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A NUMERICAL ESTIMATE OF THE REGULARITY OF A

FAMILY OF STRANGE NON–CHAOTIC ATTRACTORS
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JOSEP MARIA MONDELO GONZÁLEZ
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Abstract. We estimate numerically the regularities of a family of Strange
Non–Chaotic Attractors related with one of the models studied in [GOPY84]

(see also [Kel96]). To estimate these regularities we use wavelet analysis in

the spirit of [dlLP02] together with some ad-hoc techniques that we develop to
overcome the theoretical difficulties that arise in the application of the method

to the particular family that we consider. These difficulties are mainly due to

the facts that we do not have an explicit formula for the attractor and it is
discontinuous almost everywhere for some values of the parameters. Concretely

we propose an algorithm based on the Fast Wavelet Transform. Also a quality

check of the wavelet coefficients and regularity estimates is done.

1. Introduction

The aim of this paper is to develop techniques and algorithms to compute ap-
proximations of (geometrically) extremely complicated dynamical invariant objects
by means of wavelet expansions. Moreover, from the wavelet coefficients we want
to derive an estimate of the regularity of these invariant objects. In the case when
the theoretical regularity is known, the comparison between both values gives a
natural and good quality test of the algorithms and approximations.

In this paper the invariant objects that we study and consider when developing
our algorithms are Strange Non-chaotic Attractors. They appear in a natural way
in families of quasiperiodically forced skew products on the cylinder of the form

(1)
Fσ,ε : S1 × R −−−−−−−→ S1 × R

(θ, x) 7−→ (Rω(θ), Fσ,ε(θ, x)),

where Fσ,ε : S1 × R −→ R is continuous and C1 with respect to the second variable,
Rω(θ) = θ + ω (mod 1) with ω ∈ R \ Q, S1 = R/Z = [0, 1) denotes the circle and
ε, σ ∈ R+. These systems have the important property that any fibre, {θ} × R, is
mapped into another fibre, {Rω(θ)} × R.

Our main goal will be to derive approximations in terms of wavelets of the
invariant maps ϕ : S1 −→ R: ϕ(Rω(θ)) = Fσ,ε(θ, ϕ(θ)). Under certain conditions
the graphs of these invariant maps have very complicated geometry where roughly
speaking, the word complicated means non-piecewise continuous. In such case, we
will say that the graph of ϕ is a Strange Non-chaotic Attractor (SNA). A usual
particular case of SNA is when the invariant function is positive in a set of full
Lebesgue measure and vanishes on a residual set.
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A standard approach is to use Fourier expansions (rather than wavelet ones)
when approximating dynamical invariant objects. In the SNA’s framework this
approach has a serious drawback: an accurate approximation of ϕ demands a high
number of Fourier modes due the appearance of strong oscillations (see e.g. [Jor01]).
One natural way to overcome this problem is by using other orthonormal basis
such as wavelets and the multi-scale methods (see e.g. [Coh03, Mal98]). One of the
advantages of this approach is that wavelets also define certain regularity spaces
Bs
∞,∞ (see e.g [HW96, Coh03, Mey01, Tri06]) that provide a natural framework

for the approximations that one gets.
Precisely, the regularity can be considered as a trait of how ϕ becomes strange in

terms of functional spaces. For example, in [dlLP02], the authors make numerical
implementations of wavelet analysis to estimate the “positive” regularity of invari-
ant objects which are graphs of functions in appropriate spaces. However, due to
the complexity of the SNAs described above we need to consider the possibility
that these objects have zero or even negative regularity (see [Coh03]). Hence, the
techniques of [dlLP02] need to be extended to this case. To this end, we develop
ad-hoc techniques to overcome the theoretical difficulties of the objects we study in
performing a wavelet analysis, in the same spirit of [dlLP02], to estimate the regu-
larity of such ϕ. Our wavelet analysis will be based on the Fast Wavelet Transform
(see e.g [Mal98]).

The computation of the regularity (depending on parameters) can give some
insight in the study of the fractalization or other routes of creation of SNA and
help in detecting this bifurcation.

We apply the above program to a slight modification of the system considered
in [GOPY84]. Indeed, the attractor obtained in [GOPY84] (as shown by Keller in
[Kel96]), is the graph of an upper semi-continuous function from the circle to R in
the pinched case (that is, when there exists a fibre whose image is degenerate to
a point), whereas in the non pinched one the attractor is the graph of a map with
the same regularity as the skew product (see also [Sta97] and [Sta99]). As we will
see, the wavelet coefficients together with the computed regularity detect well the
functional space jump associated to the creation of the SNA.

This paper is organized in two parts. The first one is devoted to make a survey
on wavelets and regularity. Whereas the second one deals with the application of
these techniques to the SNA case. More concretely, in Section 2 we recall some
topics about the theory of wavelet bases. In Section 3 we will review the notion
of regularity through Besov functional spaces and discuss it by means of simple
examples. In Besov spaces the regularity can be any real number (in contrast to
Hölder regularity defined only for positive regularities). In Section 4 we survey the
relation between the regularity and the wavelet coefficients of a function. Section 4.1
is devoted to present and test a methodology to numerically estimate regularities
based on the previous sections.

Finally, in the second part, in Section 5 we present the family of Strange Non–
Chaotic Attractors that we will study. In particular, we state Keller’s Theorem and
we emphasize some ideas on the proof. These ideas will be used in devising the
algorithm that we propose. In Section 6, we present the techniques to overcome
the theoretical difficulties arising from the SNA. In 6.3, we perform the algorithm
to compute the regularity of the attractors and in Section 7, the results of this
computation, for a particular instance of SNA’s, are presented and discussed.

Acknowledgements. We thank the two anonymous referees of the paper for his
eager reading of the two versions of the paper and for pointing out some flaws
and possible improvements of the paper that greatly helped us in clarifying some
delicate arguments and improved the writing of the paper.
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2. A survey on wavelets

We aim at approximating by means of wavelets a certain class of functions from
the circle R/Z to an interval of the real line. Recall that a standard approach
used in the literature to compute and work with invariant objects of systems ex-
hibiting periodic or quasi-periodic behaviour is to use finite Fourier approximations
(trigonometric polynomials), namely functions of the form

ϕ(θ) = a0 +
N∑

n=1

(an cos(nθ) + bn sin(nθ)) .

In this paper instead we aim at using finite wavelet expansions of the form:

ϕ(θ) = a0 +

J∑

j=0

Nj∑

n=0

dj,nψj,n(θ),

where ψj,n(θ) is obtained by translation and dilation of a mother wavelet ψ(x). To
be explicit, let us start by introducing the orthonormal wavelet basis of L 2(R). A
natural way to do it is via the notion of Multiresolution Analysis. We refer the
reader to [Mal98, HW96] for more detailed and comprehensive expositions.

Definition 2.1. A sequence of closed subspaces {Vj}j∈Z of L 2(R) is a Multireso-
lution Analysis (or simply a MRA) if it satisfies the following six properties:

(a) {0} ⊂ · · · ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · · ⊂ L 2(R).
(b) {0} =

⋂
j∈Z Vj .

(c) clos
(⋃

j∈Z Vj
)

= L 2(R).

(d) There exists a function φ whose integer translates, φ(x−n), form an orthonor-
mal bases of V0. Such function is called the scaling function.

(e) For each j ∈ Z it follows that f(x) ∈ Vj if and only if f(x− 2jn) ∈ Vj for each
n ∈ Z.

(f) For each j ∈ Z it follows that f(x) ∈ Vj if and only if f(x/2) ∈ Vj+1.

Before continuing the explanation, let us recall that for f ∈ L 2(R),

f̂(ξ) =

∫

R
f(x)e−iξx dx, ξ ∈ R,

denotes the Fourier transform of f and f∨(x)

f∨(x) =
1

2π

∫

R
f(ξ)eiξx dξ, x ∈ R

stands for the inverse Fourier transform. If we fix an MRA, it follows that Vj has
an orthonormal basis {φj,n}n∈Z, for every j, where

φj,n(x) = 2−j/2φ

(
x− 2jn

2j

)
.

Now, define the subspace Wj as the orthogonal complement of Vj on Vj−1, that is,

(2) Vj−1 =Wj ⊕ Vj .
Therefore, by the inclusion of the spaces Vj we have

(3) L 2(R) = clos


⊕

j∈Z
Wj


 = clos


V0 ⊕

0⊕

j=−∞
Wj


 .
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The mother wavelet ψ ∈ W0 is defined to be the function whose Fourier transform
is

(4) ψ̂(ξ) =
1√
2
e−iξĥ∗(ξ + π)φ̂(ξ)

where ĥ∗(ξ) is the complex conjugate of

(5) ĥ(ξ) =
∑

n∈Z
h[n]e−inξ,

with ĥ(0) =
√

2 and h[n] =
〈

1√
2
φ
(
x
2

)
, φ(x− n)

〉
for n ∈ Z. The sequence h[n] is

called the scaling filter (or the low pass filter) of the Multiresolution Analysis. We
define the support of h[n], denoted by supp(h), as the minimum subset I of Z such
that I = {`, `+ 1, . . . , `′} is a set of consecutive integers and

h[n] = 0 for every n ∈ Z\I.
The following result (see [Mal98, Theorem 7.3]) allows to obtain the wavelet basis
from the scaling function:

Theorem 2.2 (Mallat, Meyer). The mother wavelet given by equation (4) verifies
that, for each integer j, the family {ψj,n}n∈Z is an orthonormal basis of Wj, where:

ψj,n(x) = 2−j/2ψ

(
x− 2jn

2j

)
.

As a consequence, the family {ψj,n}(j,n)∈Z×Z is an orthonormal basis of L 2(R).

We want to approximate maps f ∈ L 2(R) by linear combinations of wavelets.
By (3) and the theorem above, the projection of f to V−J ⊂ L 2(R) :

∑

n∈Z
〈f, φ−J,n〉φ−J,n,

is a good approximation of f provided that J > 0 is large enough. We want to
rewrite such an approximation as linear combination of wavelets of the form

f ∼
∑

n∈Z
〈f, φ0,n〉φ0,n +

J−1∑

j=0

∑

n∈Z
〈f, ψ−j,n〉ψ−j,n ∈ V0 ⊕

J−1⊕

j=0

Wj .

To do it, as usual, we define the coefficients

aj [n] := 〈f, φj,n〉 and dj [n] := 〈f, ψj,n〉
for j, n ∈ Z. With this notation, the initial approximation of f becomes

∑

n∈Z
a−J [n]φ−J,n.

