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Bacteriophages, viruses that infect bacteria, have re-emerged as powerful regulators of
bacterial populations in natural ecosystems. Phages invade the human body, just as they
do other natural environments, to such an extent that they are the most numerous group
in the human virome. This was only revealed in recent metagenomic studies, despite the
fact that the presence of phages in the human body was reported decades ago. The
influence of the presence of phages in humans has yet to be evaluated; but as in marine
environments, a clear role in the regulation of bacterial populations could be envisaged,
that might have an impact on human health. Moreover, phages are excellent vehicles of
genetic transfer, and they contribute to the evolution of bacterial cells in the human body
by spreading and acquiring DNA horizontally. The abundance of phages in the human
body does not pass unnoticed and the immune system reacts to them, although it is not
clear to what extent. Finally, the presence of phages in human samples, which most of
the time is not considered, can influence and bias microbiological and molecular results;
and, in view of the evidences, some studies suggest that more attention needs to be
paid to their interference.
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INTRODUCTION

Bacteriophages were discovered in the second decade of the 20th century (Twort, 1915; D’Herelle,
1917). It was initially suggested the idea they could be used to lyse pathogenic bacteria as a
treatment of infectious diseases. However, the idea was rapidly abandoned in western countries
due to the introduction of antibiotics. For decades, phages have been the most common model
entities for the study of viruses and their replication cycles. Studies of certain model phages have
contributed significantly to the advancement of molecular biology, for example in identifying
the basis of genetic material, as the code of nucleotide triplets of individual amino acids (Crick
et al., 1961), and the restriction enzymes (Dussoix and Arber, 1962). Moreover, the first sequenced
genome was that of an Escherichia coli phage: φX174 (Sanger et al., 1977). For some years, the
interest for phages was limited to ecological studies and proposals for their use as indicators of
fecal pollution (IAWPRC Study Group on Health Related Water Microbiology, 1991; Jofre et al.,
2016); in general, bacteriophages have deserved less interest in comparison to their bacterial hosts
or to animal viruses.

Nevertheless, the remarkable estimated number of 1031 phages on the Earth (Suttle, 2005)
is commonly used by researchers to highlight the importance of phages, which are believed to
outnumber any other class of biological entity on the planet. Phages have recently re-emerged as
powerful regulators of the bacterial populations in natural ecosystems (Fuhrman, 1999). Moreover,
because of the appearance of resistances to different antimicrobial agents, their potential use as
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antimicrobials has been revisited (Reardon, 2014). Most
significantly, recent metagenomes describe the abundance of
viral sequences both outside and inside bacterial cells. This
highlights their ubiquity as mobile genetic elements that
contribute and affect bacterial evolution, causing the emergence
of new bacterial pathogens, mobilizing genes outside the cells,
and other functions. Interest in metagenomes includes the
study of human microbiomes, where phages again appear as
extremely abundant and diverse elements. Researchers are
only now starting to suspect that phages actively contribute to
the homeostasis of the bacterial flora (De Paepe et al., 2014).
Because many studies focus on the role of the human symbiotic
microbiota in our wellness, phages thus appear as contributing
actors that are directly related with human health (Manrique
et al., 2016), and therefore the interest in them is rising.

PHAGES AS A PART OF HUMAN AND
ANIMAL MICROBIOTA

Many metagenomic analyses of human microbiomes show the
abundance of phages, which is generally greater than that of
eukaryotic viruses. This has been shown in metagenomic analysis
of lung, vaginal, skin, oral or intestinal microbiota (Breitbart
et al., 2003; Colomer-Lluch et al., 2011a; Minot et al., 2011;
Oh et al., 2014; Virgin, 2014). More recently, infectious phages
have been found in different clinical samples such as ascitic fluid
and urine (Brown-Jaque et al., 2016). It was suggested that they
could reach the peritoneal cavity after translocation from the
intestine (Górski et al., 2006), where they are present (Figure 1)
and abundant. They are also present in voided urine (Brown-
Jaque et al., 2016), probably coming from the periurethral area. In
animals, phages infecting Bacteroides were found in serum (Keller
and Traub, 1974), confirming their presence in the blood stream.
Translocation of phages from blood to mouse fetal tissues has also
been demonstrated in pregnant mice (Srivastava et al., 2004a).

