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Abstract. In this paper we classify the phase portraits in the Poincaré disc
of the centers of the generalized class of Kukles systems

ẋ = −y, ẏ = x+ ax3y + bxy3,

symmetric with respect to the y-axis, and we study, using the averaging theory
up to sixth order, the limit cycles which bifurcate from the periodic solutions
of these centers when we perturb them inside the class of all polynomial dif-
ferential systems of degree 4.

1. Introduction and statement of the main results

Two of the classical and difficult problems in the qualitative theory of polynomial
differential systems in R2 is the characterization of their centers, and the study of
the limit cycles which can bifurcate from their periodic orbits when we perturb
them inside some class of polynomial differential equations.

Our work is related with the class of polynomial differential systems of the form

(1) ẋ = −y, ẏ = x+Qn(x, y),

having a center at the origin, where Qn(x, y) is a homogeneous polynomial of degree
n, and in the study of the number of limit cycles which bifurcate from the periodic
orbits of these centers when they are perturbed inside the class of all polynomial
differential systems of degree n.

Differential polynomial systems (1) were called Kukles homogeneous systems in
[7]. The centers of systems (1) started to be studied by Volokitin and Ivanov in
[18].

For n = 1 the differential systems (1) are linear, they can have centers, but the
perturbation of these centers inside the class of linear differential systems cannot
produce limit cycles, because it is well known that linear differential systems cannot
have isolated periodic solutions in the set of all periodic solutions.

For n = 2 the phase portraits of system (1) are a particular class of the phase
portraits studied in [3], where it is proved that such systems have no centers.

In [2, 4, 14, 19, 20, 21] are characterized the centers and the phase portraits of
linear systems with homogeneous nonlinearities of degree 3, so in particular the
phase portraits of systems (1) with n = 3. The limit cycles that bifurcate from
the periodic orbits of the centers of systems (1) with n = 3 when they are perturb
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Figure 1. Case a > 0 and b = 0. The separatrices of this phase
portrait are the circle of the infinity; and an orbit A which connects the
two separatrices inside the Poincaré disc of the two saddles at infinity,
localized at the origins of the local charts U1 and V1. Therefore this
phase portrait has two canonical regions. The canonical region limited
by the orbit A and the part of infinity containing the origin of U2 is filled
by the periodic orbits of the center; and the canonical region limited by
the orbit A and the part of infinity containing the origin of V2 is filled
by an elliptic sector of the infinite singular point localized at the origin

of V2.

inside the class of all cubic polynomial differential systems were studied inside the
more general articles [5, 10, 11].

Giné in [7] proved that for n = 4 system (1) has a center at the origin if and
only if its vector field is symmetric about one of the coordinate axes.

The first objective of this paper is to study the phase portraits of the centers of
systems (1) with n = 4 which are symmetric with respect to the y–axis, i.e. the
phase portraits of the systems

(2) ẋ = −y, ẏ = x+ ax3y + bxy3.

The second objective is to study the limit cycles that bifurcate from the periodic
solutions of the centers of systems (2) when they are perturbed inside the class of
all quartic polynomial differential systems.

For the definition of the global phase portrait of a polynomial differential system
in the Poincaré disc see section 2, where we provide the notations, definitions and
basic results which we need for reaching our two objectives.

Our first main result is the following.

Theorem 1. A polynomial differential system (2) with a2+b2 6= 0 has a phase por-
trait in the Poincaré disc topologically equivalent to one of the three phase portraits
of Figures 1, 2 and 3.

Theorem 1 is proved in section 4.
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Figure 2. Case a = 0 and b > 0. The separatrices of this phase
portrait are the circle of the infinity; an orbit A which connects the
two separatrices of the hyperbolic sector of the infinite singular points
localized at the origin of U2; and an orbit B which connects the two
separatrices which are inside the Poincaré disc of the two saddles at
infinity, these saddles are the origins of the local charts U1 and V1. So
this phase portrait has three canonical regions. The canonical region
limited by the orbit A is filled by the periodic orbits surrounding the
center; the canonical region limited by the orbits A, B and the infinity
is filled by orbits which start and end at the origin of the local chart U2;
and the canonical region limited by the orbit B and the infinity is filled
by an elliptic sector of the infinite singular point localized at the origin

of V2.

We write the perturbed quartic polynomial differential system of system (2) as

(3)

ẋ = −y +

6∑

s=1

εs
∑

0≤i+j≤4

a
(s)
ij xiyj ,

ẏ = x+ ax3y + bxy3 +
6∑

s=1

εs
∑

0≤i+j≤4

b
(s)
ij xiyj ,

where i and j are non–negative integers. For the definition of the averaging theory
of order k = 1, . . . , 6 see section 5. In what follows we state our second main result.

Theorem 2. For ε 6= 0 sufficiently small the number of limit cycles of the differ-
ential system (3) obtained using the averaging theory of order

(a) one and two is 0,
(b) three and four is 1,
(c) five is 2,
(d) six is 5.