By (2) we have

(6)
∑

n∈Z
a−j [n]φ−j,n =

∑

n∈Z
a−j+1[n]φ−j+1,n +

∑

n∈Z
d−j+1[n]ψ−j+1,n

for every j ∈ Z.
To obtain the coefficients a−j+1[n] and d−j+1[n] from a−j [n], we use the Fast

Wavelet Transform (FWT) given by (see [Mal98, Theorem 7.7]):

(7)





aj+1[p] :=
∑

n∈Z
h[n− 2p]aj [n] and dj+1[p] :=

∑

n∈Z
g[n− 2p]aj [n];

with g[p] = (−1)1−ph[1− p]
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for every j, p ∈ Z. Hence, from the iterative use of (6) and (7) starting with the
approximation

∑
n∈Z a−J [n]φ−J,n we obtain the approximation of f that we are

looking for:

f ∼
∑

n∈Z
a0[n]φ0,n +

J−1∑

j=0

∑

n∈Z
d−j [n]ψ−j,n ∈ V0 ⊕

J−1⊕

j=0

Wj .

For (numerical) applications such infinite approximations are usually not avail-
able since we often work with finite information about our function. For this we
need a similar theory for subspaces of Vj and Wj of finite dimension. For j ≥ 0 we
define

V∗−j :=
〈
φ−j,0, φ−j,1, . . . , φ−j,2j−1

〉
⊂ V−j , and

W∗−j :=
〈
ψ−j,0, ψ−j,1, . . . , ψ−j,2j−1

〉
⊂ W−j ,

where 〈f1, f2, . . . , fn〉 denotes the subspace of L 2(R) generated by the linear com-
binations of f1, f2, . . . , fn. From the comment at the end of Section 7.3.1 of [Mal98]
(see also [Fra99, Lemma 3.26] for a more detailed account), it follows that

(8) V∗−j+1 =W∗−j ⊕ V∗−j
for every j > 0. Hence, given a function f ∈ L 2(R) we can take a good finite
approximation of the map given by its projection to V∗−J :

(9) f ∼
2J−1∑

n=0

a−J [n]φ−J,n,

provided that J is large enough. Again, we are interested in writing such an ap-
proximation as linear combination of wavelets, but in this case this expansion must
be finite:

f ∼ a0[0]φ0,0 +
J−1∑

j=0

2j−1∑

n=0

d−j [n]ψ−j,n ∈ V∗0 ⊕
J−1⊕

j=0

W∗−j .

To obtain this expression observe that (8) implies

(10)
2j−1∑

n=0

a−j [n]φ−j,n =
2j−1−1∑

n=0

a−j+1[n]φ−j+1,n +
2j−1−1∑

n=0

d−j+1[n]ψ−j+1,n

for j > 0. Now, to obtain the coefficients a−j+1[n] and d−j+1[n] from a−j [n], instead
of using formulae (7), we use the following circular convolution version of them (see
[Mal98, Section 7.5.1] or the proof of [Fra99, Lemma 3.26]):

(11)





a−j+1[p] :=

2j−1∑

n=0

h[n− 2p]a−j [n] and d−j+1[p] :=

2j−1∑

n=0

g[n− 2p]a−j [n];

with g[p] = (−1)1−ph[1− p]
for every j > 0 and p ∈ {0, 1, . . . , 2j−1 − 1}. Hence, with the iterative use of (10)
and (11) starting with the approximation (9) we obtain

(12) f ∼ a0 +
J−1∑

j=0

2j−1∑

n=0

d−j [n]ψ−j,n ∈ V∗0 ⊕
J−1⊕

j=0

W∗−j .

as we wanted.
To effectively compute an approximation of the type given in equation (12)

one remaining problem is left: to find a good estimate of the initial coefficients
a−J [n] = 〈f, φ−J,n〉. In the literature there is a lot of discussion on how to compute
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these coefficients, but a simple customary approach is to use the following estimate
(see, for instance, [Fra99, Lemma 5.54] and its proof):

Lemma 2.3. Assume that f verifies |〈f, φj,n〉| <∞ for every j, n ∈ Z× Z and

|f(x)− f(y)| ≤ C1 |x− y|α with α ∈ (0, 1]

for all real numbers x, y and a constant C1 <∞. Suppose that the scaling function
φ from an MRA {Vj}j∈Z is such that

φ ∈ L 1(R), φ̂(0) =

∫

R
φ(x) dx = 1 and

∫

R
|x|α φ(x) dx < C2.

Then, for every j, n ∈ Z× Z,
∣∣∣〈f, φj,n〉 − 2j/2f(2jn)

∣∣∣ < C1C22
j
(
α+

1
2

)
.

As a corollary of this lemma we see that if f is Lipschitz, then

a−J [n] ≈ 2−J/2f(2−Jn).

Summarizing, Lemma 2.3 gives us a method to initialize the FWT. This gives a
complete algorithm to compute wavelet coefficients of a certain function f ∈ L 2(R).

3. Defining regularity through Besov spaces

In this section we will make precise the notion of regularity that we will use. To
do so, we will describe, in two steps, the functional spaces that define the notion
of regularity. Roughly speaking these spaces collect the functions that verify an
α-Hölder condition. However, as we will see, we will have to deal with functions
with regularity zero (that do not verify any Hölder condition). The notion of non-
positive regularity is formalized trough Besov spaces (see [Tri83, BL76]). In what
follows, we will recall the definition of the Besov spaces on the real line [Tri83,
Section 2.3] and the extension of such definition to S1.

3.1. The spaces Bs
∞,∞(R). The space of all real valued rapidly decreasing infin-

itely differentiable functions is called the (real) Schwartz space and it is denoted
by S(R). The topological dual of S(R) is the space of tempered distributions which

is denoted by S ′(R). For f ∈ S ′(R), f̂(ξ) denotes the Fourier transform of f and
f∨(x) stands for the inverse Fourier transform in the sense of distributions (see
e.g [Tri83]). Recall, also, that the essential supremum is defined as

ess sup
x∈R

f(x) = inf{a ∈ R : µ({x ∈ R : f(x) > a}) = 0},

where µ is a measure (in our case the usual Lebesgue measure).
Let ϕ0 ∈ S(R) be such that

ϕ0(x) :=

{
1 if |x| ≤ 1

0 if |x| ≥ 3/2

and set
ϕj(x) := ϕ0(2−jx)− ϕ0(2−j+1x)

for j ∈ N. It is not difficult to show that, independently of the choice of ϕ0,∑∞
j=0 ϕj(x) = 1 for all x ∈ R. Each of the families {ϕj}∞j=0 is called a Dyadic

Resolution of Unity in R.

Definition 3.1. Let ϕ = {ϕj}∞j=0 be a Dyadic Resolution of Unity and s ∈ R. For
f ∈ S ′(R) we define the quasi-norm

‖f‖∞,∞,ϕ,s = sup
j≥0

2js
(

ess sup
x∈R

∣∣∣(ϕj f̂)∨(x)
∣∣∣
)
.
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Then, we define the Besov Spaces by

Bs
∞,∞(R) :=

{
f ∈ S ′(R) : ‖f‖∞,∞,ϕ,s <∞

}
.

As it can be seen in [Tri83, Remark 2 of Section 2.3], the spaces Bs
∞,∞(R) are,

in fact, independent of the chosen dyadic resolution of unity ϕ. Therefore, we
can remove the subscript ϕ from ‖f‖∞,∞,ϕ,s. So, in what follows we will write

‖f‖∞,∞,s instead of ‖f‖∞,∞,ϕ,s. The spaces Bs
∞,∞(R) are a particular case of the

Generalized Besov Spaces Bs
p,q(R) defined also, for example, in [Tri83] and one has

the inclusion property Bs′
p,q(R) ⊂ Bs

p,q(R) when s < s′.

Remark 3.2. From [Tri83] it follows that the spaces Bs
∞,∞(R) with s > 0 coincide

with the corresponding Hölder-Zygmund spaces Cs(R).

From the above remark it is natural to extend the notion of regularity to s ≤
0 through Bs

∞,∞(R) in the following way (we refer to [Tri83, Ste70] for a more
complete explanation).

Definition 3.3. We say that a map f has regularity s ∈ R if f ∈ Bs
∞,∞(R).

Example 3.4. The following examples help to clarify this regularity notion.

(i) Consider the Weierstraß function defined by

WA,B(x) :=

∞∑

n=1

An sin(Bnx),

where A,B ∈ R are such that B−1 < A < 1 is Hölder continuous and
nowhere differentiable (but it has a distributional derivative, as does every
locally integrable function). Moreover, it has regularity − logB(A); that is

WA,B ∈ B
− logB(A)
∞,∞ (R).

(ii) The function f(x) = −1
log(|x|) (with f(0) = 0) belongs to B0

∞,∞ in a neigh-

bourhood of x = 0 since F (x), where F ′(x) = f(x), is Lipschitz (because it is
an anti-derivative of a bounded function) and the derivative operator reduces
s by 1 (leaving p = q = ∞ unchanged). Examples of functions belonging to
different functional spaces are given in [RS96, Section 2.3, Example 1]. The
prototypical example is to consider α2 + β2 > 0, with β > 0, and defining

fα,β(x) = υ(x)|x|α(− log |x|)−β

where υ(x) is a smooth cut-off function with supp υ ⊂ {x ∈ R : |x| ≤ δ} and
δ > 0.

(iii) In [Coh03, Section 3.8] it is shown that, for s > 0, B−s∞,∞ is the dual of Bs
∞,∞.

That is, the spaces B−s∞,∞ are “purely” distributional spaces. For example, it

is known that δ(x) ∈ B−1
∞,∞(R) where δ(x) stands for Dirac’s delta. In view

of that, δ(x) can be considered as the second (distributional) derivative of the
continuous function

f(x) =

{
0 if x < 0,

x if x ≥ 0.

We conclude this subsection with some remarks on the spaces Bs
∞,∞. The fact

that f ∈ Bs
∞,∞ with s > 0 is equivalent to specify its differentiability degree and

how “wild” is the last derivative. Indeed, if s ∈ (0, 1) then, |f(x+ h)− f(x)| <
C |h|s for all x ∈ R and h in an open neighbourhood of 0. On the other hand,
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if s = n + α, where n ∈ N and α ∈ (0, 1)1, then f is Cn and fn) ∈ Bα
∞,∞.

Consequently, when n ≥ 1, f is continuously differentiable whereas if n = 0 then
we have

Proposition 3.5 (Proposition V.4.6 [Ste70]). Every f ∈ Bs
∞,∞(R), with s ∈ (0, 1)

may be modified on a set of measure zero so that it becomes continuous.

Finally, we want to analytically compute the regularity of the upper semi-con-
tinuous functions. This will be useful when developing the quality control of our
algorithm.

Lemma 3.6. Let f ∈ L 2(R) be an upper semi-continuous function which is not
continuous. Then f ∈ B0

∞,∞(R) (that is, f has zero regularity).

Proof. If f is an upper semi-continuous function which is not continuous then, it
cannot belong to Bs

∞,∞ with s > 0. On the other side, since f is not a distribution,

by [Coh03, Section 3.8], the parameter s cannot be negative. Thus, f ∈ B0
∞,∞(R).

