

2

σ2
; bt = log

(
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)
; z =

√
(aσ2)2 + 2rσ2

σ2
.
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Appendix B.

Table B.1: The 55 companies included in our sample
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Figures

Figure 1: The term structure of CDS spreads. The graph depicts the average CDS
spreads in basis points for the sample of 55 firms, for different maturities ranging from 1
to 10 years, during the entire sample period.

Figure 2: The term structure of asset implied volatility. The mean asset implied volatility
over the 55 firms in our sample is plotted for each maturity ranging from 1 to 10 years,
during the whole sample period.
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a) Sorted eigenvalues b) First three eigenvectors

Figure 3: Principal component analysis on maturity. Panel a) plots the sorted eigenvalues
of a PCA on the maturity dimension on the correlation matrix of daily changes in asset
implied volatility, as a function of their rank. Panel b) shows the first three eigenvectors
corresponding to the three largest eigenvalues for the seven maturities from 1 year (y1) to
10 years (y10). The PCA corresponds to the whole sample period.
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Figure 4: Principal component analysis on maturity with rolling window. We perform
PCA on maturity with a rolling window of 252 days. The dotted curve represents the
explanatory power of the first principal component (left-hand scale). The solid curve
represents the correlation of the first principal component with asset returns (right-hand
scale). Each point on the graph corresponds to a PCA taken on the previous 252 days.
The first data point corresponds to a PCA over the December 14, 2007- December 1, 2008
period.

Figure 5: Empirical term structure slopes. The dotted curve represents the empirical term
structure slope for CDS spreads computed as the difference between 10-year maturity and
1-year maturity CDS spreads (left-hand scale in basis points). The solid curve represents
the empirical term structure slope for asset implied volatility (right-hand scale). It is
calculated as the difference between 10-year and 1-year maturity asset implied volatility.
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a) 1-year maturity b) 2-year maturity

c) 3-year maturity d) 4-year maturity

e) 5-year maturity f) 7-year maturity

g) 10-year maturity

Figure 6: Principal component analysis on moneyness. PCA is performed on the mon-
eyness dimension, separately for each maturity. We depict the first three eigenvectors
corresponding to the largest eigenvalues. 44



Figure 7: Asset implied volatility surface. The graph reports the volatility surface, i.e.,
the asset implied volatility as a function of maturity and moneyness.

a) First principal component b) Second principal component

c) Third principal component d) Fourth principal component

Figure 8: Principal component analysis on surface. PCA is performed on the surface
of asset implied volatility, pooling together the moneyness bins for all maturities, for the
entire sample period. The first four principal components are depicted in panels a) to d).
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a) Term structure slope b) Moneyness smirk slope

Figure 9: The dynamics of the empirical term structure and moneyness smirk slopes.
Panel a) plots the empirical term structure slope for the six different moneyness bins
during the entire sample period. It is computed as the difference between the 10-year
maturity and 1-year maturity asset implied volatility. Panel b) reports the empirical
moneyness smirk slope for all maturities. This is computed as the difference between the
implied volatility for the highest moneyness bin and the implied volatility for the lowest
moneyness bin.

Figure 10: Empirical slope for the first robustness set. The graph depicts the time-series
evolution of the empirical term structure slope (i.e., the difference between 10-year and 1-
year asset implied volatility) for three different default barrier specifications: the nominal
value of debt (P), the smooth-pasting condition value (SP) and the value that maximizes
the average equity holders’ participation in the firm’s asset value (MM).
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Tables

Table 1: Descriptive statistics of CDS spreads. This table reports the main descriptive
statistics for CDS spreads on a cross-sectional basis: the mean, median, standard deviation,
minimum, maximum, skewness and kurtosis.

Maturity mean median st. dev. min max skewness kurtosis

1y 82.14 54.30 73.17 12.22 358.47 1.66 5.24
2y 99.40 74.90 67.52 24.96 354.96 1.43 4.57
3y 116.72 95.71 63.35 37.73 357.28 1.20 3.91
4y 130.79 113.41 57.59 48.12 357.11 1.09 3.70
5y 144.91 130.17 54.33 55.48 358.45 0.97 3.42
7y 158.53 143.23 48.53 64.50 348.84 0.85 3.21
10y 166.20 151.01 45.28 73.53 341.71 0.81 3.16

Table 2: Systematic variation in firm-level volatility. The proportion of variance explained
by the first principal component is shown for PCA on the changes in firm-level implied asset
volatilities for the sample of 55 individual firms. This analysis is performed separately for
each maturity. The correlation between changes in the cross-sectional mean of firm-level
volatilities and PC1 for changes in firm-level volatility is reported in the last column.

