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Structure of the homodimeric androgen receptor
ligand-binding domain
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The androgen receptor (AR) plays a crucial role in normal physiology, development and

metabolism as well as in the aetiology and treatment of diverse pathologies such as androgen

insensitivity syndromes (AIS), male infertility and prostate cancer (PCa). Here we show that

dimerization of AR ligand-binding domain (LBD) is induced by receptor agonists but not

by antagonists. The 2.15-Å crystal structure of homodimeric, agonist- and coactivator

peptide-bound AR-LBD unveils a 1,000-Å2 large dimerization surface, which harbours over

40 previously unexplained AIS- and PCa-associated point mutations. An AIS mutation in the

self-association interface (P767A) disrupts dimer formation in vivo, and has a detrimental

effect on the transactivating properties of full-length AR, despite retained hormone-binding

capacity. The conservation of essential residues suggests that the unveiled dimerization

mechanism might be shared by other nuclear receptors. Our work defines AR-LBD

homodimerization as an essential step in the proper functioning of this important

transcription factor.
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T
he androgen receptor (AR/NR3C4) belongs to the
steroid receptor subfamily of nuclear receptors (NRs),
which also includes the glucocorticoid receptor

(GR/NR3C1), mineralocorticoid receptor (MR/NR3C2), proges-
terone receptor (PR/NR3C3) and oestrogen receptors a and
b (ERa/NR3A1; ERb/NR3A2). Steroid receptors are major
therapeutic targets, due to their pivotal role in a number of
endocrine-related diseases1,2. The AR, in particular, is critically
important for normal development and homeostasis of male
and female reproductive organs and their physiology3. To
date, more than a thousand cases with pathogenic mutations
affecting the human AR gene have been reported4. These
variations can generate a dysfunctional receptor and lead
to androgen insensitivity syndromes (AIS)5, which depending
on the clinical phenotype are classified as complete (CAIS),
partial (PAIS) or mild (MAIS). On the other hand, a large
number of gain-of-function AR mutations have been associated
with castration-resistant prostate cancer (PCa), one of the
leading causes of cancer death in men worldwide6,7. The rich
clinical information on AR-related pathologies continues
to provide a detailed knowledge on the structure-function
relationships for this transcription factor, as well as for
the other NRs.

Structurally, the AR is similar to other NRs consisting of
an N-terminal domain, followed by an almost strictly conserved
DNA-binding domain (DBD), an interdomain linker or
hinge, and a C-terminal ligand-binding domain (LBD).
The LBD contains the internal ligand-binding pocket (LBP)
and two major solvent-exposed surfaces responsible for interac-
tion with coregulators, activation function 2 (AF-2) and
binding function 3 (BF-3)8–11 and Supplementary References.
Structural information has been gathered on several full-length
NRs either by detailed X-ray crystallography, or through
small-angle X-ray scattering and electron microscopy at
lower resolution12–16. These biophysical investigations have
revealed conflicting data that does not allow a unified paradigm
of full-length NR architecture at present time17,18. Regarding
the AR, there is no experimental structural information
accounting for the multi-domain receptor. Thus far, a structure
of the DNA-bound AR-DBD dimer19, as well as numerous
structures of monomeric AR-LBD complexed with agonists
or antagonists have been elucidated20–23. This structural
information on isolated domains and consideration of reported
mutations have guided our previous modelling attempts of the
full-length protein24. Since the individual AR domains have
autonomous functions (nuclear translocation, coactivator
recruitment, DNA and ligand binding), several intra- and
inter-domain interactions are essential for the integration of
input and output signals required for proper AR functioning.
Establishing the order of key events leading to gene activation
and the molecular basis of allosteric control of the various
AR functions still remains a major challenge25,26. In this regard,
the identification of the dimerization mechanisms and
their physiological relevance may profoundly impact the
development of new AR therapeutics.

Here we present the crystal structure of the human AR-LBD
homodimer bound to its natural agonist, dihydrotestosterone
(DHT) and provide in addition strong evidence for its crucial
role in receptor functioning. Most importantly, over forty
published AR mutations linked to AIS or PCa have been found
to cluster at this interface providing significant in vivo support
for the current homodimeric AR-LBD structure. Disease-
associated mutations were found to affect the dimer interface
and lead to functional dysregulation of key AR actions,
corroborating the physiological significance of this protein–
protein interaction site.

Results
The LBD of AR interacts with UBA3. Ubiquitin-activating
enzyme 3 (UBA3) was identified in yeast two-hybrid screens
to bind to DHT-bound AR-LBD, used as bait against
human adult brain and prostate cDNA libraries. UBA3 has pre-
viously been shown to interact directly with ERa (ref. 27).
The androgen-dependent UBA3 interaction with the AR relies on
the presence of an LxxLL NR-interacting motif. A synthetic
UBA3 peptide comprising this motif, S59TESLQFLLDTCKV72

(S59-V72), was found by surface plasmon resonance
(SPR) to bind with high affinity to liganded AR-LBD
(KD¼ 30.6±0.7 nM; Fig. 1a). Crystals of AR-LBD grown in
the presence of this peptide diffracted X-rays up to a resolution of
2.15 Å, which allowed solution and refinement of the structure of
the complex (Fig. 1b). (See Table 1 for data collection and
refinement statistics, as well as structure quality parameters).
Electron densities in and around coactivator binding
AF-2 grooves could be safely interpreted as corresponding
to residues S62-T69 of the UBA3 peptide. These residues adopt an
a-helical conformation with the side chains of Leu residues
L63 and L67 inserted into the AF-2 pockets of the AR-LBD
(Fig. 1b), similar to the structures documented before for other
LxxLL peptide motifs23.

The crystal structure of the AR-LBD homodimer. All AR-LBD
structures deposited in the Protein Data Bank (PDB) to date
belong to the same crystal form (orthorhombic space group
P212121), and feature a monomer in the asymmetric unit
(ASU)20–23 and Supplementary References. In contrast,
the current AR-LBD crystal structure belongs to the monoclinic
space group (C2) and presents four independent, helically
arranged LBD molecules in the ASU (Fig. 1e,f; details of
the final electron density map are shown in Fig. 1c,d). Two of
these LBD monomers form a symmetrical ‘core dimer’ upon
burial of E1,000 Å2 of solvent-exposed surface from each
molecule (Figs 1e,f and 2a–e), while two peripheral AR-LBDs
associate more loosely to the BF-3 grooves of each of these
monomers (Figs 1d,f and 2f,h).

