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Abstract 

The quality of graphene in nanodevices has increased hugely thanks to the use of 

hexagonal boron nitride as a supporting layer. This paper studies to which extent hBN 

together with channel length scaling can be exploited in graphene field-effect transistors 

(GFETs) to get a competitive radio-frequency (RF) performance. Carrier mobility and 

saturation velocity were obtained from an ensemble Monte Carlo simulator that accounted 

for the relevant scattering mechanisms (intrinsic phonons, scattering with impurities and 

defects, etc.). This information is fed into a self-consistent simulator, which solves the drift-

diffusion equation coupled with the two-dimensional Poisson’s equation to take full 

account of short channel effects. Simulated GFET characteristics were benchmarked 

against experimental data from our fabricated devices. Our simulations show that 
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scalability is supposed to bring to RF performance an improvement that is, however, highly 

limited by instability. Despite the possibility of a lower performance, a careful choice of the 

bias point can avoid instability. Nevertheless, maximum oscillation frequencies are still 

achievable in the THz region for channel lengths of a few hundreds of nanometers. 

 

Supplementary data available 
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1. Introduction 

Graphene promises to stand out as a channel material in analog radio-frequency (RF) 

electronics due to its two-dimensional (2D) character and carrier transport properties: a 

mobility up to 2·105 cm2 V-1 s-1 and a high saturation velocity of 4·107 cm s-1 [1–5]. 

Besides, graphene presents a remarkably high mechanical strength, with an elastic modulus 

of up to 550 N m-1 and a breaking strength of up to 35 N m-1 [6,7], which also makes it a 

feasible channel material for flexible electronics. Nevertheless, the transport properties 

decrease significantly when graphene is the active part of a substrate supported device 

because of the charge scattering [1,8]. Hexagonal boron nitride (hBN), however, with an 

atomically perfect surface relatively free of dangling bonds and charge traps, has proved to 

be an exceptional dielectric for graphene field-effect transistors (GFETs) [9]. Graphene 

devices fabricated on hBN exhibit up to one order-of-magnitude improvement in mobility 

and carrier inhomogeneities in comparison with conventional oxide dielectrics [10]. 

In the effort to successfully develop the next-generation of GFET supported on hBN 

technology, device simulation tools must describe accurately both the electrostatics and 

carrier transport across the graphene taking into account the specificity of the 

graphene/hBN interaction. An appropriate description of the carrier transport requires the 

inclusion of the relevant scattering mechanisms that drive the carrier mobility and 

saturation velocity. In a previous work [11] we developed a self-consistent model that 

solved the drift-diffusion transport equation coupled with the 2D Poisson’s equation in 

order to study the short-channel effects (SCE) in GFETs, that is, to analyze the influence of 

the drain voltage on the electrostatic field and charge channel distribution in short channel 

GFETs. However, both mobility and saturation velocity were considered constant, so the 
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model ignored the complexity of the interplay among the scattering processes that, in fact, 

strongly depend on carrier density. In this paper, we have considered the various scattering 

mechanisms, including the specific influence of the hBN substrate on the carrier transport. 

For this purpose, carrier transport properties were calculated by a self-consistent ensemble 

Monte Carlo (EMC) simulator for graphene that allows to assess the role played by each 

type of scattering [12,13]. This information is fed into the self-consistent GFET model to 

obtain current-voltage (I-V) characteristics. Additionally, we have formulated a small-

signal model of the GFET composed by parameters extracted from linearization around a 

bias point of direct current (DC) simulations. Different from what the studies ever reported 

so far, the proposed model guarantees charge conservation and assumes non-reciprocal 

capacitances, which is essential for accurate calculations of the transistor RF figures of 

merit (FoM). These kind of models are required to bridge the gap between both device and 

circuit levels and to make comparisons with other existing RF technologies, e.g. those 

based on Si or III-V compounds [14]. Importantly, our GFET simulator and corresponding 

small-signal model can deal with SCE, which significantly reduce the expected cutoff (fT) 

and maximum oscillation (fmax) frequencies [11] with respect to the simple projection 

derived from the long-channel behavior. Also, we have investigated the stability of a GFET 

when it operates as an amplifier using the small-signal model combined with microwave-

engineering techniques. We specifically look into the dependence of stability on both 

channel length and graphene quality. Lack of stability can prevent a transistor from working 

as an amplifier within the targeted RF window, so it is desirable to know the conditions that 

ensure stability and to estimate the possible trade-off with the power gain.    
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First, this article briefly describes the drift-diffusion based simulator. Then, we discuss 

the methodology used to extract the mobility and saturation velocity taking full account of 

the intrinsic scattering mechanisms, the presence of impurities and defects across the 

graphene sheet, and the interactions with the substrate and top gate dielectric. Next, the 

small-signal model is presented, emphasizing the relevance of guaranteeing charge 

conservation. The simulator has been benchmarked against DC experimental results from 

our fabricated devices. Using this model we have investigated the scalability of GFETs 

supported on hBN targeting RF applications. This has been carried out with assumption of 

different scenarios for both impurities and defects concentrations. The final part of this 

work thoroughly studies the RF stability of GFETs. 

2. Methods 

2.1 Device structure and self-consistent simulator 

We studied the dual-gate GFET represented in figure 1, which is based on a structure 

where a graphene layer is encapsulated between thin layers of hBN and Al2O3. The hBN, 

with a thickness of the order of tens of nanometers, acts as the supporting intermediate 

layer on the substrate while the Al2O3 layer plays the role of the top gate insulator. The 

SiO2/n-type Si substrate is also utilized as a back gate stack. We have neglected the 

influence of the thin hBN layer in the electrostatics calculations since its contribution to the 

back gate capacitance is relatively small. In fact, the error in the gate capacitance 

calculation is lower than 3% for a 10 nm thick hBN layer with a relative permittivity of 5 

[15]. However, we do have considered its influence on the electronic transport through the 

calculation of low-field mobility μLF and velocity saturation vsat. Regarding the electronic 

transport, the drift-diffusion mechanism was considered as an appropriate description, 
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although this assumption can only be applied if the mean free path (MFP) of carriers 

remains much shorter than the channel length. We will see that it is the case for the 

considered scaled devices in this study under room temperature operation.  

GFETs were simulated using the method described ref. [11], which solves Poisson’s 

equation and drift-diffusion transport equation in a self-consistent way. The dashed 

rectangle in figure 1 remarks the active area of the device and corresponds to the domain 

where the Poisson’s equation is resolved. The simulator uses both the μLF and vsat 

extracted by the Monte Carlo methodology discussed in section 2.2. Also, it obtains the 

stationary values of the drain current Ids and the carrier distribution along the channel as 

a function of voltages applied to the gate, back gate and drain terminals with respect to 

the source (Vgs , Vbs and  Vds, respectively). More details of the simulator can be found in 

section S1 of the supplementary data. 

 

 

 
Figure 1 Schematic of the GFET on hBN/SiO2/Si substrate that is used in simulations 
and experiments.  
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2.2 Scattering mechanisms and carrier transport properties from Monte Carlo 

simulations 

The values of μLF and vsat as a function of the carrier density have been obtained for 

different levels of impurities and defects in graphene by means of an EMC simulator 

[12,13]. The model includes optical and acoustic intravalley phonons, electron-electron 

interactions, impurity scattering and scattering with defects, together with scattering with 

remote surface polar phonons (SPP) from the substrates. In the case of acoustic and optical 

phonons the scattering rates are obtained according to the deformation potential 

approximation [16], fitting the parameters to reproduce the rates provided by the first-

principles density functional theory [17]. Short range carrier-carrier interactions are 

implemented by considering a static Coulomb screened potential model [18]. Impurity 

scattering is derived from the 2D Fourier transform of the electrostatic potential with 

charged centers [19]. Regarding graphene defects, both point defects and dislocations are 

considered as a single scattering mechanisms thanks to the approximation described in ref. 

