
This is the accepted version of the journal article:

Debernardi Pinos, Alberto. «Uniform convergence of sine transforms of gen-
eral monotone functions». Mathematische Nachrichten, Vol. 290, issue 17-18
(December 2017), p. 2815-2825. DOI 10.1002/mana.201600492

This version is available at https://ddd.uab.cat/record/289769

under the terms of the license

https://ddd.uab.cat/record/289769


Uniform convergence of sine transforms of general

monotone functions

A. Debernardi∗

Centre de Recerca Matemàtica and Universitat Autònoma de Barcelona
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Abstract

We obtain necessary and sufficient conditions for the uniform convergence of
sine integrals ∫ ∞

0

g(t) sin ξt dt,

where g satisfies general monotonicity conditions. In contrast with the previous
results on this topic, here we do not assume g ≥ 0.

1 Introduction

Throughout this paper we denote by F (ξ) the cosine transform

F (ξ) =

∫ ∞
0

f(t) cos ξt dt, ξ ∈ R, (1)

and by G(ξ) the sine transform

G(ξ) =

∫ ∞
0

g(t) sin ξt dt, ξ ∈ R, (2)

whenever they exist in the improper sense. We assume that f, g : R+ → C
(here R+ := (0,+∞)) are locally of bounded variation. Moreover, in order to
guarantee the existence of integrals (1) and (2) near the origin, we suppose that
f(t) ∈ L1(0, 1) and tg(t) ∈ L1(0, 1).
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First, let us summarize some known results related to uniform convergence
of trigonometric series, which in part motivates our work. In general, we can
only guarantee the uniform convergence of

∞∑
n=1

an sinnx, (3)

in the trivial case
∑
|an| < ∞. However, imposing restrictions on {an} has

proved to be convenient, not only to study pointwise convergence of (3), but
also its uniform convergence, or integrability, among other topics.

The study of uniform convergence of sine series and integrals has recently
attracted several authors due to the number of generalizations of sequence and
function classes during the last years. However, it was back in 1916 when this
problem was first considered: Chaundy and Jolliffe [1], [19, V. I, p. 182] obtained
the following characterization for monotone sequences.

Theorem 1.1. Let an ≥ 0 be monotonically decreasing to zero. Then, the series

∞∑
n=1

an sinnx

converges uniformly in [0, 2π] if and only if nan → 0.

In view of this result, one may ask whether the hypothesis of {an} being
monotone can be weakened in order to generalize Theorem 1.1. In [8], Leindler
introduced the class of sequences with rest of bounded variation, in short RBV S.
These sequences satisfy

∞∑
k=n

|ak − ak+1| ≤ C|an| for all n, (4)

where C > 0 is independent of n. This idea was generalized by Tikhonov [18],

replacing the infinite sum of (4) by
∑2n
k=n |ak−ak+1|. Such sequences are called

general monotone sequences, in short GMS. Later on, the GMS condition was
further generalized by considering non-negative sequences βn instead of |an| on
the right hand side of (4). A sequence {an} satisfying

2n∑
k=n

|ak − ak+1| ≤ Cβn for all n. (5)

is called β-general monotone sequence (or {an} ∈ GMS(β), to shorten). Such
an extension of monotone sequences, as mentioned earlier, has led to several
generalizations of Theorem 1.1 in the past few years (c.f. [4], [17], [18], and
[5], among others). Very recently, Feng, Totik, and Zhou proved an analogue of
Theorem 1.1 [5, Theorem 3.1] for the GMS(β) class defined by

βn =
1

n

λn∑
k=n/λ

|ak|, for some λ > 2,
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without assuming that ak ≥ 0 (in fact, the same result with ak ≥ 0 was proved
earlier in [17]).

We also mention the generalization of GMS(β) introduced by Szal [16],
where he considered differences |ak − ak+r| with r ∈ N in place of |ak − ak+1|
on the left hand side of (5).

As one could expect, there is an analogue of Theorem 1.1 for sine integrals
(see [12]).

Theorem 1.2. Let g : R+ → R+ be a monotonically decreasing function. Then,
integral (2) converges uniformly if and only if xg(x)→ 0 as x→∞.