Maturity Proportion Correlation

1y 0.2427 0.9899
2y 0.2843 0.9897
3y 0.2982 0.9881
4y 0.3225 0.9878
5y 0.3351 0.9871
7y 0.3390 0.9863
10y 0.3433 0.9860
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Table 3: Descriptive statistics of asset implied volatilities. This table reports the main
descriptive statistics for asset implied volatilities on a cross-sectional basis: the mean,
median, standard deviation, minimum, maximum, skewness, kurtosis and fractional degree
of persistence. The fractional degree of persistence is estimated using the commonly
applied semi-parametric approach of Geweke and Porter-Hudak (1983), dGPH , and the
exact local Whittle estimator of Shimotsu and Phillips (2005), dELW .

Maturity mean median st. dev. min max skew. kurt. dGPH dELW

1y 0.263 0.261 0.013 0.240 0.312 1.76 6.81 0.808 0.901
2y 0.213 0.212 0.011 0.191 0.260 1.72 6.65 0.912 0.902
3y 0.193 0.192 0.011 0.172 0.240 1.49 5.75 0.914 0.911
4y 0.183 0.181 0.011 0.162 0.230 1.36 5.35 0.926 0.921
5y 0.178 0.176 0.011 0.157 0.225 1.08 4.68 0.979 0.931
7y 0.171 0.171 0.011 0.150 0.218 0.71 3.83 1.078 0.953
10y 0.168 0.167 0.012 0.142 0.215 0.51 3.58 1.139 0.969

Table 4: Correlation matrix of changes in mean implied volatilities by maturity

1y 2y 3y 4y 5y 7y 10y

1y 1.000
2y 0.952 1.000
3y 0.934 0.967 1.000
4y 0.875 0.960 0.972 1.000
5y 0.824 0.911 0.950 0.983 1.000
7y 0.754 0.864 0.899 0.958 0.978 1.000
10y 0.668 0.788 0.827 0.903 0.935 0.981 1.000

Table 5: PCA on maturity

Component Eigenvalue Proportion of variance Cumulative proportion

PC1 6.4031 0.9147 0.9147
PC2 0.4915 0.0702 0.9849
PC3 0.0484 0.0069 0.9919

48



Table 6: Correlation between changes in the mean implied volatility across firms in a given
moneyness bin and PC1 for individual firm-level volatilities of firms within the same bin

Maturity < 0.3 [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) ≥ 0.7

1y 0.907 0.958 0.991 0.909 0.972 0.987
2y 0.932 0.965 0.989 0.903 0.971 0.991
3y 0.937 0.965 0.989 0.897 0.970 0.994
4y 0.936 0.966 0.989 0.904 0.970 0.995
5y 0.937 0.965 0.989 0.900 0.972 0.996
7y 0.934 0.961 0.989 0.904 0.970 0.997
10y 0.934 0.958 0.990 0.913 0.971 0.997

Table 7: Correlation between changes in the mean implied volatilities at the sub-index
level (across firms belonging to a given moneyness bin) and at the index level (across all
firms)

Maturity < 0.3 [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) ≥ 0.7

1y 0.784 0.855 0.947 0.874 0.810 0.667
2y 0.839 0.871 0.954 0.879 0.835 0.690
3y 0.834 0.874 0.956 0.883 0.844 0.705
4y 0.853 0.882 0.960 0.894 0.865 0.725
5y 0.852 0.884 0.960 0.895 0.876 0.741
7y 0.848 0.881 0.960 0.897 0.879 0.740
10y 0.836 0.880 0.961 0.899 0.886 0.734
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Table 8: PCA on moneyness by maturity. The cumulative explanatory power of the first
three principal components is reported.

1y 2y 3y 4y 5y 7y 10y

PC1 0.6949 0.7296 0.7363 0.7589 0.7667 0.7652 0.7628
PC2 0.7917 0.8190 0.8244 0.8414 0.8461 0.8475 0.8498
PC3 0.8625 0.8766 0.8806 0.8927 0.8961 0.8976 0.9018

Table 9: Correlations between PC2 on moneyness and changes in the empirical moneyness
smirk slope. The empirical slope is computed as the difference between the mean asset
implied volatility for the highest moneyness bin and the mean asset implied volatility for
the lowest moneyness bin.