27 with a defect parameter α accounting for the average defect potential, the effective 

potential range and the density of defects. Both α and the density of impurities nimp were 

taken as fitting parameters to reproduce the experimental mobility. The model allows for 

the Pauli Exclusion Principle to treat the effect of degeneracy. From the point of view of 

these EMC simulations, the graphene layer is placed between the top and the bottom 

dielectrics. The influence of the top gate metal (separated from the graphene layer by a 

relatively thin dielectric of thickness tt) on the screening of impurities, remote phonons and 

carrier-carrier scattering has been incorporated by modifying the dielectric function with a 
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suitable Green function [21,22], although its effect for the gate oxide considered is 

negligible. On the other hand, the bottom substrate is considered thick enough so that the 

effects on screening on the back gate can be neglected. An in-depth discussion of the EMC 

model is presented in the supplementary data. 

The number of simulated carriers ranged from 105 to 106 depending on the carrier 

concentration, and the time step considered in the simulation to update the distribution 

functions for the self-consistent treatment of the Pauli Exclusion Principle equaled 2.5 fs. 

The saturation velocity was determined at 20 kV cm-1, as done by other authors in 

experimental works [23]. From the velocity-field curves obtained from the EMC simulation 

it is possible to extract μLF and vsat as a function of the carrier concentration ns. Different 

scenarios defined by the parameters α and nimp have been considered. Specifically, we have 

assumed three levels of graphene quality referred in this work as the high, the intermediate 

mobility scenario and the low mobility scenarios corresponding to 1, 2 and 3 in figures 2(a) 

and (b), respectively. In order to reproduce the experimental extracted mobility (close to 

1500 cm2 V-1 s-1) of our experimental devices, we used a nimp of 8·1012 cm-2 and α equal to 

0.10 eV nm, and this case represents the scenario 3. The extracted mobility is also similar to 

that reported in ref. 27. The combination of α and nimp of the scenario 2 represents the 

fitting to experimental mobility data for graphene on SiO2 [23], and is included for 

comparison purposes (an improved quality sample in a realistic case). We also include the 

ideal scenario 1 where neither impurities nor defects are present, which defines the best 

possible graphene quality. 
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The EMC results allow determining which scattering mechanism becomes more critical 

to establish the values of μLF and vsat. As an example, the percentage of scattering 

mechanisms is shown in figures 2(c) and (d) for the intermediate mobility scenario; the 

results for the extreme mobility cases are also shown in figure S2 of the supplementary 

data. In the low mobility scenario 3, the dominant scattering type are impurities, with a 

secondary role of defects at high carrier concentrations. Scattering with SPP from the top 

oxide is also relevant, particularly at large ns, having more importance in setting the 

saturation velocity value. In the scenario 2, impurities are still dominant at low fields, but 

interactions with the top and bottom dielectrics play an increasingly important role, 

 
Figure 2 Carrier mobility (a) and saturation velocity (b) in graphene supported on hBN 
as a function of the carrier concentration for different combinations of impurity 
densities and defects. Scenario 1 corresponds to an ideal situation, without neither 
impurities nor defects; scenario 2 to nimp = 0.95·1012 cm-2 and α = 0.07 eV nm; and 
scenario 3 to nimp = 8·1012 cm-2 and α = 0.1 eV nm. Symbols represent the EMC data 
while lines represent the fit to the analytical expression. For scenario 2 (intermediate 
mobility), the percentage of each scattering type as a function of the carrier 
concentration is represented in the case of low field (c) and high field (d). 
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especially at high electric fields, for which they can even become the primary scattering 

type. Finally, in the ideal scenario 1, the low field mobility and saturation velocity are 

mainly influenced by interactions with SPP of the top (primarily) and bottom dielectrics, 

with progressive larger influence of intrinsic phonons at high carrier concentrations. 

Once that the EMC data for μLF and vsat in each scenario are obtained, the information 

must be introduced in the self-consistent GFET simulator. Both µLF and vsat vs. ns have been 

fitted to different mathematical expressions, as shown in Table S1 of ESM. In this way, the 

effect of the carrier scattering activity on the RF performance can be readily evaluated. 

As a final note, it is relevant to discuss the validity of the drift-diffusion transport used in 

our work, so a calculation of the MFP is necessary. EMC simulator allows obtaining their 

values, which are presented in figure S3 of the supplementary data together with the ratio 

between the gate length L and the MFP in each case, as a function of the L. This ratio is the 

relevant feature in order to discuss the diffusive character of transport and the validity of 

the drift-diffusion model. The results are presented for two carrier concentrations, 1012 and 

1013 cm-2. As it can be observed, the MFP ranges from a few nanometers to more than 200 

nm depending on the carrier concentration and the electric field; however, the validity of 

the diffusive model is guaranteed since MFP is always significantly smaller than the 

featured gate length for each case. 

2.3 Charge-based small-signal model of GFET and derived RF performance 

In order to assess the RF performance of the GFET, the device can be conveniently 

considered as a two-port network in the common source configuration, as depicted in figure 

3(a). At the input port, a small-signal alternate current (AC) voltage source vS, of internal 

admittance YS, transfers power and current to the network, being both vS and YS complex 
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numbers (phasors). A load admittance YL is connected at the output to get the transferred 

power. A small-signal model in form of an extrinsic admittance matrix Y describes the 

behavior of the two-port network and its analysis provides both the device RF performance 

and stability information. The small-signal parameters yij of Y can be extracted from the 

linearization of current and charge DC characteristics (see section S2 in the supplementary 

data). The Y-parameters depend strongly on (i) the frequency (ω = 2πf ),   (ii) the bias 

point: Vgs and  Vds, and (iii) the series resistances of the gate, source and drain terminals 

(RG, RS and RD, respectively). A full justification of the high frequency model can be found 

in ref. 30. 

 

A charge control model is needed to determine the small-signal parameters. We apply a 

Ward-Dutton’s linear charge partition scheme, which is charge conserving, 

The intrinsic small-signal model of the GFET, within the shaded region of figure 3(b), is 

suitable for high frequency analysis [24,25]. A distinctive feature of this model is that no a 

 

 
Figure 3 (a) GFET conceptualized as a two-port network, characterized by its Y matrix, 
connected to source and load admittances. (b) Small-signal model of a three-terminal 
GFET for high frequency analysis. 
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priori assumption on the reciprocity of intrinsic capacitances has been made. This kind of 

assumptions are usually made for silicon transistors and have often been imported directly 

to GFET intrinsic capacitance modeling [26–29]. In our opinion, this practice is not well 

justified and important deviations of the calculated RF FoMs has been reported in ref. 30. 

The RF FoMs can be extracted from Y(ω). The extrinsic cutoff frequency fT,x is defined 

from the current gain, defined as β(ω) = - id / ig, that is, the ratio of the output current id and 

the input current ig. The magnitude of β(ω) presents a maximum value when the output is 

shorted (|YL| → ∞) and its expression takes the following form [31]: 

𝛽𝑚𝑚𝑚(𝜔) = −𝑦21
𝑦11

  (1) 

By definition, fT,x is the frequency at which the current gain is equal to one, that can be 

written as: 

�𝛽𝑚𝑚𝑚�2𝜋𝑓𝑇,𝑚�� = 1  (2) 

Before discussing the procedure to get fmax, we must recall the concept of stability of a 

general two-port amplifier circuit in terms of the Y-parameters of a transistor. Stability 

guarantees that no adventitious oscillations can appear at a network for any passive source 

and load admittances connected to the input and output ports, respectively. This requires 

that the reflection coefficients of the input and output ports are smaller than one. 