Theorem 2 is proved in section 6.
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Figure 3. Case a > 0 and b < 0. The separatrices of this phase
portrait are the circle of the infinity; an orbit A which connects the two
separatrices inside the Poincaré disc of the two saddle-nodes at infinity,
these two saddles-nodes are the ones which are closed to the origin of
U2; an orbit B which connects the two separatrices which are inside
the Poincaré disc of the two saddles at infinity, these saddles are the
origins of the local charts U1 and V1; and the two separatrices C and
D of the hyperbolic sector of the infinite singular point which is located
at the origin of V2. This phase portrait has five canonical regions. The
canonical region limited by the orbit A and the infinity is filled by an
elliptic sector of the infinite singular point localized at the origin of U2;
the canonical region limited by the orbits A, B and the infinity is filled
by the periodic orbits of the center; the canonical region limited by the
orbits B, C, D and the infinity is filled with orbits which start at the
saddle-node close to the left of the origin of V2 and end at the saddle-
node close to the right of the origin of V2; the canonical region limited
by the separatrix C and the infinity is filled with orbits which start in
the saddle-node close to the left of the origin of V2 and end at the origin
of V2; and the canonical region limited by the separatrix D and the
infinity is filled with orbits which start at the origin of V2 and end in
the saddle-node close to the right of the origin of V2.

2. Preliminaries

In this section we introduce the basic definitions and notations that we will need
for the analysis of the local phase portraits of the finite and infinite singular points
of the polynomial differential systems (2), and also for doing their phase portraits
in the Poincaré disc.

We denote by Pn(R2) the set of polynomial vector fields on R2 of the form
X (x, y) = (P (x, y), Q(x, y)) where P and Q are real polynomials in the variables x
and y such that the maximal degree of P and Q is n.

2.1. Singular points. A point q ∈ R2 is said to be a singular point of the vector
field X if P (q) = Q(q) = 0.
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If ∆ = Px(q)Qy(q)−Py(q)Qx(q) and T = Px(q)+Qy(q), then the singular point
q is said to be elementary if either ∆ 6= 0, or ∆ = 0 and T 6= 0.

Let q be an elementary singular point with ∆ 6= 0. If the two eigenvalues of the
matrix

(4)

(
Px(q) Py(q)
Qx(q) Qy(q)

)

have real part non–zero then this singular point is called hyperbolic. In this case q
is a saddle if ∆ < 0; a node if T 2 ≥ 4∆ > 0 (stable if T < 0, unstable if T > 0),
a focus if 4∆ > T 2 > 0 (stable if T < 0, unstable if T > 0). If ∆ 6= 0 but q is
not hyperbolic then T = 0 < ∆ and q is either a weak focus or a center. For more
details see, for instance, Theorem 2.15 of [6].

Let q be an elementary singular point with ∆ = 0 and T 6= 0. Then q is called
a semi–hyperbolic singular point. The local phase portraits of a semi–hyperbolic
singular point can be studied using Theorem 2.19 of [6].

When ∆ = T = 0 but the Jacobian matrix (4) at the singular point q is not the
zero matrix, we say that q is nilpotent. The local phase portraits at a nilpotent
singular point can be studied using Theorem 3.5 of [6].

Finally, if the Jacobian matrix at the singular point q is identically zero, and q
is isolated inside the set of all singular points, then we say that q is linearly zero.
The study of the local phase portraits of such singular points needs special changes
of variables called blow-ups, see for more details Chapter 3 of [6], or [1].

2.2. Poincaré compactification. Let X ∈ Pn(R2) be any planar vector field of
degree n. The Poincaré compactified vector field p(X ) corresponding to X is an
analytic vector on S2 defined as follows (see, for instance [11] or Chapter 5 of
[6]). Let S2 = {y = (y1, y2, y3) ∈ R3 : y21 + y22 + y23 = 1} (the Poincaré sphere)
and TyS2 be the tangent space to S2 at point y. We identify the plane T(0,0,1)S2
with the R2 where we have our vector field X . Consider the central projection
f : T(0,0,1)S2 −→ S2, i.e. to each point q of the T(0,0,1)S2 the map associates the
two intersection points of the straight line, joining q with (0, 0, 0), with the sphere
S2. This map provides two copies of X , one in the northern hemisphere and the
other in the southern hemisphere. Denote by X ′ the vector field Df ◦ X on S2
except on its equator S1 = {y ∈ S2 : y3 = 0}. Clearly S1 is identified to the infinity
of R2. In order to extend X ′ to a vector field on S2 (including S1) it is necessary
that X satisfies suitable conditions. In the case that X ∈ Pn(R2); p(X ) is the only
analytic extension of yn3X ′ to S2. In short, on S2 \ S1 there are two symmetric
copies of X , and knowing the behavior of p(X ) around S1, we know the behavior
of X at infinity. The projection of the closed northern hemisphere of S2 on y3 = 0
under (y1, y2, y3) 7→ (y1, y2) is called the Poincaré disc, and it is denoted by D2.

The Poincaré compactifcation has the property that S1 is invariant under the flow
of p(X ). We say that two polynomial vector fields X and Y on R2 are topologically
equivalent if there exists a homeomorphism on S2 preserving the infinity S1 carrying
orbits of the flow induced by p(X ) into orbits of the flow induced by p(Y); preserving
or reversing simultaneously the sense of all orbits.

