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Abstract. We consider polynomial vector fields of the form

X = (−y + Xm)
∂

∂x
+ (x + Ym)

∂

∂y
,

where Xm = Xm(x, y) and Ym = Ym(x, y) are homogenous polynomials of
degree m. It is well–known that X has a center at the origin if and only if X
has an analytic first integral of the form

H =
1

2
(x2 + y2) +

∞∑

j=3

Hj ,

where Hj = Hj(x, y) is a homogenous polynomial of degree j.

The classical center-focus problem already studied by H. Poincaré consists

in distinguishing when the origin of X is either a center or a focus. In this paper
we study the inverse center-focus problem. In particular for a given analytic
function H defined in a neighborhood of the origin we want to determine the
homogenous polynomials Xm and Ym in such a way that H is a first integral

of X and consequently the origin of X will be a center. Moreover, we study
the case when

H =
1

2
(x2 + y2)


1 +

∞∑

j=1

Υj


 ,

where Υj is a convenient homogenous polynomial of degree j for j ≥ 1.

The solution of the inverse center problem for polynomial differential sys-
tems with homogenous nonlinearities, provides a new mechanism to study the
center problem, which is equivalent to Liapunov’s Theorem and Reeb’s crite-

rion.

1. Introduction

Let

X = P
∂

∂x
+ Q

∂

∂
,

be the real planar polynomial vector field associated to the real planar polynomial
differential system

(1) ẋ = P (x, y), ẏ = Q(x, y),
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where the dot denotes derivative with respect to an independent variable here called
the time t, and P and Q are real coprime polynomials in R[x, y]. We say that
polynomial differential system (1) has degree m = max {degP, degQ}.

In what follows we assume that origin O := (0, 0) is a singular or equilibrium
point, i.e. P (0, 0) = Q(0, 0) = 0.

The equilibrium point O is a center if there exists an open neighborhood U of
O where all the orbits contained in U \ {O} are periodic.

Assume that the origin of the polynomial differential system (1) is a center. It
is well–known that, after a linear change of variables and a constant scaling of the
time variable (if necessary), system (1) can be written in one of the next three
forms:

(2)
ẋ = −y + X(x, y), ẏ = x + Y (x, y),
ẋ = y + X(x, y), ẏ = Y (x, y),
ẋ = X(x, y), ẏ = Y (x, y),

where X(x, y) and Y (x, y) are polynomials without constant and linear terms de-
fined in a neighborhood of the origin. Then the origin O of the polynomial differ-
ential system 1 is called linear type, nilpotent or degenerate if after a linear change
of variables and a scaling of the time it can be written as the first, second and third
system of (2), respectively.

We shall study the differential system of the linear type

(3) ẋ = −y + Xm(x, y), ẏ = x + Ym(x, y)

where Xm = Xm(x, y) and Ym = Ym(x, y) are homogenous polynomial of degree
m. The classical Poincaré center-focus problem asks about conditions on the coef-
ficients of Xm and Ym under which all trajectories of (3) situated in a small open
neighborhood of the origin are closed. This problem was solved for system (3) for
m = 2, 3 (see for instance [2, 16, 20, 21, 22]).

The necessary and sufficient condition for O to be a center for analytic vector
fields was obtained by Liapunov (see for instance [12, 9]) and Poincaré for the
polynomial vector fields.

Theorem 1 (Poincaré-Liapunov Theorem). A planar analytic differential system

(4) ẋ = −y +

∞∑

j=2

Xj(x, y), ẏ = x +

∞∑

j=2

Yj(x, y),

has a center at the origin if and only if it has a first integral of the form

(5) H =

∞∑

j=2

Hj(x, y) =
1

2
(x2 + y2) +

∞∑

j=3

Hj(x, y),

where Xj, Yj and Hj are homogenous polynomials of degree j.

Now we shall recall the Reeb’s criterion for solving the center problem.

We need the following definitions and concept. The definition of integrating
factor is standard and well-known, we recall here the definition of inverse integrating
factor of system (1). A function V = V (x, y) is an inverse integrating factor of
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system (1) in an open subset U ⊂ R2 if V ∈ C1(U), V ̸≡ 0 in U and

∂

(
P

V

)

∂x
+

∂

(
Q

V

)

∂y
= 0 ⇐⇒ P

∂V

∂x
+ Q

∂V

∂y
= V

(
∂P

∂x
+

∂Q

∂y

)
.

The first integral F associated to the inverse integrating factor V is given by the
line integral

F (x, y) =

∫

γ

(
−P

V
dy +

Q

V
dx

)
,

We note that {V = 0} is formed by orbits of system (1). The function 1/V defines
an integrating factor in U\{V = 0} of system (1) which allows to compute a first
integral for system (1) in U\{V = 0}.

We consider now the relation between the existence of a center and the existence
of an integrating factor, for analytic vector fields. The main result is given by the
following theorem which is equivalent to Theorem 1.

Theorem 2 (Reeb ’s criterion [18]). The analytic differential system (4) has a
center at the origin if and only if there is a local nonzero analytic integrating factor
of the form V = 1 + h.o.t. in a neighborhood of the origin.

Consequently, to show that a singular point is a center we have two basic mech-
anisms: the Poincaré–Liapunov’s Theorem and the Reeb’s criterion.

The main objective of the present paper is to propose a new mechanism to solve
the center problem for systems (3). We shall analyze the center problem from the
inverse point of view (see for instance [10, 19]). Indeed given an analytic function
H of the form (5) we shall determine the homogenous polynomials Xm and Ym in
(3) in such a way that the function H is a first integral of the differential system
(3).

2. Preliminary results

In the proofs of the main results that we proposed in this paper it plays an
important role the following results .

The proof of the next result can be found in particular in [16].

Theorem 3. For system (4) there exists a formal power series

W =

∞∑

n=2

Wn :=
1

2
(x2 + y2) +

∞∑

n=3

Wn(x, y),

where Wj = Wj(x, y) is a homogenous polynomial of degree j such that

(6)

dW

dt
=

(
x +

∂W3

∂x
+

∂W4

∂x
+ . . .

)
−y +

∞∑

j=2

Xj(x, y)




+

(
y +

∂W3

∂y
+

∂W4

∂y
+ . . .

)
x +

∞∑

j=2

Yj(x, y)




=

∞∑

j=0

vj(x
2 + y2)j+1,
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where vj are the Poincaré-Liapunov constants. This derivative is calculated on the
solutions of system (4).

Clearly if the constants vj = 0 for j ∈ N then there exists a first integral

H :=
1

2
(x2 + y2) +

∞∑

j=3

Hj ,

where Hj is a homogenous polynomial of degree j. Consequently the origin is a
center. If there exist a first non–zero Liapunov constant vj , then in view of the
relation

dW

dt
= vj(x

2 + y2)j+1 + . . . ,

the origin is a stable focus if vj < 0 and unstable if vj > 0.

As usual the Poisson bracket of the functions f(x, y) and g(x, y) is defined as

{f, g} :=
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
.

We will need the following result.

Proposition 4. The following relation holds
∫ 2π

0

{H2, Ψ}|x=cos t, y=sin t dt = 0,

for arbitrary C1 function Ψ = Ψ(x, y) defined in the interval [0, 2π].

Proof. Indeed, if we change x = cos t, y = sin t then it is easy to show that

{H2,Ψ}|x=cos t, y=sin t = x
∂ Ψ

∂ y
− y

∂ Ψ

∂ x

∣∣∣∣
x=cos t, y=sin t

=
dΨ(cos t, sin t)

dt
.

Hence, ∫ 2π

0

{H2, Ψ}|x=cos t, y=sin t dt = Ψ(cos t, sin t)|t=2π
t=0 = 0.

�

The following result due to Liapunov (see Theorem 1, page 276 of [12]).

Theorem 5. If all the roots λ1, . . . , λn of the equation
∣∣∣∣∣∣∣∣

p11 − λ p21 . . . pn1

p12 p22 − λ . . . pn2

. . . . . . . . . . . .
p1n p2n . . . pnn − λ

∣∣∣∣∣∣∣∣
= 0

are such that the relation

λ = m1λ1 + . . . + mnλn,

is not vanishing for arbitrary non-negative integers m1, . . . ,mn linked by the ex-
pression

m = m1 + . . . + mn ̸= 0.
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Then for arbitrary given homogenous polynomial U = U(x1, . . . , xn) of degree m
there exists a unique homogenous polynomial V = V (x1, . . . , xn) of degree m which
is a solution of the equation

n∑

j=1

(pj1x1 + . . . + pjnxn)
∂V

∂xj
= U.

In particular, for n = 2 the partial differential equation

(7) x
∂ V

∂ y
− y

∂ V

∂ x
:= {H2, V } = U,

has a unique solution V if and only if

λ1m1 + λ2m2 = i(m1 − m2) ̸= 0, with m = m1 + m2.

A simple consequence of Theorem 5 is the following result.

Corollary 6. Let U = U(x, y) be a homogenous polynomial of degree m. The
linear partial differential equation (7) has a unique homogenous polynomial solution
V of degree m if m is odd; and if V is a homogenous polynomial solution when
m is even, then any other homogenous polynomial solution is of the form V +
c(x2 + y2)m/2 with c ∈ R. Moreover, for m even these solutions exist if and only if∫ 2π

0

U(x, y)|x=cos t, y=sin t dt = 0.

3. Statement of the main results

The main results are divided in three subsections

3.1. Differential system (3) with local analytic first integral of the form
H = (x2 + y2)/2 + h.o.t.. We state and solve the following inverse problem of the
center for differential system (3).