The concept of general monotonicity for functions was introduced in [11], and
it is further discussed together with the known generalizations of Theorem 1.2
in Section 2. We say that a function g belongs to GM(β) if∫ 2x

x

|dg(s)| ≤ Cβ(x) for all x > 0,

where

V ba (g) =

∫ b

a

|dg(s)| := sup
P

n−1∑
k=0

|g(xk+1)− g(xk)|

is the total variation of g in [a, b], and P is the set of all partitions {a =
x0 < · · · < xn = b} of [a, b]. For a survey of general monotone functions and
sequences, we refer to [9].

Our main goal is to generalize Theorem 1.2 for functions of a larger GM
class containing the ones already considered in [2] or [9]. To this end, we rely
on the technique developed in [5] that we mentioned before.

The paper is organized as follows. In Section 2 we review the known gen-
eralizations of Theorem 1.2 and introduce a new GM class of functions. In
Section 3, we present our main result (Theorem 3.1), and discuss its sharpness.
Section 4 is devoted to the proofs of main results. Finally, we give in Section 5
several examples of GM(β) classes we deal with, as well as we prove that the
new GM class is strictly larger than the previously known ones.

2 A new class of general monotone functions

Let us consider the GM(β0) class of functions defined by

β0(x) :=
1

x
sup
s≥x/c

∫ 2s

s

|g(t)| dt, c > 1.

Such class was introduced by Dyachenko, Liflyand and Tikhonov in [2], where
they proved the following criteria.

Theorem 2.1. [2, Theorem 2] Let f ∈ GM(β). If either

(i) f ≥ 0, or
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(ii) β(x) = o(1/x) as x→∞,

then (1) converges uniformly on R if and only if
∫∞
0
f(t) dt <∞.

Theorem 2.2. [2, Theorem 3]

(i) Let g ∈ GM(β). If β(x) = o(1/x) as x→∞, then (2) converges uniformly
on R.

(ii) If g ∈ GM(β0) is a non-negative function and (2) converges uniformly,
then xg(x)→ 0 as x→∞.

It is not hard to see that if β0(x) = o(1/x) as x → ∞, then xg(x) → 0 as
x → ∞ (it actually follows from Lemma 4.1 below). Combining this fact with
Theorem 2.2 we have the following extension of Theorem 1.2.

Corollary 2.3. [2] Let g ∈ GM(β0) be non-negative. Then, a necessary and
sufficient condition for integral (2) to converge uniformly is that xg(x) → 0 as
x→∞.

We now proceed to define a class of functions extending GM(β0).

Definition 2.4. Let M be the space of nonnegative functions defined on R+.
We say that an operator B : M → M is admissible if for any ϕ ∈ M, the
function B(·, ϕ) satisfies the following properties:

(i) If ϕ vanishes at infinity, B(·, ϕ) also vanishes at infinity.

(ii) If ϕ is bounded at infinity, B(·, ϕ) is also bounded at infinity.

(iii) For every x > 0, ϕ(x) ≤ B(x, ϕ).

(iv) B(x, ϕ) is decreasing on x.

Let us denote, for simplicity, I(x) := I(x, g) =
∫ 2x

x
|g(t)| dt. Then, we can

rewrite β0 as

β0(x) =
1

x
sup
s≥x/c

I(s),

and note that B(x, I) = sups≥x/c I(s) is an admissible operator.
The GM class we aim to define is obtained by means of admissible operators.

Definition 2.5. We say that g ∈ GMadm if there exists an admissible operator
B such that g ∈ GM(β), where

β(x) =
1

x
B(x, I).

It is clear that GM(β0) ⊂ GMadm, whilst GM(β0) ( GMadm is shown in
Proposition 5.2. Also, if we define, for any admissible B,

βB(x) =
B(x, I)

x
,
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then it is clear that

GMadm =
⋃

B admissible

GM(βB).

Remark 2.6. In Definition 2.4, we do not lose generality by assuming conditions
(iii)–(iv). Indeed, if ϕ is non-negative and we define

B̃(x, ϕ) = sup
y≥x

max
{
ϕ(y), B(y, ϕ)

}
,

then B̃(x, ϕ) satisfies (i)–(iv) whenever B(x, ϕ) satisfies (i)–(ii). Therefore, de-
noting

β(x) =
1

x
B(x, I), β̃(x) =

1

x
B̃(x, I),

one has GM(β) ⊂ GM(β̃).