As S2 is a differentiable manifold, for computing the expression of p(X ), we
consider the six local charts Ui = {y2 ∈ S2 : yi > 0}, and Vi = {y2 ∈ S2 : yi < 0}
where i = 1, 2, 3; and the diffeomorphisms Fi : Ui −→ R2 and Gi : Vi −→ R2 for
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i = 1, 2, 3 are the inverses of the central projections from the planes tangent at the
points (1, 0, 0); (−1, 0, 0); (0, 1, 0); (0,−1, 0); (0, 0, 1) and (0, 0,−1), respectively.
If we denote by z = (z1, z2) the value of Fi(y) or Gi(y) for any i = 1, 2, 3 (so z
represents different coordinates according to the local charts under consideration),
then some easy computations give for p(X ) the following expressions:

(5) zn∆(z)

(
Q

(
1

z2
,
z1
z2

)
− z1P

(
1

z2
,
z1
z2

)
,−z2P

(
1

z2
,
z1
z2

))
in U1,

(6) zn∆(z)

(
P

(
z1
z2

,
1

z2

)
− z1Q

(
z1
z2

,
1

z2

)
,−z2Q

(
z1
z2

,
1

z2

))
in U2,

zn∆(z) (P (z1, z2) , Q (z1, z2)) in U3,

where ∆(z) =
(
z21 + z22 + 1

)− 1
2 (n−1)

.

The expression for Vi is the same as that for Ui except for a multiplicative factor
(−1)n−1. In these coordinates for i = 1, 2, z2 = 0 always denotes the points of S1.
In what follows we omit the factor ∆(z) doing a convenient scaling of the vector
field p(X ). Thus we obtain a polynomial vector field in each local chart.

The singular points of p(X ) which are in the interior of the Poincaré disc are
called the finite singular points, which correspond with the singular points of X ,
and the singular points of p(X ) which are in S1 are called the infinite singular points
of X . We note that studying the infinite singular points of the local chart U1, we
obtain also the ones of the local chart V1, and only remains to see if the origin of
the local chart U2, and consequently the origin of the local chart V2, are infinite
singular points.

2.3. Local phase portraits on the Poincaré disc. The first step in order to
characterize all phase portraits of the polynomial differential systems (2) is to clas-
sify the local phase portraits at all finite and infinite singular points in the Poincaré
disc. This is made by using the techniques described in subsection 2.1. In this way
we shall provide all the local phase portraits at all the singular points of the Poincaré
disc for all differential systems (2).

2.4. Phase portraits on the Poincaré disc. In this subsection we shall see how
to characterize the global phase portraits in the Poincaré disc of the polynomial
differential systems (2).

A separatrix of p(X ) is an orbit which is either a singular point, or a limit cycle,
or a trajectory which lies in the boundary of a hyperbolic sector at a singular point.
Neumann [15] proved that the set formed by all separatrices of p(X ); denoted by
S(p(X )) is closed.

The open connected components of D2 \ S(p(X )) are called canonical regions of
p(X ): We define a separatrix configuration as a union of S(p(X )) plus one solution
chosen from each canonical region. Two separatrix configurations S(p(X )) and
S(p(Y)) are said to be topologically equivalent if there is an orientation preserving
or reversing homeomorphism which maps the trajectories of S(p(X )) into the tra-
jectories of S(p(Y)). The following result is due to Markus [13], Neumann [15] and
Peixoto [16].
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Theorem 3. The phase portraits in the Poincaré disc of the two compactified poly-
nomial differential systems p(X ) and p(Y) are topologically equivalent if and only
if their separatrix configurations S(p(X )) and S(p(Y)) are topologically equivalent.

3. Local phase portraits at the finite and infinite singular points

It is clear that the phase portrait of the linear polynomial differential system
(2) with a = b = 0, is formed by all the invariant circles centered at the origin of
coordinates.

In what follows we shall study the phase portraits of the quartic polynomial
differential systems (2) with (a, b) 6= (0, 0).

Remark 4. System (2) is reversible because it does not change under the trans-
formation (x, y, t) → (−x, y,−t). Hence we know that the phase portrait of system
(2) is symmetric with respect to the y-axis.

Remark 5. By doing the following symmetries (x, y, t, a, b) → (−x, y, −t,−a,−b),
we conclude that we only need to study the phase portrait of systems (2) when either
a > 0, or a = 0 and b > 0.

The way for studying the phase portraits of systems (2) is the following. First
we shall characterize all the finite and infinite singular points of this system with
their local phase portraits. After using the symmetry of the solutions with respect
to the y–axis and the behavior of the vector field on the axes, we will determine
their phase portraits in the Poincaré disc.

3.1. Finite singular points. For the planar quartic polynomial differential sys-
tems (2) the center at the origin is the unique finite singular point.

3.2. Infinite singular points. For studying the infinite singular points in the
Poincaré disc, we use the definitions and notations given in subsection 2.2. We
perform the analysis of the vector field at infinity.