�

3.2. The Besov spaces on S1. In this section we will extend the Besov spaces to
S1. Recall that we consider S1 = R/Z and, hence, as the interval [0, 1). To do it we
follow [BL76, Tri92]. Indeed, given f ∈ S ′(S1) (the space of tempered distributions
on S1) it is known that

f =
∑

n∈Z
f̂(n)einx.

Definition 3.7. Let ϕ = {ϕj}∞j=0 be a dyadic resolution of unity (on R). We define

the Besov Spaces on S1 by

Bs
∞,∞(S1) :=

{
f ∈ S ′(S1) : ‖f‖∞,∞,s <∞

}

where

‖f‖∞,∞,s = sup
j≥0

2js

(
ess sup
x∈R

∣∣∣∣∣
∑

n∈Z
ϕj(n)f̂(n)einx

∣∣∣∣∣

)

is a quasi-norm for the quasi-Banach space Bs
∞,∞(S1).

As in Definition 3.3 we say that a circle map f has regularity s ∈ R if the map
f belongs to Bs

∞,∞(S1).
The following lemma shows that the regularity of a circle map coincides with

the regularity of its real extension which we define as follows. Given f ∈ S ′(S1)
there exists a unique fPER ∈ S ′(R) such that fPER is 1-periodic and the restriction
of fPER over [0, 1) coincides with f (such an fPER can be defined as f({·}), where
{·} denotes the fractional part function). This lemma is usually omitted and used
implicitly but we include here for completeness.

Lemma 3.8. For every f ∈ S ′(S1) it follows that fPER ∈ Bs
∞,∞(R) if and only if

f ∈ Bs
∞,∞(S1).

Proof. Since fPER is 1-periodic and fPER
∣∣
[0,1]

= f ,

f̂PER(n) =

∫ 1

0

fPER(x)e−2πinx dx =

∫ 1

0

f(x)e−2πinx dx = f̂(n).

1We are not interested in the case f ∈ Bn
∞,∞ with n ∈ N. However we should say that

it is known that there are Lipschitz functions that are not Zygmund functions. Therefore, the

space Bn
∞,∞ can be understood as a space that includes the n-Hölder and the n-Zygmund spaces

(see [Tri83]).
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Hence,

ess sup
x∈R

∣∣∣∣∣
∑

n∈Z
ϕj(n)f̂(n)einx

∣∣∣∣∣ = ess sup
x∈R

∣∣∣∣∣
∑

n∈Z
ϕj(n)f̂PER(n)einx

∣∣∣∣∣

= ess sup
x∈R

∣∣∣∣∣
∑

n∈Z
(ϕj f̂PER)(n)einx

∣∣∣∣∣

= ess sup
x∈R

∣∣∣(ϕj f̂PER)∨(x)
∣∣∣ .

That is, ‖fPER‖∞,∞,s = ‖f‖∞,∞,s and, hence, fPER ∈ Bs
∞,∞(R) if and only if

f ∈ Bs
∞,∞(S1). �

4. Wavelets and regularity

In Section 3 we have recalled the notion of the regularity of a function through the
spaces Bs

∞,∞(R) and Bs
∞,∞(S1). Also, we have introduced the wavelet expansions

of a given function in L 2(R). Next, we want to show the relationship between this
notion of regularity and the wavelet coefficients. Such relationship will be the main
tool of the forthcoming Algorithm 6.6. The main tool for this will be the Daubechies
wavelets, because they are orthonormal bases on L 2(R) (see [Mal98] for a definition
and construction) and, depending on the number of vanishing moments, they are
well adapted to the functional spaces Bs

∞,∞(R) (see [HW96, Tri06]).

Definition 4.1. Let ψ(x) be a wavelet from a MRA {Vj}j∈Z. We say that ψ has p
vanishing moments if the integer p is the maximum non-negative integer such that

∫

R
xkψ(x) dx = 0 for 0 ≤ k < p.

Daubechies wavelets are a family of wavelets with compact support that have
an element with p vanishing moments for each p ≥ 1. As it is customary we will
denote them by D2p, where p is the number of vanishing moments. From [HW96,
Theorem 7.16], [Coh03, Theorem 3.8.1] and [Tri06, Theorem 1.64] we will state the
following theorem, in the spirit of [dlLP02, Theorem 5.10] and [Mey01, Chapter 3],
which will be useful for our purposes. To this end, for t ∈ R we set

R(t) =





t− 1
2 if t > 1

2 ,

t+ 1
2 if t < − 1

2

0 if t ∈
[
− 1

2 ,
1
2

]
.

Theorem 4.2. Let f ∈ L 2(R) and let ψ be a mother Daubechies wavelet with
more than max(R(τ), 5

2 − R(τ)) vanishing moments for some τ ∈ R \
[
− 1

2 ,
1
2

]
.

Then, f ∈ B
R(τ)
∞,∞(R) if and only if there exists C > 0 such that

sup
n∈Z
|〈f, ψj,n〉| ≤ C2τj

for all j ≤ 0. Furthermore, if ψ has more than 2 vanishing moments, then

f ∈ B0
∞,∞(R) if and only if either the sequence

{
2−τj supn∈Z |〈f, ψj,n〉|

}−∞
j=0

is

unbounded for every τ ∈ R or there exist C > 0 and τ ∈
[
− 1

2 ,
1
2

]
such that

sup
n∈Z
|〈f, ψj,n〉| ≤ C2τj

for j ≤ 0
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Remark 4.3. In view of Theorem 4.2, if the coefficients supn∈Z |〈f, ψj,n〉| decay
approximately exponentially with respect to j, that is

(13) sj := log2

(
sup
n∈Z
|〈f, ψj,n〉|

)
≈ τj + log2(C),

then f ∈ B
R(τ)
∞,∞(R). This tells us that, in this case, to compute the value of

regularity s we can make a linear regression to estimate the slope τ of the graph of
the pairs (j, sj) and get the correct value of s from this slope.

Moreover, in Theorem 4.2 the constant C > 0 must be understood as the norm
of f . Therefore, equation (13), can be used to see the transition between different
Besov spaces. In other words, the passing from a concrete Besov space to another
one can be recovered by the inspection of the values of C. This is because if
f 6∈ Bs

∞,∞ for some s then the constant C > 0 from equation (13) does not
exist.

In view of the above Remark, we can perform a strategy to estimate the regularity
of a function using the wavelet coefficients. This is the main topic of the following
subsection.

4.1. A method to estimate regularities on L∞(S1). As we have said, we want
to compute wavelet approximations of certain dynamical objects while controlling
the precision of these approximations (i.e., the accuracy of the computed wavelet
coefficients). This quality test will be done by comparing the theoretical regularity
of such functions with the estimated one (given by Theorem 4.2 and Remark 4.3).
More concretely, in [dlLP02], numerical implementations of wavelet analysis to
estimate the positive regularity of conjugacies between critical circle maps are done.
Due to Theorem 4.2, we can generalize such techniques to any value (positive or
not) of the regularity measured in terms of the Besov Spaces Bs

∞,∞(R). The steps
described below explain how to apply Theorem 4.2 in a general framework.

Among the many methods described in the literature to compute wavelet ap-
proximations, in this paper we will use (and test) the Fast Wavelet Transform.
Alternatively, in a forthcoming paper we will explore the technique of solving nu-
merically the Invariance Equation given in Remark 6.7 which can be more adapted
to the dynamical complexity of the object.

Remark 4.4. In view of Lemma 3.8, to estimate the regularity of a map f ∈
S ′(S1) it is enough to use Theorem 4.2 for fPER. Moreover, if f ∈ L∞(S1), then
|〈fPER, ψj,n〉| <∞ for all j, n ∈ Z× Z.

In view of this remark, the verbatim application of Theorem 4.2 with a Daubechies
wavelet with k vanishing moments is the following:

Step 1. Fix a J as large as possible and use Lemma 2.3 to compute aPER

−J [n] :=

〈fPER, φ−J,n〉 for 0 ≤ n ≤ 2J − 1.

Step 2. Use equation (7) to calculate the coefficients dPER
−j [n] = 〈fPER, ψ−j,n〉 for

j = 0, . . . , J − 1 and 0 ≤ n ≤ 2j − 1.

Step 3. By using the coefficients dPER
−j [n] from Step 2, calculate, in view of Theo-

rem 4.2,

s−j = log2

(
sup

0≤n≤2j−1

∣∣dPER

−j [n]
∣∣
)

for j = 0, . . . , J − 1.

Step 4. In view of equation (13), make a linear regression to estimate the slope
τ of the graph of the pairs (−j, s−j) with j = 0, . . . , J − 1. Then, when there is
evidence of linear correlation between the variables −j and s−j , we set s = R(τ).
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Step 5. If k > max(s, 5/2−s) then, by Theorem 4.2, fPER ∈ Bs
∞,∞(R) and, hence,

f has regularity s. Otherwise we need to repeat Step 1 – 4 with a Daubechies
wavelet having a larger value of k until k > max(s, 5/2− s).
Remark 4.5 (On the quality of the linear model). The choice of J has a direct
influence on the estimated regularity which is derived from the slope of the straight
line which better fits the linear model (Step 4). We have several comments on the
influence of the choice of J on the estimation of the regularity:

(i) Ideally one should find a J > 0 large enough so that the projection of f ∈
L 2(S1) into V∗−J is good enough. More precisely, formula (3) with 0 replaced
by −J, and Theorem 4.2 give the following formula for the truncation error
from equation (9):

∥∥∥∥∥∥
fPER −

2J−1∑

n=0

aPER

−J [n]φ−J,n(x)

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥

∞∑

j=J

2j−1∑

n=0

dPER

−j [n]ψ−j,n

∥∥∥∥∥∥
2

≤ C
∞∑

j=J

2−τj
2j−1∑

n=0

‖ψ−j,n‖2

Then, J > 0 should be large enough so that this truncation error is smaller
than a given tolerance. However, notice that this estimate depends on the
decay of the wavelet coefficients corresponding to the spaces W−j with j > J
and, in particular, on the constant C from Theorem 4.2. In other words, the
truncation error from equation (9) depends on the regularity of the map f.

Moreover, by using Lemma 2.3 we can approximate the coefficients aPER

−J [n]

by 2−J/2f(2−Jn), with error
∣∣∣aPER

−J [n]− 2−J/2f(2−Jn)
∣∣∣ < C1C22

−J
(
α+

1
2

)
.

Observe that, again, the constant C1 depends on the regularity of f (see
Lemma 2.3 and the comments after Example 3.4).

Since it is not reasonable to assume that the regularity is known (spe-
cially when we are developing an algorithm to compute it) we are forced to
heuristically fix the value of J as the biggest that our computing resources and
computation time can support.