In Section 5 the reader can find several examples of admissible B.

3 Main results

3.1 Uniform convergence of sine transforms

The counterpart of Theorem 1.1 for the class GMadm reads as follows.

Theorem 3.1. Let g ∈ GMadm, and assume that I(x) is bounded at infinity.
Then, a necessary and sufficient condition for (2) to converge uniformly on R
is that

x|g(x)| → 0 as x→∞.

As it is noted in Remark 4.2 below, the hypothesis of I(x) being bounded at
infinity is not needed if we assume that g is non-negative. The following result
is an analogue of [3, Theorem 3], and shows the sharpness of Theorem 3.1 with
respect to the aforementioned hypothesis.

Theorem 3.2. There exists a uniformly converging sine integral
∫∞
0
g(t) sin ξt dt

such that
x|g(x)| → ∞ as x→∞

and ∫ 2x

x

|g(t)| dt→∞ as x→∞.

Note that if g is such that
∫ 2x

x
|g(t)| dt is not bounded at infinity, then for-

mally g ∈ GM(β0).
For the sake of completeness, we present an analogue of [5, Theorem 3.1],

though we omit its proof since it can be derived easily by combining the proofs
of the result we just cited and Theorem 3.1.
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Theorem 3.3. Let g ∈ GM(β) be a real-valued function, where

β(x) =
1

x

∫ λx

x/λ

|g(t)| dt. (6)

Then, a necessary and sufficient condition for the sine integral (2) to converge
uniformly on R is that

x|g(x)| → 0 as x→∞.

In contrast with Theorem 3.1, we do not need to assume that integrals∫ λx
x/λ
|g(t)| dt are bounded at infinity in Theorem 3.3. We emphasize that the

GM(β) class with β as in (6) has proved to be very convenient to replace the
class of monotone functions, for instance, to prove Boas’ conjecture (cf. [6, 10]),
or to prove Theorem 3.3, where we do not even need to assume that g ≥ 0.

4 Proofs

In order to prove Theorem 3.1, we need the following estimate.

Lemma 4.1. Let g ∈ GMadm. Then, for every x > 0 and u ∈ [x, 2x],

|g(u)| ≤ C0
B(x, I)

x
.

Proof. Let u, v ∈ [x, 2x]. It is clear that

|g(u)| − |g(v)| ≤ |g(u)− g(v)| ≤
∫ 2x

x

|dg(s)| ≤ CB(x, I)

x
.

Integrating both sides with respect to v over [x, 2x], and using property (iii) of
BI(x), we get

x|g(u)| ≤ CB(x, I) +

∫ 2x

x

|g(v)| dv = CB(x, I) + I(x) ≤ C0B(x, I),

which establishes the estimate.

Proof of Theorem 3.1. Sufficiency immediately follows from (i) of Theorem 2.2,
together with property (i) of BI(x). In order to prove necessity, we adapt the
technique developed for trigonometric series in [5, Theorem 3.1] to the context
of trigonometric integrals. Our goal is to prove that I(x) → 0 as x → ∞.
Once this is done, the result will simply follow by property (i) of BI(x) and
Lemma 4.1.

For any x > 0, let

A(x) :=
{
y ∈ [x, 2x] : |g(y)| ≥ I(x)/2x

}
.
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By definition of A(x) and Lemma 4.1, we have the following estimate for I(x):

I(x) =

(∫
[x,2x]\A(x)

|g(t)| dt+

∫
A(x)

|g(t)| dt

)
≤ I(x)

2
+

∫
A(x)

|g(t)| dt

≤ I(x)

2
+ C0|A(x)|B(x, I)

x
,

where |A(x)| denotes the measure of the set A(x). It follows from the latter
estimate that

|A(x)| ≥ x

2C0
· I(x)

B(x, I)
,

and consequently,∫
A(x)

|g(t)| dt ≥ |A(x)|I(x)

2x
≥ 1

4C0
· I(x)2

B(x, I)
. (7)