Problem 1 Determine the polynomial planar vector fields of degree m

X = (−y + Xm)
∂

∂x
+ (x + Ym)

∂

∂y
,

where Xm = Xm(x, y) and Ym = Ym(x, y) are homogenous polynomial of degree m,
for which the given analytic function (5) is a local analytic first integral.

The inverse problem 1 has been solved in the following main theorem which
provide the expressions of the polynomial differential systems (3) in function of its
first integral (5).

Theorem 7. A polynomial differential system (3) associated to polynomial vector
field X has the function (5) as a local analytic first integral if and only if the system
can be written as

(8) ẋ = −y + {Hm+1, x} + gm−1{H2, x}, ẏ = x + {Hm+1, y} + gm−1{H2, y},

where gm−1 = gm−1(x, y) is an arbitrary homogenous polynomial of degree m − 1
and the infinite numbers of the following partial differential equations hold

(9) Xm(Hk) + {H2,Hm+k−1} = 0 for k ≥ 2,

where

Xm = ({Hm+1, x} + gm−1{H2, x})
∂

∂x
+ ({Hm+1, y} + gm−1{H2, y})

∂

∂y
,



6 J. LLIBRE, R. RAMÍREZ AND V. RAMÍREZ

i.e. the polynomial vector field X has the first integral (5) if and only if it can be

written as X = −y
∂

∂x
+ x

∂

∂y
+ Xm, where the vector field Xm satisfies (9).

Theorem 8. Differential system (3) has a center at the origin if and only if it can
be written as

(10) ẋ =
1 + gm−1

1 + Λ
{H, x}, ẏ =

1 + gm−1

1 + Λ
{H, y},

where H is an analytic functions such that

(11) H =

∫

γ

(
1 + Λ

1 + gm−1
dHm+1 + (1 + Λ)dH2

)
,

and Λ = Λ(x, y) is an analytic function in the neighborhood of the origin satisfying
the partial differential equation

(12)

{
Hm+1,

1 + Λ

1 + gm−1

}
+ {H2, Λ} = 0.

Thus

∫ 2π

0

{
Hm+1,

1 + Λ

1 + gm−1

}∣∣∣∣
x=cos t,y=sin t

dt = 0. Moreover, this theorem is equiv-

alent to Theorem 7, i.e. differential system (8) coincides with differential system
(10), (11) and condition (9) coincides with condition (11), (12).

Theorems 7 and 8 have the following corollary.

Corollary 9. Under the assumptions of Theorem 8 the next statements hold.

(a) If m is odd then H(−x,−y) = H(x, y). Hence the phase portrait of system
(3) having a center at the origin is symmetric with respect to the origin,
and has an odd number of centers.

(b) If system (3) has a center at the origin then

(13)

∫ 2π

0

(
∂Xm(x)

∂x
+

∂Xm(y)

∂y

)∣∣∣∣
x=cos t, y=sin t

dt = 0.

We note that statement (b) of Corollary 9 follows from Theorem 2 of [8].

Remark 10. (a) From Theorem 7 it follows that a polynomial differential sys-
tem (3) has a center at the origin if and only if it can be written into the
form (8) with the complementary conditions (9). Consequently we have
a new mechanism to solve the center problem for polynomial differential
systems of the form (3) which is equivalent to the Poincaré–Liapunov’s
Theorem and to the Reeb’s criterion.

(b) From Theorem 8 it follows the equivalence between Reeb’s criterion and
Theorem 7, but the criterion which we propose provides a complementary
information of the structure of the differential system (3) having a center
and the structure of its integrating factor and the integral form of the first
integral H.

(c) We note that the Poincaré–Liapunov first integral given in (5) for systems
(3) is computed in (11).
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(d) Given a system (3) we can determine the homogeneous polynomials Hm+1

and gm−1 which appear in (8). Now solving with respect to the function
Λ the linear partial differential equation of first order (12), if we get an
analytic solution defined in a neighborhood of the origin, then we have solved
the center problem for systems (3).

The proofs of the results of the subsection 3.1 are given in section 4.

3.2. Differential system (3) with local analytic first integral of the form
H = (x2 + y2)/2 (1 + h.o.t.). We say that differential system (1) has a weak center
at the origin if this system has a local analytic first integral of the form

H =
1

2
(x2 + y2)


1 +

∞∑

j=1

Υj(x, y)


 ,

where Υj is a convenient homogenous polynomial of degree j.

The interest for this type of centers becomes in particular from the fact that any
linear type center is locally a weak center (see Remark 22).

In the study of weak centers plays a fundamental role the following polynomial
differential system of degree m

(14) ẋ = −y(1 + Φ) + xφ, ẏ = x(1 + Φ) + yφ,

where Φ = Φ(x, y) and φ = φ(x, y) are convenient polynomials of degree at most
m − 1. It is easy to observe that the singular points of this differential system are
on the intersection of the curves

(x2 + y2)φ(x, y) = 0, (x2 + y2)(1 + Φ(x, y)) = 0.

Thus, by Bezout Theorem, the maximum number of singular points of system (14)
is (m − 1)2 + 1. In particular if Φ = 0 then the only critical point is the origin.

The aim of the following results is to study the existence of the weak centers for
polynomial differential systems with homogenous nonlinearities.

Proposition 11. Assume that the polynomial differential system (3) has a center
at the origin of coordinates. Then this center is a weak center if and only if this
system can be written as

(15)

ẋ = −y

(
1 + gm−1 +

m + 1

2
Υm−1

)
+

x

2
{Υm−1,H2},

ẏ = x

(
1 + gm−1 +

m + 1

2
Υm−1

)
+

y

2
{Υm−1,H2},

where gm−1 = gm−1(x, y) and Υm−1 = Υm−1(x, y) are homogenous polynomials of
degree m − 1, i.e. system (3) can be written as system (14) with Φ and φ such that

Φ = gm−1 +
m + 1

2
Υm−1, φ =

1

2
{Υm−1,H2}.

Now we introduce the following concepts that we need further.

Let R[x, y] be the ring of all real polynomials in the variables x and y, and let

(16) X = P
∂

∂x
+ Q

∂

∂ y
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be a polynomial vector field of degree m. Let g = g(x, y) ∈ R[x, y]. Then g = 0 is
an invariant algebraic curve of X if

X g = P
∂g

∂x
+ Q

∂g

∂y
= Kg,

where K = K(x, y) is a polynomial of degree at most m − 1, which is called the
cofactor of g = 0. If the polynomial g is irreducible in R[x, y], then we say that
the invariant algebraic curve g = 0 is irreducible, and that its degree is the degree
of the polynomial g. A first integral F of the polynomial vector field (16) is called
Darboux if

F = eG(x,y)/h(x,y)gλ1
1 (x, y) . . . gλr

r (x, y),

where G, h, g1, ..., gr, g, h are polynomials and λ1, . . . , λr are complex constants.
For more details on the so–called Darboux theory of integrability see for instance
Chapter 8 of [6].

We introduce the following definition. We say that polynomial vector field X of
degree m is quasi–Darboux integrable if there exist r polynomial partial integrals
g1, . . . , gr and s non-polynomial partial integrals f1, . . . , fs analytic in D ⊆ R2

satisfying

X (fj) = P
∂fj

∂x
+ Q

∂fj

∂y
= Kjfj ,

where Kj = Kj(x, y) is a convenient polynomials of degree m − 1, for j = 1, . . . , s
such that the function

F = eG(x,y)/h(x,y)gλ1
1 (x, y) . . . gλr

r (x, y)fκ1
1 . . . fκs

s ,

where λ1, . . . , λr, κ1, . . . , κs, are complex constants, is a first integral. We observe
that a generalization of the Darboux theory was developed in the paper [7], which
evidently contain the above definition, but for our aim we shall use the definition
of quasi–Darboux integrable.

Conjecture 12. Differential system (15) with a weak center at the origin is quasi–
Darboux integrable.

This conjecture is supported by several facts which we give below.

Example 13. Polynomial differential system with weak center at the origin

ẋ = −y
(
1 + x4 + 4x2y2 − y4

)
= −y(1 + 3x2y2 − y4) − x2y(x2 + y2),

ẏ = x((1 + 2y2(x2 − y2) = x(1 + 3x2y2 − y4) − xy2(x2 + y2),

is quasi-Darboux integrable.

Indeed, this system has the following polynomial partial integrals

g1 = x2y2 + (1 + y2)2, g2 = x2y2 + (1 − y2)2, g3 := H2 = (x2 + y2)/2,

such that

ġ1 = 2xy
(
2 + x2 − 3y2

)
g1, ġ2 = 2xy

(
−2 + x2 − 3y2

)
g2, ġ3 = −2xyg2

3 .

It is easy to show that the analytic in R2 function f = 4 − 2g3 log
g1

g2
is a partial

integral such that ḟ = −4xyg3 f. Consequently we have the first integral F =
H2√

f
which has the Taylor expansion at the origin F = H2(1 + h.o.t.).
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Theorem 14. Polynomial differential system (15) under the assumption

Υm−1 = −2β gm−1 +
2

m + 1
θ(H2),

with

θ(H2) =

{
ν H

(m−1)/2
2 if m is odd,

0 if m is even,

i.e., the polynomial differential system

(17)
ẋ = −y (1 + (1 − (m + 1)β) gm−1 + θ(H2)) + β x {H2, gm−1},

ẏ = x (1 + (1 − (m + 1)β) gm−1 + θ(H2)) + β y{H2, gm−1},

where H2 = (x2 +y2)/2, gm−1 = gm−1(x, y) is a homogenous polynomial of degree
m and β and ν are constants, is quasi-Darboux integrable. Moreover a first integral
F is given in the following.

(a) If (1 − (m + 1)β)β(1 − 2β) ̸= 0 and m is even, then

F =
H2

(1 + (1 − 2β) gm−1)
2β/(1−2β)

.