All four molecules in the ASU can be superimposed on the
previously solved monomeric structures, indicating an essential
conservation of the LBD scaffold (r.m.s.d. of 0.56 Å when
compared with PDB entry 1T7T). Significant structural differ-
ences were limited to the more N-terminal residues (E669-F674)
and to some loops that were mobile or even partially disordered
in most monomeric AR-LBD structures. (Numbering refers to
the recently revised sequence of full-length human AR). This
is the case of L1–3 (E682-S697), but in particular of the basic
L9–10 (C845-N849), which is clearly defined by electron density
in the current structure (Fig. 2c; Supplementary Fig. 1a).
The stabilizing structural effect of inter-LBD contacts is
also reflected by the lower temperature factors of the current
structure compared with those of monomeric AR-LBD refined
at a similar resolution (Supplementary Fig. 1b). Due to
their potential physiological relevance, inter-monomer contacts
will be briefly described below.

Core dimer: the two monomers in the AR-LBD core dimer
are arranged ‘head-to-head’ around a local pseudo twofold
axis with both AF-2 pockets facing opposite directions and
separated by over 60 Å (Fig. 2a,b). In essence, if the ‘left’ AR-LBD
is displayed in the standard orientation (that is, with helix
H1 and the AF-2 groove facing the viewer), the ‘right’ AR-LBD
shows its ‘back’ surface (H10-H11). The protein–protein interface
is centred on residues from helix H5 and the L5-S1 loops of
both partners, with additional contributions made by residues
from H1 and H7-H9, L1–3, and b-strand S1 (Fig. 2a). The
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two AR-LBDs are tilted by B20� perpendicular to the pseudo
twofold axis relating the partners (Fig. 2b). This tilting results
in a slightly asymmetric dimer structure, which alleviates
the electrostatic repulsion of the basic L9–10, but in particular
of acidic patches centred on residues D691 (L1–3) and D768
(LS1-S2) from both monomers.

Residues from the two monomers are arranged symmetrically
along the pseudo twofold axis, although some side chain
conformations and therefore the details of intermolecular
contacts differ slightly. At the core of the dimer interface,
both P802 residues are nested in aromatic cages formed by the
side chains of V685, W752, F755 and Y764 from a neighbouring
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Figure 1 | Crystal structure of AR-LBD in complex with UBA3 peptide. (a) An UBA3 peptide comprising the canonical LxxLL motif binds tightly to

AR-LBD. The results of SPR studies conducted in triplicate are shown. (b) Closeup around the AF-2 binding groove with the bound UBA3 peptide shown

as a cartoon (pink, with leucine side chains represented as sticks). AR is also depicted as a cartoon with AF-2 and BF-3 binding areas highlighted in brighter

blue and magenta, respectively, and the bound DHT moiety in sphere representation. (c,d) Details of the final electron density map. Most relevant AR-LBD

residues are represented as sticks and H-bonds with black dotted lines. (c) Closeup showing major interactions across the interface of the core dimer

composed by the arbitrarily labelled molecules B (in yellow) and C (in brown). Electron density is shown as either a brown or yellow mesh contoured

at 1s. (d) Closeup showing docking of H6 from peripheral AR-LBD molecule A (pale blue) into the BF-3 pocket of AR-LBD molecule B (yellow). Residues

from the peripheral monomer are marked with an asterisk. (e,f) Two views of the AR-LBD crystal structure with the four independent AR-LBD molecules

(a–d) found in the ASU. Notice that AR-LBD monomers B (yellow) and C (brown) form a symmetrical core dimer, while the two peripheral AR-LBD labeled

as (a) shown (teal) and (d) (pale blue) are associated to the BF-3 grooves of (b,c) respectively.
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monomer (Fig. 2c–e and Supplementary Fig. 2e). Noteworthy,
p-stacking interactions of residues W752 and F755 rigidify
the H5 helices, which appears to be essential for this
H5-H50 interface. Particularly strong van der Waals (vdW)
interactions are formed between the F755-P802 pairs (Figs 1c
and 2d). Further, residue V685 rests against the Y764 phenolic
group from the neighbouring monomer, and also engages in
additional vdW contacts with V758 (Fig. 2d). Other residues
symmetrically opposed upon dimerization are P767, as well as the
polar residues T756 and N757, which allows formation
of hydrogen (H-) bonds across the dimer axis (Figs 1c and
2c,d). The interface is further strengthened by H-bonds between
the guanidinium group of R761 and the main chain carbonyl
oxygen atoms of E679, A680 and/or E682 from the neighbour

LBD (Fig. 2e). Most importantly, R753 interacts with both
interface residues such as N757 and with the bound hormone by
means of its side chain (Fig. 2c–e; see also below).

BF-3-mediated contacts: the BF-3 pockets of the core
dimer partners harbour the short H6 from neighbouring
molecules (Figs 1d and 2f–h), which exclude E370/385 Å2 of
solvent-exposed surface. The hot spot residue at this interface
is Y774* whose aromatic side chain inserts between those of
F674 and F827. Binding is strengthened by important
vdW contacts of the Y774* side chain with P724/G725 and
L831 (Figs 1d–f and 2f–h). In addition, Y774* donates a H-bond
to E830, which also forms a salt bridge with K778* (Fig. 1d).
Finally, residues H777* and Y782* additionally contribute to
anchor H6 in BF-3 (Fig. 2f).

Table 1 | Crystallographic data and refinement statistics.

5JJMPDB
CRYSTAL PARAMETERS
Space group
Molecules/asymmetric unit
Cell dimensions

a, b, c (Å)
β (°)

Matthews coefficient
Solvent content (%)

C2 (monoclinic)
4

91.09, 90.83, 157.23 
90.07 
2.71 
54.61 

DATA COLLECTION
Wavelength (Å)

Low resolution limit (Å) 
High resolution limit (Å) 
Rmerge
Total number of observations 
Total number of unique 
Multiplicity 
Completeness (%) 
I/σ(I)
Mean I/σ

0.9 
Overall – Inner Shell – Outer Shell 
 78.61           78.61          2.27 
 2.15             6.80            2.15 
 0.073           0.042          0.456 
 214,583       6,866         31,533 
 69,531         2,294         10,052 
 3.1               3.0              3.1 
 99.6             99.8            99.2 
 6.8               11.8            1.4 
 8.9               19.7            2.5 