In the light of these results, and as a second level of study,
some researchers have analyzed solely the virome fraction of these
microbiomes. To do this, they have devised methods that allow
discrimination of the viral fraction, while discarding bacterial and
free DNA. Those studies have yielded some surprising results;
many viral particles in fact carry sequences identified as bacterial
DNA. Shared genetic content is observed when analyzing the
phage and bacterial DNA fractions of the same sample (Breitbart
et al., 2003; Minot et al., 2011; Colombo et al., 2016; Howe et al.,
2016), including sequences belonging to CRISPR-Cas systems
(Dutilh et al., 2014).

CRISPR-Cas systems constitute a immune system that protect
bacteria against bacteriophages and foreign DNA (Mojica and
Rodriguez-Valera, 2016), that has later been applied for genome
engineering in bacteria and eukaryotes. The different activity of
the CRISPR-Cas systems influences the allowance of bacterial
cells to foreign DNA or their immunity to phage infection, and
this can shape the evolution of human microbiomes. Besides the
use of CRISPR-Cas systems in genome engineering, the analysis
of CRISPR sequences from raw metagenomic data has revealed
unidentified phages, as crAssphage phage, that is claimed to be

FIGURE 1 | Bacteriophage of Myoviridae morphology isolated from a
fecal sample, attached to an unidentified particle. Bar 100 nm.

present in the majority of human fecal microbiomes, although it
has never been isolated (Dutilh et al., 2014).

PHAGES AS MOBILE GENETIC
ELEMENTS

Transduction, the process by which the DNA is mobilized
between cell by a virus or viral vector was reported the last
century (Zinder and Lederberg, 1952), although the rates of
this mobilization has never been well defined. For this reason,
the detection of an important proportion of bacterial DNA in
phage particles observed in metagenomic analysis was indeed a
surprise, and it initially prompted the belief that the methods
for segregating phage and bacterial particles were not accurate
enough, and either bacterial or free DNA contaminated the
phage samples. However, the protocols have been optimized
allowing specific extraction of packaged DNA. Another suspicion
is that the bioinformatic analysis failed to identify phage
DNA sequences correctly and they were mistaken for bacterial
DNA. Nevertheless, subsequent repetitions and more accurate
approaches have shown that despite some of these problems
occurring, a relevant fraction of the virome is actually mobilizing
bacterial DNA. This has led to the suspicion that bacterial
cells use the numerous capsid genes that they possess, probably
inherited from ancient prophage remnants, to build protein
capsids that pack and spread their DNA content (Asadulghani
et al., 2009; Lang et al., 2012; Penades et al., 2015).
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The fact that phage capsids can mobilize bacterial DNA has
multiple consequences, such as, for example, the fact that they
can mobilize and transduce virulence genes (O’Brien et al., 1984;
Griffiths et al., 2000; Allué-Guardia et al., 2011; Penades et al.,
2015), antibiotic resistances (Muniesa et al., 2004; Colomer-Lluch
et al., 2011b; Ross and Topp, 2015; Haaber et al., 2016) or genes
related to fitness (Lindell et al., 2004; Müller et al., 2013) to new
bacterial hosts. This causes horizontal genetic exchange and leads
to the evolution of bacterial populations.

PHAGES AS REGULATORS OF
POPULATIONS

Bacterial populations can change and evolve through acquisition
of new genes transferred by phages, but also by predation and
lysis caused by phages. Experimental evidence from chemostats
and observations of phages/hosts in open systems has shown
that for some bacterial species, populations of phages and
hosts oscillate over time, following a “Red Queen/kill-the-
winner” dynamics,” which describes prey–predator variations
(Rodriguez-Brito et al., 2010; Jover et al., 2013; Lim et al., 2015).
However, phage–host dynamics can change in accordance with
the homogeneity and structure of the environment, and also
depending on the conditions that facilitate phage–cell encounters
(De Paepe et al., 2014).