1y 2y 3y 4y 5y 7y 10y

Corr 0.7241 0.6761 0.7182 0.7220 0.7461 0.7769 0.8076

Table 10: PCA on the volatility surface

Component Eigenvalue Proportion of variance Cumulative proportion

PC1 28.6416 0.6819 0.6819
PC2 3.2285 0.0769 0.7588
PC3 2.2214 0.0529 0.8117
PC4 1.9643 0.0468 0.8585
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Table 11: Descriptive statistics for regression variables. This table provides main descrip-
tive statistics and summary results for the Augmented Dickey-Fuller (ADF) Test for the
presence of unit roots for the empirical term structure slope (in Panel A) and the explana-
tory variables used in equation (10)(in Panel B). The lag-length is selected on the basis of
a downward t-test, i.e., starting from the maximum number of lags (pmax) the number of
lags is reduced until the last lag of the first difference included is significant at the 5% level.
The maximum number of lags is determined according to pmax = [12(T/100)1/4], where
[] denotes the integer part and T is the sample size. ADF unit root tests are performed
for the three possible alternatives: without constant and trend in the series, with constant
and without trend, and with constant and trend. Reported ADF test statistics correspond
to the model with the lowest Schwarz Information Criterion.

Panel A:

mean median st. dev. min max ADF p-value

Slope10y−1y -0.095 -0.094 0.009 -0.120 -0.072 -2.490 0.119
Slope5y−1y -0.086 -0.085 0.006 -0.103 -0.067 -2.807 0.057*
Slope10y−5y -0.010 -0.009 0.003 -0.019 -0.002 -2.201 0.208

Panel B:

mean median st. dev. min max ADF p-value

MOM -0.015 0.694 3.586 -12.312 8.573 -4.178 0.001***
TED 0.486 0.230 0.570 0.090 4.580 -2.482 0.120
RA 1.597 1.446 0.915 0.054 4.464 -1.834 0.370

RBAS -1.468 -0.927 2.199 -17.332 5.646 -5.863 0.000***
RBAL 0.719 0.644 0.492 0.069 7.370 -1.924 0.052*
ADS -0.158 0.000 1.061 -23.636 3.636 -5.945 0.000***
ADL 0.234 0.000 0.896 0.000 14.545 -6.113 0.000***
BPS -1.468 -0.927 2.199 -17.332 5.646 -8.140 0.000***
BPL 0.719 0.644 0.492 0.069 7.370 -9.446 0.000***

51



T
ab

le
12

:
D

et
er

m
in

an
ts

of
th

e
te

rm
st

ru
ct

u
re

sl
op

e
o
f

a
ss

et
im

p
li
ed

vo
la

ti
li

ty
.

T
h

is
ta

b
le

d
ep

ic
ts

th
e

re
su

lt
s

fr
o
m

th
e

re
g
re

ss
io

n
gi

ve
n

in
(9

).
S

ta
n

d
ar

d
er

ro
rs

ar
e

ca
lc

u
la

te
d

as
N

ew
ey

-W
es

t
H

A
C

S
ta

n
d

a
rd

E
rr

o
rs

.
t-

st
a
ti

st
ic

s
a
re

g
iv

en
in

p
a
re

n
th

es
es

.
*
,

*
*
,

an
d

**
*

d
en

ot
e

si
gn

ifi
ca

n
ce

at
th

e
10

%
,

5%
an

d
1
%

le
ve

ls
,

re
sp

ec
ti

ve
ly

.
F

o
r

th
e

ea
se

o
f

ex
p

o
si

ti
o
n

,
th

e
va

lu
es

o
f

in
d
ep

en
d

en
t

va
ri

ab
le

s
ar

e
d

iv
id

ed
b
y

10
0.

V
ar

ia
b
le

∆
sl

op
e(

10
y
-1

y
)

sh
or

t-
en

d
lo

n
g-

en
d

B
ef

or
e

A
ft

er
∆

sl
op

e(
5y

-1
y
)

∆
sl

op
e

(1
0y

-5
y
)

05
/0

2/
20

09
05

/0
2/

20
09

co
n
st

an
t

-0
.0

00
03

-0
.0

00
01

-0
.0

00
01

0.
00

06
7*

*
-0

.0
00

03
(-

0.
91

8)
(-

0.
56

6)
(-

1.
28

9)
(2

.4
35

)
(-

0.
95

4)
M

O
M

0.
28

34
9*

**
0.

19
47

9*
*

0.
08

91
0*

*
0.