Since the integral
∫∞
0
g(t) sin ξt dt converges uniformly, for a fixed ε > 0 there

exists y > 0 such that∣∣∣∣∣
∫ y2

y1

g(t) sin ξt dt

∣∣∣∣∣ < ε, if y ≤ y1 ≤ y2, ξ ∈ R. (8)

Now we can choose x ≥ y such that I(x) > 0. Indeed, if such x did not exist,
it would mean that I(x) = 0 for all x ≥ y, and our assertion would be trivial.
Notice that g(x) is bounded at infinity; this follows from Lemma 4.1, along with
the fact that I(x) is bounded at infinity and property (ii) of BI(x). Thus, there
exists δ = δ(ε, x) such that∫ w+δ

w

|g(t)| dt ≤ ε, for all w ≥ x. (9)

For example, take δ = min{δ′, x}, where δ′ = ε/ supt≥x |g(t)|.
Our next goal is, roughly speaking, to “cover” the set A(x) by almost disjoint

intervals Sj . More precisely, we look for a collection {Sj}nj=1 (here and from now

on n = n(x)) such that |Sj∩Sk| = 0 whenever j 6= k and |A(x)\
(
S1∪. . .∪Sn

)∣∣ =
0, or in other words,

A(x) ⊂

(
n⋃
j=1

Sj

)
∪ E(x),

where |E(x)| = 0. For such a collection, one has∫
A(x)

|g(t)| dt ≤
n∑
j=1

∫
Sj

|g(t)| dt.

We proceed to construct the intervals Sj = [uj , νj ] as follows: let u1 = inf A(x).
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(1) If there exists u1 < v1 ≤ 2x such that g has constant sign1 in (u1, v1], and
|g(z)| > I(x)/4x for every z ∈ (u1, v1), while |g(v1)| ≤ I(x)/4x, we define
ν1 = v1 + δ, with δ as above.

(2) If there is no v1 ∈ (u1, 2x] satisfying all the properties described in (1), let

z1 = inf{w ∈ [u1, 2x] : g(u1)g(w) ≤ 0}.

If such z1 exists, we define ν1 = z1 + δ.

(3) If neither v1 nor z1 exist, let ν1 = 2x.

We set S1 = [u1, ν1], and if A(x)\S1 has positive measure, we define u2 =
inf A(x)\S1. By the same procedure, we find ν2 and define S2 = [u2, ν2], and so
on until we reach n such that∣∣A(x)\

(
S1 ∪ . . . ∪ Sn

)∣∣ = 0.

Let 1 ≤ j < n. We now prove that∫ νj

uj

|dg(s)| ≥ I(x)

4x
,

which will allow us to obtain an upper estimate for n.

(1) Assume first νj was chosen by case (1). Note that there exists2 y ∈ [uj , vj)
such that |g(y)| ≥ I(x)/2x, whilst |g(vj)| ≤ I(x)/4x. Thus,∫ νj

uj

|dg(s)| ≥ |g(y)− g(vj)| = |g(y)| − |g(vj)| ≥
I(x)

4x
.

(2) Assume νj was chosen by case (2). Similarly as in case (1), there exists
y ∈ [uj , uj + δ) such that |g(y)| ≥ I(x)/2x. Since

zj = inf{w ∈ [uj , 2x] : g(uj)g(w) ≤ 0},

there must exist z ∈ [uj , zj + δ) such that g(z)g(y) ≤ 0. Indeed, if this z
does not exist, then g(y)g(z) > 0 for all z ∈ [uj , zj + δ), and in particular,
g(y)g(uj) > 0. But this implies that g(uj)g(z) > 0 for all z ∈ [uj , zj + δ),
or in other words, g has constant sign in the latter interval. Hence,

inf{w ∈ [uj , 2x] : g(uj)g(w) ≤ 0} > zj ,

which is a contradiction. Therefore, we conclude∫ νj

uj

|dg(s)| ≥ |g(y)− g(z)| ≥ I(x)

2x
≥ I(x)

4x
.

1We will always consider that g has constant sign in a set X if and only if g(x1)g(x2) > 0
for all x1, x2 ∈ X.