Proposition 6. System (2) in the local chart U1

(a) has a unique semi-hyperbolic singular point, the origin q, which is a saddle
if a > 0 and b > 0;

(b) has three semi-hyperbolic singular points: the origin q which is a saddle;

and the two points q± = (±
√
−a/b, 0) which are saddle-nodes if a > 0 and

b < 0, moreover q+ (resp. q−) has the two hyperbolic sectors in z2 > 0
(resp. z2 < 0), and the parabolic one in z2 < 0 (resp. z2 > 0);

(c) has a unique semi-hyperbolic singular point, the origin q, which is a saddle
if a > 0 and b = 0;

(d) has a unique singular point, the origin q, which is a saddle if a = 0 and
b > 0 system (2).

System (2) in the local chart U2

(e) has the origin as a singular point, which is linearly zero with one elliptic,
one hyperbolic and two parabolic sectors, moreover when a ≥ 0 and b > 0
(resp. b < 0) the hyperbolic sector together with two parabolic sector is in
z2 > 0 (resp. z2 < 0), and the elliptic sector together with two parabolic
sectors is in z2 < 0 (resp. z2 > 0), and if a > 0 and b = 0 then only there
is a hyperbolic sector in z2 > 0, and the elliptic sector together with two
parabolic sectors is in z2 < 0.
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Proof. From (5) the differential system (2) in the local chart U1 is

(7)
u̇ = au+ bu3 + u2v3 + v3,
v̇ = uv4.

If a > 0 and b > 0 the origin is the only infinite singular point of the differential
system (7), which is a semi-hyperbolic singular point with eigenvalues a and 0. If
a > 0 and b < 0 then there are two additional infinite singular points, namely
q± = (±

√
−a/b, 0), which are semi-hyperbolic with eigenvalues −2a and 0.

In order to obtain the local phase portraits at these semi-hyperbolic infinite
singular points we use Theorem 2.19 of [6], and we obtain that the origin is a

saddle. While for the singular points q± = (±
√
−a/b, 0) we obtain that they are

saddle-nodes, located as it is described in the statement (b). Therefore the proofs
of statements (a) and (b) are done.

If a > 0 and b = 0 system (2) becomes

(8)
u̇ = au+ u2v3 + v3,
v̇ = uv4.

The origin is the only infinite singular point of the differential system (8), which is
a semi-hyperbolic singular point with eigenvalues a and 0. Applying Theorem 2.19
of [3] we conclude that the origin is a saddle. So statement (c) is proved.

If a = 0 and b > 0 system (2) becomes

(9)
u̇ = bu3 + u2v3 + v3,
v̇ = uv4.

The origin of this differential system is a linearly zero singular point. Using polar
blowing up (x, y) → (ρ, θ) where x = ρ cos θ and y = ρ sin θ, system (9) writes

(10)
ρ̇ = ρ3 cos θ(b cos3 θ + (1 + ρ2) sin3 θ),

θ̇ = −ρ2 sin θ(b cos3 θ + sin3 θ).

We eliminated the common factor ρ2 between ρ̇ and θ̇ by doing a rescaling of the
independent variable, we get the system

(11)
ρ̇ = ρ cos θ(b cos3 θ + (1 + ρ2) sin3 θ),

θ̇ = − sin θ(b cos3 θ + sin3 θ).

The zeros on ρ = 0 of the differential system (11) are located at θ1 = 0, θ2 = π,

θ3 = − arctan
3
√
b, and θ4 = − arctan

3
√
b + π. The corresponding linear part for

system (11) at (0, θj) for j = 1, 2 is

(
−b 0
0 b

)
.

Then we conclude that the point (0, θj) for j = 1, 2 is a saddle. For the singular

point (0, θj) for j = 3, 4 the eigenvalues of its linear part are 0 and 3b/(1+
3
√
b2), so

they are semi–hyperbolic singular points. In the differential system (11) we perform
the translation θ = α+ θj for j = 3, 4, i.e we put these singular points at the origin
of coordinates.
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By doing a Taylor expansion up to the third order in ρ and α for system (11),
we get

(12)

ρ̇ = ρ3
(
− b

1 +
3
√
b2

+O(α)

)
,

α̇ = α

(
3b

1 +
3
√
b2

+O(α)

)
.

Applying Theorem 2.19 of [6] to the origin of the differential system (12) we
obtain that it is a saddle. Hence the singular points (0, θj) for j = 3, 4 are saddles.
Now going back to system (8) through the changes of variables it follows the result
of statement (d).

From (6) the differential system (2) in the local chart U2 is

(13)
u̇ = −bu2 − v3 − au4 − u2v3,
v̇ = −buv − au3v − uv4.

In this chart we only need to study the singular point at the origin of system (13),
and it is linearly zero singular point. We need to do blow-up’s to describe the local
behavior at this point. We perform the directional blow-up (u, v) → (u,w) with
w = v/u and have

(14)
u̇ = −bu2 − u3w3 − au4 − u5w3,
ẇ = u2w4.

We eliminate the common factor u2 between u̇ and ẇ by doing a rescaling of the
independent variable, and we get the system

(15)
u̇ = −b− uw3 − au2 − u3w3,
ẇ = w4.