The algebraic curves H2 = 0 and 1+(1−2β) gm−1 = 0 are invariant curves
with cofactors 2β{H2, gm−1} and (1 − 2β){H2, gm−1}, respectively.

(b) If (1 − (m + 1)β)β(1 − 2β) ̸= 0 and m is odd, then

F =
H2(

1 +
(1 − 2β)

1 − (m + 1)β

(
(1 − (m + 1)β) gm−1 + ν H

(m−1)/2
2

))2β/(1−2β)
.

The algebraic curves

H2 = 0 and 1 +
(1 − 2β)

1 − (m + 1)β

(
(1 − (m + 1)β) gm−1 + ν H

(m−1)/2
2

)
= 0

are invariant curves with cofactors 2β{H2, gm−1} and (1− 2β){H2, gm−1},
respectively

(c) If β = 1/2 and m is even, then F = H2e
−gm−1 .

(d) If β = 1/2 and m is odd, then F = H2e
−gm−1+2ν/(m−1) H

(m−1)/2
2 .

In the cases (c) and (d) H2 = 0 is invariant curve with cofactor {H2, gm−1}/2.
(e) If β = 0, then F = H2.
(f) If β = 1/(m + 1) and m is even, then

F =
H2(

1 +
m − 1

m + 1
gm−1

)2/(m−1)
.

The algebraic curves H2 = 0 and 1+(m−1) gm−1/(m+1) = 0 are invariant
curves with cofactors 2{H2, gm−1}/(m+1) and (1−m)/(m+1){H2, gm−1},
respectively.

(g) If β = 1/(m + 1) and m is odd, then

F =
H2(

1 +
m − 1

m + 1
gm−1 − ν

m − 1

2
H

(m−1)/2
2 log H2

)2/(m−1)
.
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The algebraic curve H2 = 0 and the non-polynomial curve defined in R2\{0}
by

f(x, y) := 1 +
m − 1

m + 1
gm−1 − ν

m − 1

2
H

(m−1)/2
2 log H2 = 0,

are invariant curves with cofactors 2{H2, gm−1}/(m+1) and (1−m)/(m+
1){H2, gm−1}, respectively.

Remark 15. We observe that the function Ω : f(x, y) = 1 +
m − 1

m + 1
gm−1 −

ν
m − 1

2
H

(m−1)/2
2 log H2 is an analytic in R2\{0}, which in polar coordinates be-

comes f(r cos θ, r sin θ) = 1 +
m − 1

m + 1
rm−1gm−1(cos θ, sin θ) − ν(m − 1)rm−1

2 log r,

and satisfies

lim
r→0

f(r cos θ, r sin θ) = 1, lim
r→0

∂k

∂rk
(f(r cos θ, r sin θ)) = 0,

for k = 1, . . . , m − 2.

We recall that the singular point of system (1) located at the origin is an
isochronous center if all the periodic solutions in a neighborhood of the origin has
the same period.

A center O of system (1) is a uniform isochronous center if the equality xẏ−yẋ =
κ(x2 +y2) holds for a nonzero constant κ; or equivalently in polar coordinates (r, θ)

such that x = r cos θ, y = r sin θ, we have that θ̇ = κ (see for instance [11]).

Proposition 16. A polynomial differential system (3) has a uniform isochronous
center at the origin if and only if this system can be written as (17) with θ(H2) = 0
and β = 1/(m + 1), i.e.

(18)

ẋ = −y +
x

m + 1
{H2, gm−1},

ẏ = x +
y

m + 1
{H2, gm−1},

where H2 = (x2 + y2)/2 and gm−1 = gm−1(x, y) is a homogenous polynomial of
degree m − 1. Moreover, this system has the first integral

F =
H2(

1 +
m − 1

m + 1
gm−1

)2/(m−1)
,

which has the following Taylor expansion F := H = H2(1+h.o.t.) at the origin the
coordinates Consequently the uniform center (18) is a weak center.

This proposition has the following corollary.

Corollary 17. The solutions of (18) in polar coordinates (r, θ) are

θ = t, r =




C

1 − C(m − 1)

m + 1
gm−1(cos t, sin t)




1/(m−1)

,

where C is an arbitrary constant.
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Note that Proposition 16 characterizes the form of the polynomial uniform
isochronous centers with homogeneous nonlinearities and improves previous results
of Conti [4].

Remark 18. Differential system (17) with β = 1/(m + 1) and m odd, i.e.

ẋ = −y(1 + ν H(m−1)/2) +
x

m + 1
{H2, gm−1},

ẏ = x(1 + ν H(m−1)/2) +
y

m + 1
{H2, gm−1},

has one singular point if ν > 0 and at most (m − 1)2 + 1 singular points if ν =
−(2/a2)(m−1)/2 which are on the circle x2 + y2 = a2. Moreover, its first integral

F =
H2(

1 +
m − 1

m + 1
gm−1 − ν

m − 1

2
H

(m−1)/2
2 log H2

)2/(m−1)
,

is non-analytic at the origin.

Other particular cases of differential systems with isochronous centers are the
systems which satisfy the Cauchy–Riemann conditions (see for instance [4]).

Proposition 19 (Cauchy-Riemann condition for a center). Let O be a center of
(1). Then O is isochronous center if P and Q satisfy the Cauchy-Riemann equations

(19)
∂P

∂x
=

∂Q

∂y
,

∂P

∂y
= −∂Q

∂x

A center of system (1) for which (19) holds is called a holomorphic center, which
is an isochronous center, see for more details [13, 14].

Proposition 20. A differential system (3) with a center at the origin has a holo-
morphic isochronous center at the origin if and only if it can be written as (17)
with β = 1/(2m) i.e.,

(20)

ẋ = −y

(
1 +

m − 1

2m
gm−1 + Θ(H2)

)
+

x

2m
{H2, gm−1},

ẏ = x

(
1 +

m − 1

2m
gm−1 + Θ(H2)

)
+

y

2m
{H2, gm−1},

and gm−1 = gm−1(x, y) is a homogenous polynomial of degree m − 1 such that
(21)
(

∂2

∂x2
+

∂2

∂y2

)
gm−1 =





−ν(m − 1)(m + 1)m

2
H

(m−3)/2
2 if m is odd,

0 if m is even,

where ν is a constant. Moreover, differential system (20) has the first integral

(22) F =





H2(
1 +

m − 1

m
gm−1

)1/(m−1)
if m is even,

H2(
1 +

m − 1

m
gm−1 + ν H

(m−1)/2
2

)1/(m−1)
if m is odd,
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and has the following expansion at the origin F := H = H2(1 + h.o.t.). Thus the
holomorphic isochronous center is a weak center.

Proposition 20 characterizes the holomorphic isochronous centers for the poly-
nomial differential systems with homogenous nonlinearities.

The following result goes back to Poincaré and Liapunov see [15, 12, 17].

Theorem 21 (Poincaré normal form of a nondegenerate center). For a polynomial
differential system (4), there exists a local analytic change of coordinates

(23) u = x + h.o.t., v = y + h.o.t.,

and an analytic function Ψ = Ψ(u2 + v2) such that the coordinate change (23)
transforms system (4) into the form

(24) u̇ = −∂H

∂v
, v̇ =

∂H

∂u
,

where H =
1

2

∫ (
1 + Ψ(u2 + v2)

)
d(u2 + v2). Without loss of generality we can

assume that Ψ(0, 0) = 0.

Remark 22. From Propositions 16 and 20 it follows that all the uniform isochronous
centers and all the holomorphic isochronous centers for polynomial differential sys-
tems with homogenous nonlinerities are always weak centers.

It is important to observe that there is not a relation between isochronous centers
and weak centers, i.e. there exist isochronous centers which are not weak centers
and weak centers which are not isochronous centers.

Finally we remark that any linear type center after an analytic change of variables
is locally a weak center Indeed from (24) it follows that there exists a local first
integral F = u2 + v2.

Proposition 23. A polynomial differential system (14) with a first integral of the
form F = (x2 + y2)Ω(x, y) where Ω(0, 0) = 1/2, after the local analytic change of
coordinates

(25) u = x
√

Ω v = y
√

Ω,

in a neighborhood of the origin becomes

(26) u̇ = (1 + Φ̃(u, v))v, v̇ = −(1 + Φ̃(u, v))u,

which has the local first integral u2+v2, where Φ̃(u, v) = Φ(x, y) |x=R1(u,v), y=R2(u,v),
and x = R1(u, v), y = R2(u, v) is the inverse transformation of (25).

The next corollary follows from (26) and from the definition of isochronous cen-
ter.

Corollary 24. A polynomial differential system (26) has an isochronous center at
the origin if and only if

∫ T

0

dϑ

1 + Φ̃(u, v)

∣∣∣∣
u=R cos ϑ, y=R sin ϑ

= T.
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Remark 25. The useful of Corollary 24 is very limited. The problem is that,
although u and v are given by explicitly simple functions of x and y, this is not
necessarily the case for the inverse change of coordinates, i.e. it may be impossible
to give a simple expression of x and y as function of u and v. Since the function
1 + Φ̃(u, v) in (26) is first obtained in (x, y)–coordinates, it may be difficult in the
practice to apply Corollary 24.

In view of the relation
u

v
=

y

x
it follows that if we pass to the polar coordinates

u = R cos ϑ, v = R sinϑ, x = r cos θ, y = r sin θ,

then tanϑ = tan θ and consequently ϑ̇ = θ̇.

From Remark 25 and Proposition 11 we get the following corollary.

Corollary 26. A polynomial differential system (15) has an isochronous center at
the origin if and only if

∫ T

0

dθ

1 + gm−1 +
m + 1

2
Υm−1

∣∣∣∣∣∣∣
x=r cos θ, y=r sin θ

= T.