2For any set A ⊂ R, we have that m = inf A if and only if (a) m is a lower bound of A, and
(b) for every m′ > m there exists x ∈ A such that x < m′. In our case, we can find y ≥ uj

with y ∈ A(x), i.e., |g(y)| ≥ I(x)/2x.
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Finally, it is only left to remark that if νj is chosen by case (3), then j = n. We
can now proceed estimating n from above (when n > 1). By the GM property,
property (iv) of BI(x), and the fact that δ ≤ x, we have

2
C

x
B(x, I) ≥ C

2x
B(2x, I) +

C

x
B(x, I) ≥

∫ 4x

2x

|dg(s)|+
∫ 2x

x

|dg(s)|

≥
∫ 2x+δ

x

|dg(s)| ≥
n−1∑
j=1

∫ νj

uj

|dg(s)| ≥ (n− 1)
I(x)

4x
.

Thus,

n ≤ 8Cx

x

B(x, I)

I(x)
+ 1 ≤ 9C

B(x, I)

I(x)
. (10)

We note that if n = 1, inequality (10) is trivially true.
Let now ξ = π/8x. Then, it holds that ξt ≤ π/2 for all t ∈ [x, 4x], so that

sin ξt ≥ 1/4 on the latter interval. By (9) and the fact that for any 1 ≤ j ≤ n,
g has constant sign in (uj , νj − δ) (by construction), it follows from (8) and (9)
that

1

4

∫ νj

uj

|g(t)| dt =
1

4

(∫ νj−δ

uj

|g(t)| dt+

∫ νj

νj−δ
|g(t)| dt

)

≤

∣∣∣∣∣
∫ νj−δ

uj

g(t) sin ξt dt

∣∣∣∣∣+
ε

4
< ε+

ε

4
.

Therefore, for any 1 ≤ j ≤ n, ∫ νj

uj

|g(t)| dt < 5ε. (11)

Since
∣∣A(x)\

(
S1 ∪ . . . ∪ Sn

)∣∣ = 0, summing up on j the integrals of (11), it
follows together with (10) that∫

A(x)

|g(t)| dt ≤
n∑
j=1

∫ νj

uj

|g(t)| dt < 5nε ≤ 45C
B(x, I)

I(x)
ε. (12)

Finally, combining (7) and (12), we obtain

1

4C0
· I(x)2

B(x, I)
≤ 45C

B(x, I)

I(x)
ε;

I(x)3

B(x, I)2
≤ 180CC0ε,

so that the left-hand side tends to zero as x tends to infinity. Moreover, since
BI(x) is bounded for x large enough (by property (ii) ofB(x, I)), then I(x)3 → 0
as x→∞, as required.
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Remark 4.2. Notice that if the function g satisfies g(x) ≥ 0 for all x > x0, then
we do not need to assume the boundedness of I(x): if ξ = π/4x, it follows from
(8) that

ε >

∣∣∣∣∣
∫ 2x

x

g(t) sin
π

4x
t dt

∣∣∣∣∣ ≥ 1

2

∣∣∣∣∣
∫ 2x

x

g(t) dt

∣∣∣∣∣ =
1

2

∫ 2x

x

|g(t)| dt =
I(x)

2
,

which, moreover, trivially proves that I(x) → 0 as x → ∞. Thus, it is easier
to prove Theorem 3.1 if we assume g ≥ 0. On the other hand, the sufficiency
condition of Theorem 2.2 does not require any assumption on the sign of g (in
this case g can even be complex-valued).

In order to prove Theorem 3.2, we make use of the Rudin-Shapiro sequence
[7, 13, 15]. The following is a well-known result [13, Theorem 1], also referred
to as Rudin-Shapiro’s lemma:

Lemma 4.3. There exists a sequence {εn}, εn = ±1, such that∣∣∣∣ N∑
n=0

εne
inξ

∣∣∣∣ < 5
√
N + 1 (13)

for all ξ ∈ [0, 2π] and N ∈ N.

The sequence {εn} from the previous lemma is the aforementioned Rudin-
Shapiro sequence, and the trigonometric polynomials on the left hand side of
(13) are known as the Rudin-Shapiro polynomials. We need the following coun-
terpart of Lemma 4.3 for trigonometric integrals.