83
75

2*
*

0.
28

60
8*

**
(2

.6
64

)
(2

.3
94

)
(2

.4
83

)
(2

.3
38

)
(2

.8
83

)
∆

T
E

D
0.

35
90

5*
**

0.
25

11
6*

**
0.

11
04

4*
**

0.
30

22
3*

**
0.

30
71

8
(6

.1
36

)
(6

.7
42

)
(4

.2
14

)
(4

.9
72

)
(0

.8
68

)
∆

R
A

-0
.1

24
55

*
-0

.1
43

94
**

*
0.

01
90

5
-0

.4
97

68
*

-0
.0

72
99

(-
1.

86
9)

(-
2.

62
2)

(0
.9

02
)

(-
1.

87
1)

(-
1.

32
1)

∆
R

B
A

S
0.

32
00

9*
*

0.
16

47
1

0.
15

55
2*

**
0.

30
67

2
0.

26
13

4*
(2

.0
08

)
(1

.3
81

)
(2

.9
15

)
(0

.5
91

)
(1

.7
45

)
A

D
S

0.
06

76
3*

**
0.

04
76

5*
**

0.
02

00
0*

**
0.

08
67

2*
**

0.
04

38
3*

**
(8

.5
05

)
(7

.4
03

)
(5

.2
44

)
(1

1.
10

7)
(3

.4
42

)
B

P
S

0.
20

45
2*

*
0.

14
16

9*
0.

06
48

9
4.

56
90

9*
*

0.
23

05
7*

*
(2

.0
35

)
(1

.7
24

)
(1

.3
35

)
(2

.0
09

)
(2

.1
22

)
∆

S
L

O
P

E
t-

1
-0

.0
13

68
-0

.0
19

06
-0

.0
49

14
*

0.
10

17
9*

*
-0

.0
94

12
**

*
(-

0.
45

2)
(-

0.
61

2)
(-

1.
70

3)
(2

.1
20

)
(-

3.
05

4)
A

d
ju

st
ed

R
2

0.
11

87
0.

10
33

0.
08

28
0.

32
31

0.
03

54
F

-s
ta

ti
st

ic
25

.7
09

22
.1

42
17

.5
62

15
.1

76
6.

63
9

P
ro

b
(F

-s
ta

ti
st

ic
)

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
D

u
rb

in
-W

at
so

n
st

at
2.

02
1

2.
02

6
2.

00
9

1.
92

1
2.

01
2

52



T
ab

le
13

:
R

ob
u

st
n

es
s

ch
ec

k
s:

Im
p

li
ed

as
se

t
vo

la
ti

li
ty

,
em

p
ir

ic
a
l

sl
o
p

e
a
n

d
co

rr
el

a
ti

o
n

s
w

it
h

th
e

b
a
se

li
n

e
sp

ec
ifi

ca
ti

o
n

.
T

h
is

ta
b

le
p

re
se

n
ts

im
p

li
ed

as
se

t
vo

la
ti

li
ty

fo
r

1
to

10
-y

ea
r

m
a
tu

ri
ty

,
th

e
m

a
in

d
es

cr
ip

ti
ve

st
a
ti

st
ic

s
fo

r
th

e
em

p
ir

ic
a
l

te
rm

st
ru

ct
u

re
sl

op
e,

as
w

el
l

as
co

rr
el

at
io

n
s

b
et

w
ee

n
th

e
fi

rs
t

th
re

e
p

ri
n

ci
p

a
l

co
m

p
o
n

en
ts

a
n

d
th

e
ch

a
n

g
es

in
th

e
em

p
ir

ic
a
l

sl
o
p

e
o
b

ta
in

ed
w

it
h

ea
ch

ro
b

u
st

n
es

s
sp

ec
ifi

ca
ti

on
an

d
th

os
e

ob
ta

in
ed

w
it

h
o
u

r
b

a
se

li
n

e
sp

ec
ifi

ca
ti

o
n

(M
M

).
P

a
n

el
A

p
re

se
n
ts

th
e

re
su

lt
s

fo
r

ou
r

b
as

el
in

e
fr

am
ew

or
k

(M
M

).
P

an
el

s
B

-F
re

p
or

t
th

e
re

su
lt

s
o
b
ta

in
ed

fo
r

th
e

fi
v
e

ro
b

u
st

n
es

s
se

ts
a
s

d
es

cr
ib

ed
in

S
ec

ti
o
n

4
.4

,
re

sp
ec

ti
ve

ly
.