Changes or a total replacement of the microbiome by a
fecal transplant in diseases without a well-defined etiological
agent, such as inflammatory bowel diseases (Crohn’s disease
or ulcerative colitis), can result in different disease outcomes
(Loh and Blaut, 2012; Moayyedi et al., 2015). Comparison
of the viromes of individuals suffering from Crohn’s disease
and healthy relatives revealed differences in composition and
variability (Pérez-Brocal et al., 2013; Wagner et al., 2013).
Whether changes in the phagome of human biomes is a cause
or a consequence of dysbiosis in such diseases has not yet
been established. Considering that the phagome could influence
bacterial populations, two options are plausible: changes in
bacteria could cause variations in the distribution of phage
groups; or changes in the phagome could be responsible of
dysbacteriosis (Norman et al., 2015; Pérez-Brocal et al., 2015).

Similarly, phages have been detected in the metagenomes
of sputum of patients suffering cystic fibrosis (Willner et al.,
2009); and both the phage diversity and relative abundances were
reported to be different from those of non-cystic fibrosis patients.
It is hard, however, to conclude from these results what the cause
of these differences is. Some variations in bacteria are caused by
phages and those variations could be harmful to the patients.
For example, mucoid isolates of Pseudomonas fluorescens are
more virulent than their non-mucoid isogenic variants. This
mucoid overproduction is a virulence factor contributing to
more persistent infections in cystic fibrosis patients (Scanlan
and Buckling, 2012). This phenotypic characteristic is favorably
selected in the presence of phages, because it confers protection
against phage infection. Accordingly, the mucoid isolates became
resistant to the phages with the corresponding detrimental
consequence for the patients (Scanlan and Buckling, 2012).

A different example of the regulation of human bacterial
populations by phages is observed when we look at
the competition between Streptococcus pneumoniae and
Staphylococcus aureus. The former produces hydrogen peroxide;
an agent that induces the bacterial SOS response and can induce
temperate prophages. Meanwhile, the vast majority of S. aureus
strains carry prophages that could be induced in the presence
of the concentrations of H2O2 produced by S. pneumoniae.
S. pneumoniae prophages, in turn, are not induced at these
concentrations. The result is that S. pneumoniae prevails by
killing S. aureus lysogenic strains via induction of prophages that
cause the subsequent lysis of the cell (Selva et al., 2009).

Yet another example of how bacteriophages can impact
the dynamics of bacterial populations has been observed in
Enterococcus faecalis V583. This strain produces a composite
phage 8V1/7, derived from two distinct chromosomally encoded
prophage elements. Prophage 8V1 produces the capsids, while
prophage 8V7 is in charge of infection of susceptible hosts and
V583 can produce infectious 8V1/7. The induction of 8V1/7
is highly enhanced by the availability of free amino acids in the
medium. The strain producing 8V1/7 has an advantage over
other E. faecalis strains in the intestine, because these are lysed by
8V1/7, while V583 is resistant to superinfection, enhancing the
success of E. faecalis V583 during competitive growth (Duerkop
et al., 2012).

INTERACTIONS WITH THE IMMUNE
SYSTEM

It is not clear whether phages can easily be detected by the
immune system, or whether they interact with it. Because the
size of phage particles is usually bigger than eukaryotic viruses,
activation of the immune system might occur as for other viruses.
The desire to use phages to treat bacterial infections has led to
explorations of the responses that phages might cause within the
human immune system.

Very soon after the discovery of phages, it was observed that
antibodies against bacteriophages in humans or animals were
produced (Jerne, 1952, 1956); and it is easy to generate phage
antiserums by immunization of humans or animals with phage
lysates (Puig et al., 2001; Gorski et al., 2012; Bacon et al., 2017).
The sera of non-immunized individuals (humans or animals)
present antibodies against phages, although at low levels; the
so-called “natural antibodies.” For instance, antibodies against T4
phages are naturally present in human serum (Dabrowska et al.,
2014) presumably as a consequence of the confirmed constant
presence of phages in human biomes (Górski et al., 2006; Brown-
Jaque et al., 2016). However, the origin of natural antibodies,
generally of IgM class, with broad cross reactivity and low affinity,
is not clear in the majority of cases.

The innate immune system, particularly by the components of
the reticuloendothelial system (RES), could be a mechanism for
removing phages that are circulating in the human body (Gorski
et al., 2012). Certainly, this system was credited with the rapid
removal of administered wild-type phage λ from the circulatory
system in humans (Geier et al., 1973). Moreover, different phage
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λ mutants could induce different host responses. When using
certain phage λ mutants that were capable of circumventing
the RES immune response, these mutants prevailed for longer
periods in the blood stream than the wild-type phage (Merril
et al., 1996).