Another important subclass of differential systems (3) with a weak center is
formed by the differential systems satisfying the so called weak condition for a
center (see for instance [1]).

Proposition 27 (Weak condition of the center for polynomial differential systems
(3)). The origin is a center of a polynomial differential system (3) if there exists
µ ∈ R such that

(27) (x2 + y2)

(
∂Xm

∂x
+

∂Ym

∂y

)
= µ (xXm + yYm) ,

and either m = 2k is even; or m = 2k − 1 is odd and µ ̸= 2k; or m = 2k − 1 is odd,
µ = 2k and (13) holds.

In [5] the author proved that if µ = 2m then system (3) has the rational first
integral

x2 + y2 − 2 (xYm − yXm)

(x2 + y2)m
.

Proposition 27 can be improved as follow.

Theorem 28. If a polynomial differential system (3) satisfies (27) and (13), then
it has a weak center at the origin and can be written in the form (17) with β = λ/2,
i.e.

(28)

ẋ =

(
1 +

2 − (m + 1)λ

2
gm−1 + Θ(H2)

)
{H2, x} +

λx

2
{H2, gm−1}

= H
1/λ
2 {F, x},

ẏ =

(
1 +

2 − (m + 1)λ

2
gm−1 + Θ(H2)

)
{H2, y} +

λ x

2
{H2, gm−1}

= H
1/λ
2 {F, y}

where λ = 2/µ, being µ the constant with appears in (27). The first integral F is
such that
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(a) If λ(λ − 1)(λ − 2/(m + 1)) ̸= 0, then

F =





H2

(1 + (1 − (m + 1)λ) gm−1)
λ/(1−λ)

, if m is even.

H2(
1 +

(1 − λ)

1 − (m + 1)λ/2

(
(1 − (m + 1)λ/2) gm−1 + ν H(m−1)/2

))λ/(1−λ)
if m is odd

(b) If λ = 1, then

F =





H2e
−gm−1 if m is even

H2e
−gm−1+2/(m−1)ν H

(m−1)/2
2 if m is odd.

(c) If λ = 0 then F = H2.
(d) If λ = 2/(m + 1) then

F =





H2(
1 +

m − 1

m + 1
gm−1)

)2/(m−1)
, if m is even

H2(
1 +

m − 1

m + 1
gm−1 +

m − 1

2
ν H(m−1)/2 log H2

)2/(m−1)
if m is odd.

Moreover the weak center at the origin of system (28) is

(i) isochronous if λ = 1/m and

(29)

∫ 2π

0

Gm−1(cos θ, sin θ)√
(CGm−1(cos θ, sin θ))

2
+ C

dθ = 0,

where Gm−1 =
m − 1

m + 1
gm−1 + θ(H2) and C ̸= 0 is a constant;

(ii) a uniform isochronous if Θ(H2) = 0 and λ = 2/(m + 1) and
(iii) a holomorphic isochronous if λ = 1/m and gm−1 satisfies (21).

From Proposition 28 it follows the next result due to Devlin [5], note that

Xm =

(
2 − (m + 1)λ

2
gm−1 + θ(H2)

)
{H2, x} +

λ x

2
{H2, gm−1},

Ym =

(
2 − (m + 1)λ

2
gm−1 + θ(H2)

)
{H2, y} +

λ y

2
{H2, gm−1},

thus for µ = 1/m we get xYm−1 − yXm−1 = (x2 + y2)

(
m − 1

2m
gm−1 + θ(H2)

)
=

(x2 + y2)Gm−1, and doing the Taylor expansion of the function

Gm−1(cos θ, sin θ)√
(CGm−1(cos θ, sin θ))

2
+ C

with respect to the variable C in a neighborhood of zero, we get condition (b) of
the next corollary.
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Corollary 29. If (27) and (13) hold, then the polynomial differential system (3)
admits at the origin an isochronous center if and only if

(a) either Ω(θ) := xYm−1 − yXm−1|x=cos θ, y=sin θ = 0,

(b) or µ = 2m and

∫ 2π

0

Ωk(θ)dθ = 0 for all odd k ≥ 1.

The results of subsection 3.2 are proved in section 5.

3.3. Polynomial vector fields with homogenous nonlinearities having a
focus at the origin. We state the following inverse problem.

Problem 30. Determine the polynomial planar vector fields

X = (−y + Xm)
∂

∂x
+ (x + Ym)

∂

∂y
,

where Xm = Xm(x, y) and Ym = Ym(x, y) are homogenous polynomials of degree
m, for which

(30) X (W ) =

∞∑

j=2

vj(x
2 + y2)j+1,

where W =
∞∑

j=2

Wj, W2 =
1

2
(x2 + y2), and Wj = Wj(x, y) is a homogenous poly-

nomial of degree j, vj is a Liapunov constant, and not all the vj are zero.

The solution of Problem 30 is given in the following propositions.

Proposition 31. Consider the polynomial vector field

X = (−y + X2k−2)
∂

∂x
+ (x + Y2k−2)

∂

∂y

where X2k−2 and Y2k−2 are homogenous polynomials of degree m = 2k − 2 for
which (30) holds for a given function W. Then the polynomial differential system
associated to X is

(31)
ẋ = −y + {W2k−1, x} + g2k−3{W2, x} := −y + X2k−2(x),

ẏ = x + {W2k−1, y} + g2k−3{W2, y} := x + X2k−2y,

where W2 =
1

2
(x2 + y2) and g2k−3 = g2k−3(x, y) is an arbitrary homogenous poly-

nomial of degree 2k − 3, satisfying
(32)

X2k−2(W2j−2k+5) + {W2,W2j+2} = vj (x2 + y2)j+1,

X2k−2(W2j+2−2k) + {W2,W2j−1} = 0 for j > k − 1

W2j−1 = 0, W2j = νj(x
2 + y2)j+1, vj = 0 for j = 1, . . . , k − 1.

Remark 32. A polynomial differential system with homogenous nonlinearities hav-
ing a center at the origin can be written as system (8), consequently this system
gives a necessary condition in order to have a linear type center, but this condition
is not sufficient. Indeed from Proposition 31 it follows that the system with a focus
at the origin can be written as (31) which is equivalent to (8), but not all systems
(31) satisfy the conditions (9) for providing a center. In particular it is well known
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(see [2]) that any quadratic differential system with a center or a focus at the origin
can be written as the systems

(33)
ẋ = −y − λ3x

2 + (2λ2 + λ5)xy + λ6y
2,

ẏ = x + λ2x
2 + (2λ3 + λ4)xy − λ2y

2,

or equivalently (see (8) for m = 2) in to the form

ẋ = {H2 + H3, x} + g1{H2, x}, ẏ = {H2 + H3, y} + g1{H2, y},

with

H3 =
1

3
(λ2 + λ5)x3 + λ3x

2y − 1

3
(λ4 + λ6)y

3 − λ2xy2,

g1 = λ4y − λ5x.

So this proves that the systems of the form (8) not always has a center at the origin.

Proposition 33. Consider the polynomial vector field

X = (−y + X2k−1)
∂

∂x
+ (x + Y2k−1)

∂

∂y
,

where X2k−1 = X2k−1(x, y) and Y2k−1 = Y2k−1(x, y) for k ≥ 2 are homogenous
polynomials of degree 2k −1 for which (30) holds for a given function W . Then the
polynomial differential system associated to X is

(34)

ẋ = −y + {W2k, x} + g2k−2{W2, x} + vk−1x (x2 + y2)k−1

:= −y + X2k−1(x,

ẏ = x + {W2k, y} + g2k−2{W2, y} + vk−1y (x2 + y2)k−1

:= x + X2k−1(y),

where g2k−2 = g2k−2(x, y) is a homogenous polynomial of degree 2k − 2, satisfying

(35)

X2k−1(W2j−2k) + {W2,W2j−2} = vj−2(x
2 + y2)j−1 for j > k,

W2j = νj(x
2 + y2)j+1, vj = 0 for j = 1, . . . , k − 1,

W2j+1 = 0 for j ≥ 1,

where νj is a constant for j = 1, . . . , k − 1,.

Corollary 34. The Liapunov constants for a polynomial vector field of degree m
associated to differential system (31) or (34) can be computing as follows.

(36) vj =
1

2π

∫ 2π

0

X2k−2(W2j−2k+5)|x=cos t, y=sin t dt,

where j ≥ k − 1, if m = 2k − 2, and

(37) vj =
1

2π

∫ 2π

0

X2k−1(W2j−2k)|x=cos t, y=sin t dt,

where j > k if m = 2k − 1.

The results of this subsection are proved in section 6.
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4. The Proofs of Subsection 3.1

Proof of Theorem 7 . Consider a general polynomial vector field of degree m that
we write as

X =




m∑

j=0

Xj(x, y)


 ∂

∂x
+




m∑

j=0

Yj(x, y)


 ∂

∂y
,

where Xj and Yj for j = 0, 1, . . . , m are homogenous polynomials of degree j. Since
the analytic first integral H starts with H2 = (x2 +y2)/2, without loss of generality
this implies that X0(x, y) = Y0(x, y) = 0, X1(x, y) = −y and Y1(x, y) = x. Hence
the following infinite number of equations follow

0 =
dH

dt
=

(
x +

∂ H3

∂x
+ . . .

)
(−y + X2 + X3 + . . .)

+

(
y +

∂ H3

∂y
+ . . .

)
(x + Y2 + Y3 + . . .)

= xX2 + yY2 + {H2,H3}

+xX3 + yY3 +
∂ H3

∂x
X2 +

∂ H3

∂y
Y2 + {H2,H4}

+xX4 + yY4 +
∂ H3

∂x
X3 +

∂ H3

∂y
Y3 +

∂ H4

∂x
X2 +

∂ H4

∂y
Y2 + {H2,H5} + . . .