Im
p
li
ed

vo
la

ti
li
ly

E
m

p
ir

ic
al

sl
op

e
C

or
re

la
ti

on
s

1y
2y

3y
4y

5y
7y

10
y

m
ea

n
m

in
m

ax
sd

ev
P

C
1

P
C

2
P

C
3

∆
E

S

PanelA

M
M

0.
26

3
0.

21
3

0.
19

3
0.

18
3

0.
17

8
0.

17
1

0.
16

8
-0

.0
95

-0
.1

20
-0

.0
72

0.
00

9
1.

00
0

1.
00

0
1.

00
0

1.
00

0

PanelB

P
0.

22
4

0.
18

0
0.

16
3

0.
15

4
0.

15
0

0.
14

5
0.

14
3

-0
.0

81
-0

.1
06

-0
.0

54
0.

00
9

0.
98

9
0.

99
1

0.
91

9
0.

98
7

S
P

0.
31

4
0.

26
7

0.
24

1
0.

22
8

0.
22

1
0.

21
3

0.
20

7
-0

.1
07

-0
.1

42
-0

.0
84

0.
01

0
0.

96
7

0.
98

7
0.

82
0

0.
98

0

PanelC

P
C

0.
26

5
0.

21
3

0.
19

3
0.

18
2

0.
17

7
0.

17
1

0.
16

8
-0

.0
97

-0
.1

20
-0

.0
72

0.
00

8
0.

94
1

0.
98

3
0.

91
8

0.
95

9

PanelD

R
R
C

0.
27

1
0.

21
9

0.
19

9
0.

18
9

0.
18

5
0.

18
0

0.
17

8
-0

.0
93

-0
.1

19
-0

.0
68

0.
01

0
0.

99
8

0.
99

4
0.

89
6

0.
98

9
R
R
H

0.
26

6
0.

21
4

0.
19

4
0.

18
4

0.
17

9
0.

17
3

0.
17

0
-0

.0
96

-0
.1

20
-0

.0
75

0.
00

9
0.

94
7

0.
96

3
0.

88
0

0.
97

2

PanelE

C
D

L
T

0.
21

8
0.

17
5

0.
15

8
0.

15
0

0.
14

6
0.

14
1

0.
13

9
-0

.0
79

-0
.1

03
-0

.0
55

0.
00

8
0.

97
1

0.
99

2
0.

91
4

0.
98

4
B

S
0.

26
8

0.
21

5
0.

19
4

0.
18

4
0.

17
9

0.
17

2
0.

16
9

-0
.0

99
-0

.1
28

-0
.0

76
0.

00
9

0.
98

3
0.

99
4

0.
90

3
0.

97
8

A
A

G
0.

33
4

0.
26

8
0.

24
2

0.
22

9
0.

22
2

0.
21

3
0.

20
6

-0
.1

28
-0

.1
61

-0
.1

05
0.

01
2

0.
99

3
0.

98
8

0.
86

9
0.

96
6

PanelF

L
T
S

0.
26

8
0.

21
6

0.
19

5
0.

18
5

0.
18

0
0.

17
4

0.
17

0
-0

.0
98

-0
.1

22
-0

.0
69

0.
00

9
0.

95
1

0.
99

0
0.

89
7

0.
97

8
L
T
M

0.
28

3
0.

22
7

0.
20

6
0.

19
5

0.
18

9
0.

18
3

0.
17

9
-0

.1
04

-0
.1

28
-0

.0
76

0.
00

9
0.

94
6

0.
99

0
0.

88
9

0.
97

8
L
T
L

0.
30

5
0.

24
5

0.
22

2
0.

21
0

0.
20

4
0.

19
6

0.
19

1
-0

.1
13

-0
.1

38
-0

.0
87

0.
01

0
0.

92
9

0.
99

0
0.

87
8

0.
97

6

53



T
ab

le
14

:
R

ob
u

st
n

es
s

ch
ec

k
s:

T
er

m
st

ru
ct

u
re

a
n

d
m

o
n

ey
n

es
s

sm
ir

k
sl

o
p

es
.