Equivalently, the stability of a network can be assessed by means of the K-Δ test, which is 

based on the evaluation of the two following factors [31]: 

𝐾(𝜔) = 2 Re(𝑦11) Re(𝑦22)−Re(𝑦12𝑦21)
|𝑦12𝑦21|   (3a) 
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Δ(𝜔) = (𝑌0−𝑦11)(𝑌0−𝑦22)−𝑦12𝑦21
(𝑌0+𝑦11)(𝑌0+𝑦22)−𝑦12𝑦21

  (4b) 

where Y0 = 1/ Z0 is the characteristic admittance and Z0 is the characteristic impedance 

(usually taken as 50 Ω). Both conditions K > 1 and |Δ| < 1 are necessary and sufficient to 

ensure device stability. In this case, any passive load and input admittance provide a stable 

behavior of the network. Selecting an optimum set of YS and YL, an optimized power gain 

can be obtained, referred as the maximum available gain (MAG). However, if -1 < K < 1, 

the network is said to be conditionally stable, that is, it becomes stable only for certain 

combinations of YS and YL. Among those combinations that provide stability, the maximum 

attainable power gain is known as the maximum stable gain (MSG). Therefore, the 

maximum gain |G(ω)|max can be calculated from Y and it depends on the value of the 

stability factor K following these relations: 

|𝐺(𝜔)|𝑚𝑚𝑚 =  �
𝑀𝑀𝐺 =  �𝑦21

𝑦12
� �𝐾 − √𝐾2 − 1�  𝐾 ≥ 1; |Δ| < 1

𝑀𝑀𝐺 =  �𝑦21
𝑦12
� −1 < 𝐾 < 1

  (5) 

Once G(ω) has been defined, fmax can be calculated as follows: 

|𝐺(2𝜋𝑓𝑚𝑚𝑚)|𝑚𝑚𝑚 = 1  (6) 

The small-signal model considered ignores the electron inertia, that is, the non-quasi-

static effects, which are expected to be relevant when GFETs operate near or beyond fT. 

Then, the quasi-static approach only provides a rough estimate of the RF FoMs. A more 

refined calculation should include the effect of kinetic inductance [32]. Ignoring the kinetic 

inductance means that the quasi-static model should not be used for operating frequencies 

beyond fT. Nevertheless, using a low frequency model to derive both fT and fmax is consistent 

with the usual practice of extrapolating fT and fmax from the measurement of current and 
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power gains at low frequencies. Anyway, the main objective of this paper consists in 

analyzing the relation between stability and scalability, which hasn’t been discussed yet in 

the context of 2D material technologies. Other aspect not included in the model is hot 

electron effects. Ref. [33] showed that impact ionization produced by hot carriers produces 

an “up-kick” in the I-V characteristics, prompting a worsening of gd. This means that the 

FoMs predicted by our model should be regarded as an upper limit. 

2.4 Fabrication and measurement of GFETs 

The hBN flakes were prepared by mechanical exfoliation on 285 nm SiO2/Si substrate. 

To fabricate a GFET, graphene grown by photo-thermal chemical vapor deposition [34] was 

transferred onto the hBN and, subsequently, was patterned with oxygen plasma to define 

the graphene channel. Ti/Au (2/50 nm) metal electrodes were contacted to the graphene 

channel utilizing lift-off technique. Afterwards, 26-nm-thick Al2O3 was deposited by atomic 

layer deposition on the top surface of the structure for a top gate dielectric insulator. A 

second layer graphene was transferred on the dielectric layer and patterned for a gate 

electrode. Finally, Ti/Au metal lead for a gate was fabricated. All DC measurements were 

performed at room temperature using semiconductor parameter analyzer (HP4155A) in 

ambient conditions. 

3. Results and discussions 

3.1 Comparison with experimental values 

We have checked the predictive behavior of the self-consistent simulator by comparing 

its outcome with experimental I-V curves of a GFET. The graphene channel is on the top of 

a layer of hBN with a thickness of the order of tens of nm, which is placed on 285 nm thick 
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SiO2. An atomic force microscopy (AFM) image of the device and its structure layout 

including the hBN flake are shown in figures 4(a) and (b), respectively. For simulation 

purposes, we have considered the parameters of the GFET presented in Table 1. The source 

and drain contact resistances have been assumed as one fitting parameter, RS = RD, to 

optimize the agreement between the model outcome and the experiment. Note that the 

contact resistance is sensitive to the back gate voltage since, under the source/drain 

contacts, graphene is overlapped with the global back gate [35,36]. The relation between 

both DC intrinsic voltages (Vgs and Vds) and extrinsic voltages (Vgs,ext and Vds,ext for gate-to-

source and drain-to-source, respectively) depend on drain current Ids , RS and RD as follows: 

𝑉𝑑𝑑,𝑒𝑚𝑒 = 𝑉𝑑𝑑 + 𝐼𝑑𝑑(𝑅𝑆 + 𝑅𝐷)  (7a) 

𝑉𝑔𝑑,𝑒𝑚𝑒 = 𝑉𝑔𝑑 + 𝐼𝑑𝑑𝑅𝑆  (7b) 

 

 
Figure 4 (a) AFM image and (b) device layout of the experimental GFET supported on 
hBN.  
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Figure 5 plots together the experimental and calculated curves, showing good agreement 

even if very different back gate voltages Vbs are considered. The values of the series 

resistances found for each Vbs resulted from contact resistance modulated by the back gate. 

A thorough discussion of this effect can be found in refs. 41 and 40. We neglected the 

influence of interface traps that might exist at the insulator-graphene interface. 

Nevertheless, in figure S3 of the supporting data, we report on the impact that might exist 

due to the non-ideal Al2O3/graphene interface [37] with an interface trap capacitance of 10 

fF μm-2. We have found that this additional capacitance, which is a realistic value, does not 

significantly affect the I-V characteristics nor the transcapacitances.  

Table 1 Parameters of the nominal GFET supported on hBN used in the simulation. 

Parameter Value 

Channel length L 18 µm 

Channel width W 14 µm 

Top insulator thickness tt 26 nm 

Back insulator thickness tb 285 nm 

Top insulator relative permittivity εt 9 

Back insulator relative permittivity εb 3.9 

Top gate flatband voltage Vgs0 -2.5 V 

Back gate flatband voltage Vbs0 0 V 

nimp 8·1012 cm-2 

α 0.10 eV nm 
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3.2 RF performance scaling and device stability 

The small-signal model has been used to investigate the scalability of RF performance 

via channel length reduction, considering device stability at the same time. We anticipate 

that stability plays a vital role, especially in short-channel transistors. We have studied the 

effect of graphene quality for the two extreme mobility scenarios (1 and 3) considered in 

the Monte Carlo simulations. The scenario 2 gives medium RF performance and its 

discussion would be qualitatively similar, so we have not included it for the sake of brevity. 

To run the simulations we have used state-of-the art values of the source/drain series 

resistance RS·W = RD·W = 200 Ω μm [38]. The gate series resistance was calculated 

considering a metal gate contacted on both sides of the device [24]. If the GFET width is 

large enough, we can approximate the gate resistance to be inversely proportional to 

channel length. For instance, a realistic value of RG·L could be 4.4 Ω μm, calculated 

 
Figure 5. Comparison of simulated (dashed lines) and experimental (solid lines) I-V 
characteristics of the nominal device for different back gate voltages: (a) Vbs = -40 V, (b) 
0 V, (c) 40 V and (d) 70 V. The legends indicate the Vgs,ext. 
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assuming a 60 nm thick wolfram gate (resistivity of 56 nΩ m). The increase of RG with 

scaling compromises the ultimate fmax of GFETs so gate resistance minimization is key in 

RF applications [39]. Regarding the density of puddles, we have assumed it as zero for the 

results presented in this paper. However, we have not found significant deviations in the RF 

performances assuming puddle densities up to ∼1011 cm-2, provided that the chosen bias 

point is far enough from the Dirac point. A more in-depth investigation of the puddle 

concentration and its effects on RF performances can be found in figure S5 of the 

supplementary data.   

The GFET RF performance is, in general, dependent on the bias point. For our RF 

investigation, we have chosen the combination Vds = 0.6 V and Vgs - VD = 2 V, where VD is 

the Dirac voltage, so the device is biased in the region where fmax and fT,x are quite 

insensitive to Vgs (see figure S6 of supplementary data). This eases the comparison with 

other devices since the performance does not depend so much on the bias point. 

The impact of the channel length downscaling and graphene quality on the power gain 

can be observed in figure 6(a). The MSG presents a slope of 10 dB dec-1 for all devices, and 

reducing the channel length by a factor of 2 results in an increase of the power gain of 5.4 

dB while fmax grows from 6.5 to 16 GHz. A similar improvement is achieved if the electron 

mobility increases from the scenario 3 up to scenario 1. 
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Next, we have shown in figures 6(b) and (d) the scaling of fT,x and fmax with L. Details on 

the scaling of the small-signal parameters can be found in figure S7  of supplementary data. 