REFINEMENT
Fit to data used in refinement 
Resolution range (Å) 
Reflections used refinement 
Completeness (%) 
Final model 
Number of non-hydrogen atoms   
Number of solvent molecules
R factors 
R value (working+test set)
R value (working set)
Free R value
Free R value test set size (%) 
Free R value test set count 
Fit in the highest resolution bin 
Bin resolution range high (Å) 
Bin resolution range low (Å) 
Reflections in bin (working set) 
Bin completeness (working+test set) 
BinR value (working set) 
Free R value test set count 
Bin Free R value
Average B factors (overall, Å2)
R.m.s deviations 
Bond lengths (Å) 
Bond angles (°)

157.23-2.15  
66,522 
99.77 

8,848 
120 

0.203 
0.201 
0.243 
5.0 
3,444 

2.147              
2.203              
4,706 
96.91 
0.233 
254 
0.289 
40.54 

0.026 
1.97 

MODEL QUALITY
Favoured rotamers  
Ramachandran plot most favoured (%) 
Ramachandran plot allowed (%) 
MolProbity, clash score all atoms 
MolProbity score 

88.3% 
97
3
3.62 (99th percentile)* 
1.89 (88th percentile)*

*100th percentile is the best among structures of comparable resolution; 0th percentile is the worst.
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AR-LBD homodimerizes through the H5-mediated interface.
To confirm AR-LBD dimerization in solution, we first assessed
the capacity of DHT-liganded AR-LBD for non-covalent 1:1 self-
association by SPR. Analysis of the kinetics of self-interaction
revealed rapid association (ka¼ (8.1±0.2)� 103 M� 1 s� 1) and
dissociation phases (kd¼ 0.072±0.002 s� 1), from which an
affinity constant (KD)¼ 8.8±0.08 mM could be calculated
(Fig. 3a). Analysis of the affinity of protein–protein interactions
yielded a similar KD of 1.90±0.05 mM (Fig. 3b). These KD values

are consistent with SPR results previously reported for other
NR LBDs28,29. Preliminary cross-linking experiments with
glutaraldehyde revealed formation of AR-LBD dimers, in
addition to higher-order species (Supplementary Fig. 2a), and
prompted us to analyse in more detail the dimerization process
in solution.

To demonstrate that AR-LBD homotypic interactions in
solution involve the same surfaces identified in the current
crystal structure, we took advantage of the presence of
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Figure 2 | Details of the AR-LBD dimer interface. (a) Overall structure of the AR-LBD core dimer. The two monomers are depicted as cartoons, with

monomer B (yellow) in standard orientation and monomer C in brown; helices and loops are marked. The hormone (dihydrotestosterone, DHT) and the

UBA3 peptide are shown as spheres and as a cartoon, respectively. (b) Surface representation of the AR-LBD homodimer shown in the same orientation

and coloured yellow and brown as in a. The side chains of residues involved in direct inter-monomer contacts are represented as sticks, coloured according

to the monomer they belong to. The DHT moieties are depicted as color-coded spheres (oxygen, red; carbon, yellow or brown). The ‘right’ AR-LBD

monomer is titled by B20� perpendicular to the pseudo twofold axis relating the partners, which results in a slightly asymmetric dimer. (c–e) Closeups of

the AR-LBD dimer interface highlighting major inter-domain contacts. Residues are shown as color-coded sticks (oxygen, red; nitrogen, blue; carbon, yellow

or brown) and labelled. Hydrogen bonding interactions are indicated with black dots. (f) Closeup of the H6 helix from monomer A docking onto the

BF-3 pocket of monomer B. Relevant residues are depicted as sticks and H-bonds as black dotted lines. The Tyr774* residues of the peripheral monomers

occupy topologically equivalent positions as the outer ring of TRIAC (g) or the benzoic ring of FLF (h). Residues from the peripheral monomers are marked

with an asterisk. See also Supplementary Fig. 1.
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unique pairs of residues at each of the interfaces. First, we noticed
that four out of the six cysteine residues in the AR-LBD are
solvent accessible (C670, C687, C845 and C853), and
thus capable of reacting with sulfhydryl-reactive small molecules.
Further, inspection of the homodimer structure immediately
reveals that only residues C687 from the two core monomers
are located close enough to be simultaneously engaged by the
short-arm crosslinker, bis-maleimidoethane (BMOE; Fig. 3c).
As expected from these observations, incubation of AR-LBD in
the presence of BMOE resulted in rapid and almost quantitative
formation of a covalent dimer (Fig. 3d). This is in addition

to intramolecular bridges between residue C670 and either
C853 or C845, which are detectable as a more rapidly
migrating band corresponding to monomeric AR-LBD in
Fig. 3d. To verify that residues C687 are indeed responsible for
BMOE-mediated dimer formation, we analysed by mass spectro-
metry chymotryptic digests of monomeric and dimeric AR-LBD.
As expected, various combinations of BMOE-crosslinked peptides
N676-F698, E679-F698 and N676-L702 were detected only
in dimeric AR-LBD, and their identity verified by MS/MS
(see Supplementary Table 1 for a summary of detected peptides
and Fig. 3e,f for representative MS/MS spectra).
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Figure 3 | AR dimerizes in solution through the H5-H5’ interface. SPR analysis of AR-LBD self-association by kinetics (a) or affinity (b). The results of

experiments conducted in duplicate are shown along with the respective calculated affinity constants. (c) Closeup of the core dimer interface highlighting

the close proximity between the C687 Sg atoms from both monomers. (d) BMOE-induced cross-linking of AR-LBD. The molecular masses (in kDa) of

standard proteins are shown at the left side of the gel (MW). Notice detection of an AR-LBD dimer along with bands corresponding to higher-order

aggregates in the presence but not in the absence of the crosslinker. (e,f) Representative MS/MS spectra identifying BMOE-crosslinked peptides that

include residues C687 from both monomers. See also Supplementary Fig. 2 and Supplementary Table 1.
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In addition, we assessed the possible relevance of the H6-BF-3
interaction in solution by taking advantage of the presence
of a salt bridge between residues K778* and E830 (see Fig. 2f
and above). Incubation of purified AR-LBD with the zero-
length crosslinker, 1-ethyl-3-(3-dimethylaminopropyl)carbodii-
mide (EDC) revealed indeed appearance of a faint band
corresponding to the dimer, but most of the material remained
as a monomer (Supplementary Fig. 2b). We conclude that
the preferred conformation of homodimeric AR-LBD in solution
is centred on the much larger, symmetric H5-H50 interface.