...
...

...
...

+xXm + yYm +
∂ H3

∂x
Xm−1 +

∂ H3

∂y
Ym−1 + . . . +

∂ Hn

∂x
X2 +

∂ Hm

∂y
Y2 + {H2,Hm+1}

...
...

...
...

Consequently
(38)

xX2 + yY2 + {H2,H3} = 0,

xX3 + yY3 +
∂ H3

∂x
X2 +

∂ H3

∂y
Y2 + {H2,H4} = 0,

xX4 + yY4 +
∂ H3

∂x
X3 +

∂ H3

∂y
Y3 +

∂ H4

∂x
X2 +

∂ H4

∂y
Y2 + {H2,H5} = 0,

...
...

...
...

...
...

xXm + yYn +
∂ H3

∂y
Ym−1 + . . . +

∂ Hm

∂x
X2 +

∂ Hm

∂y
Y2 + {H2,Hm+1} = 0,

∂ H3

∂x
Xm + +

∂ H3

∂y
Ym + . . . +

∂ Hm+1

∂x
X2 +

∂ Hm+1

∂y
Y2 + {H2,Hm+2} = 0,

...
...

...
...

...
....

The first equation of (38) can be rewritten as follows

x

(
X2 +

∂ H3

∂y

)
+ y

(
Y2 − ∂ H3

∂x

)
= 0.
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Solving it with respect to X2 and Y2 we obtain

X2 = −∂ H3

∂y
− yg1 = {H3, x} + g1{H2, x} := X2(x),

Y2 =
∂ H3

∂x
+ xg1 = {H3, y} + g1{H2, y} := X2(y),

where g1 = g1(x, y) is an arbitrary homogenous polynomial of degree one. By
substituting these polynomials into the second equation of (38) we get

x

(
X3 − ∂ H4

∂y
+ g1

∂ H3

∂y

)
+ y

(
Y3 − ∂ H4

∂ x
− g1

∂ H3

∂x

)
= 0.

By solving this equation with respect to X3 and Y3 we have

X3 = −∂ H4

∂y
− g1

∂ H3

∂y
− yg2 = {H4, x} + g1{H3, x} + g2{H2, x} := X3(x),

Y3 =
∂ H4

∂x
+ g1

∂ H3

∂x
+ xg2 = {H4, y} + g1{H3, y} + g2{H2, y} := X3(y),

where g2 = g2(x, y) is an arbitrary homogenous polynomial of degree two. By
continuing this process we obtain X4, Y4, . . . , Xm, Ym

Xm = {Hm+1, x} + g1{Hm, x} + . . . + gm−1{H2, x} := Xm(x),

Ym = {Hm+1, y} + g1{Hm, y} + . . . + gm−1{H2, y} := Xm(y),

where gj = gj(x, y) is an arbitrary homogenous polynomial of degree j. In particular
if Xj = Yj = 0 for 1 < j ≤ m − 1 then for simplicity we assume that

(39) Hk = 0 for 3 ≤ k ≤ m and gj = 0 for 1 < j < m − 1.

Consequently Xm and Ym becomes

Xm = {Hm+1, x} + gm−1{H2, x} := Xm(x),

Ym = {Hm+1, y} + gm−1{H2, y} := Xm(y),

By inserting the previous relations in the remain equations we get the conditions
(9). Thus the proof of the theorem follows. �

Proof of Theorem 8. Now we assume that conditions (9) hold, and we shall prove
that they imply condition (11). Condition (9) in view of (39) becomes

{H2,Hm+k−1} = 0,

for 3 ≤ k ≤ m. Hence

Hm+k−1 =

{
0, if m + k − 1 is odd
akH(m+k−1)/2, if m + k − 1 is even.

where ak is a constant.

For simplicity we assume that

Hm+2 = Hm+3 = . . . = H2m−1 = 0, H2m ̸= 0.
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Consequently for m + 1 ≤ k ≤ 2m − 1 from (9) we get

(40)

0 = Xm (Hm+1) + {H2,H2m}
= {Hm+1,Hm+1} + gm−1{H2,Hm+1} + {H2, H2m},

0 = {H2,Hm+l−1} for m + 1 < l < 2m,

0 = Xm (H2m) + {H2,H3m−1}
= {Hm+1,H2m} + gm−1{H2,H2m} + {H2,H3m−1}.

Again, for simplicity we assume that

H2m+1 = H2m+2 = . . . = H3m−2 = 0, H3m−1 ̸= 0

After some computations from the first equation of (40) we get that

(41)

∂ H2m

∂ x
= −gm−1

∂ Hm+1

∂ x
+ xλ2m−2,

∂ H2m

∂ y
= −gm−1

∂ Hm+1

∂ y
+ yλ2m−2.

where λ2m−2 = λ2m−2(x, y) is an arbitrary homogenous polynomial of degree 2m−
2, which we choose in such a way that

∂2 H2m

∂ x∂ y
=

∂2 H2m

∂ y∂ x
. Hence λ2m−2 must be a

solution of the first order partial differential equation

(42) {Hm+1, gm−1} + {λ2m−2,H2} = 0.

In view of Corollary 6 this equation has a solution if and only if
∫ 2π

0

{Hm+1, gm−1}|x=cos t, y=sin t dt = 0.

After the integration (41) we obtain

H2m =

∫

γ

(−gm−1dHm+1 + λ2m−2dH2) ,

where γ is an oriented curve. Analogously from the last equation of (40) we get

(43)

∂H3m−1

∂x
= (g2

m−1 + λ2m−2)
∂Hm+1

∂x
+ xλ3m−3,

∂H3m−1

∂y
= (g2

m−1 + λ2m−2)
∂Hm+1

∂y
+ yλ3m−3,

where λ3m−3 = λ3m−3(x, y) is an arbitrary homogenous polynomial of degree 3m−3
which we choose in such a way that

(44) {g2
m−1 + λ2m−2,Hm+1} + {λ3m−3,H2} = 0.

In view of Corollary 6 this equation has a solution if and only if
∫ 2π

0

{g2
m−1 + λ2m−2,Hm+1}

∣∣
x=cos t, y=sin t

dt = 0.

After the integration (41) we obtain

H3m−1 =

∫

γ

(
(g2

m−1 + λ2m−2)dHm+1 + λ3m−3dH2

)
,
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By continuing this process and for simplicity we assume that

H3m = H3m+1 = . . . = H4m−3 = 0, H4m−2 ̸= 0,

H4m−1 = H4m = . . . = H5m−4 = 0, H5m−3 ̸= 0,

...
...

...
...

...
...

From the equation

{Hm+1, H3m−1} + gm−1{H2,H3m−1} + {H2, H4m−2} = 0,

and in view of (43), after some computations we deduce that

∂H4m−2

∂x
= −(g3

m−1 + gm−1λ2m−2 + λ3m−3)
∂Hm+1

∂x
+ xλ4m−4,

∂H4m−2

∂y
= −(g2

m−1 + gm−1λ2m−2 + λ3m−3)
∂Hm+1

∂y
+ yλ4m−4,

where λ4m−4 = λ4m−4(x, y) is an arbitrary homogenous polynomial of degree 4m−4
which we choose in such a way that

(45) {Hm+1, g
2
m−1 + gm−1λ2m−2 + λ3m−3} + {λ4m−42,H2} = 0,

In view of Corollary 6 this equation has a solution if and only if
∫ 2π

0

{Hm+1, g
2
m−1 + gm−1λ2m−2 + λ3m−3}

∣∣
x=cos t, y=sin t

dt = 0.

After the integration (41) we obtain

H4m−2 =

∫

γ

(
−(g3

m−1 + gm−1λ2m−2 + λ3m−3))dHm+1 + λ4m−4dH2

)
,

By continuing this process we finally get that the function H is such that

H = H2 + Hm+1 + H2m + H3m−1 + H4m−2 + . . . = H2 +
∞∑

k=0

H(1+k)m+1−k

= H2 + Hm+1 +

∫

γ

(−gm−1 + λ2m−2 + λ3m−3 + λ4m−4 + . . .) ·
(
1 − gm−1 + g2

m−1 − g3
m−1 + . . .

)
dHm+1 +

∫

γ

(λ2m−2 + λ3m−3 + λ4m−4) dH2

= H2 + Hm+1 +

∫

γ

−gm−1 + λ2m−2 + λ3m−3 + λ4m−4 + . . .

1 + gm−1
dHm+1

+

∫

γ

(λ2m−2 + λ3m−3 + λ4m−4) dH2

=

∫

γ

1 + λ2m−2 + λ3m−3 + λ4m−4 + . . .

1 + gm−1
dHm+1

+

∫

γ

(1 + λ2m−2 + λ3m−3 + λ4m−4) dH2

:=

∫

γ

(
1 + Λ

1 + gm−1
dHm+1 + (1 + Λ) dH2

)
,
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where Λ = λ2m−2 + λ3m−3 + . . . . Here we use the expansion at the neighborhoods
of the origin

1 − gm−1 + g2
m−1 − g3

m−1 + . . . =
1

1 + gm−1
.

In view of (42),(44),(45),. . . , we get

{Hm+1, −gm−1 + g2
m−1 + λ2m−2 − g3

m−1 + λ3m−3 + . . .} + {λ2m−2 + λ3m−3 + . . . ,H2}

= {Hm+1,
1 + Λ

1 + gm−1
} + {1 + Λ,H2} = 0.

In short condition (12) holds.