If b > 0 system (15) have no singular points. Going back through the change of
variables to system (13), we see that the local phase portrait at the origin consists of
one elliptic, one hyperbolic, and two parabolic sectors. The line at infinity separates
the hyperbolic sector from the elliptic one, and this line is contained inside both
parabolic sectors.

If b = 0, the unique singular point of system (15) is the origin, whose linear
part is again zero. Hence we do another blow-up (u,w) → (u, z) with z = w/u.
Eliminating from the system (u̇, ż) the common factor u by doing a rescaling of the
independent variable, we get the system

(16)
u̇ = −au− u3z3 − u5z3,
ż = az + 2u2z4 + u4z4.

The unique singular point of system (16) is the origin. The eigenvalues of the linear
part of system (16) at the origin are ±a, hence it is a saddle. Going back through
the changes of variables up to system (13), we see that the local phase portrait at
the origin of U2 is the one described in statement (e) for b = 0. So statement (e) is
proved . �
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4. Phase portraits in the Poincaré disc

In this section we prove Theorem 1.

Let p be a center. The maximum region filled only with periodic orbits sur-
rounding the center p is called the period annulus of p.

We denote by α(γ) the α-limit of the orbit γ, and by ω(γ) the ω-limit of the
orbit γ.

A graphic is formed by a finite number of orbits γ1,...,γn which are not singular
points, and a finite number of singular points p1, ..., pn such that α(γi) = pi, ω(γi) =
pi+1 for i = 1, ..., n−1, α(γn) = pn and ω(γn) = p1. Possibly, some of the singular
points pi are identified.

Assume that a > 0 and b < 0. The singular point q− is a saddle-node, q
is a saddle, and q+ is a saddle-node, and from statement (b) of Proposition 6 we
obtain that the behavior of q− in U1 ∩ D2 is a stable node (recall that D2 denotes
the Poincaré disc), the behavior of q in U1 ∩ D2 is given by two hyperbolic sectors
(the common separatrix of these two sectors is stable), and the behavior of q+ in
U1 ∩ D2 is again given by two hyperbolic sectors (the common separatrix of these
two sectors is unstable). By the symmetry of the phase portrait of system (2) with
respect to the y-axis, we obtain the local phase portraits at the singular points in
the chart V1. From statement (e) of Proposition 6 in U2∩D2 the origin is a linearly
zero singular point with one elliptic and two parabolic sectors, each one of these
parabolic sector have one boundary at infinity and the other in the elliptic sector.
In the origin of V2 ∩ D2 there are one hyperbolic and two parabolic sectors, each
one of the parabolic sectors have one boundary at infinity and the other in the
hyperbolic sector. This completes the study of the local phase portraits at all the
singular points at infinity.

Now taking into account that we know the behavior of the vector field associated
to system (2) on the axes (because ẋ|x=0 = −y and ẏ|y=0 = x), and the symmetry
with respect to the y-axis, the unstable separatrix at q+ connects with the stable
separatrix of the symmetric point of q+. Using these argument the stable separatrix
of q connects with the unstable one of its symmetric point. So we get the phase
portrait described in the Figure 3.

Assume now that a ≥ 0 and b > 0. From statements (a) and (d) of Propo-
sition 6 the singular point q is a saddle, and the behavior of q in U1 ∩ D2 is given
by two hyperbolic sectors (the common separatrix of these two sectors is stable).
In U2 ∩ D2 the origin is a linearly zero singular point with one hyperbolic and two
parabolic sectors, each one of these parabolic sector have one boundary at infinity
and the other in the hyperbolic sector. In the origin of V2∩D2 there are one elliptic
and two parabolic sectors, each one of the parabolic sectors have one boundary at
infinity and the other in the elliptic sector. This completes the study of the local
phase portraits at all the singular points at infinity.

Now taking into account that we know the behavior of the vector field associated
to system (2) on the axes, and by the symmetry with respect to the y-axis, the stable
separatrix of q connects with the unstable one of its symmetric point, and by the
same argument the two separatrices of the hyperbolic sector of the origin of the
local chart U2 connect, and they form the exterior boundary of the period annulus
of the center. So we get the phase portrait described in the Figure 2.
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Assume now that a > 0 and b = 0. The local phase portrait at the singular
point q is the same as in the case a ≥ 0 and b > 0. In U2 ∩ D2 the origin is a
linearly zero singular point with one hyperbolic having its two separatrices on the
infinity line. In the origin of V2∩D2 there are one elliptic and two parabolic sectors,
each one of the parabolic sectors have one boundary at infinity and the other in
the elliptic sector. This completes the study of the local phase portraits at all the
singular points at infinity. Now the same arguments than in the case a ≥ 0 and
b > 0 completes the phase portrait described in the Figure 1. Hence Theorem 1 is
proved.

5. The averaging theory up to order 6

In this section we recall some results on the averaging theory that we shall use
for studying the limit cycles which bifurcate from the periodic orbits of the centers
of systems (2) when they are perturbed inside the class of all polynomial differential
systems of degree 4.