For long channel lengths (> 1 μm), fT,x scales as 1/L2. This is because gm is proportional to 

1/L while Cg scales as L. However, for short channels (< 1 μm), the scaling law approaches 

1/L because of saturation velocity effects, which make gm quite insensitive to L. Increasing 

 
Figure 6 (a) Calculated MSG (dashed lines) and MAG (solid lines) of GFETs. We have 
considered channel lengths of 1.8 μm and 900 nm with and without defects and 
impurities. Scaling of fT,x (b) and fmax (d) comparing the simulations of GFET on hBN 
(green and blue symbols) with experimental results from state-of-the art GFET on 
conventional dielectrics (black symbols) and InP or GaAs transistors (red symbols). For 
the GFET on hBN different graphene quality scenarios are considered. Closed and open 
symbols mean stable and unstable devices, respectively. Instability implies that the 
GFET amplifier is unusable at this particular bias point. In (b), the dashed line 
corresponds to the physical limit of the fT,x, that is, vF / (2πL), which comes out from the 
minimum possible transient time in a graphene channel L / vF. The chosen bias point 
was Vgs - VD = 2 V and Vds = 0.6 V. (c) fmax as a function of the gate resistance RG, 
considering different channel lengths and graphene qualities. The circles refer to the 
point where RG·L is equal to 4.4 Ω µm. 
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the graphene quality improves fT,x in a factor larger than 2. The numbers shown in figure 

6(b) are comparable to what has been reported value for InP and GaAs high electron 

mobility transistors (HEMTs), which are the highest reported value for RF transistors [2]. 

Importantly, we have found out that for short-channel devices, the device becomes unstable 

at very short L, especially in the high mobility scenario. This particular issue of instability 

will be later discussed. 

Regarding fmax scalability, shown in figure 6(d), we have found a different trend to the 

one for fT,x. At long channel lengths, the scaling law is 1/Ln with 1< n <2, which is in fact a 

scaling power smaller than fT,x due to the upscaling of RG. The increase in graphene quality 

slightly improves fmax. However, at short channel lengths (< 1 μm), there is a huge increase 

in fmax because of current saturation driven by the velocity saturation effect. Our simulations 

indicate the great potential that the GFET on hBN might have to push fmax into the THz 

region. Intrinsic I-V curves for different devices depending on the quality of graphene and 

channel length can be found in figure S8 of Supplementary Data. 

The gate series resistance is in fact an important source of RF performance degradation. 

figure 6(c) illustrates how fmax decreases with the gate series resistance. The graph 

compares the results for devices with different channel lengths (900 nm and 1.8 μm) and 

devices with different levels of graphene quality (mobility scenarios 1 and 3). It is then 

clear that minimizing the gate series resistance produces an important improvement in fmax, 

even more prominent when the channel becomes shorter. Besides, no relation has been 

found between the stability of the GFET and the gate resistance. 

Let us turn now the attention to the device stability issue. In figure 7 we have plotted the 

stability factors K and |Δ| considering different channel lengths and graphene qualities. 
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First, we focus on the stability of devices with different L, shown in figures 7(a) and (b). 

While longer devices show conditional stability, the factor K in the short channel case (L = 

180 nm) decreases below -1 for a set of frequencies between ∼102 and 104 GHz. The scaled 

transistor thus enters in the unstable region, which prevents it from working properly as a 

power amplifier. Similarly, for a fixed gate length, figures 7(c) and (d) show that moving 

towards the ideal mobility scenario could be detrimental as the device is more prone to 

instability. This could imply sacrificing some power gain to restore stable RF operation.  

Therefore, we suggest that a low mobility scenario is helpful to extend the device stability 

to shorter channel lengths, although paying the prize of getting smaller RF performance.  

Device stability is eventually lost when the transistor with the low mobility is aggressively 

scaled down to 40 nm. 

Finally, it is relevant to analyze how the choice of the drain bias could impact on the RF 

performance and device stability. Figure 7(e) compares fT,x and fmax scaling at both Vds = 0.6 

V and 0.4 V. For long channel lengths (L > 1 μm), the reduction in Vds gives a slight 

decrease in the FoMs. However, a reduced Vds can be used to extend the device stability to 

lower channel lengths down to 180 nm. As a result, we can conclude that the choice of the 

bias point is important not only to maximize fT,x, fmax or the power gain but also to make 

sure that the device works in the stable region. 
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4. Conclusions 

We have analyzed the electrical behavior of the GFET supported on hBN. For such a 

purpose, we have simulated transistors following a multiscale approach, which combines (i) 

EMC simulations to study electron transport in graphene and (ii) self-consistent GFET 

simulations in a drift-diffusion scheme to include SCE. Monte Carlo simulations account 

for the most relevant scattering mechanisms that affect carrier transport in real samples and 

 
Figure 7 (a) and (b) K-Δ stability test considering the effect of the channel length 
scaling and (c) and (d) the effect of graphene quality. Dashed lines separate the regions 
of instability and stability. In the K-frequency plot, the middle region (|K| <1) 
corresponds to conditional stability. (e) Scaling of fT,x and fmax at different drain voltages 
(with the same Vgs - VD = 2 V). Closed and open symbols indicate stability and 
instability, respectively. The dashed line corresponds to the physical limit for the fT,x. 
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they provide the mobility and saturation velocity dependence with the carrier concentration. 

The results have been successfully compared with experimental measurements of fabricated 

devices. Furthermore, we have studied the RF performance with a charge-conserving small-

signal model of the GFET. Graphene quality and channel length scaling could be ways to 

improve the RF performance up to THz and beyond. However, our results indicate that 

short-channel GFETs with very high mobility may be unstable, and therefore, not usable. 

The bias point is also important to guarantee a stable operation, so a careful design is 

needed of both the device and the bias voltages used. Finally, we have proved that 

increasing fmax to competitive values requires a low gate series resistance, especially in the 

case of short-channel devices. 
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S1. Self-consistent simulator 
 

We present here a brief account of the self-consistent simulator used to calculate the 

electrical behavior of dual-gate GFETs, as depicted in figure 1 of the main text. Details of 

the simulator can be found thoroughly described in ref. [1]. The bias voltages applied to 

the electrodes of top gate, drain and back gate with respect to the source (Vgs, Vds and Vbs, 

respectively), induce a sheet charge density σfree(y) = q[p(y) - n(y)] in the graphene sheet. 

Here, p and n are the hole and electron concentration in graphene, q is the elementary 

charge and y is the axis that goes from source (y = 0) to drain (y = L), where L is the 

channel length. This charge distribution is needed in turn to calculate the electrostatic 

potential ψ(x,y) inside the GFET by means of the Poisson’s equation. Figure S1 shows the 

2D domain where this equation is solved, where x is the position along the axis that goes 

from back to top gate. Assuming that the GFET width W (in the z direction) is large as 

compared with the other dimensions of the device, the Poisson’s equation can be written 

as follows: 

𝛁 ∙ [𝜀𝑟(𝑥,𝑦)𝜀0𝛁𝜓(𝑥,𝑦)] = 𝜌free(𝑥,𝑦)  (S1) 

where ε0 is the vacuum dielectric constant, and εr(x,y) is the relative dielectric constant, 

which is equal to εt and εb inside the top and back dielectrics, respectively, and εG in 

graphene. In figure S1, the parameters tt and tb correspond to the top and the back 

insulator thicknesses, respectively. The charge density ρfree(x,y) is zero inside both 

dielectrics so its only contribution corresponds to σfree(y) inside graphene. When solving 

the Poisson’s equation, the electrostatic potential on the top gate and back gate is set to Vgs 

– Vgs0 and Vbs – Vbs0, respectively [2]. Vgs0 and Vbs0 are the flatband voltages that correspond 
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to each gate. Homogeneous Neumann’s conditions are applied to the other two boundaries 

to ensure charge neutrality [3]. At this stage we neglect the contribution of the supporting 

layer of hBN since the error we are making in evaluating the total gate capacitance 

remains below 3% for the values used in this work. This is due to the fact the hBN layer 

presents capacitance in series with a thick SiO2 layer whose capacitance is much lower. 