Data on anti-phage cellular responses are very scarce in
comparison with data on phage–humoral responses. The only
study we are aware of, evaluated the cellular response to MS2
phage that was intradermally administrated in guinea pigs. The
presence of the phage produced erythema and induration, that
are signs of cell-mediated immunity (Langbeheim et al., 1978).
In contrast, another study showed that the permanence of phages
in blood is the same when comparing immunocompetent mice
or those deficient in T-cells, indicating no specific role of T-cell
response in phage inactivation (Srivastava et al., 2004b).

When administered together with the host bacteria, some
studies showed that phages seem to stimulate bacterial
phagocytosis, and this is attributed to certain “opsonization”
of the bacterial cells by phages. In addition, phages can remain
active and infective when adsorbed onto the bacteria on intake by
granulocytes. Therefore, some authors have suggested that during
phagocytosis, phages continue lysing the phagocytosed bacteria,
helping the activity of phagocytic cells. This process is limited
in time and phages are no longer active after the completion of
phagocytosis (Gorski et al., 2012). Despite these descriptions,
there is no definitive evidence that phages activate phagocytosis

by themselves, and some years ago, a contrary outcome was
reported (Kantoch et al., 1958). In those studies, when used at
very high doses (1010/ml), phages inhibited phagocytosis of their
host bacteria, and this inactivation was observed using either
infectious or heat-inactivated phages (Kantoch et al., 1958).
Inhibition was greater when using antibody-treated phages,
and therefore the authors suggested that the immunocomplexes
phage–antibody would be inactivating factors particularly active
(Kantoch et al., 1958). Moreover, purified phages have anti-
inflammatory effects via suppression of ROS (reactive oxygen
species) production and inhibition of NF-κβ activity, affecting the
production of cytokines [for a review, see (Gorski et al., 2012)].
Despite this evidence, it should be borne in mind that many
experiments have been conducted with phage lysates, which
on many occasions could contain remnants of bacteria lysed
by the phages (e.g., lipopolysaccharide) or perhaps fragments
of the host bacterial cell wall adhered to the phage tails. This
makes it extremely difficult to determine the components truly
responsible for the modulation of the immune response.

INTERFERENCE WITH CLINICAL
DIAGNOSES

Assuming the relative occurrence and distribution of phages
throughout the human body described above, coincident with

FIGURE 2 | Biomes where the presence of phages has been reported and direct and indirect ways in which phages influence human health. Pictures
has been adapted from Pixabay.
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the location of their bacterial hosts, and highly plausible
translocation of phage particles to other areas of the body, some
reports indicate that the neglected presence of phages in human
samples could have an important influence by interfering in
clinical practice (Brown-Jaque et al., 2016).

It has been shown that the presence of phages could interfere
with many protocols intended to isolate bacteria by enrichment
broth, since the phages in the sample destroy the bacterial cells
during the enrichment procedure (Muniesa et al., 2005; Quiros
et al., 2015). Phages might also interfere in clinical settings during
bacterial isolation. As indicated above, there is evidence of a
lack of, or reduced, bacterial isolation in clinical samples (ascitic
fluid and urine) carrying a high titer of phages, because the lytic
activity of the phages disturbs the isolation of the target bacteria
(Brown-Jaque et al., 2016).

In addition, some results obtained using molecular methods
when targeting some virulence genes present in pathogenic
bacteria could be confusing. This is because some genes are
located in temperate phages and DNA extraction methods do not
distinguish between bacterial and phage DNA. This is the case for
phages encoding the Shiga toxin gene, which can be detected in
the absence of Shiga toxin-producing bacteria (Martínez-Castillo
and Muniesa, 2014). Detection of certain bacterial groups by
16SrDNA qPCR or by genomic sequencing in mixed samples
might also be confusing if the sample contains phages and
the DNA in the phages is actually what is amplified in the
absence of intact bacterial cells. This might be an explanation
of the mismatch between the high number of gene copies
of 16SrDNA obtained by qPCR amplification and the lack of
bacterial isolation observed sometimes (Esparcia et al., 2011).
Among others, one hypothesis could be that the positive results
were due to amplification of bacterial DNA within phage particles
or of bacterial DNA released in the sample after phage-mediated
lysis.