(ii) Notice that Step 4 also has an influence on the choice of J > 0. Indeed, from
Theorem 4.2 we get J samples to perform a linear regression with the pairs
(−j, s−j) with j = 0, . . . , J − 1. Therefore, one must take J > 0 as big as
possible to increase the reliability of the regressions on J samples.

(iii) Moreover, among all samples (−j, s−j) with j = 0, . . . , J − 1, one should only
use the pairs (−j, s−j) where the linear dependence is clearly seen. Indeed,
typically there is a region corresponding to small values of |j| where certain
properties of f (e.g. self-similarity) are not displayed and, hence, we cannot
expect linearity of the pairs (−j, s−j) (see Figure 2).

On the other hand, in the region corresponding to big values of |j| , the
computed values of sj can become corrupt due to numerical errors. Moreover,
since the wavelet basis elements at this scales have a very small support, every
wavelet basis element “sees” very few samples of the 2J initial samples of our
function f . Hence, it is not reasonable to expect high precision at wavelet
coefficients corresponding to small scales.

So, there is an intermediate zone where the linear dependence (compatible
with the theory) it is observable. Thus, one should specify the (smaller) range
of j’s which is used in the computations. This still adds a new limitation to
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the number of samples available for the linear regressions which adds more
importance to the need of taking J > 0 as large as possible.

In view of the above remark, along our computations we will fix J = 30. To
test the precision of this implementation of Theorem 4.2 we will use the Weierstraß
function. The reason for such experiment is twofold. From one side there exists
an analytic formula for the regularity of the Weierstraß function in terms of its
parameters (which allows us to test the quality of the computed coefficients) and,
at the same time, the graph of the Weierstraß function is “strange” enough. This
idea is borrowed from [dlLP02], but since we use more data than in [dlLP02] we
reproduce the example.

Example 4.6. From Section 3 we know that WA,B ∈ B
− logB(A)
∞,∞ (R). To test

the algorithm we fix the parameter B = 3 and we take A ∈ [0.4, 0.8]. Hence,
WA,3 ∈ Bs

∞,∞(R) with s = − log3(A) ∈ [0.20311 . . . , 0.83404 . . . ]. Then, observe
that

1 < max

(
s,

5

2
− s
)

=
5

2
− s < 3.

Therefore the above algorithm is valid in this case only for Daubechies wavelets
with k ≥ 3 vanishing moments.

To perform the above algorithm we take J = 30 (that is, we use a sample of the
graph of WA,3 of 230 points). To carry out Step 1, by Lemma 2.3, we can estimate

a−J [n] ≈ 2−J/2WA,3(2−Jn).

In Subsection 6.1 we will obtain the sample of the function that we want to study
over a piece of an orbit of an irrational rotation Rω. So, to test the algorithm it is
advisable to compute also the regularities of the Weierstraß function in the same

conditions. More precisely, we obtain the sample {WA,3(θn)}230−1
n=0 , where θ0 ∈ S1

and θn+1 := Rω(θn) for n = 0, . . . , 230 − 1.
Then, after executing Steps 1–4 of the above algorithm we obtain the results

depicted in Figures 1–2.

R
e
g
u
la
ri
ty

A

∣ ∣ −
lo
g
3
(A

)
−

s
A

∣ ∣

A

Figure 1. On the left picture the theoretical and estimated regu-
larity of WA,3 with A ∈ [0.4, 0.8] are shown. The theoretical curve
is plotted in red whereas the numerical ones are blue for the ro-
tated version (computed with the D8 wavelet) and the non-rotated
version of the Weierstraß function in magenta (computed with the
D12 wavelet). On the right picture the error | − log3(A) − sA| is
plotted (here sA denotes the estimated regularity of WA,3).
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We want to remark that the best numerical estimate of the regularity of WA,3(x),
withA ∈ [0.4, 0.8], it is computed with a Daubechies wavelet of 6 vanishing moments
and the range of j’s is −29 ≤ j < −4. It turns out that D12 wavelet also maximizes
globally the computed Pearson correlation coefficients in the range of parameters
that we consider. Hence, despite of the inherited error of the FWT’s seed, D12 is
the best to approximate and to explain the regularity of the Weierstraß function (in
the sense that minimizes the error). The same comments apply in the case of the
rotated version of WA,3(x), with A ∈ [0.4, 0.8]. In this case the chosen wavelet is
D8. The error of such estimates are represented on the right hand side of Figure 1.

We also want to remark that all the computed Pearson correlation coefficients
are bigger than 0.999. This agrees with the fact that the Weierstraß function is
self-similar. Then as pointed out in Remarks 4.3 and 4.5, the coefficients dj [n] must
be approximately on a straight line. However, in concordance with Remark 4.5,
there are pairs (j, sj) which are not on a straight line and they are not taken into
account in the regularity estimation. This is what Figure 2 shows for a certain cases
of the Weierstraß function evaluated on the points n/2J . Finally, we want to say
that the observed error of the estimated regularity is smaller than 5× 10−2. Also,
the behaviour of the regularities of WA,3(x) and WA,3(Rω(x)), with the parameter
A ∈ [0.4, 0.8] are similar.

Figure 2. The connect the dot graphs of the pairs (j, sj) with
−29 ≤ j ≤ 0 for W0.4,3 in red, W0.6,3 in blue and W0.8,3 in ma-
genta. The values inside the dashed circle are not used on the
computations of the regularities for the reasons explained in Re-
mark 4.5.

In view of the results obtained in Example 4.6, in the next sections we will use
the same algorithm with a family of a Strange Non-Chaotic Attractors.

5. An upper semi-continuous SNA

In [GOPY84], a quasi-periodically forced skew product on the cylinder was stud-
ied. The attractor obtained there (as shown by Keller in [Kel96]), is the graph of
an upper semi-continuous function. This kind of systems will be the test case for
the algorithms that we are going to develop.
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We start by introducing the model (and the attractor) that we are going to study
following [Kel96]. We consider skew products on the Cartesian product of the circle
S1 = R/Z and R+ = [0,∞) of the type

(14)

(
θk+1

xk+1

)
= Fσ,ε(θk, xk) =

(
Rω(θk)

fσ(xk)gε(θk)

)
,

where (θk, xk) ∈ S1×R+, Rω(θk) = θk +ω (mod 1) and ω ∈ R\Q. On the second
component, the map gε : S1 −→ [0,∞) is continuous (hence bounded—for example
(ε + |cos(2πθ)|)) and the map fσ : [0,∞) −→ [0,∞) is C1, bounded, increasing,
strictly concave and such that fσ(0) = 0 (e.g. 2σ tanh(x)

∣∣
R+). Observe that, since

fσ(0) = 0, the circle x ≡ 0 is invariant.
Recall that the vertical Lyapunov Exponent at a point (θ0, x0) is defined by

lim sup
k→∞

1

k
log

∥∥∥∥∥

(
1 0
∂xk
∂θ

∂xk
∂x

)(
0
1

)∥∥∥∥∥ = lim sup
k→∞

1

k
log

∣∣∣∣
∂xk
∂x

∣∣∣∣ .

Therefore, by the Birkhoff Ergodic Theorem, it can be shown that the vertical
Lyapunov Exponent at x ≡ 0 is

κ(fσ, gε) :=

∫

S1
log

∣∣∣∣
∂fσ(x)gε(θ)

∂x

∣∣∣∣
x=0

∣∣∣∣ dθ = log(f ′σ(0)) +

∫

S1
log |gε(θ)| dθ.

When κ(fσ, gε) is positive, x ≡ 0 is a repellor for system (14). Moreover, since
fσ and gε are bounded, infinity is also a repellor and the system must have an
attractor different from x ≡ 0. These attractors are typically very complicated.

We are going to restrict ourselves to the study of a particular subfamily of
model (14) which is

(15)

(
θk+1

xk+1

)
= Fσ,ε(θk, xk) =

(
Rω(θk)

2σ tanh(xk) · (ε+ |cos(2πθk)|)

)
,

with ω = 1+
√

5
2 , σ > 0 and ε ≥ 0. Apart from the parameter ε, it is the natural

restriction to R+ of the system considered in [GOPY84] (see Figure 3, where a graph
of the attractor of this system with σ = 1.5 and ε = 0 is shown). In this case, the
vertical exponent κ(fσ, gε) at x ≡ 0 is precisely log(σ). Hence, the interesting case
(for us) occurs when σ > 1.

The attractor of system (14) and its dynamics are described by the following
theorem (see also Figure 3 for an illustration of the graph of this attractor):

Theorem 5.1 (G. Keller, [Kel96]). There exists an upper semi-continuous function
ϕ : S1 −→ R+ whose graph is invariant under system (14) and satisfies

(a) The Lebesgue measure on the circle, lifted to the graph of ϕ is a Sinai-Ruelle-
Bowen measure (that is,

lim
k→∞

1

k

k−1∑

i=0

fσ(Fiσ,ε(θ, x)) =

∫

S1
fσ(θ, ϕ(θ)) dθ

for every f ∈ C0(S1 × R+,R) and Lebesgue almost every (θ, x) ∈ S1 × R+),
(b) if κ(fσ, gε) ≤ 0 then ϕ ≡ 0,
(c) if κ(fσ, gε) > 0 then ϕ(θ) > 0 for almost every θ,
(d) if κ(fσ, gε) > 0 and gε vanishes at some point then the set

{
θ ∈ S1 : ϕ(θ) > 0

}

is meager and ϕ is almost everywhere discontinuous,
(e) if κ(fσ, gε) > 0 and gε > 0 then ϕ is positive and continuous; if gε ∈ C1 then

so is ϕ,
(f) if κ(fσ, gε) 6= 0 then |xn − ϕ(θn)| → 0 exponentially fast for almost every θ and

every x > 0.
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Figure 3. The attractor of system (15) for σ = 1.5 and ε = 0.
Notice the abrupt changes in the graph of the attractor.

Observe that, when κ(fσ, gε) > 0 and g vanishes at some point (i.e. there exists
a fibre whose image is degenerate to a point), it follows from statements (c,d) that
ϕ is discontinuous almost everywhere. If there exists θ0 ∈ S1 such that gε(θ0) = 0,
we will say that the system is pinched. In the particular case of system (15), the
pinching condition implies that ε = 0 and, since | cos(2πθ)| vanishes for θ ∈

{
1
4 ,

3
4

}
,

it follows that the set

(16)
{

( i4 + kω (mod 1), 0) : k ∈ N, i ∈ {1, 3}
}

is both a subset of the attractor and is dense (and invariant) in x ≡ 0. On the other
hand, if ε > 0 we can not have a dense set of pinched points.

The proof of the above theorem is based on the iteration of the Transfer Operator
of the system and many of the properties of ϕ can be derived from such iteration.
Since we will strongly use this construction let us briefly explain it. Let P be the
space of all functions (not necessarily continuous) from S1 to R. If we look for a
functional version of the system (14) in the space P one can define the Transfer
Operator T : P −→P as

T(ϕ)(θ) = fσ(ϕ(R−1
ω (θ))) · gε(R−1

ω (θ)).