The drift-diffusion equation for the drain current Ids reads as follows: 

𝐼𝑑𝑑 = 𝑞𝑞[𝑛(𝑦) + 𝑝(𝑦)]𝜇(𝑦) 𝑑𝑑
𝑑𝑑

  (S2) 

where µ(y) is the mobility of electrons and holes, and V(y) is the quasi-Fermi potential 

in the graphene. The boundary conditions make V(y) to be zero at y = 0 and Vds at y = L. 

Electron and holes share the same quasi-Fermi level due to a very short recombination 

time of carriers in graphene, of around 10 - 100 ns [4,5]. 

From the linear dispersion relation of graphene [6], and thus accounting for its 

quantum capacitance, the carrier concentrations are calculated by the following equations 

from both the electrostatic and quasi-Fermi potentials [1,7]: 

𝑛(𝑦) = 𝑛puddle

2
+𝑁𝐺ℱ1 �𝑞

𝜓(0,𝑑)−𝑑(𝑑)
𝑘𝑘

�  (S3a) 

𝑝(𝑦) = 𝑛puddle

2
+𝑁𝐺ℱ1 �𝑞

𝑑(𝑑)−𝜓(0,𝑑)
𝑘𝑘

�  (S3b) 

We have added the contribution of graphene puddles npuddle to the carrier 

concentrations [8]. Here, k is the Boltzmann constant, T is the temperature (which is taken 

to be 300 K) and NG is the effective density of states of graphene, given by: 

𝑁𝐺 = 2
𝜋
� 𝑘𝑘
ℏ𝑣𝐹

�
2

  (S4) 

being ℏ the reduced Planck’s constant and vF the Fermi velocity (108 cm s-1). In equation 

(S3), F1(x) refers to the first order Fermi-Dirac integral: 

ℱ𝑖(𝑥) = 1
Γ(𝑖+1)∫

𝑢𝑖𝑑𝑢
1+𝑒𝑢−𝑥

∞
0    (S5) 

The high field mobility model that we have used in this work includes saturation 

velocity effects in the following form: 

𝜇 = 𝜇𝐿𝐹

�1+�𝜇𝐿𝐹𝑣𝑠𝑠𝑠
𝜕𝜕
𝜕𝜕�

𝛽
�

1
𝛽

   
(S6) 

where the parameter β is roughly 2 for both electrons and holes, consistently with 

experiments [9]. By the same token, both the low-field carrier mobility µLF and saturation 

velocity vsat have been extracted by the Monte Carlo methodology discussed in section 2.2. 

These two properties of carriers in graphene depend on the charge concentration. 

In summary, given the set of materials and geometry of the GFET, and after selecting a 

bias point (Vgs, Vbs and Vds), the simulator solves in a self-consistent way the drift-diffusion 
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transport equation (S2) coupled with the 2D Poisson’s equation (S1). The simulator then 

obtains the stationary values of Ids, n(y), p(y), ψ(x,y) and V(y) as the outputs. 

  

 
Figure S1 Cross section of the GFET and the domain where the Poisson’s equation is 

evaluated. This area corresponds to the dashed rectangle in figure 1 of the main text. 
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S2. Small-signal parameters determination 
 

This section explains how the small-signal matrix Y(ω) of the GFET is obtained from the 

stationary model explained in section S1. We consider here the two-port network 

represented in figure 3(a) of the main text and we assume that the back gate has a 

negligible influence over the graphene charge, which is reasonable if the back gate 

capacitance is much smaller than the top gate capacitance. The charge controlled by the 

gate, source and drain terminals (QG, QS and QD, respectively) can be obtained from the 

self-consistent simulator after evaluation of the sheet charge distribution σfree(y). Upon 

application of a Ward-Dutton’s linear charge partition scheme as the charge control model, 

the terminal charges read as [10]: 

𝑄𝐷 = 𝑞∫ 𝑑
𝐿
𝜎free(𝑦)𝑑𝑦𝐿

0   (S7a) 

𝑄𝑆 = 𝑞∫ �1 − 𝑑
𝐿
� 𝜎free(𝑦)𝑑𝑦𝐿

0   (S7b) 

𝑄𝐺 = −𝑞∫ 𝜎free(𝑦)𝑑𝑦𝐿
0   (S7c) 

Notice that the total charge in the device is zero, so the model is charge-conserving. 

From the charge model described above, the intrinsic capacitances can be determined in 

the following way: 

𝐶𝑔 = 𝜕𝑄𝐺
𝜕𝑑𝑔𝑠

�
𝑑𝑑𝑠

  (S8a) 

𝐶𝑑𝑔 = − 𝜕𝑄𝐷
𝜕𝑑𝑔𝑠

�
𝑑𝑑𝑠

  (S8b) 

𝐶𝑑𝑑 = − 𝜕𝑄𝑆
𝜕𝑑𝑑𝑠

�
𝑑𝑔𝑠

  (S8c) 

𝐶𝑔𝑑 = − 𝜕𝑄𝐺
𝜕𝑑𝑑𝑠

�
𝑑𝑔𝑠

  (S8d) 

𝐶𝑔𝑑 = 𝐶𝑔 − 𝐶𝑔𝑑  (S8e) 

To complete the model, the transconductance gm and output conductance gd need to be 

evaluated. 

𝑔𝑚 = 𝜕𝐼𝑑𝑠
𝜕𝑑𝑔𝑠

�
𝑑𝑑𝑠

  (S9a) 

𝑔𝑑 = 𝜕𝐼𝑑𝑠
𝜕𝑑𝑑𝑠

�
𝑑𝑔𝑠

  (S9b) 

As can be deduced from the diagram depicted in figure 3(b), the intrinsic admittance 

matrix then takes the form: 

𝑌′(𝜔) =  �
𝑗𝜔𝐶𝑔 −𝑗𝜔𝐶𝑔𝑑

𝑔𝑚 − 𝑗𝜔𝐶𝑑𝑔 𝑔𝑑 + 𝑗𝜔�𝐶𝑔𝑑 + 𝐶𝑑𝑑�
�  (S10) 
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We must include the influence of the series resistances RG, RS and RD to obtain the 

extrinsic admittance matrix Y(ω). According to figure 3(b), the relation between the 

extrinsic AC small-signal voltages vgs and vds and the intrinsic ones, v’gs and v’gs, can be 

written as: 

𝑣𝑔𝑑 = 𝑣′𝑔𝑑 + 𝑖𝑔(𝑅𝐺 + 𝑅𝑆) + 𝑅𝑆𝑖𝑑  (S11a) 

𝑣𝑑𝑑 = 𝑣′𝑑𝑑 + 𝑅𝑆𝑖𝑔 + 𝑖𝑑(𝑅𝐷 + 𝑅𝑆)  (S11b) 

The phasors id and ig are, respectively, the output and the input small-signal currents of 

the two-port network as defined in figure 3(a). Then, we define the series resistance 

matrix Zc as: 

𝑍𝑐 = �𝑅𝐺 + 𝑅𝑆 𝑅𝑆
𝑅𝑆 𝑅𝐷 + 𝑅𝑆

�  (S12) 

Finally, from the equation S11 it can be deduced that the admittance matrix can be 

calculated by means of the following relation: 

𝑌(𝜔) = {[𝑌′(𝜔)]−1 + 𝑍𝑐}−1  (S13) 
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S3. Monte Carlo model 
 

The low-field mobility and saturation velocity are calculated by numerically solving the 

Boltzmann transport equation by means of the Monte Carlo method. We consider the 

energy-momentum dispersion relation to be conically shaped nearby the Dirac points, 

expressed as 𝜀(𝐤) = ℏ𝑣𝐹|𝐤|, where we take the Fermi velocity 𝑣𝐹 = 106 m/s. This is a 

close approximation within the electric fields considered since a very limited fraction of 

the total particles in the simulation reach energies that imply significant deviations from 

more accurate band structure models. 