Lemma 4.4 (Rudin-Shapiro’s lemma for Fourier integrals). There exists a func-
tion h : [0,+∞)→ {−1, 1} such that∣∣∣∣ ∫ M

0

h(x)eixξ dx

∣∣∣∣ < 6
√
M (14)

for every ξ ∈ R and M > 0.

Proof. The function h we are looking for is obtained by means of the Rudin-
Shapiro sequence: for n ∈ N ∪ {0}, we define

h(x) = εn, if x ∈ [n, n+ 1).

Our assertion is trivial for M < 1, so we can assume that M ≥ 1. Also, observe
that we only need to consider the case ξ ≥ 0. Let N = [M ], where [·] denotes
the floor function. If ξ = 0, it follows from Lemma 4.3 that∣∣∣∣ ∫ M

0

h(x) dx

∣∣∣∣ ≤ ∣∣∣∣N−1∑
n=0

εn

∣∣∣∣+

∣∣∣∣ ∫ M

N

h(x) dx

∣∣∣∣ < 6
√
M.
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On the other hand, if ξ > 0, we have the following identity.∫ N

0

h(x)eixξ dx =

N−1∑
n=0

∫ n+1

n

h(x)eixξ dx =
eiξ − 1

iξ

N−1∑
n=0

εne
inξ.

Thus, by Lemma 4.3 we have∣∣∣∣ ∫ N

0

h(x)eixξ dx

∣∣∣∣ < 5
√
N

∣∣∣∣eiξ − 1

ξ

∣∣∣∣ ≤ 5
√
N,

Finally,∣∣∣∣ ∫ M

0

h(x)eixξ dx

∣∣∣∣ ≤ ∣∣∣∣ ∫ N

0

h(x)eixξ dx

∣∣∣∣+

∣∣∣∣ ∫ M

N

h(x)eixξ dx

∣∣∣∣ < 6
√
M,

which completes the proof.

Remark 4.5. Note that estimate (14) is not optimal; we could improve it, for
instance, by considering sharper estimates of (13). It is known that if we write
C
√
N + 1 on the right hand side of (13), then the optimal C lies between

√
6

and (2 +
√

2)
√

3/5 (see [14], as well as the references therein).

Proof of Theorem 3.2. Let us define cn = n−22−n/2, and let h be the Rudin-
Shapiro function (i.e., the function we defined in Lemma 4.4). We prove that
the Fourier integral given by∫ 1

0

h(t)eitξ dt+

∞∑
n=1

cn

∫ 2n

2n−1

h(t)eitξ dt =

∫ ∞
0

g(t)eitξ dt, (15)

converges uniformly, where g(t) = cnh(t) for all t ∈ [2n−1, 2n) with n ≥ 1, and
g(t) = h(t) for t ∈ [0, 1). Fix n ≥ 1 and let 2n−1 ≤ z1 < z2 ≤ 2n. Then, by
Lemma 4.4,∣∣∣∣ ∫ z2

z1

g(t)eitξ dt

∣∣∣∣ ≤ cn(∣∣∣∣ ∫ z1

0

h(t)eitξ dt

∣∣∣∣+

∣∣∣∣ ∫ z2

0

h(t)eitξ dt

∣∣∣∣)
. n−22−n/2 · 2n/2 = n−2.

Thus, for arbitrary y1 < y2, we have∣∣∣∣ ∫ y2

y1

g(t)eitξ dt

∣∣∣∣ ≤ n2∑
k=n1

1

k2
→ 0 as y2 > y1 →∞,

where n1 = max{n ∈ N : 2n ≤ y1} and n2 = min{n ∈ N : 2n ≥ y2}. Thus, the
uniform convergence of (15) follows. However, the integrals∫ 2x

x

|g(t)| dt

11



are not bounded at infinity. Indeed, fix x > 1 and let n ∈ N ∪ {0} be such that
2n ≤ x < 2n+1. Then,∫ 2x

x

|g(t)| dt ≥ xcn+1 & n−22n/2 →∞ as n→∞.

Furthermore, with n and x as above, we have

x|g(x)| ≥ 2ncn = n−22n/2 →∞ as n→∞.

To conclude the proof we only have to note that since (15) converges uniformly,
the integral ∫ ∞

0

g(t) sin ξt dt

also converges uniformly, as desired.