Remark 5.2. From the above definition we obtain

T(ϕ)(θ) = πx
(
Fσ,ε(R

−1
ω (θ), ϕ(R−1

ω (θ)))
)

where πx : S1 × R+ −→ R+ denotes the projection with respect to the second com-
ponent.

Notice that the graph of a function ϕ : S1 −→ R is invariant for the system (14)
if and only if T(ϕ) = ϕ.

To obtain the map ϕ from Theorem 5.1, Keller takes a sufficiently large constant
function ϕ0 = c (with c > sup

x∈R
fσ(x) max

θ∈[0,1]
gε(θ)) and iterates it under the transfer

operator T (see Figure 4). In such a way he gets, since the map f is monotone, a
non-increasing sequence of continuous maps given by

(17) ϕk = T(ϕk−1) = Tk(c),
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Figure 4. The constant function c = 5 and three iterations of the
Transfer Operator T for system 15 with σ = 1.5 and ε = 0. The
function c is plotted in brown, T(c) in red, T2(c) in blue and T3(c)
in teal.

where Tk stands for the k-th iterate of the Transfer Operator. Then, following
Keller’s proof, one has that

ϕ := lim
k→∞

ϕk = inf
k→∞

ϕk

and the point-wise convergence of the above sequence is exponentially fast. Notice
that the shape of ϕ depends on the parameters σ and ε.

Moreover, when proving the upper semi continuity of ϕ, it is shown that all sets
{θ ∈ S1 : ϕ(θ) < ε} are open. This means that ϕ is continuous at each point where
g vanishes (whether pinched or non-pinched) and, also, it is in L 1(S1). That is,
the function ϕ ∈ L 1(S1) is continuous at

Z(n) := {Zgε + kw (mod 1) : k = 0, . . . , n} =
n⋃

k=0

Rkω(Zgε) ⊂ S1,

where Zgε ⊂ S1 is the finite and discrete set where the function gε vanishes.

5.1. On the regularity of the attractor. The regularity of the attractor of
system (14) in terms of ε and the regularity of gε is given by the following

Proposition 5.3. Let ϕ : S1 −→ R+ be the upper semi-continuous function whose
graph is invariant under system (14). Assume that gε ∈ Bs

∞,∞(S1) with s ∈ (0, 1].

(a) If ε > 0 then ϕ ∈ Bs
∞,∞(S1).

(b) If ε = 0 then ϕ ∈ B0
∞,∞(S1).

Proof. Statement (a) follows from [Sta99, Theorem 1.2] and Statement (b) follows
from Theorem 5.1 and Lemma 3.6. �

Remark 5.4: The choice of a convenient gε can lead us to a ϕ with zero
regularity (independently on whether the system is pinched or non-pinched). As-
sume that there is an α > 0 such that

lim
θ→0

|θ|α
gε(θ)

= 0

(this means that gε(θ) does not verify any Hölder condition but it is continuous —
see Example 3.4(ii)). By Keller’s Theorem, the invariant function ϕ is continuous
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when ε > 0. However, by the choice of gε, it cannot verify any Hölder condition.
Therefore, ϕ ∈ B0

∞,∞(S1).

6. An algorithm to compute the wavelet coefficients and
regularities of the attractors of system (14)

We want to approximate the invariant curve ϕ of the system (15) in terms of
wavelets with quality control. Since gε(θ) = ε + |cos(2πθ)| is Lipschitz then, by
Proposition 5.3, we know that the regularity of the attractor is 0 when ε = 0 and
1 when ε > 0. The quality control (of the wavelet coefficients) is implemented by
comparing this theoretical value with the estimate of the regularity obtained from
the wavelet coefficients.

Since the attractor of system (15) is the graph of a map ϕ : S1 −→ R+ we will
use the methodology described in the previous section applied to the function ϕPER

(see Lemma 3.8 and Remark 4.4). However, ϕPER, in the pinched case, is dis-
continuous almost everywhere (and the corresponding attractor is called strange).
Therefore, we are not allowed to apply verbatim the algorithm from the previous
section. In the rest of this section we will describe how to solve this problem in the
implementation of the strategy from the previous section.

More concretely, to compute an approximation of the type (12) for ϕPER, since we
do not have an explicit formula for ϕ, we will use Theorem 5.1(f) and the transfer
operator to get a sufficiently good numerical approximation of this function. Indeed,
by Theorem 5.1(f), for almost every θ0 ∈ S1, any x0 > 0 and any ε > 0 there exists
N0 such that for every n ≥ N0 we have:

|xn − ϕ(θn)| < ε

where (θn, xn) = Fnσ,ε(θ0, x0). Moreover, the points (θn, xn) with n ∈ {N0, N0 +

1, . . . , N0 + 2J − 1} approximate exponentially fast the points (θn, ϕ(θn)) from
graph(ϕ). Therefore,

(18)
{

(θn, xn) : n = N0, N0 + 1, . . . , N0 + 2J − 1
}

is an approximate mesh of graph(ϕ) provided that J is large enough. To fix the
mesh we choose a random point θ0 and we fix some x0 > supx∈R+ 2σ tanh(x) = 2σ.
However, this approximate mesh has two problems to be used in our computations:

Problem (1) as we will see, we need a mesh of the graph of ϕ at dyadic points of
the form i2−J for i = 0, 1, . . . , 2J − 1,

Problem (2) we cannot use Lemma 2.3 to estimate the initial coefficients a−J [n]
since our map ϕ is discontinuous almost everywhere (and, hence, not Lipschitz).

In the following two subsections, we will explain how one can solve the above
two problems.

6.1. A solution to Problem (1): a C2 homeomorphism. As we have said,
we need a mesh of the graph of ϕ at dyadic points of the form θi = i2−J for
i = 0, 1, . . . , 2J − 1 but, clearly, if we obtain the points (θn, xn) just as iterates of
a single point by Fσ,ε this condition is not satisfied. The natural approach which
would be to approximately compute the points of the graph of ϕ based at the dyadic
points by interpolating the obtained values is not feasible since, by Theorem 5.1,
we know that ϕ is upper semi-continuous and discontinuous everywhere. Then we
propose the following solution which consists in moving to a conjugate system with

the desired properties. To do this, first we relabel the points {(θn, xn)}N0+2J−1
n=N0

to

a sequence {(θ̃i, zi)}2
J−1
i=0 so that

0 ≤ θ̃0 < θ̃1 < · · · < θ̃2J−1 < 1
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(we do this simply by sorting the data (18) with respect to the first coordinate; see
Remark 6.4). In particular if n ∈ {N0, N0 + 1, . . . , N0 + 2J − 1} and i = i(n) ∈
{0, 1, . . . , 2J − 1} is such that θ̃i = θn, then zi = xn.

Definition 6.1. Let h : S1 −→ S1 be the unique C2-monotone rational spline of

degree one with nodes
(
i

2J , θ̃i

)
for i = 0, . . . , 2J − 1 and

(
1, θ̃0 + 1

)
. In particular

h(1) = θ̃0 + 1 and h
(
i

2J

)
= θ̃i for i = 0, . . . , 2J − 1. We also define the map

ϕ ◦ h : S1 −→ R+

Clearly
{(
i2−J , zi

)}2J−1

i=0
is now an approximate mesh of graph(ϕ ◦ h) which is

based at the dyadic points. Thus, we will use the list of pairs
{(
i2−J , zi

)}2J−1

i=0
to estimate the regularity of ϕ ◦ h. In the Appendix, following [Del83], we will
construct the C2 homeomorphism h and show that

(19) ‖h‖C1 ≤ 7(1 +
√

5).

Remark 6.2. The map ϕ ◦ h has the following dynamical interpretation. Con-
sider the homeomorphism H : S1 × R+ −→ S1 × R+ defined by H(θ, x) = (h(θ), x).
Then, using similar ideas as the ones in [Kel96] it can be shown that, graph(ϕ ◦ h)
is the attractor of the dynamical system

(20)
(
H−1 ◦ Fσ,ε ◦H

)
(θ, x) = (h−1(Rω(h(θ))), fσ(x)gε(h(θ))),

which is conjugate to system (15). Indeed, by using (with minor changes) the proof
of the Statement 1 from [Kel96, Theorem 1] one can see that (ϕ◦h)(θ) is the point-
wise limit of a non-increasing sequence of continuous functions. In other words,
(ϕ ◦ h)(θ) = limk→∞ ϕk(h(θ)) for every θ. Therefore graph(ϕ ◦ h) is the attractor
of the system (20) which is conjugate, by H, to the one given by (14) (and hence
to (15)).

The next result (c.f. [Tri92, Section 4.3]) tells us that, in this situation the
regularity of ϕ coincides with the regularity of ϕ ◦ h and, hence, we can estimate

them by using the mesh
{(
i2−J , zi

)}2J−1

i=0
.

Proposition 6.3. Let f ∈ Bs
∞,∞(S1) with s ∈ R and let h : S1 −→ S1 be a Cm

diffeomorphism with m ≥ s. Then f ◦ h belongs to Bs
∞,∞(S1).

We remark that the exact formula for h is irrelevant for our algorithm. We
only use its properties. That is, we only take into account the fact that such a
homeomorphism h exists and that it is C2. In other words, we elude the need

to effectively interpolate. Indeed, to obtain the data mesh
{(
i2−J , zi

)}2J−1

i=0
that

approximates graph(ϕ ◦ h) (the attractor of the conjugate system) we simply have

to sort the computed mesh {(θn, xn)}N0+2J−1
n=N0

of graph(ϕ) with respect to the first

coordinate θ to obtain {(θ̃i, zi)}2
J−1
i=0 and delete the first mesh components θ̃i (thus

implicitly assuming that the new mesh is {(i2−J , zi)}2
J−1
i=0 ). Of course, this does

not add any further computational error to the mesh. Furthermore, as it has
been already said, the exponential contraction of the system to the attractor (see
Theorem 5.1(f)) still holds for the conjugate system, thus assuring that there is no

loss of precision when replacing ϕ by ϕ ◦ h and {(θn, xn)}N0+2J−1
n=N0

by {zi}2
J−1
i=0 (see

Subsection 6.2). However, there is a kind of chain rule in Proposition 6.3. Indeed,
if C(ϕ) denotes the constant C from Theorem 4.2, then equation (19) gives

C(ϕ ◦ h) ≈ C(ϕ) ‖h‖C1 ≤ 7(1 +
√

5)C(ϕ).
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That is, the effect of working with ϕ ◦ h instead of ϕ, as it can be clearly deduced
from Figure 1, is to change the constant term of the linear regression model (13)
in a way independent on J (and N).

Finally, we note that the proposed method works because an irrational rotation
Rω is uniquely ergodic and, hence, its unique invariant probability measure is the
Lebesgue measure on S1, and the base map of system (20), being C2-conjugate to
an irrational rotation, has an invariant measure which is absolutely continuous with
respect to the Lebesgue measure.