Now we prove that from (11) it follows (9). Indeed, we suppose that the functions

H, Λ and
1

1 + gm−1
have the following expansion at the neighborhood of the origin

H = H2 +
∞∑

k=3

Hk, H2 = 1/2(x2 + y2),

Λ =
∞∑

k=1

Λk,
1

1 + gm−1
= 1 − gm−1 + g2

m−1 − g3
m−1 + . . . ,

where Hj and Λj are homogenous polynomial of degree j. Consequently from (11)
we obtain

dH = dH2 +
∞∑

k=3

dHk =
1 + Λ

1 + gm−1
dHm+1 + (1 + Λ)dH2

= (1 + Λ1 + Λ2 + . . .)
(
1 − gm−1 + g2

m−1 + . . .
)
dHm+1 + (1 + Λ1 + Λ2 + . . .) dH2,

Hence

dHj = Λj−2dH2, j = 3, . . . m,

dHm+1 = dHm+1 + Λm−1dH2,

dHm+j = Λm+j−2dH2 + Λj−1dHm+1 j = 2, . . . ,m − 1,

dH2m = Λ2m−2dH2 + Λm−1dHm+1 − gm−1dHm+1,

dH2m+j = Λ2m+j−2dH2 + Λm+j−1dHm+1 − gm−1ΛjdHm+1 j = 1, . . . ,m − 2,

dH3m−1 = Λ3m−3dH2 + Λ2m−2dHm+1 − gm−1Λm−1dHm+1 + g2
m−1dHm+1,

...
...

...

where dHj =
∂Hj

∂x
dx +

∂Hj

∂y
dy.

From the m − 3 first equations it follows that

∂Hj

∂x
= xΛj−2,

∂Hj

∂y
= yΛj−2, for j = 3, . . . , m.

Thus {H2,Hj} = 0. For simplicity we assume that Hj = 0, for 3 ≤ j ≤ m.
Consequently Λj = 0, 1 ≤ j ≤ m − 2. From the m + 1 equation it follows that
Λm−1 = 0. By inserting in the next equations we get that dHm+j = Λm+j−2dH2 for
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j = 2, . . . , m − 1. Again for simplicity we assume that Hm+j = 0 and consequently
Λm+j−2 = 0 for j = 2, . . . ,m − 1. Thus the rest of equations becomes

dH2m = Λ2m−2dH2 − gm−1dHm+1,

dH2m+j = Λ2m+j−2dH2 j = 1, . . . ,m − 2,

dH3m−1 = Λ3m−3dH2 + Λ2m−2dHm+1 + g2
m−1dHm+1,

...
...

...

Again we assume that H2m+j = 0 and Λ2m+j−2 = 0 for j = 1, . . . ,m − 2.

Hence we get that

∂H2m

∂x
= xΛ2m−2 − gm−1

∂Hm+1

∂x
,

∂H2m

∂y
= yΛ2m−2 − gm−1

∂Hm+1

∂y
,

∂H3m−1

∂x
=

(
g2

m−1 + Λ2m−2

) ∂Hm+1

∂x
+ xΛ3m−3,

∂H3m−1

∂y
= (g2

m−1 + Λ2m−2)
∂Hm+1

∂y
+ yΛ3m−3,

...
...

...

From the equations

∂H2m

∂x
= xΛ2m−2 − gm−1

∂Hm+1

∂x
,

∂H2m

∂y
= yΛ2m−2 − gm−1

∂Hm+1

∂y
,

it follows that

(46)
{H2m,H2} = gm−1{H2, Hm+1},

{H2, Hm+1}Λ2m−2 = {H2m,Hm+1}.

Thus we deduce the equation (9) for k = m + 1, i.e. Xm(Hm+1) + {H2,H2m} = 0.

On the other hand from the equations

∂H3m−1

∂x
=

(
g2

m−1 + Λ2m−2

) ∂Hm+1

∂x
+ xΛ3m−3,

∂H3m−1

∂y
= (g2

m−1 + Λ2m−2)
∂Hm+1

∂y
+ yΛ3m−3,

it follows that

{H3m−1,Hm+1} = Λ3m−3{H2,Hm+1},

{H3m−1,H2} = Λ2m−2{Hm+1,H2} + g2
m−1{Hm+1, H2}

and using (46) we get that

{H3m−1,H2} = Λ2m−2{Hm+1,H2} + g2
m−1{Hm+1, H2}

= −Λ2m−2{H2,Hm+1} − gm−1 (gm−1{H2,Hm+1})

= gm−1{H2,H2m} + {Hm+1,H2m} = Xm(H2m),

hence we get equation (9) for k = 2m, i.e. Xm(H2m) + {H2,H3m−1} = 0.
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By continuing this process we finally obtain the relations (9). The equivalence
between differential system (8) and the equations (10) and (11) is easy to show. In
short the theorem is proved. �

Proof of Corollary 9. The proof of statement (a) follows from the proof of Theorem
8. Indeed, by considering that

H = H2 + Hm+1 + H2m + H3m−1 + . . . = H2 +
∞∑

k=0

H(1+k)m+1−k.

Hence, if m = 2n + 1 then

H = H2 +

∞∑

k=0

H(1+k)(2n+1)+1−k = H2 +

∞∑

k=0

H2(n(1+k)+1).

Thus H(−x,−y) = H(x, y), consequently the phase portrait of the differential
system in this case is symmetric with respect to the origin. By considering that the
origin is a center, then if the the differential system has more centers its number is
odd.

The proof of statement (b) follows from the proof of Theorem 8. Indeed, in this
case differential system can be written as (8). Hence

∂Xm(x)

∂x
+

∂Xm(y)

∂y
= {H2, Hm+1}.

In view of Proposition 4 we get that (13) holds. Thus the corollary is proved. �

5. The Proofs of Subsection 3.2

Proof of Proposition 11 . Assume that polynomial differential equations (3) has a
center at the origin, then they can be written as (8). On the other hand by con-
sidering that the center is a weak center, then we get that Hm+1 = H2Υm−1.
Hence

ẋ = {Hm+1, x} + (1 + gm−1){H2, x} = −H2
∂Υm−1

∂y
− y (1 + Υm−1 + gm−1)

= −x2

2

∂Υm−1

∂y
− y

2

(
(m − 1)Υm−1 − x

∂Υm−1

∂x

)
− y (1 + Υm−1 + gm−1)

= −y

(
1 +

m + 1

2
Υm−1 + gm−1

)
+

x

2
{Υm−1, H2},

here we apply the relation x
∂Υm−1

∂x
+ y

∂Υm−1

∂y
= (m − 1)Υm−1.

Analogously we deduce the expression for ẏ. Hence, by comparing with (14) we
obtain that

Φ = gm−1 +
m + 1

2
Υm−1, φ =

1

2
{Υm−1,H2}.

This completes the proof of the proposition. �

Proof of Theorem 14. We shall study the following four cases:

(i) β((m + 1)β − 1)(2β − 1) ̸= 0,
(ii) β = 1/2,
(iii) β = 0,
(iv) β = 1/(m + 1).
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For the case (i) by introducing the homogenous polynomial of degree m − 1 such
that

Gm−1 = (1 − β(m + 1)) gm−1 + θ(H2),

and by considering that {H2, V } = 0, we obtain that the differential system (17)
becomes

ẋ = −y (1 + Gm−1) +
β

1 − β (m + 1)
x {H2, Gm−1},

ẏ = x (1 + Gm−1) +
β

1 − β (m + 1)
y{H2, Gm−1}.

Hence we obtain that

Ḣ2 = − 2β

(m + 1)β − 1
H2{H2, Gm−1},

Ġm−1 =

(
1 − 1 − 2β

(m + 1)β − 1
Gm−1

)
{H2, Gm−1}.

Thus x2 + y2 = 0 and 1 − 1 − 2β

(m + 1)β − 1
Gm−1 = 0 are invariant algebraic curves of

the polynomial vector field. Their cofactors are
2β{H2, gm−1}
1 − (m + 1)β

and
1 − 2β

1 − (m + 1)β
{H2, gm−1},

respectively. Hence, the system has the Darboux first integral

F =
H2(

1 − 1 − 2β

(m + 1)β − 1
Gm−1

)2β/(1−2β)

.

Hence we deduce the first integrals F of statements (a) and (b). The Taylor ex-
pansion at the origin is F := H = H2(1+h.o.t.). Consequently the origin is a weak
center in this cases.

The case when β = 1/2 by introducing the homogenous polynomial of degree
m − 1 such that

Gm−1 = −(m − 1)/2 gm−1 + Θ(H2)

=

{
−(m − 1)/2 gm−1 ifm is even

−(m − 1)/2 gm−1 + ν H(m−1)/2 ifm is odd,

we get that differential system (17) becomes

ẋ = −y (1 + Gm−1) − x

m − 1
{H2, Gm−1},

ẏ = x (1 + Gm−1) − y

m − 1
{H2, Gm−1},

thus we deduce that

Ḣ2 = − 2H2

m − 1
{H2, Gm−1}, Ġm−1 = {H2, Gm−1}.

Consequently
dH2

dGm−1
= − 2H2

m − 1
, thus F = H2e

2/(m−1) Gm−1 , is a first integral.

This prove statements (c) and (d)

For the case when β = 0 differential system (17) becomes

ẋ = −y (1 + gm−1)+, ẏ = x (1 + gm−1) ,



AN INVERSE APPROACH TO THE CENTER-FOCUS PROBLEM 25

consequently F = H2 is a first integral. This prove statement (e).

For the case when β = 1/(m + 1) we get that differential system (17) becomes

(47)

ẋ = −y (1 + Θ(H2)) +
x

m + 1
{H2, gm−1},

ẏ = x (1 + Θ(H2)) +
y

m + 1
{H2, gm−1},

hence

Ḣ2 =
2

m + 1
H2{H2, gm−1}, ġm−1 = {H2, gm−1}

(
1 +

m − 1

m + 1
gm−1 + Θ(H2)

)
.

consequently

dgm−1

dH2
=

m − 1

2H2
gm−1 + (m + 1)

1 + Θ(H2

2H2
.