We consider a nonlinear differential system of the form

(17) ẋ(t) =

k∑

i=0

εiFi(t, x) + εk+1R(t, x, ε),

where Fi : R × D → R for i = 0, 1, · · · , k, and R : R × D × (−ε0, ε0) → R, are
continuous functions, and T -periodic in the first variable, being D an open interval
of R, and ε a small parameter. From [12] we define the following functions yi(t, z)
for k = 1, 2, 3, 4, 5, 6 associated to system (17):

y1(t, z) =

∫ t

0

F1(s, z)ds,

y2(t, z) =

∫ t

0

(
2F2(s, z) + 2∂F1(s, z)y1(s, z)

)
ds,

y3(t, z) =

∫ t

0

(
6F3(s, z) + 6∂F2(s, z)y1(t, z)

+3∂2F1(s, z)y1(s, z)
2 + 3∂F1(s, z) y2(s, z)

)
ds,

y4(t, z) =

∫ t

0

(
24F4(s, z) + 24∂F3(s, z)y1(s, z)

+12∂2F2(s, z)y1(s, z)
2 + 12∂F2(s, z)y2(s, z)

+12∂2F1(s, z)y1(s, z)y2(s, z)

+4∂3F1(s, z)y1(s, z)
3 + 4∂F1(s, z)y3(s, z)

)
ds,

y5(t, z) =

∫ t

0

(
120F5(s, z) + 120∂F4(s, z)y1(s, z)

+60∂2F3(s, z)y1(s, z)
2 + 60∂F3(s, z)y2(s, z)

+60∂2F2(s, z)y1(s, z)y2(s, z) + 20∂3F2(s, z)y1(s, z)
3

+20∂F2(s, z)y3(s, z) + 20∂2F1(s, z)y1(s, z)y3(s, z)
+15∂2F1(s, z)y2(s, z)

2 + 30∂3F1(s, z)y1(s, z)
2y2(s, z)

+5∂4F1(s, z)y1(s, z)
4 + 5∂F1(s, z)y4(s, z)

)
ds,
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y6(t, z) =

∫ t

0

(
720F6(s, z) + 720∂F5(s, z)y1(s, z)

+360∂F4(s, z)y2(s, z) + 360∂2F4(s, z)y1(s, z)
2

+120∂F3(s, z)y3(s, z) + 360∂2F3(s, z)y1(s, z)y2(s, z)
+120∂3F3(s, z)y1(s, z)

3 + 30∂F2(s, z)y4(s, z)
+120∂2F2(s, z)y1(s, z)y3(s, z) + 30∂4F2(s, z)y1(s, z)

4

+90∂2F2(s, z)y2(s, z)
2 + 180∂3F2(s, z)y1(s, z)

2y2(s, z)
+6∂F1(s, z)y5(s, z) + 30∂2F1(s, z)y1(s, z)y4(s, z)
+60∂2F1(s, z)y2(s, z)y3(s, z) + 60∂3F1(s, z)y1(s, z)

2y3(s, z)
+60∂4F1(s, z)y1(s, z)

3y2(s, z) + 90∂3F1(s, z)y1(s, z)y2(s, z)
2

+6∂5F1(s, z)y1(s, z)
5
)
ds.

Here ∂kFℓ(s, z) means the k-th partial derivative of the function Fℓ(s, z) with
respect to the variable z. Also from [12] we have the functions

f1(z) =

∫ T

0

F1(t, z)dt,

f2(z) =

∫ T

0

(
F2(t, z) + ∂F1(t, z)y1(t, z)

)
dt,

f3(z) =

∫ T

0

(
F3(t, z) + ∂F2(t, z)y1(t, z)

+
1

2
∂2F1(t, z)y1(t, z)

2 +
1

2
∂F1(t, z)y2(t, z)

)
dt,

f4(z) =

∫ T

0

(
F4(t, z) + ∂F3(t, z)y1(t, z)

+
1

2
∂2F2(t, z)y1(t, z)

2 +
1

2
∂F2(t, z)y2(t, z)

+
1

2
∂2F1(t, z)y1(t, z)y2(t, z)dt+

1

6
∂3F1(t, z)y1(t, z)

3

+
1

6
∂F1(t, z)y3(t, z)

)
dt,

f5(z) =

∫ T

0

(
F5(t, z) + ∂F4(t, z)y1(t, z) +

1

2
∂2F3(t, z)y1(t, z)

2

+
1

2
∂F3(t, z)y2(t, z) +

1

2
∂2F2(t, z)y1(t, z)y2(t, z)

+
1

6
∂3F2(t, z)y1(t, z)

3 +
1

6
∂F2(t, z)y3(t, z)

+
1

6
∂2F1(t, z)y1(t, z)y3(t, z) +

1

8
∂2F1(t, z)y2(t, z)

2

+
1

4
∂3F1(t, z)y1(t, z)

2y2(t, z) +
1

24
∂4F1(t, z)y1(t, z)

4

+
1

24
∂F1(t, z)y4(t, z)

)
dt,
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f6(z) =

∫ T

0

(
F6(t, z) + ∂F5(t, z)y1(t, z) +

1

2
∂F4(t, z)y2(t, z)