Remark 6.4. The process of sorting the data of an array of 230 points from S1×R+

(stored as pairs of double variables in C) turns to be the bottleneck of the whole
algorithm (and the most time consuming task of the whole program). Moreover,
even the process of computing and filling the array with the initial mesh of the
function ϕ already spends a “visible” amount of CPU time. Indeed, the iteration,
storing and sorting process (with a standard sort algorithm like Heapsort) of this
data spends about 2200 CPU seconds, with a remarkable variability which depends
on the initial sorting of the data, in a computer with a Xeon processor at 3 GHz
and 32 Gb of RAM memory. In order to reduce the time elapsed in the sorting
process we use the following trick based on the fact that the dynamical system
generating the θi data is the irrational rotation Rω. In this case we know that the
Lebesgue measure is the unique ergodic measure of Rω and, hence, its averaged
spatial distribution is uniform and it is controlled approximately by the Birkhoff’s
Ergodic Theorem applied to the Lebesgue measure. Indeed, we have

]
({
θ,Rω(θ), . . . , Rk−1

ω (θ)
}
∩
[
i
N ,

i+1
N

))
≈ k

N

for k large enough and for every i ∈ {0, 1, . . . , N − 1}. The interpretation of this
equation is that the statement

(21) ]
(
{θN0

, θN0+1, . . . , θN0+2J−1} ∩
[
i

2J ,
i+1
2J

))
= 1

holds with high frequency for J large enough (observe that in this case we have

{θN0
, θN0+1, . . . , θN0+2J−1} =

{
θN0

, Rω(θN0
), . . . , R2J−1

ω (θN0
)
}

). Moreover, when

(21) holds, we have i =
⌊
2Jθl

⌋
, where θl is the unique element from the set

{θN0
, θN0+1, . . . , θN0+2J−1} ∩

[
i

2J ,
i+1
2J

)
and b·c denotes the integer part function.

This observation gives a good “hash function” and the following efficient algorithm

to store and sort the data {(θn, xn)}N0+2J−1
n=N0

. First, for n = N0, N0+1, . . . N0+2J−1
we compute the point (θn, xn) = Fσ,ε(θn−1, xn−1). Then, we store it in the posi-
tion i =

⌊
2Jθn

⌋
of the array data, if this slot is free. Otherwise, we store the point

(θn, xn) in a free position j = j(i) of the array data such that |j − i| is minimal.
According to the above observations this will happen with low frequency and the
array data will be almost sorted. Moreover, the positions of the array data which
are not sorted are close to the place where they should be when the array is sorted.
This is exactly the situation where the direct insertion sorting algorithm can be used
with very good results. This means that we are using a method of order O(2J + d)
where d is the number of insertions (which are very low due to the way we have
stored all data) instead of a method of order O(J2J) as the Heapsort algorithm.

With this trick, the iteration, storing and sorting process lasts about 300 CPU
seconds, almost without variability, which clearly improves the efficiency of the
program.

6.2. A solution to Problem (2): calculating the coefficients aPER

−J [n] of

(ϕ ◦ h)
PER

. We introduce the following notation for the wavelet coefficients of the
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map (ϕ ◦ h)
PER

:

aPER

j [n] :=
〈
(ϕ ◦ h)

PER
, φj,n

〉
and dPER

j [n] :=
〈
(ϕ ◦ h)

PER
, ψj,n

〉

for j, n ∈ Z. When ϕ ◦ h is regular enough, Lemma 2.3 gives 2−J/2(ϕ ◦ h)
(
n
2J

)
as

an estimate for the coefficients aPER

−J [n]. But, as we have pointed out, ϕ (and hence

(ϕ ◦ h)
PER

) is discontinuous almost everywhere and the above estimate of aPER

−J [n]

is, a priori, not valid. However, as we will see, the element zn ≈ (ϕ ◦ h)
(
n2−J

)

from our data give indeed a good estimate for aPER

−J [n] because our mesh is based

at the dyadic points n2−J .
As it has been said in Section 5, ϕ is the point-wise limit of a non-increasing

sequence of continuous (and, hence, uniformly continuous) functions ϕk : S1 −→ R+

defined by
ϕ0(θ) = c and ϕk+1(θ) = T(ϕk)(θ)

for every θ ∈ S1 and c > supx∈R+ 2σ tanh(x) = 2σ. Hence, recalling Remark 6.2,
(ϕ ◦ h)(θ) = limk→∞ ϕk(h(θ)) for every θ; that is, ϕ ◦ h is the point-wise limit of a
non-increasing sequence of continuous functions.

Remark 6.5. If we take x0 = c = ϕ0(θ0) then xk = ϕk(θk) for every k ≥ 1. To
see this notice that, from the definition of the points (θn, xn) and Fσ,ε, we get

θk = Rω(θk−1) and xk = πx(Fσ,ε(θk−1, xk−1))

for every k ≥ 1. Now, we proceed by induction. We assume that xk−1 = ϕk−1(θk−1)
fore some k ≥ 0. Then, by Remark 5.2,

xk = πx(Fσ,ε(θk−1, xk−1)) = πx(Fσ,ε(θk−1, ϕk−1(θk−1)))

= T(ϕk−1)(Rω(θk−1)) = ϕk(θk).

Since the scaling function φ of a Daubechies wavelet is continuous, so is φ−J,n
for each n. Hence, from the definition of the coefficients aPER

−J [n] and the Dominated
Convergence Theorem we have:

aPER

−J [n] =

∫

supp(φ−J,n)

(ϕ ◦ h)
PER

(θ)φ−J,n(θ) dθ

= lim
k→∞

∫

supp(φ−J,n)

(ϕk ◦ h)
PER

(θ)φ−J,n(θ) dθ

= lim
k→∞

ak,PER

−J [n],

where ak,PER

−J [n] :=
〈
(ϕk ◦ h)

PER
, φ−J,n

〉
. From the proof of the Dominated Con-

vergence Theorem, it can be shown that ak,PER

−J [n] converge exponentially fast to
aPER

−J [n]. Therefore, if k is large enough, by Lemma 2.3 we have

aPER

−J [n] ∼ ak,PER

−J [n] ≈ 2−J/2(ϕk ◦ h)
PER

(n2−J) = 2−J/2ϕk(h(n2−J))

for n = 0, . . . , 2J − 1 (where ∼ means exponentially close).
From the definition of h it follows that, given n ∈ {0, 1, . . . , 2J − 1}, there exists

k ∈ {N0, N0 + 1, . . . , N0 + 2J − 1} such that h
(
n2−J

)
= θ̃n = θk. Therefore, by

Remark 6.5,
ϕk
(
h
(
n2−J

))
= ϕk(θk) = xk = zn.

Hence, if N0 is large enough,

(22) aPER

−J [n] ≈ 2−J/2ϕk(h(n2−J)) = 2−J/2zn

for n = 0, . . . , 2J − 1. This gives the necessary approximation of the coefficients
aPER

−J [n] to initialize the algorithm.
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6.3. The algorithm for the system (14). In view of the previous sections and
Section 4.1, we present the algorithm to estimate regularities, in terms of the Besov
spaces Bs

∞,∞, for the system (14).

Algorithm 6.6. Let Fσ,ε be a skew product under the assumptions of the sys-
tem (14). Fix J > 0 and a transient N0 > 0 big enough. To estimate the regularity
of the invariant function, ϕ, of the system (14) perform the following steps:

Step 1. Generation of a mesh of points exponentially close to ϕ. By Theo-
rem 5.1(f), fix σ > 1, choose a random θ0 ∈ [0, 1) and x0 > 1 and, by using
the recurrence (θn, xn) = Fσ,ε(θn−1, xn−1), generate the data

{
(θn, xn) : n = N0, N0 + 1, . . . , N0 + 2J − 1

}
.

Step 2. Sort the data. Using Remark 6.4, sort the above data to obtain a sequence

{(θ̃n, zn)}2J−1
n=0 so that

0 ≤ θ̃0 < θ̃1 < · · · < θ̃2J−1 < 1,

and delete the concrete values of the points θ̃n. This defines a map ϕ ◦ h, using
Remark 6.2 and Proposition 6.3, with the same regularity as the map ϕ such that
(ϕ ◦ h)

(
n2−J

)
≈ zn for n = 0, . . . , 2J − 1.

Step 3. FWT’s initialization. Fix a Daubechies wavelet with k vanishing moments
and set aPER

−J [n] := 2−J/2zn for n = 0, . . . , 2J − 1. By equation (22) this is a good
approximation of the coefficients aPER

−J [n].
Now, since we have an approximation of aPER

−J [n], Steps 2–5 of the strategy per-
formed on Section 4.1 remain unaltered. That is,

Step 4. FWT procedure. Use equation (7) to calculate the wavelet coefficients
dPER
−j [n] = 〈fPER, ψ−j,n〉 for j = 0, . . . , J − 1 and 0 ≤ n ≤ 2j − 1.

Step 5. Application of Theorem 4.2: data to compute the regularity. By using the
coefficients dPER

−j [n] from Step 4, calculate

s−j = log2

(
sup

0≤n≤2j−1

∣∣dPER

−j [n]
∣∣
)

for j = 0, . . . , J − 1.

Step 6. Application of Remark 4.3 and 4.5: compute the regularity. Make a
linear regression to estimate the slope τ of the graph of the pairs (−j, s−j) with
j = 0, . . . , J − 1 and recall that

R(t) =





t− 1
2 if t > 1

2 ,

t+ 1
2 if t < − 1

2

0 if t ∈
[
− 1

2 ,
1
2

]
.

Then, when there is evidence of linear correlation between the variables −j and
s−j , we set s = R(τ).

Step 7. Final test of assumptions of Theorem 4.2 on the number of vanishing
moments. If k > max(s, 5/2−s) then f ∈ Bs

∞,∞(R) and, hence, f has regularity s.
Otherwise we need to repeat Step 4 – 7 with a Daubechies wavelet having a larger
value of k until k > max(s, 5/2− s).
Remark 6.7. We want to emphasize that the above algorithm can be performed
for other systems. The reason is that the “regularity steps”, Steps 4–7, are valid for
f ∈ L∞(S1) due to Theorem 4.2. Also notice that Steps 1–3 can be skipped if the
wavelet coefficients are obtained using other methods such as solving the Invariance
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Equation for example. Indeed, recall that the graph of a function ϕ : S1 −→ R is
invariant for the system (14) if and only if ϕ is a fixed point of T. That is:

fσ(ϕ(R−1
ω (θ)) · gε(R−1

ω (θ)) = T(ϕ)(θ) = ϕ(θ).