After the integration this linear system we get

gm−1 = H
(m+1)/2
2

(
C +

m + 1

2

∫
(1 + θ(H2)dH2

H
(m+1)/2
2

)
,

where C is an arbitrary constant. Hence we get

gm−1

H
(m−1)/2
2

− m + 1

2

∫
(1 + θ(H2)dH2

H
(m+1)/2
2

= C

After some computation we deduce that the first integral is

F =
H2(

1 +
m − 1

m + 1
gm−1 +

m − 1

2
H(m−1)/2

∫
θ(H2)

H
(m−1)/2
2

dH2

)2/(m−1)

=





H2(
1 +

m − 1

m + 1
gm−1

)2/(m−1)
ifm is even,

H2(
1 +

m − 1

m + 1
gm−1 + ν

m − 1

2
H

(m−1)/2
2 log H2

)2/(m−1)
ifm is odd.

It is easy to show that the curve H2 = 0 and

1 + G = 1 +
m − 1

m + 1
gm−1 +

m − 1

2
H(m−1)/2

∫
1 + θ(H2)

H
(m+1)/2
2

dH2 = 0

=





1 +
m − 1

m + 1
gm−1 = 0 ifm is even,

1 +
m − 1

m + 1
gm−1 + ν

m − 1

2
H

(m−1)/2
2 log H2 = 0 if m is odd

are invariant curves of differential system (47). Indeed, the following relation holds

d

dt
(1 + G) = (1 + G){H2, G},

d

dt
(H2) =

2H2

m − 1
{H2, G}.
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Clearly that {H2, G} =
m − 1

m + 1
{H2, gm−1}, thus this cofactor is a polynomial of

degree m − 1. This prove statements (f) and (g). �

This completes the proof of the proposition.

Proof of Proposition 16. It is well known that if the origin is a center of (3), then
this center is uniform if and only if

ẋ = −y + xφ, ẏ = x + yφ,

where φ = φ(x, y) is a homogenous polynomial of degree m − 1. Thus in view of
Proposition 11 the uniform center is a particular case of a weak center (15) with

Φ = gm−1 +
m + 1

2
Υm−1 = 0, φ =

1

m + 1
{H2, gm−1}.

Hence we easily get (18) and comparing with (17) it follows that

Θ(H2) = 0, and β =
1

m + 1
.

Hence the first integral F becomes (see case (f) of Theorem 14)

F =
H2(

1 +
m − 1

m + 1
gm−1

)2/(m−1)
.

The Taylor expansion at the origin is F := H = H2(1 + h.o.t.). This completes the
proof of the proposition. �

Proof of Corollary 17. From the proof of Theorem 16 it follows that θ̇ = 1 and
from F = C by solving with respect to r we get the proof of the corollary. �

Proof of Proposition 20. Polynomial differential system (3) with a center at the
origin satisfies the Cauchy–Riemannn conditions if and only if the homogenous
polynomial Hm+1 and gm−1 are such that

(48)

∆Hm+1 + 2gm−1 =

{
0 ifm is odd,

ν m(m + 1)H
(m−1)/2
2 ifm is even.

(x2 + y2)gm−1 + 2mHm+1 =

{
0 if m is odd,

2mν H
(m+1)/2
2 if m is even,

where ∆ =
∂2

∂x2
+

∂2

∂y2
. Indeed, from (19) with

P = −∂ Hm+1

∂y
− y(1 + gm−1), Q =

∂ Hm+1

∂x
+ x(1 + gm−1),

it follows that

y
∂gm−1

∂x
+ x

∂gm−1

∂y
= −2

∂2Hm+1

∂y∂x
,

y
∂gm−1

∂y
− x

∂gm−1

∂x
=

∂2Hm+1

∂x∂x
− ∂2Hm+1

∂y∂y
.
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Hence

(x2 + y2)
∂gm−1

∂x
= −2y

∂2Hm+1

∂x∂y
− x

∂2Hm+1

∂x∂x
+ x

∂2Hm+1

∂y∂y
,

(x2 + y2)
∂gm−1

∂y
= −2x

∂2Hm+1

∂x∂y
+ y

∂2Hm+1

∂x∂x
− y

∂2Hm+1

∂y∂y
.

Consequently

(x2 + y2)
∂gm−1

∂x
= x∆Hm+1 − 2m

∂Hm+1

∂x
,

(x2 + y2)
∂gm−1

∂y
= y∆Hm+1 − 2m

∂Hm+1

∂y
,

here we apply the relation x
∂H

∂x
+ y

∂Hm+1

∂y
− Hm+1 = mHm+1, or equivalently

∂

∂x

(
(x2 + y2)gm−1 + 2mHm+1

)
= x (∆Hm+1 + 2gm−1) ,

∂

∂y

(
(x2 + y2)gm−1 + 2mHm+1

)
= y (∆Hm+1 + 2gm−1) .

Thus we have

x
∂

∂y
(∆Hm+1 + 2gm−1) − y

∂

∂x
(∆Hm+1 + 2gm−1) = 0.

Therefore (48) follows. Hence we get that

Hm+1 = H2Υm−1 :=





− 1

m
H2gm−1 ifm is odd,

− 1

m
H2gm−1 + ν H

m+1/2
2 ifm is even.

Analogously to the proof of Proposition 11 we deduce differential system (20). By

comparing with (17) we get that β =
1

2m
. Consequently the from Theorem 14 case

(b) we get the first integral (22). In short the proposition is proved. �

Proof of Proposition 23. By Proposition 11 if a differential system (3) has the first
integral F = (x2 + y2)Ω, then it can be written as system (14). Consequently

Ḣ2 = 2H2φ. On the other hand from the condition Ḟ = 0 we get
√̇

Ω = −
√

Ωφ.

Consequently, if u = x
√

Ω and v = y
√

Ω, then

u̇ = ẋ
√

Ω + x
√̇

Ω = −(1 + Φ(x, y))y
√

Ω = −(1 + Φ̃)(u, v) v,

analogously we deduce that v̇ = −(1 + Φ̃)(u, v)u. �

Proof of Corollary 26 . From (15) it follows that

xẏ − yẋ = 2H2

(
1 + gm−1 +

m + 1

2
Υm−1

)
,

which in polar coordinates (r, θ) becomes

θ̇ =

(
1 + gm−1 +

m + 1

2
Hm+1

)∣∣∣∣
x=r cos θ, y=r sin θ

,



28 J. LLIBRE, R. RAMÍREZ AND V. RAMÍREZ

hence it is easy to obtain the proof of the corollary. �

Proof of Corollary 26. From (15) it follows that

xẏ − yẋ = (x2 + y2)

(
1 + gm−1 +

m + 1

2
Υm−1

)
,

which in polar coordinates (r, θ) becomes θ̇ = 1 + gm−1 +
m + 1

2
Υm−1

∣∣∣∣
x=r cos θ, y=r sin θ

.

Hence we easily obtain the proof of the corollary. �

Proof of Theorem 28. Since (27) and (13) hold, by Proposition 27 system has a
center at the origin. Consequently, by Theorem 7 it can be written as

(49)
ẋ = −y + Xm = {H2 + Hm+1, x} + gm−1{H2, x},

ẏ = x + Ym = {H2 + Hm+1, y} + gm−1{H2, y}.

It is easy to prove that relation (27) can be written as

∂

∂x

(
−y + Xm

H
µ/2
2

)
+

∂

∂y

(
x + Ym

H
µ/2
2

)
= 0.

Hence

ẋ = −y + Xm = {H2 + Hm+1, x} + gm−1{H2, x} = H
µ/2
2 {F, x},

ẏ = x + Ym = {H2 + Hm+1, y} + gm−1{H2, y} = H
µ/2
2 {F, y},

where F is a first integral which we determine below.

From (49) follows that

∂Xm

∂x
+

∂Ym

∂y
= {H2, gm−1}, xXm + yYm = {Hm+1, H2},

consequently

λH2{H2, gm−1} = {Hm+1,H2} =⇒ {H2,Hm+1 + λH2gm−1} = 0,

where λ = 2/µ. Thus in view of Corollary 6 we get that

Hm+1 := H2Υm−1 =

{ −λH2gm−1 ifm is even ,

−λH2gm−1 + νH
(m−1)/2
2 ifm is odd,

where ν ∈ R.
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Hence we get that

(50)

ẋ = −y − ∂ Hm+1

∂y
− ygm−1

= − H2
∂ Υm−1

∂y
− y (1 + (1 − λ) gm−1 + Υm−1))

=
x

2
{Υm−1,H2} − y

(
1 + (1 − λ) gm−1 +

m + 1

2
Υm−1)

)

=
λ x

2
{H2, gm−1} − y

(
1 + (1 − λ(m + 1)

2
) gm−1 + Θ(H2))

)
,

ẏ = x +
∂ Hm+1

∂x
+ xgm−1

= H2
∂ Υm−1

∂x
+ x (1 + (1 − λ) gm−1) + Υm−1)

=
y

2
{Υm−1,H2} + x

(
1 + (1 − λ) gm−1 +

m + 1

2
Υm−1)

)

=
λ y

2
{H2, gm−1} + x

(
1 + (1 − λ(m + 1)

2
) gm−1 + Θ(H2))

)
,

where

Θ(H2) =

{
0 if m is even,
ν H(m−1)/2 if m is odd.

From this differential system we obtain the expression (28) for differential system
(3) which satisfies the condition (13) and (27).