Dimerization regulation by ligands and a CAIS mutation.
The experiments described above were conducted using highly
purified, isolated AR-LBD proteins. To study AR-LBD
dimerization in living cells, we performed acceptor-bleaching
fluorescence resonance energy transfer microscopy (FRET)
experiments30. To this end, AR-LBD constructs were genetically
fused with either enhanced yellow fluorescent protein (EYFP) at
the N-terminus or with ECFP at the C-terminus (Fig. 4a) and co-
expressed in Hep3B cells, essentially as previously described31. As
expected from the inclusion of the R630-K634 NLS in these
constructs, the fusion proteins were localized in the nucleus, also
in the absence of hormone (Fig. 4b). As illustrated in Fig. 4b, no
FRET signal was detected in the absence of added hormone, but it
was strongly induced by AR agonists (testosterone,
dihydrotesterone and R1881). By contrast, no FRET effect was
observed in the presence of the AR antagonists enzalutamide
(Enza), bicalutamide (Bic) or hydroxyflutamide (OHF). We
conclude that AR-LBD homodimerization follows hormone
occupation of the LBP, and that current antiandrogens
function, at least partly, by blocking this hormone-induced event.

To verify the relevance of interface residues for receptor
dimerization in vivo, we introduced either a mutation predicted
to favour homodimer formation (Y764C, identified in both
PCa and AIS patients) or the CAIS-associated mutation, P767A,
in both EYFP- and ECFP-tagged AR-LBD fusions (Fig. 4c).
In line with the solvent-exposed position of the exchanged
residues in monomeric LBD, both mutant proteins were correctly
folded, as indicated by their retained ligand-binding properties
(Fig. 4d,e). As expected from our in silico predictions (Supple-
mentary Fig. 3), the PCa mutation Y764C mutation allowed
ligand-induced dimerization as evidenced by a DHT-induced
FRET signal (Fig. 4c). Importantly, when the CAIS P767A
mutation was introduced in both EYFP and ECFP AR-LBD
fusions, the hormone was no longer able to induce a FRET
signal (Fig. 4c). We conclude that AR-LBD dimerization is
controlled by the ligand and that point mutations of interface
residues interfere with receptor homodimerization without
affecting ligand binding.

The dimer interface is critical for full-length AR activity.
To prove the functional relevance of the dimer interface for
full-length AR functioning we analysed the effect of selected
mutations found either in AIS (W752R and P767A) or both
AIS and PCa (Y764C), or that represent more drastic replace-
ments of naturally occurring variants (V758K, R761E and
R856E). With exception of the Y764C exchange, all mutations
were anticipated to have a negative effect on homodimer stability.

The selected mutations had varying effects on the activity
of the NR when tested on a classical reporter construct (Fig. 5a).
Variants AR(P767A) and AR(R856E) were virtually inactive
in this transactivation assay, while W752R displayed a ten-fold
reduced maximal activity. AR(V758K) showed a lower maximal
activity as well as a more than 10-fold reduction in EC50, while
for R761E the response was reduced two-fold. Interestingly,
the maximal response of the Y764C variant previously shown

to retain the homodimerization ability almost doubled that of
wild-type AR. These dramatic effects on transactivation activity
caused by mutations that affect the dimer interface were not due
to large differences in ligand affinity and binding capacity,
as evaluated in whole-cell binding assays for the full-length
AR variants W752R, Y764C and P767A (Fig. 5b,c). Indeed, the
binding capacity for 1 nM mibolerone and the relative affinity
for DHT were reduced two-fold for W752R and P767A, and
remained unaffected for AR(Y764C). Furthermore, the different
AR constructs were expressed to similar levels, as demonstrated
by immunoblotting (Fig. 5d,e and Supplementary Fig. 6).
We conclude that AR-LBD dimerization via helix H5 and nearby
areas (Supplementary Table 2) is critical for the transcriptional
activity of the AR.

Discussion
The contribution of LBD dimerization to the physiological
activity of the AR has remained controversial for a long time.
Here we present the crystal structure of an AR-LBD homodimer,
along with biochemical and functional evidence of its relevance
in vivo. First, we notice that the large inter-monomer interface
(E1,000 Å2) compares well with other solved structures of
NR homo- and heterodimers, and is significantly larger than the
previously reported GR-LBD and PR-LBD homodimers32–35;
see also Supplementary Figs 2 and 5 and below. Our SPR results
provide direct evidence for AR-LBD self-association in solution,
and we could unambiguously demonstrate that the H5-centred
dimerization mode revealed in the crystal structure is also
preferred in solution. Strongly supporting the relevance of this
arrangement in vivo, the isolated AR-LBD was shown by FRET to
dimerize also in a more complex, cellular environment.
Importantly, the control of dimerization by AR agonists and
antagonists correlates with the well-known effect of these
compounds on the activity of the full-length receptor. Finally,
the CAIS-associated mutation, P767A, which is predicted
to impair dimerization because of its negative impact on
vdW interactions, disrupts DHT-induced homodimer formation.

The role of the AR-LBD interface in the functioning of the
full-size receptor was further verified through functional
analysis of carefully selected mutations of residues exposed on
the contact surface. Replacements were predicted to either disrupt
(W752R, V758K, R761E, P767A and R856E) or enhance
dimerization (Y764C) without major impact on the 3D structure
of the AR-LBD and without altering other important functions
(Supplementary Fig. 3, Supplementary Notes). In fact, we
detected only minor changes in ligand-binding properties for
AR variants W752R and P767A. By contrast, all substitutions
tested had dramatic negative consequences on receptor function-
ing in our assay: W752R, P767A and R856E nearly completely
disrupted activity, while V758K and R761E strongly reduced
transactivation. Our results are consistent with published data on
variants P767A (ref. 36), R856C/H (refs 37,38) and V758K/I/A
(refs 39,40). While these mutations were previously reported to
affect transactivation and/or ligand binding in different assays,
our current structure now points out their detrimental effects on
homodimer formation as the primary cause of receptor
malfunctioning (Supplementary Fig. 3).

Interestingly, the Y764C variant showed a higher transactiva-
tion potential than the wild-type receptor. A similar higher
activity has been reported for another mutation, T756A,
which would also stabilize the dimer according to our analyses39.
How dimer stabilization enhances transactivation is unclear
at the moment. Possibly it affects one or more downstream
AR functions, but the direct consequences of dimer formation on
the biological activities of the AR need further investigation.
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Altogether, the current findings demonstrate that the
LBD dimerization surface is critical for the transcriptional
activity of the AR and for androgen physiology. There is
now evidence for inter- and intramolecular interactions at the
levels of the N/C interactions41, at the level of the DBD19, and
of the LBD (this work). While for the first two interactions
the spatial-temporal distributions have been determined26, we
now need to integrate LBD dimerization in the chronology
of gene activation by the AR. The functional implications of
disrupting or stabilizing the dimerization process are further
illustrated by significant correlations between naturally occurring
AR-LBD mutations and important pathologies, as discussed
below.