The scattering rates are computed for each mechanism 𝑚 as a function of the initial 

carrier energy as  

𝜆𝑚(𝜀0) = Ω
4𝜋2 ∫

2𝜋
ℏ

|𝐻𝑚(𝐤𝟎,𝐤′)|2𝛥𝑚(𝜀, 𝜀′)𝐤′ d2𝐤′  (S14) 

where 𝐤𝟎 is the initial wavevector, that corresponds to the energy 𝜀0, 𝐤′ is the final 

wavevector after the scattering takes place, 𝐻𝑚(𝐤𝟎,𝐤′) is the matrix element of the 

transition 𝐤𝟎 → 𝐤′ due to scattering with the mechanism 𝑚 and 

𝛥𝑚(𝜀, 𝜀′) = �𝑁𝐪 + 1
2

± 1
2
� 𝛿�𝜀′ + 𝜀′ ∓ ℏ𝜔𝐪�. (S15) 

 

Intrinsic phonon scattering 

Scattering with transversal and longitudinal acoustic (TA/LA) phonons with long 

wavelength (close to point Γ in the band structure) is treated as a quasi-elastic collision (it 

has been assumed that the phonon energy, ℏ𝜔𝐪 is negligible) and it is described by the 

first order deformation potential approximation. Its probability as a function of the 

electron energy can be obtained as [11,12]: 

𝜆TA/LA−Γ(𝜀0) = Ω
4𝜋2 ∫

2𝜋
ℏ

ℏ 𝐷12 |𝐪|
2Ω𝜌𝑚𝑣𝑝ℎ

�1 − � |𝐪|
2|𝐤𝟎|�

2
�𝐤′ � 2𝑘𝐵𝑘𝑔

ℏ𝑣𝑝ℎ|𝐪|� 𝛿(𝜀 − 𝜀′)d2𝐤′  (S16) 

where 𝐷1 is the deformation potential coupling constant, 𝐪 = 𝐤 − 𝐤′ is the phonon 

wavevector corresponding to the difference of the initial and final states, 𝜌𝑚 is the two-

dimensional graphene density, and 𝑣𝑝ℎ is the phonon velocity associated with the slope of 

the acoustic phonon dispersion at the Γ point.  

As for the optical and acoustic inelastic modes, the zeroth-order deformation potential 

[12,13] is used assuming dispersionless (𝜔𝐪  →  𝜔𝟎) phonons in the vicinities of the 

relevant critical points. The matrix element is given by: 

𝜆ph(𝜀0) = Ω
4𝜋2 ∫

2𝜋
ℏ

ℏ𝐷02

2Ω𝜌𝑚𝜔𝟎𝐤′ �𝑁𝐪 + 1
2

± 1
2
� 𝛿(𝜀0 − 𝜀′ ∓ ℏ𝜔𝟎)d2𝐤′  (S17) 
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In this expression, 𝐷0 is the deformation potential, 𝑁𝐪 accounts for the phonon 

occupation given by the Bose-Einstein statistics, and ± accounts for phonon 

emission/absorption. 

In both models, the deformation potentials are set so that scattering rates calculated 

with the deformation potential models reproduce those obtained with ab-initio methods 

based on the density functional theory (DFT) [13]. The relevant parameters for these 

scatterings are given in table S1.  

 

Some authors have pointed out that DFT within the local-density (LDA) and 

generalized-gradient (GGA) approximations may present some inaccuracies as compared 

to Green’s functions based (GW) corrections related to the higher optical branch and Kohn 

anomalies at the symmetry points [14]. In our Monte Carlo model, electron-phonon 

scattering is treated in a common way in the framework of electronic transport, i. e., by 

considering analytical expressions and adequate deformation potentials to reproduce the 

global effect of electron-phonon couplings. As indicated by Fischetti et al. [15] there is a 

lack of consensus in the literature regarding deformation potential values for graphene, 

due to multiple reasons related to the consideration of effective single modes, differences 

in the band structure models, etc. Moreover, as also pointed out in that paper, the 

deformation potentials are averaged over large regions of the Brillouin Zone, and 

necessarily correspond to effective deformation potentials that usually lump different 

modes into a single effective one. The values chosen here correctly reproduce the velocity-

field curves of pristine graphene from [16]. 

 

Surface optical phonons 

The interaction of free electrons in graphene with remote phonons from the substrate 

is treated by means of an additional scattering mechanism. Its scattering probability is 

given by [17,18]: 

 

Table S1 Inelastic phonon scattering. 

 vph (104 m/s) 𝑫𝟏 (eV) 𝑫𝟎 (109 eV/cm) ℏ𝝎𝟎 (meV) 

TA-KA (Γ) 2.0 [35] 6.8 [35,36] -- -- 

TA-LA (K,K’) -- -- 0.35 [13] 124.0 [13] 

TO-LO  -- -- 1.0 [13] 164.6 [13] 
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𝜆SPP(𝜀0) = Ω
4𝜋2 ∫

2𝜋
ℏ

2𝜋𝜋ℱ2 exp(−2|𝐪|𝑑)
Ω𝜖�𝜖(|𝐪|,𝜔)|𝐪|

1+cos𝜃𝐤,𝐤′

2𝐤′ �𝑁𝐪 + 1
2

± 1
2
�·  

· 𝛿(𝜀0 − 𝜀′ ∓ ℏ𝜔𝐬) 𝑑2𝐤′  
(S18) 

where ℱ is the Fröhlich coupling constant, which is equal to: 

ℱ = �� 1
𝜖∞+1

− 1
𝜖0+1

� ℏ𝜔𝑠
2𝜋Ω

�
1/2

,  (S19) 

𝑑 is the Van der Waals distance between the graphene sheet and the surface of the 

substrate whose phonons provoke the scattering, ℱ is the Fröhlich coupling constant, 𝜖∞, 

𝜖0 are the optical and DC substrate relative dielectric permittivities and ℏ𝜔𝑑 is the energy 

of each surface polar phonon mode. The values of the parameters employed in the 

simulations are summarized in table S2. 

 

The model accounts for screening via the static screening function 𝜖(𝑞,𝜔 → 0) = 1 +

𝑉(𝑞)Π(𝜇,𝑇𝑒 , 𝑞), where 𝑉(𝑞) is the bare Coulomb potential, and Π(𝜇,𝑇𝑒 , 𝑞) is the electronic 

temperature-dependent polarizability, calculated within the random phase approximation 

[19]: 

∏(𝜇,𝑇𝑒 , 𝑞) = 𝑔𝑠𝑔𝑣
2𝜋2ℏ𝑣𝐹

�𝜋𝜋
8

+
𝜇+2 𝑘𝐵 𝑘𝑒 log�1+exp�−

𝜇
𝑘𝐵𝑇𝑒

��

ℏ𝑣𝐹
− ∫ � 1

1+exp�𝜀(𝑘)+𝜇
𝑘𝐵𝑇𝑒

�
+

𝑞
2
0

1

1+exp�𝜀(𝑘)−𝜇
𝑘𝐵𝑇𝑒

�
��1 − �2𝑘

𝜋
�
2

 d𝑘�  

(S20) 

 

During the simulation, the electronic temperature 𝑇𝑒 , and chemical potential 𝜇, are 

computed consistently with the system conditions by solving the following system of 

equations that relate these quantities with total carrier density and the average thermal 

energy: 

𝑛𝑒 − 𝑛𝑝 = 2
𝜋
�𝑘𝐵𝑘𝑒
ℏ 𝑣𝐹

�
2
�𝔉1 �

𝜇
𝑘𝐵𝑘𝑒

� + 𝔉1 �−
𝜇

𝑘𝐵𝑘𝑒
��  (S21a) 

〈𝜀𝑡ℎ〉 = 2 𝑘𝐵𝑇𝑒 𝔉2 �
𝜇

𝑘𝐵𝑘𝑒
� 𝔉1 �

𝜇
𝑘𝐵𝑘𝑒

��   (S21b) 

The effect of the image charges that would be introduced in the interface of the metallic 

gate and the top dielectric may also modify the dielectric environment. In order to include 

Table S2 Surface optical phonons. 

Substrate 𝝐𝟎 𝝐∞ ℏ𝝎𝒔𝟏 (meV) ℏ𝝎𝒔𝒔 (meV) 

hBN [37,38] 5.09 4.10 101.70 195.70 

Al2O3 [23] 12.53 3.20 55.01 94.29 
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this effect, we include a modification of the screened Coulomb scatterer via a Green's 

function as described in [20]. However, we found that for top-oxide thicknesses thicker 

than 15 nm this effect vanishes and,  for the 26 nm-thick oxide in the present work its 

influence is negligible.  