+
1

2
∂2F4(t, z)y1(t, z)

2 +
1

6
∂F3(t, z)y3(t, z)

+
1

2
∂2F3(t, z)y1(t, z)y2(t, z) +

1

6
∂3F3(t, z)y1(t, z)

3

+
1

24
∂F2(t, z)y4(t, z) +

1

6
∂2F2(t, z)y1(t, z)y3(t, z)

+
1

4
∂3F2(t, z)y1(t, z)

2y2(t, z) +
1

8
∂2F2(t, z)y2(t, z)

2

+
1

24
∂4F2(t, z)y1(t, z)

4 +
1

120
∂F1(t, z)y5(t, z)

+
1

24
∂2F1(t, z)y1(t, z)y4(t, z) +

1

12
∂2F1(t, z)y2(t, z)y3(t, z)

+
1

12
∂3F1(t, z)y1(t, z)

2y3(t, z) +
1

12
∂4F2(t, z)y1(t, z)

3y2(t, z)

+
1

8
∂3F1(t, z)y1(t, z)y2(t, z)

2 +
1

120
∂5F1(t, z)y1(t, z)

5
)
dt.

The averaging theory for a differential system (17) works as follows, see [12] for
more details. If the averaged function f1(z) is not the zero function, every simple
zero of f1(z) provides a limit cycle of the differential system (17). If f1(z) ≡ 0 but
f2(z) 6≡ 0, then every simple zero of f2(z) provides a limit cycle of the differential
system (17). If f1(z) ≡ 0, f2(z) ≡ 0 but f3(z) 6≡ 0, then every simple zero of f3(z)
provides a limit cycle of the differential system (17), and so on.

6. Proof of Theorem 2

Consider system (2), we shall study which periodic solutions of its center become
limit cycles when we perturb the center inside the class of polynomial differential
systems of degree 4. This study will be done by applying the averaging theory
described in section 5, we introduce a small parameter ε doing the scaling x = εX,
y = εY . Thus we get a differential system (Ẋ, Ẏ ). After that we perform the polar

change of coordinates X = r cos θ, Y = r sin θ, and we pass system (Ẋ, Ẏ ) to a

system (ṙ, θ̇). Now we take as independent variable the angle θ, and the system

(ṙ, θ̇), becomes the differential equation dr/dθ, and by doing a Taylor expansion
truncated at 6-th order in ε we obtain an expression for dr/dθ similar to the one
of the differential system (17). In short we have written our differential system (3)
in the normal form (17) for applying the averaging theory.

We give only the expression of functions F1(r, θ) and F2(r, θ).

The explicit expressions of Fi(r, θ) for i = 3, .., 6 are quite large so we omit them.

The functions Fi(θ, r) i = 1, ..., 6 and R(t, x, ε) of system (17) are analytic, and
since the independent variable θ appears through sinus and cosinus of θ, they are
2π–periodic. Hence the assumptions for applying the averaging theory described in
section 5 are satisfied.
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The expressions of F1(r, θ) and F2(r, θ) are

F1(r, θ) = a
(2)
00 cos θ + b

(2)
00 sin θ + r(a

(1)
10 cos2 θ

+(a
(1)
01 + b

(1)
10 ) cos θ sin θ + b

(1)
10 sin2 θ),

F2(r, θ) = −(b
(2)
00 a

(1)
10 + b

(1)
10 a

(2)
00 ) cos

3 θ

−(2b
(1)
10 b

(2)
00 + b

(2)
00 a

(1)
01 + b

(1)
01 a

(2)
00 − 2a

(1)
10 a

(2)
00 ) cos

2 θ sin θ

+cos θ(a
(3)
00 + (−2b

(1)
01 b

(2)
00 + b

(2)
00 a

(1)
10 + b

(1)
10 a

(2)
00 ) sin

2 θ)

+r2((b
(1)
20 + a

(1)
11 ) cos

2 θ sin θ + (b
(1)
11 + a

(1)
02 ) cos θ sin

2 θ

+a
(1)
20 cos3 θ + b

(1)
02 sin3 θ) + r(−b

(1)
10 a

(1)
10 cos4 θ − ((b

(1)
10 )

2

+(b
(1)
01 − a

(1)
10 )a

(1)
10 + b

(1)
10 a

(1)
01 ) cos

3 θ sin θ + sin2 θ(b
(2)
10

+b
(1)
01 a

(1)
01 sin2 θ) + cos2 θ(a

(2)
10 + (−2b

(1)
10 b

(1)
01 + b

(1)
10 a

(1)
10

−b
(1)
01 a

(1)
01 + 2a

(1)
10 a

(1)
01 ) sin

2 θ) + cos θ sin θ(b
(2)
10 + a

(2)
01

+cos θ sin θ(b
(2)
10 + a

(2)
01 + (−(b

(1)
01 )

2 + b
(1)
01 a

(1)
10 + a

(1)
01 (b

(1)
10

+a
(1)
01 ) sin

2 θ) + sin θ(b
(3)
00 + (b

(2)
00 a

(1)
01 + b

(1)
01 a

(2)
00 ) sin

2 θ

+a
(1)
01 a

(2)
00 sin θ) +

−2b
(2)
00 a

(2)
00 cos θ + ((a

(2)
00 )

2 − b
(2)
00 ) sin θ

2r
.