To date, almost 200 point mutations in the AR-LBD have
been linked to either AIS and/or PCa. Previously available
structures of monomeric AR-LBD allowed for a straightforward
rationalization of the impact of pathogenic mutations that
directly affect hormone binding, as 22 of them (17% of all
reported point mutations) map to the LBP. Mutations in residues
that line AF-2 and BF-3 grooves explain further 28 (22%) and
21 (16%) variants, respectively20–23. However, many other
residues mutated in AIS or PCa are well exposed on the surface
of AR-LBD monomer, and are unlikely to directly affect
protein structure or coregulator binding. The current crystal
structure offers a likely molecular explanation for over 40 AR
mutations that affect residues buried in the AR-LBD dimer
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Figure 4 | Functional characterization of homotypic AR-LBD interactions by FRET. (a) Schematic representation of the generated fusion proteins.

(b) Acceptor photobleaching FRET of N-terminal and C-terminal fusions of AR-LBD shows agonist-induced interactions (DHT, (n¼ 65), T (n¼ 32), and

R1881 (n¼48), while no interactions were observed without hormone (n¼44) or when antagonists (Bic (n¼ 38), Enza (n¼46), and OHF (n¼44)) were

bound to the LBD (mean values and standard error of the mean of at indicated number of cells are shown). Representative confocal images of cells

expressing the fusions of AR with EYFP/ECFP in the presence of these compounds are displayed below the bars. (c) Acceptor photobleaching FRET of

indicated proteins shows loss of interaction for the AR P767A mutant (n¼67) when compared with the WT (n¼ 59), but not for the Y764C mutant

(n¼63; mean values and s.e.m. of indicated number of cells are shown). Representative confocal images of Hep3B cells transiently expressing the

indicated protein in the presence of DHT are displayed below the bars. (d) Binding affinity of the EYFP-AR-LBD fusion protein for the AR agonist

mibolerone. (e) Maximal binding of WT and mutant AR for mibolerone (mean values and standard error of the mean of three experiments with three

technical replicates each are shown).
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interface (33%; Fig. 6). This is in particular the case for
recurrent mutations of residues F755, N757, V758, N759,
R761 and P767. This large mutational ‘hot spot’ across the
LBD strongly suggests a functional relevance of the AR-LBD
homodimer.

We used various bioinformatics tools for a systematic in-depth
rationalization of the impact of disease-linked point mutations
on AR protein folding as well as on homodimer formation
and/or stability (Supplementary Methods, Supplementary Fig. 3,
Supplementary Tables 3 and 5 and Supplementary Notes).
Interestingly, AIS-associated mutations are spread all over
the interface (Fig. 6a), while PCa mutations mostly cluster
at the core of the dimer (Fig. 6b). This might reflect the
selection of mutations during AR targeting therapies, which is
different from the more random distribution of mutations seen in
AIS. The major implications of the current structure for disease-
associated point mutations are summarized in Supplementary
Results.

While the physiological relevance of the core LBD dimer
for AR functioning seems to be solidly demonstrated by a wealth
of structural and functional data, including a large number
of naturally occurring point mutations, there are certain more
speculative issues raised by the current structure that we
would like to address below.

Signal transduction in NRs at the molecular level is
mediated by long-range communication between topographically
distinct (non-overlapping) binding sites (e.g., LBP, AF-2, and
BF-3 in the LBD, as well as the DBD). These allosteric transitions
may involve subtle, reversible conformational changes that are
still under intense investigation. How allosteric effects are
propagated across the different intra- or inter-functional
surfaces (N-terminal domain, DBD, hinge and LBD) are still
not fully elucidated8,42–45. The current structure of the
AR homodimer highlights an additional level of communication
between the main functional sites of the AR-LBD partners
(inter-domain allostery; Fig. 6a,b). The strictly conserved residue
R753 is the central element in coupling the dimerization partners
as it makes crucial direct contacts with either agonists
or antagonists in the LBP, while simultaneously contributing
to LBD dimer assembly (Figs 1c; 2c,e and 6c)20–23. The intricate
residue network in this area thus directly connects hormone
binding with dimer formation. This is corroborated by the
FRET data, which show that agonist binding induces
dimerization (Fig. 4c). The P767A mutation impairs
vdW interactions across the dimer interface (Fig. 2d), thus
partially disrupting this network, reducing dimerization, and thus
ultimately inactivating the AR. Of note, AR(P767A) retains
ligand-binding capability, albeit with a lower affinity (Fig. 4d).
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This indicates that ligand binding can occur independently
from dimerization.

At the same time, LBP occupancy in one LBD may influence
the ligand-binding capacity of the second monomer through
the H5-H50 interface. Whether this allosteric effect fully
explains the reduction in ligand affinity of the P767A variant
remains to be investigated. Along these lines, it is noteworthy
that binding of antagonist R-bicalutamide destabilizes helix
H5 in monomeric LBD, as indicated by significantly higher
B factors22 PDB 1Z95; see also Supplementary Fig. 1b). Thus,
it would seem that interference with LBD dimerization is
a major action mechanism of AR antagonists (Fig. 4b).

The LBP-to-LBP0 allosteric connection could be expected
to synchronize the AF-2 and BF-3 grooves from the two
interacting partners (Fig. 7b), in line with proposals that binding
interactors or mutations at remote sites lead to functional changes
at (an)other area(s) either through alteration of receptor shape

and/or its dynamics8,42,43,45–48. In particular, dimerization
might directly influence ligand binding and/or remodel the
AF-2 landscape through long-range allosteric communication
facilitating or disrupting productive protein–protein interactions
with key coregulators. Of note, the AF-2 pockets of both
partners in the AR dimer remain accessible for interactions
with coregulatory complexes, in alignment with currently
accepted models of full-length NR functioning derived from
EM data16. Elucidating the allosteric pathways communicating
across the dimer interface and in particular with the AF-2 and
BF-3 interacting surfaces of the dimer partners needs further
investigation as it has been studied in other NRs44. Furthermore,
we postulate that LBD dimerization could also influence
activities of other AR domains. This is corroborated by the
retained ligand-binding ability of the transcriptionally inactive,
dimer-disrupting AR mutants, W752R and P767A (Fig. 5).
At a higher level, it is interesting to note that allosteric linkages
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between DNA and ligand binding and transactivation have
been proposed earlier for the AR24.