USE OF PHAGES AGAINST HUMAN
BACTERIAL PATHOGENS

The problems of fighting antibiotic resistance in bacteria
are continually increasing and severely undermine our
capacity to control bacterial infectious diseases. After the
increased incidence of bacterial resistance to antibiotics over
recent decades, phages have surfaced again as alternative or
complementary therapies to control bacterial infections (Fischetti
et al., 2006; Doyle and Erickson, 2012; Hertwig et al., 2013;

Reardon, 2014; Schmelcher and Loessner, 2014; Górski et al.,
2016).

CONCLUDING REMARKS

Phages, the most abundant entities on the planet, are also present
in human biomes. This presence is known and recognized,
but sometimes neglected; and it has a strong influence on the
distribution and dynamics of different bacterial populations.
Considering the influence of these populations in human health,
as their reported ability to improve digestive health, it is clear that
phages can be directly related with human well-being (Figure 2).
The influence of phages in different mechanisms of our immune
system suggests a long-term relationship that we are just starting
to elucidate. Moreover, considering our interest in isolating and
identifying bacterial pathogens, the presence of phages could
certainly interfere with that analysis if it is not considered. A One
Health multidisciplinary approach, not restricted to academic or
clinical settings and not limited either to microbiological studies,
is advisable to evaluate the real extent of and the role played by
the phagome in human bodies.

AUTHOR CONTRIBUTIONS

All authors listed, have made substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This study was supported by the Generalitat de Catalunya
(2009SGR1043), the Centre de Referència en Biotecnologia
(XeRBa), the Sira Carrasco Foundation Grant and by the
Ministerio de Ciencia e Innovación, Instituto de Salud Carlos
III, cofinanced by the European Development Regional Fund,
A Way To Achieve Europe, ERDF; the Fondo de Investigación
Sanitaria (grant PI16/00158) and project MINECO AGL2016-
75536-P (AEI/FEDER, EU).

ACKNOWLEDGMENT

Authors thank Prof. P. Coll and Prof. J. Jofre for useful comments
on the manuscript.

REFERENCES
Allué-Guardia, A., García-Aljaro, C., and Muniesa, M. (2011). Bacteriophage-

encoding cytolethal distending toxin type V gene induced from nonclinical
Escherichia coli isolates. Infect. Immun. 79, 3262–3272. doi: 10.1128/IAI.
05071-11

Asadulghani, M., Ogura, Y., Ooka, T., Itoh, T., Sawaguchi, A., Iguchi, A., et al.
(2009). The defective prophage pool of Escherichia coli O157: prophage-
prophage interactions potentiate horizontal transfer of virulence determinants.
PLoS Pathog. 5:e1000408. doi: 10.1371/journal.ppat.1000408

Bacon, E. J., Richmond, S. J., Wood, D. J., Stirling, P., Bevan, B. J., and Chalmers,
W. S. (2017). Serological detection of phage infection in Chlamydia psittaci
recovered from ducks. Vet. Rec. 119, 618–620.

Breitbart, M., Hewson, I., Felts, B., Mahaffy, J. M., Nulton, J., Salamon, P.,
et al. (2003). Metagenomic analyses of an uncultured viral community from
human feces. J. Bacteriol. 185, 6220–6223. doi: 10.1128/JB.185.20.6220-6223.
2003

Brown-Jaque, M., Muniesa, M., and Navarro, F. (2016). Bacteriophages in clinical
samples can interfere with microbiological diagnostic tools. Sci. Rep. 6:33000.
doi: 10.1038/srep33000

Frontiers in Microbiology | www.frontiersin.org 5 April 2017 | Volume 8 | Article 566

https://doi.org/10.1128/IAI.05071-11
https://doi.org/10.1128/IAI.05071-11
https://doi.org/10.1371/journal.ppat.1000408
https://doi.org/10.1128/JB.185.20.6220-6223.2003
https://doi.org/10.1128/JB.185.20.6220-6223.2003
https://doi.org/10.1038/srep33000
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00566 March 31, 2017 Time: 18:33 # 6

Navarro and Muniesa Phages in Human Body

Colombo, S., Arioli, S., Guglielmetti, S., Lunelli, F., and Mora, D. (2016). Virome-
associated antibiotic-resistance genes in an experimental aquaculture facility.
FEMS Microbiol. Ecol. 92:fiw003. doi: 10.1093/femsec/fiw003