Using the formulas given in section 2 we obtain the averaged function of first
order

f1(r) = (a
(1)
10 + b

(1)
01 )r.

Clearly equation f1(r) = 0 has no positive zeros. Thus the first averaged function
does not provide any information about the limit cycles that bifurcate from the
periodic solutions of the center when we perturb it.

Setting a
(1)
10 = −b

(1)
01 we obtain f1(r) = 0. So we can apply the averaging theory

of second order, obtaining the averaged function of second order.

f2(r) = (a
(2)
10 + b

(2)
01 )r.

As for the first averaged function, the second one also does not provide information
on the bifurcating limit cycles. Therefore the proof of statement (a) is done.

Doing a
(2)
10 = −b

(2)
01 we get f2(r) = 0, and then we can apply the averaging theory

of third order, and its corresponding averaged function is

f3(r) =
1

2
(−b

(1)
11 b

(2)
00 + b

(3)
01 − 2b

(1)
00 a

(1)
20 + 2b

(1)
02 a

(2)
00 + a

(1)
11 a

(2)
00 + a

(3)
10 )r

+
1

8
(b

(1)
21 + 3b

(1)
03 + 3a

(1)
30 + a

(1)
12 )r

3.

Therefore f3(r) can have at most one positive real root. Hence statement (b) of
the theorem is proved for k = 3.

In order to apply the averaging theory of fourth order, we need to have f3(r) = 0

so we set a
(3)
10 = b

(1)
11 b

(2)
00 − b

(3)
01 + 2b

(1)
00 a

(1)
20 − 2b

(1)
02 a

(2)
00 − a

(1)
11 a

(2)
00 and a

(1)
12 = −b

(1)
21 −

3b
(1)
03 − 3a

(1)
30 .
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The resulting averaged function of fourth order is

f4(r) = r(A1 +A2r
2),

where

A1 =
1

2

(
b
(1)
10 b

(1)
11 b

(2)
00 + b

(4)
01 − b

(2)
11 b

(3)
00 − 2b

(1)
02 b

(2)
00 a

(1)
10 + 2b

(1)
10 a

(1)
20 b

(2)
00

−2b
(3)
00 a

(1)
20 − b

(2)
00 a

(1)
10 a

(1)
11 + a

(4)
10 + b

(1)
11 a

(1)
10 a

(2)
00 − b

(2)
00 b

(2)
11

+a
(1)
11 a

(3)
00 + 2b

(2)
02 a

(2)
00 − 2b

(2)
00 a

(2)
20 + a

(2)
00 a

(2)
11 + 2b

(1)
02 a

(3)
00

+a
(1)
01 a

(1)
11 a

(2)
00 + 2a

(1)
10 a

(1)
20 a

(2)
00 + 2b

(1)
02 a

(1)
01 a

(2)
00

)
,

A2 =
1

8

(
b
(1)
20 b

(1)
11 − b

(1)
02 b

(1)
11 + 3b

(1)
10 b

(1)
03 − 3ab

(2)
00 − 3bb

(2)
00 + b

(2)
21 + 3b

(2)
12

+2b
(2)
12 a

(1)
10 + 3b

(1)
03 a

(1)
01 − 2b

(1)
20 a

(1)
20 + a

(1)
20 a

(1)
11 + 2a

(2)
30 + a

(2)
12

+2b
(1)
02 a

(1)
02 + a

(1)
11 a

(1)
02 + 2a

(1)
10 a

(1)
21 + b

(1)
10 a

(1)
12 + a

(1)
01 a

(1)
12

)
.

In view of the expression of the polynomial f4(r) it follows immediately that f4(r)
can have at most one positive real root. So statement (c) of the theorem is proved.

Solving A1 = 0 and A2 = 0 we obtain f4(r) = 0, so we can apply the averaging
theory of order 5, and its corresponding averaged function is of the form

f5(r) = r(B1 +B2r
2 +B3r

4),

We do not give the big expressions of the independent coefficients Bi for i = 1, 2, 3.
It follows immediately that f5(r) can have at most two positive real roots. Thus,
statement (c) of the theorem holds.

Solving B1 = 0, B2 = 0 and B3 = 0 we obtain f5(r) = 0, and we assume that a
denominator 7a+ 9b 6= 0 which appears is not zero. Then applying the averaging
theory of order six we obtain an averaged function of the form

f6(r) =
(
C1 + C2r + C3r

2 + C4r
3 + C5r

4 + C6r
5
)
.

Where the coefficients Ci’s for i = 1, ...6 are independent polynomials in a
(s)
ij and

b
(s)
ij . Hence f6(r) has at most has 5 simple positive zero. Hence statement (d) of
the theorem is proved.
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Bordj Bou Arréridj 34265, El Anasser, Algeria

E-mail address: r-benterki@yahoo.fr

2 Departament de Matematiques, Universitat Autònoma de Barcelona, 08193 Bel-
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