The above equation is called the Invariance Equation. To give an approximation
of ϕ on a certain mesh of points θi ∈ S1, one can solve a non-linear system of
equations by imposing

ϕ(θi) = a0 +
J∑

j=0

Nj∑

n=0

dj,nψj,n(θi)

on the Invariance Equation. The unknowns, like in the Fast Wavelet Transform,
are the wavelet coefficients.

As a result, we can get an estimate of the regularity of the (strange) attractor
of system (15) for the chosen value of σ and ε. This will be the main topic of the
following section.

7. Results and conclusions

We have performed an exercise which is divided in two steps. The test case will
be the system (15). The range of values for σ is [1, 2] whereas ε is given by the
function

ε(σ) =

{
(σ − 1.5)2 when 1.5 < σ ≤ 2,

0 when 1 ≤ σ ≤ 1.5.

That is, we will use the system(
θk+1

xk+1

)
= Fσ,ε(σ)(θk, xk) =

(
Rω(θk)

2σ tanh(xk) · (ε(σ) + |cos(2πθk)|)

)
.

Notice that with this parametrization, the above system is pinched if and only
if σ ∈ [1, 1.5]. Roughly speaking, the parameters (σ, ε(σ)) control the vertical
Lyapunov Exponent of x ≡ 0 and the pinching condition at the same time. Hence,
in view of Proposition 5.3 we can test the quality of the wavelet coefficients given
by Algorithm 6.6. Indeed, we know that for σ ∈ [1.5, 2.0] the estimated value of s
must be close to 1; whereas for σ ∈ [1.0, 1.5] the regularity parameter s must be
zero. Moreover, when σ crosses 1.5, in a decreasing way, the regularity parameter
s has to jump from 1 to 0. Hence, the results obtained by Algorithm 6.6 applied
to our problem and the fact that we can observe the jump of s at σ = 1.5 certify
the quality of the algorithm that we have developed. Hence, we can have a degree
of accuracy of the wavelet coefficients.

To do this test, first we have applied Algorithm 6.6 with N0 = 105 and J = 30.
In Figure 5 we plot the estimated regularities of system (15) as a function of σ with
the above parametrization. Notice that, the estimated regularity detects the jump
at σ = 1.5 in a correct way and agrees with the values described above despite of
the fact that the concrete values of the regularity are not correct for σ ' 1.5.

The choice of the Daubechies wavelet that we will use must be done carefully.
Indeed, recall that Daubechies wavelets must have more than max(s, 5/2− s) van-
ishing moments in order to be under the assumptions of Theorem 4.2. However, the
increase of the number of vanishing moments, k, causes an increment of the support
size of the wavelet (see [Mal98, Theorem 7.3]). On the other hand, the support of
the map ϕ is S1 = R/Z = [0, 1). Observe that, the ratio of growth between the
support of ϕ and ψ−j,n is 1 to 2k−1

2j . Therefore, there exists j0 such that for j > j0
the support of ψ−j,n is contained in [0, 1). In view of that, the first coefficients of
the wavelet approximation will be affected by an error induced by the size of the
support of ψ. To avoid such bad performance, a good strategy is to choose different
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s
j

j

Figure 5. On the left picture one can see the estimate of the
regularity R(τ) of the (strange) attractor of system (15) for σ ∈
[1, 2] and ε given by the parametrization ε(σ). The results are
obtained by using a sample of 230 points (that is, J = 30), a
transient N0 = 105 and the wavelet D16. For this number of
vanishing moments we obtain the minimum variance of Pearson
correlation coefficient. On the right picture, in order to see how
the slope of the linear model varies, there are the graphs of the
pairs (j, sj) with −29 ≤ j ≤ 0 for σ = 1.49 in red, σ = 1.51 in
blue, σ = 1.53 in magenta, σ = 1.55 in teal and σ = 1.57 in brown.

wavelets for different parameters as it can be guessed in Figure 6. Having said that,
Figure 5 (and its forthcoming discussion) is done with Daubechies wavelet with 8
vanishing moments: D16. This choice is based in two reasons. The first one is that
all Daubechies wavelets used generate a picture similar as Figure 5. On the other
hand, such wavelet explains better all the range of ε (even the close to zero case as
it can be seen in Figure 6). Additionally, for definiteness, we will exhibit the range
of j’s used in the numerical estimation of the regularity of ϕ for the different values
of ε (see Remark 4.5).

Remark 7.1. Figure 6 has another interpretation. Indeed, the Daubechies wavelets
with 7 and 8 vanishing moments explain (in terms of equation (13)) almost all the
range of values of ε. However, there are regions of ε where other wavelets are better
than these ones. This means that a good strategy to perform Algorithm 6.6 in a
more accurate way is to have a dictionary of wavelets. Notice that such dictionary
cannot exists in the Fourier setting.

The second step of the exercise, and in view of the results displayed in Figure 5,
is the explanation of the three regions that appear. Indeed, in Figure 5 one can
clearly appreciate three regions with different qualitative behaviour. One of them
corresponds to the pinched case (i.e. σ ∈ [1, 1.5]) and the other two to the non-
pinched one: σ ∈ (1.5, σ̃) and σ ∈ [σ̃, 2] with σ̃ ≈ 1.527. In what follows we discuss
in detail these three regions.

Non pinched case: σ ∈ [σ̃, 2]. In this region we have ε = (σ − 1.5)2 ' 7.29 ×
10−4. That is, we are “far” from the pinched case. As we already know, see
Proposition 5.3, the function ϕ whose graph is the attractor is continuous but not
differentiable. Moreover, since we are far from the pinched case, ϕ is rather well
behaved since we have lack of differentiability only in few points (see the left picture
of Figure 7). Precisely, the wavelet coefficients whose support contains these points
should be large (of order ' 2−j). This is confirmed by the estimated regularities
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Figure 6. The dot at level p above an ε-value means that the
Pearson correlation coefficient applying Algorithm 6.6 with the
D2p Daubechies wavelet (with p vanishing moments) is the biggest
one (always greater than 0.99 and biggest in comparison with D2k
Daubechies wavelets with k 6= p vanishing moments).

that, not surprisingly (see Proposition 5.3), are in the interval (0, 1) and “far” from
zero: R(τ) ∈ [0.6822, 0.9669] (see the right part of Figure 5).

(a) Plot of the attractor of the sys-

tem (15) for σ = 1.699219 (and ε =
0.039688).

(b) Plot of the pairs (j, sj) (−29 ≤ j <
0) for this attractor in red and their
associated linear model in blue (with

−29 ≤ j ≤ −4).

Figure 7. According to Remark 4.5, the numerical value of the
regularity of the attractor of system (15) based on the pairs (j, sj)
with −29 ≤ j ≤ −4 is R(τ) = 0.91431.

Observe that (see the right picture of Figure 7) in agreement with the computed
Pearson correlation coefficient, the model given by equation (13) is approximately
linear (as we expect). Also, few of the first coefficients are not well fitted for the
linear model, in concordance to Remark 4.5. In this case, possibly, the self similarity
is undeveloped at these scales.

The pinched case: σ ∈ [1, 1.5]. In this case ε = 0. Therefore, according to The-
orem 5.1 and Proposition 5.3, the attractor is pinched and, hence, discontinuous
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almost everywhere. That is, the function ϕ whose graph is the attractor is an up-
per semi continuous function (see the left picture of Figure 8). Thus, in agreement
with Proposition 5.3, the estimated regularity is equal to zero for the whole range
of parameters as it can be guessed in the left part of Figure 5.

(a) Plot of the attractor of the sys-
tem (15) for σ = 1.425781 (and ε =

0.0).

(b) Plot of the pairs (j, sj) (−29 ≤ j <
0) for this attractor in red and their

associated linear model in blue (with

−29 ≤ j ≤ −5).

Figure 8. According to Remark 4.5, the numerical value of the
regularity of the attractor of system (15) based on the pairs (j, sj)
with −29 ≤ j ≤ −5 is R(τ) = 0.0049.

Moreover, even when the hypothesis of Lemma 2.3 are not verified the coeffi-
cients obtained are almost linear. Indeed, from Theorem 4.2, the model given by
equation (13) has more freedom because there is a gap in [−1/2, 1/2] (see Theo-
rem 4.2). However, see the right picture of Figure 8, the model is linear (except for
a few first values as before). This means that the proposed solutions of Problem
(1) and (2) does not add error on our computations (as the case of the left picture
of Figure 8).

Approaching pinching case: σ ∈ (1.5, σ̃). In this region we have ε = (σ − 1.5)2 /
7.29 × 10−4. That is, we are “close” to the pinched case. Therefore, since gε =
ε+ |cos(2πθ)| is Lipschitz, by Proposition 5.3, the regularity must have a jump from
0 to 1. Thus, in the estimated regularities one must perceive such jump. Having
said that, the estimated regularities in this region are not so good (see the caption
of Figure 9). However, looking at Figure 5 and 9, the pass from 0 to 1 in a “fast
way” is still observed.

Observe that, as in the other cases, the first few values of the suprema sj are the
worst fitted (see the right pictures in Figure 9). But, in contrast with the previous
regions, the rest of values of sj are not so well behaved. Nevertheless, they have
a big Pearson correlation coefficient. This bad behaviour is probably due to a big
value of the constant C > 0 of Theorem 4.2. Indeed, for such range of values, we
are close to the change of space from positive regularity to zero. That is, from
Remark 4.3 the constant C > 0 depends on ε and σ, and Figure 10 shows how C
depends on ε and σ = 1.5.

Finally, recall that the Fast Wavelet Transform is not the unique way to obtain
the wavelet coefficients. In a forthcoming paper we will explore the technique of
solving numerically the Invariance Equation given in Remark 6.7 which can be more
adapted to the dynamical complexity of the object and to better recover the large
set of zeros of the SNA. Moreover, it is also interesting to explore other models and
understand other “routes to complexity” for the SNA’s. In particular the study of



26 LL. ALSEDÀ, J.M. MONDELO AND D. ROMERO

(a) Plot of the attractor of the sys-

tem (15) for σ = 1.513672 (and ε =

0.000187).

(b) Plot of the pairs (j, sj) (−29 ≤ j <
0) for this attractor in red and their

associated linear model in blue (with
−29 ≤ j ≤ −5).

(c) Plot of the attractor of the sys-

tem (15) for σ = 1.507812 (and ε =

0.000061).

(d) Plot of the pairs (j, sj) (−29 ≤ j <
0) for this attractor in red and their

associated linear model in blue (with
−29 ≤ j ≤ −5).

Figure 9. According to Remark 4.5, the numerical value of the
regularity of the attractor of system (15) based on the pairs (j, sj)
with −29 ≤ j ≤ −5 is, for these two instances of σ ∈ (1.5, σ̃), is
R(τ) = 0.6266 and R(τ) = 0.4951 respectively.