Colomer-Lluch, M., Imamovic, L., Jofre, J., and Muniesa, M. (2011a).
Bacteriophages carrying antibiotic resistance genes in fecal waste from cattle,
pigs, and poultry. Antimicrob. Agents Chemother. 55, 4908–4911. doi: 10.1128/
AAC.00535-11

Colomer-Lluch, M., Jofre, J., and Muniesa, M. (2011b). Antibiotic resistance genes
in the bacteriophage DNA fraction of environmental samples. PLoS ONE
6:e17549. doi: 10.1371/journal.pone.0017549

Dutilh, B. E., Cassman, N., McNair, K., Sanchez, S. E., Silva, G. G. Z., Boling, L.,
et al. (2014). A highly abundant bacteriophage discovered in the unknown
sequences of human faecal metagenomes. Nat. Commun. 5, 4498. doi: 10.1038/
ncomms5498

Crick, F. H., Barnett, L., Brenner, S., and Watts-Tobin, R. J. (1961). General nature
of the genetic code for proteins. Nature 192, 1227–1232. doi: 10.1038/1921227a0

Dabrowska, K., Miernikiewicz, P., Piotrowicz, A., Hodyra, K., Owczarek, B.,
Lecion, D., et al. (2014). Immunogenicity studies of proteins forming
the T4 phage head surface. J. Virol. 88, 12551–12557. doi: 10.1128/JVI.02
043-14

De Paepe, M., Leclerc, M., Tinsley, C. R., and Petit, M.-A. (2014). Bacteriophages:
an underestimated role in human and animal health? Front. Cell. Infect.
Microbiol. 4:39. doi: 10.3389/fcimb.2014.00039

D’Herelle, F. (1917). sur un microbe invisible antagonist des bacilles disenterique.
C. R. Acad. Sci. Ser. D 165, 373–375.

Doyle, M. P., and Erickson, M. C. (2012). Opportunities for mitigating pathogen
contamination during on-farm food production. Int. J. Food Microbiol. 152,
54–74. doi: 10.1016/j.ijfoodmicro.2011.02.037

Duerkop, B. A., Clements, C. V., Rollins, D., Rodrigues, J. L. M., and Hooper,
L. V. (2012). A composite bacteriophage alters colonization by an intestinal
commensal bacterium. Proc. Natl. Acad. Sci. U.S.A. 109, 17621–17626.
doi: 10.1073/pnas.1206136109

Dussoix, D., and Arber, W. (1962). Host specificity of DNA produced by
Escherichia coli. II. Control over acceptance of DNA from infecting phage
lambda. J. Mol. Biol. 5, 37–49. doi: 10.1016/S0022-2836(62)80059-X

Esparcia, O., Montemayor, M., Ginovart, G., Pomar, V., Soriano, G., Pericas, R.,
et al. (2011). Diagnostic accuracy of a 16S ribosomal DNA gene-based
molecular technique (RT-PCR, microarray, and sequencing) for bacterial
meningitis, early-onset neonatal sepsis, and spontaneous bacterial peritonitis.
Diagn. Microbiol. Infect. Dis. 69, 153–160. doi: 10.1016/j.diagmicrobio.2010.
10.022

Fischetti, V. A., Nelson, D., and Schuch, R. (2006). Reinventing phage therapy: are
the parts greater than the sum? Nat. Biotechnol. 24, 1508–1511. doi: 10.1038/
nbt1206-1508

Fuhrman, J. A. (1999). Marine viruses and their biogeochemical and ecological
effects. Nature 399, 541–548. doi: 10.1038/21119

Geier, M. R., Trigg, M. E., and Merril, C. R. (1973). Fate of bacteriophage
lambda in non-immune germ-free mice. Nature 246, 221–223. doi: 10.1038/246
221a0

Gorski, A., Miedzybrodzk, R., Borysowski, J., Dabrowska, K., Wierzbicki, P.,
Ohams, M., et al. (2012). Chapter 2–“Phage as a modulator of immune
responses: practical implications for phage therapy,” in Advances in Virus
Research. Bacteriophages Part B, eds M. Lobocka and W. Szybalski (Sant Diego,
CA: Academic Press), 41–72.
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