The LBDs of the subfamily of oxosteroid NRs (AR, GR, MR
and PR) differ in several key structural features from the
ER subclass and the RARa-RXRa heterodimers32,49 (Suppleme-
ntary Figs 4 and 5). In particular, oxosteroid NRs lack
a hydrophobic motif at the N-terminal end of H10, which is an
essential element of the canonical dimerization interface.
Furthermore, their C-terminal F domain forms a short b-sheet
with the L8–9 loop holding H12 in an agonistic conformation
that is incompatible with the standard dimerization mode
(Supplementary Fig. 4a). The current structure of the AR-LBD
homodimer now solves the structural dilemma of the quaternary
assemblies of oxosteroid receptors by revealing a dimerization
mode with a major contribution of H5 from both partners
(Supplementary Figs 4 and 5).

Several observations raise the interesting possibility that
the AR-like dimeric conformation could be adopted by other
members of the oxosteroid subfamily. In this regard, it is
noteworthy that residues involved in maintaining the rigid,
dimerization-competent structure of H5 such as W752 and
F755 as well as F804 (H8) are highly conserved in all oxosteroid
receptors. Indeed, the current AR-LBD homodimer shows
some resemblance to a previously reported crystal structure
of homodimeric GR-LBD35 (PDB 1M2Z; see also Supplementary
Figs 4b and 5a). However, although several topologically
equivalent residues contribute to the inter-monomer interface
in the 1M2Z structure (Supplementary Fig. 5a), a closer
inspection reveals that the ‘right side’ GR-LBD molecule is

tilted towards the lower half of the dimer (Supplementary
Fig. 4b). As a result, the 1M2Z dimer interface is substantially
smaller and less intimate: 600 Å2 buried surface area versus
1,000 Å2 in the case of the AR homodimer (Fig. 2a,b;
Supplementary Fig. 4b). A hypothetical head-to-head model of
the GR-LBD homodimer can be straightforwardly generated
by a rigid-body rotation of the ‘right side’ GR-LBD monomer
of the previous 1M2Z structure, accompanied by some side
chain rotations and repositioning of the highly flexible
L9–10 loop to avoid steric clashes across the dimer interface
(Supplementary Fig. 4b). Notably for the GR, different
physiological functions have been ascribed for receptor
monomers versus dimers, but the analyses have been mainly
based on DBD-mediated dimerization26,50. The herein proposed
LBD-mediated dimerization mechanism will need to be taken
into consideration in this field as well.

Similarly, our modelling experiments also indicate that
head-to-head dimers are perfectly compatible for the PR and
MR LBDs. We notice that a topologically unrelated configuration
has been reported for the PR-LBD homodimer that includes
H12 and is formed upon exclusion of 700 Å2 of solvent accessible
surface33,34 (Supplementary Fig. 5b). However, this arrangement
is more difficult to reconcile with the current models of
receptor action because it would occlude the coactivator
binding AF-2 pocket. Finally, H5-centred symmetric dimers
might be additionally relevant for other NRs. In this regard,
previously reported structures of TR homodimers reveal that
topologically equivalent elements from H5 and L5–6 contribute
to the dimer interface51,52 (Supplementary Fig. 5c).
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In summary, the crystal structure of the AR-LBD homodimer
presented here appears to represent a physiologically
relevant conformation of the dimeric receptor in vivo and
allows for a deeper understanding of the mechanisms of action of
this important transcription factor. We provide structure-
function insights into how pathogenic mutations that cluster
at the dimer interface alter key functions of the AR. Furthermore,
the current structure suggests an elegant map of allosteric
connections between major AR functional sites with important
implications for signal transmission across the LBD. How
this dimeric structure fits in the context of the AR full-length
dimer and its exact roles in spatial-temporal control of gene
transcription remain major intellectual challenges with important
clinical implications. Even though caution must be exercised
when extrapolating the current results to other NRs, the head-to-
head structure of the AR-LBD homodimer might represent
a common conformation for both homo- and heterodimers
of other members of the subfamily of oxosteroid receptors
and perhaps for other NRs as well. Moreover, despite the inherent
challenges to develop protein–protein disruptors, our structural
investigation opens up avenues for therapeutic intervention,
as small molecules that may interfere with AR dimerization
could be potentially useful for PCa treatment.

Methods
Peptides and proteins. A peptide corresponding to residues S59-V72 of
human UBA3 was custom-synthesized at Pepmic. Recombinant human AR-LBD
(residues 662–919) was expressed as a fusion protein with thioredoxin and purified
to homogeneity using standard purification methods23.

Crystallization and structure elucidation. Purified, concentrated DHT-bound
human AR-LBD (residues 662–919) was combined with a threefold molar excess
of synthetic UBA3 59S–72V peptide and incubated overnight at 4 �C. Drops of the
AR-LBD-UBA3 mixture were equilibrated against 0.1 M HEPES, pH 7.5,
1.32 M ammonium sulfate using the sitting drop vapor-diffusion method.
Diffraction data were collected at 100 K at ALBA CELLS synchrotron and
processed using MOSFLM (http://www.mrc-lmb.cam.ac.uk/harry/mosflm/) and
CCP4 (http://www.ccp4.ac.uk/). The crystal structure was solved and refined using
MOLREP, REFMAC5 and COOT from the CCP4 package. Crystal packing analysis
was performed using PISA (http://www.ebi.ac.uk/), model quality was assessed
with MolProbity (http://molprobity.biochem.duke.edu/) and figures were prepared
with PyMOL (http://www.pymol.org).

Surface plasmon resonance analyses. SPR analyses were performed at 25 �C in
a BIAcore T200 instrument (GE Healthcare). Highly purified, DHT-bound
recombinant AR-LBD was diluted in 10 mM sodium acetate, pH 4.7 and directly
immobilized on a CM5 chip (GE Healthcare) by amine coupling. Two different
ligand densities were used: B300 resonance units (RU) for AR-LBD self-associa-
tion experiments, and E6,800 RU for studying the binding of the UBA3-derived
peptide to AR-LBD. As a reference, one of the channels was also amine-activated
and blocked in the absence of protein. Alternatively, in some experiments the
unrelated NR, TLX/NR2E1, was coupled in the reference channel. The running
buffer was 50 mM HEPES pH 7.2, 50 mM Li2SO4, 5% glycerol, 1 mM DTT, 5 mM
DHT. Sensorgrams were analysed with the BIAcore T200 Evaluation software
3.0 and Scrubber2, and fitted according to the 1:1 Langmuir model.