P
a
n

el
A

p
re

se
n
ts

th
e

re
su

lt
s

fo
r

o
u

r
b

a
se

li
n

e
sp

ec
ifi

ca
ti

on
(M

M
).

P
an

el
s

B
-F

re
p

or
t

th
e

re
su

lt
s

o
b

ta
in

ed
fo

r
th

e
fi

ve
ro

b
u

st
n

es
s

se
ts

a
s

d
es

cr
ib

ed
in

S
ec

ti
o
n

4
.4

,
re

sp
ec

ti
ve

ly
.

T
er

m
st

ru
ct

u
re

sl
op

e
M

on
ey

n
es

s
sm

ir
k

sl
op

e
<

0.
3

[0
.3

-0
.4

)
[0

.4
-0

.5
)

[0
.5

-0
.6

)
[0

.6
-0

.7
)
≥

0.
7

1y
2y

3y
4y

5y
7y

10
y

PanelA

M
M

-0
.1

79
-0

.1
48

-0
.1

05
-0

.0
71

-0
.0

46
-0

.0
01

-0
.3

35
-0

.2
73

-0
.2

39
-0

.2
18

-0
.2

04
-0

.1
83

-0
.1

62

PanelB

P
-0

.1
96

-0
.1

42
-0

.1
04

-0
.0

77
-0

.0
47

-0
.0

15
-0

.3
22

-0
.2

47
-0

.2
15

-0
.1

95
-0

.1
82

-0
.1

61
-0

.1
41

S
P

-0
.2

08
-0

.1
36

-0
.1

12
-0

.0
66

-0
.0

17
-0

.3
93

-0
.3

03
-0

.2
62

-0
.2

38
-0

.2
20

-0
.1

93
-0

.1
67

PanelC

P
C

-0
.1

87
-0

.1
48

-0
.1

05
-0

.0
71

-0
.0

44
0.

01
0

-0
.3

60
-0

.2
79

-0
.2

44
-0

.2
22

-0
.2

07
-0

.1
85

-0
.1

64

PanelD

R
R
C

-0
.1

88
-0

.1
46

-0
.1

02
-0

.0
64

-0
.0

42
0.

00
6

-0
.3

52
-0

.2
73

-0
.2

38
-0

.2
17

-0
.2

02
-0

.1
79

-0
.1

58
R
R
H

-0
.1

89
-0

.1
49

-0
.1

05
-0

.0
69

-0
.0

45
0.

00
0

-0
.3

52
-0

.2
74

-0
.2

40
-0

.2
19

-0
.2

05
-0

.1
84

-0
.1

63

PanelE

C
D

L
T

-0
.1

84
-0

.1
44

-0
.1

01
-0

.0
79

-0
.0

49
-0

.0
24

-0
.3

06
-0

.2
37

-0
.2

08
-0

.1
91

-0
.1

80
-0

.1
63

-0
.1

46
B

S
-0

.2
13

-0
.1

44
-0

.1
07

-0
.0

75
-0

.0
46

-0
.0

01
-0

.3
70

-0
.2

84
-0

.2
47

-0
.2

23
-0

.2
07

-0
.1

82
-0

.1
58

A
A

G
-0

.2
42

-0
.1

39
-0

.1
01

-0
.0

66
-0

.0
44

0.
00

9
-0

.5
21

-0
.4

01
-0

.3
48

-0
.3

15
-0

.2
92

-0
.2

57
-0

.2
24

PanelF

L
T
S

-0
.1

94
-0

.1
52

-0
.1

06
-0

.0
84

-0
.0

51
-0

.0
26

-0
.3

27
-0

.2
55

-0
.2

25
-0

.2
07

-0
.1

95
-0

.1
77

-0
.1

59
L
T
M

-0
.2

03
-0

.1
57

-0
.1

11
-0

.0
78

-0
.0

51
-0

.0
05

-0
.3

50
-0

.2
69

-0
.2

34
-0

.2
12

-0
.1

97
-0

.1
74

-0
.1

52
L
T
L

-0
.2

07
-0

.1
42

-0
.1

14
-0

.0
79

-0
.0

53
0.

00
3

-0
.3

46
-0

.2
63

-0
.2

26
-0

.2
03

-0
.1

86
-0

.1
60

-0
.1

35

54