The static approximation to describe the polarizability has been frequently employed in 

the literature (see, for example [21–25]). However, it must be taken with caution. Some 

authors [26,27] indicate that the interaction between graphene plasmons and surface 

polar phonons results in the hybridization of these modes into the so-called interfacial-

plasmon phonon (IPP) modes. According to ref. [27], as compared to statically screened 

SPP the main discrepancies with IPP modes appear in the very short and very long 

wavelength limits. In our case, very short wavelengths are extremely restricted due to the 

anisotropic nature of SPP interactions. On the other hand, small q transitions are limited 

by the SPP formulation. Consequently, our model may present some inaccuracies when 

dealing with the microscopic features of the interaction with remote phonons from the 

substrate and dynamic hybridization of the modes for very long wavelength transitions. 

However, since the main goal of the paper is to describe qualitatively the effect of 

impurities and defects on the performance of GFETs, we think that the approach chosen 

provides a reasonable approach to account for the substrate influence. Moreover, our 

model successfully reproduces experimental velocity-field curves for graphene on SiO2 

when impurities and defects are considered, and shows a good agreement with the results 

of more elaborate models for the treatment of remote-phonon interactions including 

hybridized modes [28]. 

 

Carrier-carrier collisions 

The model accounts for short-range carrier-carrier scattering by means of the screened 

Coulomb potential associated to the transitions of the binary electron system 𝐤𝟏 → 𝐤𝟏′  and 

𝐤𝒔 → 𝐤𝒔′  [29]: 

𝑉𝑐−𝑐(𝐤𝟏,𝐤𝟏′ ,𝐤𝒔,𝐤𝒔′ ) = 2𝜋𝑒2

Ω𝜖�𝜖(|𝐪|,𝜔)|𝐪|

1+cos𝜃𝐤𝟏,𝐤𝟏
′

2

1+cos𝜃𝐤𝒔,𝐤𝒔
′

2
  (S22) 

where 𝜖  ̅ is the background dielectric constant [30], 𝜖(|𝐪|,𝜔) is the dielectric function. 

Momentum-dependent scattering probability reads: 

𝜆c−c(𝐤𝟏) =

� Ω
4𝜋2

�
2
∫ ∫  2𝜋

ℏ𝐤𝟏
′ 𝑓(𝐤𝒔) 1

2
(|𝑉𝑐−𝑐(𝐤𝟏,𝐤𝟏′ ,𝐤𝒔,𝐤𝒔′ )|2 +𝐤𝒔

|𝑉𝑐−𝑐(𝐤𝟏,𝐤𝒔′ ,𝐤𝒔,𝐤𝟏′ )|2 +

|𝑉𝑐−𝑐(𝐤𝟏,𝐤𝟏′ ,𝐤𝒔,𝐤𝒔′ )𝑉𝑐−𝑐(𝐤𝟏,𝐤𝒔′ ,𝐤𝒔,𝐤𝟏′ )|2) 𝛿(𝜀1 + 𝜀2 − 𝜀1′ −

(S23) 
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𝜀2′ )𝛿(𝐤𝟏 + 𝐤𝒔 − 𝐤𝟏′ − 𝐤𝒔′ ) d2𝐤𝟏′ d2𝐤𝒔  

 

 

 

Charged impurities 

Short-range Coulomb scattering with charged impurities is also included in the model. 

The scattering matrix is obtained from the 2D Fourier transform of the electrostatic 

potential. Considering that the impurities are distributed homogeneously on the material 

with a characteristic density 𝑛𝑖𝑚𝑝, the scattering probability is [31]: 

𝜆imp(𝜀0) = Ω
4𝜋2 ∫

2𝜋
ℏ𝐤′ 𝑛𝑖𝑚𝑝  2𝜋𝑒

2 exp(−2|𝐪|𝑑)
Ω𝜖�𝜖(|𝐪|,𝜔)|𝐪| 𝛿(𝜀 − 𝜀′)𝑑2𝐤′  (S24) 

Here, 𝑛𝑖𝑚𝑝 is the impurity density, 𝑑 is the Van der Waals distance to the substrate, 

where the charged impurities are supposed to be on the substrate surface. 

 

Scattering with defects 

Along with impurities, atomic scale defects play a crucial role in the electronic 

transport of fabricated samples. Both point defects and dislocations can be treated as a 

single scattering mechanism according to the approximation described in [32]. The 

treatment is similar to the case of impurity scattering, but the 2D transform of the 

electrostatic potential is replaced by a constant term. Finally, the defect scattering 

probability is: 

𝜆def(𝜀0) = Ω
4𝜋2 ∫

2𝜋
ℏ𝐤′  𝑁𝑑𝑒𝑑 �

𝑑0𝐿def2

Ω
 �
2

 1+cos 𝜃𝐤,𝐤′
2

 2𝛿(𝜀 − 𝜀′)𝑑2𝐤′ =

Ω
4𝜋2 ∫

2𝜋
ℏ𝐤′  𝛼

2

Ω
1+cos 𝜃𝐤,𝐤′

2
 2𝛿(𝜀 − 𝜀′)𝑑2𝐤′  

(S25) 

where 𝑁𝑑𝑒𝑑 is the number and density of defects, 𝑉0 is the energy associated to the average 

defect potential, 𝐿𝑑 is the effective potential range that relates to the size of the puddles 

formed in graphene, and 𝛼2 = �𝑛𝑑𝑒𝑑�𝑉0𝐿𝑑𝑒𝑑2�, being 𝑛𝑑𝑒𝑑 the density of defects. 
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S4. Influence of the scattering types on all mobility scenarios 
 

From the Monte Carlo data, it is possible to unravel the influence of each separate 

scattering type on the low field mobility and the saturation velocity. The results for the 

three scenarios are shown in figure S2, where the percentage of each scattering type is 

shown as a function of the carrier concentration.  

In the lowest mobility case, scenario 3, the dominant mechanism is impurity scattering. 

As the carrier concentration grows, scattering with defects increases its weight, becoming 

the second interaction type together with interactions with remote surface polar phonons 

(SPP) from the top Al2O3. At high electric field, while impurity is still the dominant 

scattering type, interactions with the dielectrics and intrinsic optical phonons become also 

relevant at high ns.  

The second mobility scenario (intermediate mobility) shows also a dominant role of 

impurities and interactions with SPP of the top substrate: in particular, these latter ones 

become the most important scattering type at medium and large carrier concentrations. 

With regard to the saturation velocity conditions, the interactions with the dielectrics are 

the most relevant scattering type at medium and large carrier concentrations. 

Finally, in the highest mobility case (absence of impurities or defects) the low and high 

field situations are mostly dominated by the interactions with remote SPP from Al2O3, 

although interactions with the underlying hBN are also relevant. A higher influence of 

intrinsic phonons is also observed as the carrier concentration increases. 
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Figure S2 Percentage of scatterings (left: low field; right: high field) in the three 

different mobility scenarios considered. Insets include the total scattering rate as a 

function of the carrier concentration at low and high field (black and white symbols, 

respectively). 
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S5. Analytical curves for the mobility and saturation velocity derived from Monte 
Carlo simulations 

 

From the Monte Carlo data for the mobility and saturation velocity, we have fitted the 

results to analytical curves to be included in the GFET simulator. For this purpose, in the 

case of the low field mobility we considered the following expression:    

𝜇𝐿𝐹 =  
𝜇0

1+�𝑛𝑠𝑠1
�
𝑏1  

(S26) 

where ns is the carrier concentration and µ0, a1, and b1 are the fitting parameters. The 

fitting has been made in the 5·1011-1013 cm-2 range.  

Regarding the saturation velocity, it can be fitted to a potential law of the form: 

𝑣𝑠𝑠𝑠 = 𝑣𝑠𝑠𝑠,0 �1 + 𝑠2 �
𝑛𝑠
𝑛0
�
𝑏2
�  (S27) 

where vsat,0, a2 and b2 are the fitting parameters, and n0 is a reference carrier 

concentration of 1012 cm-2. The whole set of fitting parameters for the three scenarios are 

summarized in Table S3, and the results are shown in figure 2(a-b) in the main text. 