Cross-linking experiments. Purified recombinant human AR-LBD (33mM) was
incubated either with glutaraldehyde (GA; 0.05% final concentration; Sigma) for
10 min, or with 200mM bis(maileimido)ethane (BMOE, Thermo Scientific) or
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC, Pierce) for
1 h at 37 �C following the manufacturer’s instructions. Samples of the reaction
mixtures were boiled in the presence of reducing Laemmli sample buffer, and
separated by SDS-PAGE.

SDS-PAGE and western blotting. Proteins were resolved on 10% SDS-poly-
acrylamide gels, which were then either stained with Coomassie Brilliant Blue or
electroblotted onto PVDF membranes. Western blot analysis of recombinant
AR-LBD was performed using a commercially available anti-AR-LBD antibody
(C19; Santa Cruz). For verifying expression levels of full-length AR we used an
in-house antibody targeting the N-terminal domain of the protein53 and antibodies
against GAPDH (Santa Cruz) as control. Secondary anti-rabbit (P0217) and
anti-mouse antibodies (P0260; both from Dako) conjugated to horseradish

peroxidase were used for visualization by immunodetection combined with
chemiluminescence (Western Lightning Plus-ECL; PerkinElmer).

Nanoliquid chromatography tandem mass spectrometry. Coomassie Brilliant
Blue-stained bands corresponding to monomeric and dimeric AR-LBD were
excised from the gels and subjected to in-gel digestion following standard
protocols54. Briefly, excised bands were reduced (10 mM dithiothreitol in 50 mM
bicarbonate buffer, pH 8, for 45 min at 56 �C), alkylated (50 mM iodacetamide in
50 mM ammonium bicarbonate buffer for 30 min at 25 �C) and digested with
sequencing-grade chymotrypsin (Promega) overnight at 37 �C in 100 mM
ammonium acetate buffer, pH 8. Chymotryptic peptides were diluted in 1% formic
acid (FA) and loaded onto a 180mm� 20 mm C18 Symmetry trap column
(Waters) at a flow rate of 15ml min� 1 using a nanoAcquity Ultra Performance
LCTM chromatographic system (Waters). Peptides were separated using
a C18 analytical column (BEH130 C18, 75 mm� 25 cm, 1.7 mm; Waters) with
a 120-min run, comprising three consecutive linear gradients: from 1 to 35% B in
100 min, from 35 to 50% B in 10 min and from 50 to 85% B in 10 min
(A¼ 0.1% FA in water, B¼ 0.1% FA in CH3CN). The column outlet was directly
connected to an Advion TriVersa NanoMate (Advion) fitted on an LTQ-FT Ultra
mass spectrometer (Thermo), which was operated in positive mode using the data-
dependent acquisition mode. Survey MS scans were acquired in the FT with the
resolution (defined at 400 m/z) set to 100,000. Up to six of the most intense ions
per scan were fragmented and detected in the linear ion trap. The ion count target
value was 1,000,000 for the survey scan and 50,000 for the MS/MS scan. Target ions
already selected for MS/MS were dynamically excluded for 30 s. Spray voltage in
the NanoMate source was set to 1.70 kV. Capillary voltage and tube lens on the
LTQ FT were tuned to 40 and 120 V, respectively. The minimum signal required to
trigger MS to MS/MS switch was set to 1,000 and activation Q was 0.250. Singly
charged precursors were rejected for fragmentation.

Bioinformatic analysis of the impact of pathogenic mutations. The following
bioinformatics programs were used to assess the impact of point mutations on the
stability of monomeric versus dimeric AR-LBD conformations: CUPSAT (ref. 55),
SMD (ref. 56), Polyphen (ref. 57) and iStable (ref. 58). All mutations were in
addition visually inspected using Pymol. Folding RaCe (ref. 59) was used to predict
the changes in folding rates upon mutation.

Cell culture. PC-3, COS-7 and Hep3B cells were obtained from the American
Type Culture Collection (ATCC) and were authenticated by short-tandem repeat
DNA profiling by Genetica. PC-3 and COS-7 cells were cultured in Dulbecco’s
modified Eagle medium supplemented with 10% foetal calf serum, while Hep3B
cells were cultured in minimum essential medium (MEM)-a medium with Glu-
taMAX supplement and without nucleosides (Gibco).

Acceptor photobleaching FRET experiments. To enable detection of AR-LBD
dimerization in living cells, a fragment coding for residues 612–919 of the human
AR gene was genetically labelled with EYFP (N-terminal) or ECFP (C-terminal).
In addition, P767A and Y764C mutations were introduced in these constructs.
Acceptor photobleaching (abFRET) was performed following standard protocols30.
In short, Hep3B cells were seeded on cover glasses and grown in full culture
medium (alpha-MEM). Cells were co-transfected with constructs encoding
EYFP- and ECFP-labelled AR-LBD. Cells transfected with either free EYFP and
ECFP or with the ECFP-EYFP fusion construct served as negative and positive
controls, respectively. Transfected cells were grown for at least 16 h in alpha-MEM
supplemented with 5% charcoal-stripped serum and (ant-)agonists as described in
the figure legends. In abFRET, images of cells expressing both EYFP and ECFP
were collected sequentially with a Zeiss LSM510meta confocal microscope. ECFP
and EYFP were detected using 514 and 458 nm excitation at moderate laser power,
and the emission was detected using a 470–500 nm bandpass emission filter and a
560 nm-long pass emission filter, respectively. After image collection, EYFP was
bleached in the whole nucleus by scanning a region of 200 mm2 25 times at 514 nm
at high laser power. After photobleaching, a second EYFP and ECFP image pair
was collected. Apparent FRET efficiency was calculated using the equation:

abFRET ¼ ECFPafter � ECFPbeforeð Þ�EYFPbefore½ �
= ECFPafter�EYFPbeforeð Þ� ECFPbefore�EYFPafterð Þ½ �;

ð1Þ

where ECFPbefore and EYFPbefore are the mean prebleach fluorescence intensities of
ECFP and EYFP, respectively, in the area to be bleached (after subtraction of
background), and ECFPafter and EYFPafter are their mean postbleach fluorescence
intensities, in the bleached area. The apparent FRET efficiency was finally
expressed relative to control measurements in cells expressing either free ECFP and
EYFP (abFRET0) or the ECFP-EYFP fusion protein (abFRETECFP-EYFP fusion):

apparentFRETefficiency ¼ abFRET� abFRET0ð Þ= abFRETECFP-EYFP fusion � abFRET0ð Þ:
ð2Þ
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Transactivation assays. PC-3 cells were seeded in 96-well plates (10,000 cells
per well) and transfected with 100 ng of reporter construct, 10 ng of AR expression
vector and 5 ng of pCMV-b-gal expression vector. Hormone treatments were done
in triplicate; transfections were done in biological quadruplicates. After transfec-
tion, the cells were stimulated with increasing concentrations of DHT. The
following day, cells were harvested in Passive Lysis buffer and luciferase as well as
b-galactosidase activity were measured with a Luminoskan luminometer53.