Figure 10. The plot of the “functional space jump”, in terms
of the constant C from equation (13), for the system (15) when
ε ∈ (0, 1] and σ = 1.5.

the arc length curve (see [JT08]) or the Hausdorff dimension (see [GJ13]) by means
of wavelets can help understanding some of these routes to strangeness.
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Appendix. On the construction of the C2 diffeomorphism h: A degree
one monotone spline on the circle

This appendix is devoted to construct the diffeomorphism h : S1 −→ S1 as a C2

degree one rational quadratic monotone spline on the circle following [Del83].
To construct the map h as a C2 rational quadratic monotone spline we will start

by listing the conditions that this map must satisfy. To this end we introduce the

following notation. We set xi := i
N for i = 0, . . . , N ; θi := θ̃i for i = 0, . . . , N − 1

and θN := 1 + θ̃0 = 1 + θ0 (recall that N = 2J). Also, as usual when dealing with
splines, we will set h

∣∣
[xi,xi+1]

= hi for i = 0, 1, . . . , N − 1.

(i) The interpolation condition:

h(xi) = hi(xi) = θi for i = 0, . . . , N − 1 and h(xN ) = hN−1(xN ) = θN .

This is the basic requirement on the map h from Definition 6.1. Observe also
that the condition h(xN ) = θN already implies that h has degree one because

h(1) = h(xN ) = θN = θ0 + 1 = h(x0) + 1 = h(0) + 1.

(ii) The continuity condition:

hi(xi+1) = hi+1(xi+1) for i = 0, . . . , N − 2.

(iii) The C1 condition:

h′i(xi+1) = h′i+1(xi+1) := di+1 for i = 0, . . . , N − 2 and

dN := h′N−1(xN ) = h′0(x0) := d0.

(iv) The C2 condition:

h′′i (xi+1) = h′′i+1(xi+1) for i = 0, . . . , N − 2 and h′′N−1(xn) = h′′0(x0).

To construct the spline h verifying these conditions, for θ ∈ [xi, xi+1] we define

(23) hi(θ) :=
θi+1ϑ

2 + ∆−1
i (θi+1di + θidi+1)ϑ(1− ϑ) + θi(1− ϑ)2

ϑ2 + ∆−1
i (di + di+1)ϑ(1− ϑ) + (1− ϑ)2

,

where ϑ = N(θ − xi), ∆i = N(θi+1 − θi) and the derivatives di are the unknowns.
As it can be seen in [Del83], the fact that 0 ≤ θi < θj < 1 ≤ θN whenever

0 ≤ i < j < N implies that the derivatives di are positive and, hence,

(24) h′i(θ) =
di+1ϑ

2 + 2∆iϑ(1− ϑ) + di(1− ϑ)2

(
ϑ2 + ∆−1

i (di + di+1)ϑ(1− ϑ) + (1− ϑ)2
)2

is positive for every θ ∈ [xi, xi+1]. Thus, the map h defined by equation (23) is
strictly monotone (and hence a diffeomorphism) on S1.

Now, we will show how to compute the unknowns di to determine the spline h,
how to show that the di are indeed positive and, finally, how to globally bound h′.
To this end observe that by computing h′′ from equation (24), condition (iv) gives

(25) di (−2 + ai−1di−1 + (ai−1 + ai)di + aidi+1) = bi

for i = 1, . . . , N − 1, where ai := 1
∆i

and bi := ∆i−1 + ∆i. In a similar way,

h′′N−1(xN ) = h′′0(x0) and dN = d0 give

d2
0

∆N−1
+
d2

0

∆0
+
dN−1d0

∆N−1
+
d1d0

∆0
− 2d0 −∆N−1 −∆0 = 0.
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Thus, by using again that dN = d0, the unknowns di verify the following non-linear
system of equations

(26)





d0 =
1

2(aN−1 + a0)

(
2− aN−1dN−1 − a0d1+

√
(2− aN−1dN−1 − a0d1)2 + 4(aN−1 + a0)bN

)
,

di =
1

2(ai−1 + ai)

(
2− ai−1di−1 − aidi+1 +

for i = 1, . . . , N − 2,
√

(2− ai−1di−1 − aidi+1)2 + 4(ai−1 + ai)bi

)

dN−1 =
1

2(aN−2 + aN−1)

(
2− aN−2dN−2 − aN−1d0+

√
(2− aN−2dN−2 − aN−1d0)2 + 4(aN−2 + aN−1)bN−1

)
,

where we have defined bN = ∆N−1 + ∆0. To solve this system is equivalent to find
a fixed point d = G(d) where G = (G0, . . . , GN−1) : RN −→ RN is the map defined
by





G0(d) =
1

2(aN−1 + a0)

(
2− aN−1dN−1 − a0d1+

√
(2− aN−1dN−1 − a0d1)2 + 4(aN−1 + a0)bN

)
,

Gi(d) =
1

2(ai−1 + ai)

(
2− ai−1di−1 − aidi+1 +

for i = 1, . . . , N − 2,
√

(2− ai−1di−1 − aidi+1)2 + 4(ai−1 + ai)bi

)

GN−1(d) =
1

2(aN−2 + aN−1)

(
2− aN−2dN−2 − aN−1d0+

√
(2− aN−2dN−2 − aN−1d0)2 + 4(aN−2 + aN−1)bN−1

)
,

and d := (d0, d1, . . . , dN−1) ∈ RN .
In [Del83] it is shown that G is a contracting map in the domain

∏N−1
i=0 [αi, βi],

where

α0 =
1

2(aN−1 + a0)

(
2− aN−1βN−1 − a0β1+

√
(2− aN−1βN−1 − a0β1)2 + 4(aN−1 + a0)bN

)
> 0,

αi =
1

2(ai−1 + ai)

(
2− ai−1βi−1 − aiβi+1 +

for i = 1, . . . , N − 2,
√

(2− ai−1βi−1 − aiβi+1)2 + 4(ai−1 + ai)bi

)
> 0
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αN−1 =
1

2(aN−2 + aN−1)

(
2− aN−2βN−2 − aN−1β0+

√
(2− aN−2βN−2 − aN−1β0)2 + 4(aN−2 + aN−1)bN−1

)
> 0,

β0 = η(∆N−1,∆0),

βi = η(∆i−1,∆i) for i = 1, . . . , N − 2,

βN−1 = η(∆N−2,∆N−1),

and η : (0,∞)× (0,∞) −→ (0,∞) is the map defined by

η(x, y) :=
1

1
x + 1

y

(
1 +

√
1 +

(
1
x + 1

y

)
(x+ y)

)
.

Hence, G has a unique fixed point in
∏N−1
i=0 [αi, βi], which is the positive solution

of system (26). This shows the existence of the C2 diffeomorphism h verifying the
conditions from Definition 6.1 (condition (i)).

Finally we need to obtain an upper estimate of h′(θ). To do this we will use the
following auxiliary family of parabolas:

DA(ϑ) := ϑ2 +Aϑ(1− ϑ) + (1− ϑ)2,

where ϑ ∈ [0, 1] and 0 ≤ A <∞. Clearly, for every 0 ≤ A <∞, DA(0) = DA(1) = 1
and DA has a critical point at ϑ = 1/2. Moreover, this critical point is a minimum
when A ≤ 2 and a maximum when A > 2. Also, DA1

(ϑ) < DA2
(ϑ) for every

ϑ ∈ (0, 1) and A1 < A2. Thus, for every ϑ ∈ [0, 1] and 0 ≤ A <∞,

(27)

1

2
= D0

(
1
2

)
≤ D0(ϑ) ≤ DA(ϑ)

≤
{
D2(ϑ) = 1 if A ≤ 2

DA

(
1
2

)
= A+2

4 if A > 2

}
= max

{
1,
A+ 2

4

}
.

The solution of system (26) is the vector

d := (d0, d1, . . . , dN−1) ∈
N−1∏

i=0

[αi, βi].

Hence, for every i = 0, 1, . . . , N − 1,

0 < αi ≤ di ≤ βi ≤ β := max
0≤i≤N−1

βi.

So, from equation (24) we get

h′i(θ) =
di+1ϑ

2 + 2∆iϑ(1− ϑ) + di(1− ϑ)2

(
ϑ2 + ∆−1

i (di + di+1)ϑ(1− ϑ) + (1− ϑ)2
)2

≤ βϑ2 + 2∆iϑ(1− ϑ) + β(1− ϑ)2

1/4
(by (27))

= 4β

(
ϑ2 + 2∆i

β ϑ(1− ϑ) + (1− ϑ)2

)

≤ 4βmax

{
1,

2∆i

β + 2

4

}
(by (27))

= max

{
4β, 2(∆i + β)

}
.
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For each ` ∈ {0, 1, . . . , N−1} consider the interval U` = [θ`, θ`+
3
N ]. By the Birkhoff

Ergodic Theorem we know that there exists Λ ∈ N such that
∣∣∣∣
1

n
]
(
{Riω(θ) : 0 ≤ i ≤ n− 1} ∩ U`

)
− 3

N

∣∣∣∣ =

∣∣∣∣∣
1

n

n−1∑

i=0

χ
U`

(Riω(θ))−
∫

S1
χ

U`
dθ

∣∣∣∣∣ <
1

N

for all n ≥ Λ, where χ
U`

(·) is the characteristic function of the interval U`. There-
fore,

2 ≤ N

n
]
(
{Riω(θ) : 0 ≤ i ≤ n− 1} ∩ U`

)
.

Assuming that N is large enough2 so that we can take n = N, since the data
θ` is sorted, it follows that θ`+1 ∈ U`. Hence, θ`+1 − θ` ≤ 3

N and, consequently,
∆` = N(θ`+1 − θ`) ≤ 3. Now, we claim that

β ≤ 3
(
1 +
√

5
)

2
.

Hence, by the claim,

h′i(θ) ≤ max

{
4β, 2(∆i + β)

}
≤ 6(1 +

√
5)

for every i = 0, 1, . . . , N − 1. Thus,

‖h‖C1 ≤ 1 + max
0≤i≤N−1

‖h′i‖∞ ≤ 1 + 6(1 +
√

5) < 7(1 +
√

5)

as stated in equation (19).

To end the appendix we only have to prove the claim that β ≤ 3(1+
√

5)
2 . To this

end we will rewrite the map η in a more appropriate way:

η(x, y) =
1

1
x + 1

y

(
1 +

√
1 +

(
1
x + 1

y

)
(x+ y)

)

=
1

1
x + 1

y

+

√√√√√
1

(
1
x + 1

y

)2 +
x+ y
1
x + 1

y

=
1

1
x + 1

y

+

√√√√
(

1
1
x + 1

y

)2

+ xy.

Clearly, 1
1
x+

1
y

and xy are increasing on each variable. Consequently, η(x, y) is

increasing in both variables and, hence,

β = max
0≤i≤N−1

βi = max
0≤i≤N−1

η(∆i−1(modN),∆i) ≤ η(3, 3) =
3
(
1 +
√

5
)

2

because ∆i ≤ 3 for i ∈ {0, 1, . . . , N − 1}.
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