Below a minimum carrier concentration of 5·1011 cm-2, both µLF and vsat have been 

considered to be constant, taking the value of both magnitudes at 5·1011 cm-2. The Monte 

Carlo extracted values are then used in equation (S6). The magnitudes of µLF and vsat have 

been simulated only for the electrons; the same values have been considered for holes, 

considering the symmetry in the conduction and valence bands in graphene close to the 

Dirac point. 

 

 
  

Table S3 Fitting parameters for electron mobility and saturation velocity to match the 

curves obtained from the Monte Carlo simulations. 

nimp = 8·1012 cm-2 
α = 0.10 eV nm 

(Scenario 3, mobility 
corresponding to the 
experimental values) 

nimp = 9.5·1011 cm-2 
α = 0.07 eV nm 

(Scenario 2, improved 
quality realistic case) 

nimp = 0 cm-2 
α = 0 eV nm 

(Scenario 1, defect 
and impurity-free 

graphene) 
𝜇0 2.4·103 cm2 V-1 s-1 1.4·104 cm2 V-1 s-1 3.1·105 cm2 V-1 s-1 
𝑠1 6.9·1012 cm-2 2.3·1011 cm-2 2.0·108 cm-2 
𝑏1 0.33 0.42 0.35 

𝑣𝑑𝑠𝑡,0 2.5·107 cm s-1 9.2·107 cm s-1 1.9·108 cm s-1 
𝑠2 -6.1·10-2 -0.43 -0.67 
𝑏2 0.69 0.20 8.6·10-2 
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S6. Discussion on the validity of the drift-diffusion transport assumption 
 

The mean free paths (MFP) obtained with the Monte Carlo simulator are presented in 

figure S3. The MFPs have been computed by accounting for the average value of the 

absolute distance travelled in the direction of transport divided by the average total 

number of scattering events in stationary conditions. The values have been calculated for 

an applied field equal to the average electric field in the channel (Vds/L), for gate lengths 

between 18 µm and 50 nm, with a Vds value equal to 0.6 V, as considered in the manuscript.  

In figure S3 we also present the ratio between the gate length and the MFP in each case, 

as a function of L, since this is the relevant feature in order to discuss the diffusive 

character of transport and the validity of the drift-diffusion model. The results are 

presented for two carrier concentrations, 1012 and 1013 cm-2. As it can be observed, the 

MPF ranges from a few nanometers to more than 200 nm depending on the carrier 

concentration and the electric field; however, they are always significantly smaller than 

the featured gate length for each case, so the validity of the diffusive model is guaranteed.  

Carrier-carrier interactions play a very relevant role for all the electric fields 

considered, while acoustic phonons are also important at low fields; optical phonons 

contribute to reduce the mean free path at larger fields (i. e., smaller gate lengths). 

Impurity scattering and defects are also major contributors to a reduction of the MFP as 

compared to a “clean” case, specially at small carrier densities. Only in the event of having 

smaller devices than those considered in the manuscript, or if considering an extremely 

reduced Vds (in the mV range for the channel lengths considered here) the MFP could 

become larger or comparable to the channel length, thus entering into the quasi-ballistic 

regime. 
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Figure S3 Mean free paths (up) and channel length-to-MFP ratio (down) as a function 

of the gate length for two different carrier densities, 1012 cm-2 (left) and 1013 cm-2 

(right). 
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S7. Influence of interface traps 
 

Although the simulated I-V curves reasonably agree with the experimental 

measurements, it is important to analyze the hypothetical effect that interface traps might 

have. Figure S4 compares the DC curves and the small-signal parameters of a GFET free 

from interface traps with a device assuming an interface trap capacitance Cit of  10 fF μm-2, 

which is a realistic value [33]. The traps in the graphene-dielectric interface decrease the 

number of carriers in the channel at a given bias, which decreases in turn the drain 

current and thus the transconductance and the output conductance (especially at biases 

that are far from the Dirac voltage). On the other hand, intrinsic capacitances barely 

remain unaffected. 

 

 
  

 

Figure S4 Effect of the interface traps in the transfer characteristic at Vds = 0.6 V (a) 

and in the output characteristics at different Vgs (b) for the nominal device (low 

mobility scenario and L = 18 μm). Intrinsic capacitances (c) and transconductance and 

output conductance (d) at Vds = 0.6 V. Solid lines correspond to a trap-free interface 

while dashed lines to a Cit of 10 fF μm-2. 
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S8. Influence of the puddles in RF performance 
 

Figure S5 shows the effect of the carrier inhomogeneities (puddles) in the RF FoMs for 

different channel lengths. From figure S5(b), it can be observed that the density of puddles 

does not significantly affect fT,x. However, fmax slightly decreases as the puddle 

concentration increases, especially for short channels. This is caused by an increase of the 

output conductance with the presence of puddles, which is more noticeable in short-

channel devices.   

 

 
  

 

Figure S5 fmax (a) and fT,x (b) as a function of the puddle concentration 
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S9. Choice of the bias point for RF performance investigation 
 

The GFET RF performances are, in general, dependent on the bias point. This can be 

seen in figure S6, which shows an exemplary plot of fmax and fT,x at Vds = 0.6 V as a function 

of the gate voltage overdrive, Vgs - VD, where VD is the Dirac voltage. The graph exhibits two 

maxima and a minimum at Vgs = VD, both maxima happening when the channel is pinched-

off whether at the source and drain sides, respectively, and the minimum when the 

channel is pinched-off just at the channel center. For our RF investigation, we have chosen 

the combination Vds = 0.6 V and Vgs - VD = 2 V so the device is biased in the region where fmax 

and fT,x are quite insensitive to Vgs. This makes the comparison of different devices easier. 

 

 
 

  

 

Figure S6 Calculated extrinsic cutoff and maximum oscillation frequencies of the 

nominal device (L = 18 μm, scenario 3 for mobility) as a function of the gate overdrive 

Vgs - VD. We have taken Vds = 0.6 V. 
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S10. Scaling of small-signal parameters 
 

To fully understand the scaling of fmax and fT,x, it is convenient to plot the behavior of the 

small-signal parameters of the GFET as a function of the channel length. Figure S7 shows 

how they scale for the high and low mobility scenarios. The transconductance scales as 

1/L at long channels but it reaches a maximum value for L < 1 um, which is the reason for 

the observed saturation in the scaling of both fmax and fT,x. Regarding gd, it can even reach 

negative values in short-channel devices (negative differential resistance). Its large drop 

causes fmax to increase strongly, although its negative values may be the origin of the RF 

instability [34]. The intrinsic capacitances are approximately proportional to L although 

the magnitudes of Cgd and Csd strongly decrease at small L, especially in the case of high 

mobility. 

 
  

 

Figure S7 Scaling of transconductance and output conductance (a), and intrinsic 

capacitances (b)-(e) per unit width. Dashed lines in capacitance graphs represent Ct·L. 

The bias point in all cases is Vds = 0.6 V and Vgs – VD = 2 V. 
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S11. Current-voltage characteristics 
 

Figure S8(a) compares the I-V characteristics of the 1.8 μm GFET with the experimental 

matched mobility, and a hypothetical GFET identical in geometry, but with the graphene 

channel just free from impurities and defects. The improvement in carrier mobility and 

saturation velocity increases Ids in a factor ~6. The transconductance gm of the GFET also 

grows while some current saturation is observed. These features indicate that the RF 

performance improves accordingly as we move towards the ideal scenario where 

graphene is free of defects and impurities (see figure 6(b) and (d) in the main text). On the 

other hand, figure S8(b) shows that scaling the channel length down to 180 nm produces 

an improvement in gm and a large increase of Ids. Due to the increase of the electric field 

inside the channel, the drain current becomes limited by velocity saturation and the device 

saturates at a lower Vds (∼0.5 V). 

 

 
  

 

Figure S8 (a) Simulated output characteristics of the device with L = 1.8 μm (dashed 

lines) comparing the low mobility graphene (scenario 3, dashed lines) with a graphene 

free of defects and impurities (scenario 1, solid lines). (b) Simulated output 

characteristics of the 1.8 μm channel device (dashed lines) as compared to a GFET with 

a 180 nm channel (solid lines) for scenario 3. Curves are represented for Vgs = -0.5, 0 

and 0.5 V. 
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