5 Examples

Let us present some examples of admissible operators (cf. Definition 2.4). Note
that for the operators Bj appearing here we only require that the functions
Bj(·, ϕ), ϕ ∈M, satisfy properties (i)–(ii) (see Remark 2.6).

(1) B1(x, ϕ) = ϕ(x),

(2) B2(x, ϕ) = ϕ(x)α, with α > 0,

(3) B3(x, ϕ) =
∫ λx
x/λ

ϕ(t)/t dt, where λ > 1,

(4) B4(x, ϕ) = xα
∫∞
x/λ

ϕ(t)/tα+1, where λ > 1 and α > 0,

(5) B5(x, ϕ) = sups≥x/λ ϕ(s), where λ > 1,

(6) B6(x, ϕ) = sups≥log(x+1) ϕ(s).

(7) The composition of two admissible operators is an admissible operator,
i.e., if C and D are admissible, then the function

B7(x, ϕ) = C(x,D(·, ϕ))

satisfies properties (i)–(iv).

Remark 5.1. We cannot allow α = 0, in B4, since the operator would not be
admissible. Indeed, if

ϕ(x) =

{
0, if x < 2

1
log x , otherwise,

then ϕ clearly vanishes at infinity, but for any x > 2λ, one has∫ ∞
x/λ

ϕ(t)

t
dt =

∫ ∞
x/λ

1

t log t
dt =∞,

and therefore B4ϕ does not satisfy condition (ii) whenever α = 0.
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To conclude, we show that the class GMadm is strictly larger than GM(β0).

Proposition 5.2. GM(β0) ( GMadm.

Proof. The inclusion is clear. Thus, we only need to find a function f ∈
GMadm\GM(β0). Let 0 < α < 1, and nj = 4j . We define the function

f(x) :=

{
n
− 1

1−α
j , if nj ≤ x ≤ nj + 1, j ∈ N,

0, otherwise,

and the admissible operator Bα(x, ϕ) := sups≥x ϕ(s)α. For any x ∈ (nj−1 +
1, nj + 1] it holds that ∫ 2x

x

|df(s)| ≤ 2n
− 1

1−α
j .

Moreover, since nj+1 = 4nj , we have, for I(x) =
∫ 2x

x
|f(t)| dt (and j large

enough),

1

x
Bα(x, I) ≥ 1

nj + 1
Bα(x, I) � n−1−

α
1−α

j = n
− 1

1−α
j &

∫ 2x

x

|df(s)|,

so that f ∈ GM(βα), where βα(x) = x−1Bα(x, I), and therefore f ∈ GMadm.
On the other hand,

1

nj
sup

s≥nj/c

∫ 2s

s

|f(t)| dt � n−1−
1

1−α
j = n

− 2−α
1−α

j .

However, ∫ 2nj

nj

|df(s)| = 2n
− 1

1−α
j . n

− 2−α
1−α

j

implies that 2 − α ≤ 1, which is a contradiction since 0 < α < 1. Thus,
f 6∈ GM(β0), and our claim follows.

References

[1] T. W. Chaundy, A. E. Jolliffe, The Uniform Convergence of a Certain
Class of Trigonometrical Series , Proc. London Math. Soc. S2-15 (1)
(1916), 214–216.

[2] M. Dyachenko, E. Liflyand, S. Tikhonov, Uniform convergence and inte-
grability of Fourier integrals, J. Math. Anal. Appl. 372 (2010), 328–338.

[3] M. Dyachenko, A. Mukanov and S. Tikhonov, Uniform convergence of
trigonometric series with general monotone coefficients (Preprint).

[4] M. Dyachenko, S. Tikhonov, Integrability and continuity of functions rep-
resented by trigonometric series: coefficients criteria, Studia Math. 193
(3) (2009), 285–306.

13



[5] L. Feng, V. Totik, S. P. Zhou, Trigonometric series with a generalized
monotonicity condition, Acta Math. Sin. (Engl. Ser.) 30 (8) (2014), 1289–
1296.

[6] D. Gorbachev, E. Liflyand and S. Tikhonov, Weighted Fourier inequalities:
Boas’ conjecture in Rn, J. Anal. Math. 114 (2011), 99–120.
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