Whole-cell competition assay. COS-7 cells were seeded in 48-well plates
at a density of 30,000 cells per well and transfected with 375 ng of AR and 75 ng of
pCMV-b-gal expression vectors, respectively. On the next day, cells were incubated
with 1 nM [3H]-labelled mibolerone and increasing concentrations of unlabelled
DHT (0.1 nM–10 mM). After incubation at 37 �C for 90 min, cells were washed
three times with ice cold PBS and lysed in Passive Lysis buffer. Radioactivity
present in these extracts was determined by liquid scintillation counting.

Ligand-binding assay. COS-7 cells were seeded in 48-well plates at a density of
30,000 cells per well and transfected with 375 ng of AR and 75 ng of pCMV-b-gal
expression vectors, respectively. On the next day, cells were incubated with a range
of concentrations of [3H]-labelled mibolerone or with the same concentrations
of the unlabelled ligand. After incubation at 37 �C for 90 min, cells were washed
three times with ice cold PBS and lysed in Passive Lysis buffer. Radioactivity
present in these extracts was determined by liquid scintillation counting. Maximal
binding was determined by incubating the cells with 300 nM labelled mibolerone.

Data availability. The atomic coordinates and structure factors have been
deposited in the PDB (www.rcsb.org) and the accession code assigned is 5JJM. The
PDB accessibility has been designed ‘for immediate release on publication’. The
following PDB accession codes were used in this work: 1I38, 1T76, 1T63, 1XQ3,
1T5Z, 1Z95, 1XNN, 2IHQ, 2HVC, 2PIX, 2PIU, 2PIR, 2PIO, 3L3Z, 4OH5, 1M2Z,
1A28, 3D57, 4IQR, 1DKF and 3E00. The proteomic data sets have been deposited
in the PRIDE repository and the data set is available via ProteomeXchange with the
data set identifier PXD005575. The authors declare that all the data supporting the
findings of this study are available within the article and its Supplementary
Information Files, or available from the authors on reasonable request.
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23. Estébanez-Perpiñá, E. et al. The molecular mechanisms of coactivator
utilization in ligand-dependent transactivation by the androgen receptor.
J. Biol. Chem. 280, 8060–8068 (2005).

24. Helsen, C. et al. Evidence for DNA-binding domain-ligand-binding domain
communications in the androgen receptor. Mol. Cell. Biol. 32, 3033–3043
(2012).

25. van Royen, M. E. et al. Compartmentalization of androgen receptor protein-
protein interactions in living cells. J. Cell Biol. 177, 63–72 (2007).

26. van Royen, M. E., van Cappellen, W. A., de Vos, C., Houtsmuller, A. B.
& Trapman, J. Stepwise androgen receptor dimerization. J. Cell Sci. 125,
1970–1979 (2012).

27. Fan, M. et al. The activating enzyme of NEDD8 inhibits steroid receptor
function. Mol. Endocrinol. 16, 315–330 (2002).

28. Jisa, E. & Jungbauer, A. Kinetic analysis of estrogen receptor homo- and
heterodimerization in vitro. J. Steroid Biochem. Mol. Biol. 84, 141–148
ð2003Þ:

29. Yue, L. et al. Ligand-binding regulation of LXR/RXR and LXR/PPAR
heterodimerizations: SPR technology-based kinetic analysis correlated
with molecular dynamics simulation. Protein Sci. 14, 812–822 (2005).

30. van Royen, M. E., Dinant, C., Farla, P., Trapman, J. & Houtsmuller, A. B.
FRAP and FRET methods to study nuclear receptors in living cells. Methods
Mol. Biol. 505, 69–96 (2009).

31. van deWijngaart, D. J. et al. Novel FXXFF and FXXMF motifs in androgen
receptor cofactors mediate high affinity and specific interactions with the
ligand-binding domain. J. Biol. Chem. 281, 19407–19416 (2006).

32. Brzozowski, A. M. et al. Molecular basis of agonism and antagonism in the
oestrogen receptor. Nature 389, 753–758 (1997).

33. Tanenbaum, D. M., Wang, Y., Williams, S. P. & Sigler, P. B. Crystallographic
comparison of the estrogen and progesterone receptor’s ligand binding
domains. Proc. Natl Acad. Sci. USA 95, 5998–6003 (1998).

34. Williams, S. P. & Sigler, P. B. Atomic structure of progesterone complexed with
its receptor. Nature 393, 392–396 (1998).

35. Bledsoe, R. K. et al. Crystal structure of the glucocorticoid receptor ligand
binding domain reveals a novel mode of receptor dimerization and coactivator
recognition. Cell 110, 93–105 (2002).

36. Boehmer, A. L. M. et al. Genotype versus phenotype in families with
androgen insensitivity syndrome. J. Clin. Endocrinol. Metab. 86, 4151–4160
(2001).

37. Elhaji, Y. A. et al. An examination of how different mutations at arginine 855 of
the androgen receptor result in different androgen insensitivity phenotypes.
Mol. Endocrinol. 18, 1876–1886 (2004).

38. Murono, K. et al. Human androgen insensitivity due to point mutations
encoding amino acid substitutions in the androgen receptor steroid-binding
domain. Hum. Mutat. 6, 152–162 (1995).

39. Hay, C. W. & McEwan, I. J. The impact of point mutations in the human
androgen receptor: Classification of mutations on the basis of transcriptional
activity. PLoS ONE 7, e32514 (2012).

40. Shi, X.-B., Ma, A.-H., Xia, L., Kung, H.-J. & de Vere White, R. W. Functional
analysis of 44 mutant androgen receptors from human prostate cancer. Cancer
Res. 62, 1496–1502 (2002).

41. Langley, E., Zhou, Z.-X. & Wilson, E. M. Evidence for an anti-parallel
orientation of the ligand-activated human androgen receptor dimer. J. Biol.
Chem. 270, 29983–29990 (1995).

42. Grosdidier, S. et al. Allosteric conversation in the androgen receptor
ligand-binding domain surfaces. Mol. Endocrinol. 26, 1078–1090 (2012).

43. Mackinnon, J. A. G., Gallastegui, N., Osguthorpe, D. J., Hagler, A. T.
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