Now we show that differential system (28) is integrable. Indeed from equations

(28) and (17) it follows that β =
λ

2
. Hence, from Theorem 14 after some computa-

tions we get the proof of statements (a), (b), (c) and (d) of Theorem 28.

The second condition (13) of the center given in Proposition 27 in this case takes
the form
∫ 2π

0

(
∂Xm(x)

∂x
+

∂Xm(y)

∂y

)
|x=cos t, y=sin tdt =

∫ 2π

0

{H2, Hm+1} |x=cos t, y=sin tdt

=

∫ 2π

0

dHm+1

dt
|x=cos t, y=sin tdt = 0.

Now we shall prove statement (i). Indeed if in (28) we take λ = 1/m, then the
differential system becomes

ẋ = −y (1 + Gm−1) +
x

m − 1
{H2, Gm−1},

ẏ = x (1 + Gm−1) +
y

m − 1
{H2, Gm−1},

where Gm−1 =
m − 1

2m
gm−1 + θ(H2). The first integral F takes the form Fm−1 =

Hm−1
2

(1 + 2Gm−1)
. Thus

Hm−1
2

1 + 2Gm−1
= C. Since Gm−1 is a homogenous polynomial of

degree m−1, then in polar coordinates x = r cos φ, y = r sinφ we have ζ2−2Ψ(θ)ζ−
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C = 0, with ζ = rm−1, where Gm−1 = Ψ(φ)rm−1. Hence ζ = CΨ±
√

C2Ψ2 + C.
Therefore, from the equation φ̇ = 1 + Gm−1(r cos φ, r sin φ) = 1 + ζΨ(φ), we get

∫ 2π

0

dθ

1 + Ψ(CΨ ±
√

C2Ψ2 + C)
=

∫ 2π

0

Cdθ

C + C2Ψ2 ± CΨ
√

C2Ψ2 + C)

=

∫ 2π

0

Cdθ√
C2Ψ2 + C(

√
C2Ψ2 + C ± ΨC)

=

∫ 2π

0

(
√

C2Ψ2 + C ∓ ΨC)dθ√
C2Ψ2 + C

= 2π ∓ C

∫ 2π

0

Ψdθ√
C2Ψ2 + C

= 2π,

thus (29) holds. This completes the proof of statement (i). Now we prove statement
(ii). If Θ(H2) = 0, and λ = 2/(m + 1) then differential system (50) becomes

ẋ = −y +
x

m + 1
{H2, gm−1}, ẏ = x +

y

m + 1
{H2, gm−1}.

Thus xẏ − yẋ = x2 + y2. So the center is a uniform isochronous center.

Finally we prove statement (iii). If λ = 1/m then differential system (28) can be
written as (20). If gm−1 is a homogenous polynomial of degree m−1 which satisfies
(21), then from Corollary 20 the proof follows. �

6. The Proofs of Subsection 3.3

Proof of Proposition 31. From (6) it follows that

(51)

0 = {W2,W3} + xX2 + yY2,

v1(x
2 + y2)2 = {W2,W4} + xX3 + yY3

+
∂ W3

∂x
X2 +

∂ W3

∂y
Y2,

0 = {W2,W5} + xX4 + yY4

+
∂ W3

∂x
X3 +

∂ H3

∂y
Y3

+
∂ W4

∂x
X2 +

∂ W4

∂y
Y2,

v2(x
2 + y2)3 = {W2,W6} + xX5 + yY5

+
∂ W3

∂x
X4 +

∂ H3

∂y
Y4

+
∂ W4

∂x
X3 +

∂ W4

∂y
Y3 +

∂ W5

∂x
X2 +

∂ W5

∂y
Y2,

...
...

...
...

...
...
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0 = {W2,W2k−3} + xX2k−2 + yY2k−2

+
∂ W3

∂x
X2k−3 +

∂ W3

∂y
Y2k−3

+ . . . +
∂ W2k−4

∂x
X2 +

∂ W2k−4

∂y
Y2,

vk−1(x
2 + y2)k = {W2,W2k} + xX2k−1 + yY2k−1

+
∂ W3

∂x
X2k−2 +

∂ W3

∂y
Y2k−2

+ . . . +
∂ W2k−3

∂x
X2 +

∂ W2k−3

∂y
Y2,

...
...

...
...

...
....

First we solve Problem 30 for m = 2. Thus Xj = Yj = 0 for j > 2. The first
equation of (51) can be rewritten as follows

x

(
X2 +

∂ W3

∂y

)
+ y

(
Y2 − ∂ W3

∂x

)
= 0.

Solving it with respect to X2 and Y2 we obtain

X2 = −∂ W3

∂y
− yg1 = {W3, x} + g1{W2, x} := X2(x),

Y2 =
∂ W3

∂x
+ xg1 = {W3, y} + g1{W2, y} := X2(y),

where g1 = g1(x, y) is an arbitrary homogenous polynomial of degree one. By
substituting these polynomials into the rest of equations of (52) for j = 1, 2, . . . we
get

X2(W2j+1) = vj(x
2 + y2)j+1 + {W2j+2, W2},

X2(W2j+2) = {W2j+3,W2}.

Now we solve Problem 30 for m = 3. Thus X2 = Y2 = Xj = Yj = 0 for j > 3. From
the second equation of (51) we deduce that

x

(
X3 − xv1(x

2 + y2) − ∂ W4

∂y

)
+ y

(
Y3 − yv1(x

2 + y2) − ∂ W4

∂ x

)
= 0.

By solving this equation with respect to X3 and Y3 we have

X3 = −∂ W4

∂y
− yg2 + xv1(x

2 + y2)

= {W4, x} + xv1(x
2 + y2) := X3(x),

Y3 =
∂ W4

∂x
+ xg2 + yv1(x

2 + y2)

= {W4, y} + g2{W2, y} + yv1(x
2 + y2) := X3(y),

where g2 = g2(x, y) is an arbitrary homogenous polynomial of degree two. Inserting
in the rest of the equations of (51) we get for j = 1, 2, . . . that

X3(W2j) = vj(x
2 + y2)j+1 + {W2j+2,W2},

{W2j+1,W2} = 0.
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Now we solve Problem 30 for m > 3. Thus Xj = Yj = 0 for 2 ≤ j < m and j > m.
First we study the case when m = 2k − 2 ≥ 4. From (51) it follows that

(52)

{W3,W2} = 0,

v1(x
2 + y2)2 + {W4,W2} = 0,

{W5,W2} = 0,

v2(x
2 + y2)3 + {W6,W2} = 0,

...
...

...
...

vk−1(x
2 + y2)k−1 + {W2k−2,W2} = 0,

{W2k−1,W2} = xX2k−2 + yY2k−2,

vk−1(x
2 + y2)k + {W2k,W2} =

∂ W3

∂x
X2k−2 +

∂ W3

∂y
Y2k−2,

{W2k+1,W2} =
∂ W4

∂x
X2k−2 +

∂ W4

∂y
Y2k−2,

...
...

...
...

Consequently in view of Proposition 4, from (52) we get that

W2j−1 = 0, W2j = νj(x
2 + y2)j+1, vj = 0 for j = 1, . . . , k − 1.

Xm and Ym becomes

X2k−2 = {H2k−1, x} + g2k−3{H2, x} := X2k−2(x),

Y2k−2 = {H2k−1, y} + g2k−3{H2, y} := X2k−2(y).

Substituting in the remaining equations of (52) we get the differential equations
(32). Thus the proof of the proposition follows. �
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Proof of Proposition 33. From (6) it follows that

(53)

{W3,W2} = 0,

v1(x
2 + y2)2 + {W4,W2} = 0,

{W5,W2} = 0,

v2(x
2 + y2)3 + {W6,W2} = 0,

...
...

...

vk−1(x
2 + y2)k−1 + {W2k−2,W2} = 0,

{W2k−1,W2} = 0,

vk−1(x
2 + y2)k + {W2k,W2} = xX2k−1 + yY2k−1,

{W2k+1,W2} =
∂ W3

∂x
X2k−1 +

∂ W3

∂y
Y2k−1,

vk(x2 + y2)k+1 + {W2k+2,W2} =
∂ W4

∂x
X2k−1 +

∂ W4

∂y
Y2k−1,

...
...

... .

Consequently in view of Proposition 4, from (53) we get that W2j+1 = 0 for j ≥ 1,
W2j = νj(x

2 + y2)j+1, vj = 0 for j = 1, . . . , k − 1, and X2k−1 and Y2k−1

becomes

X2k−1 = {H2k, x} + g2k−2{H2, x} + vkx(x2 + y2)k−1 := X2k−1(x),

Y2k−1 = {H2k, y} + g2k−2{H2, y} + vky(x2 + y2)k−1 := X2k−1(y).

Substituting in the rest of equations of (53) we get the differential equations (35).
Thus the proof of the proposition follows. �

Proof of Corollary 34 . It is easy to obtain from (32) and (35), by considering
Proposition 4. Indeed, from (32) it follows that

∫ 2π

0

(
vj(x

2 + y2)j+1 − X2k−2(W2j−2k+5) − {W2,W2j+2}
)∣∣

x=cos t, y=sin t
dt,

consequently, by considering Corollary 6 we get

vj =
1

2π

∫ 2π

0

X2k−2(W2j−2k+5)|x=cos t, y=sin t dt,

hence (36) follows.

Analogously, from (35) we obtain (37). Thus the corollary is proved. �

6.1. Classification of quadratic and cubic planar differential system with
a weak center. For nondegenerate quadratic center (see for instance [2]) and
cubic center (see for instance [16, 22]) the center problem has been solved in terms
of algebraic equalities satisfied by the coefficients.
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Proposition 35. For the quadratic polynomial differential system (33) the origin
is a center if and only if one of the following four conditions holds

(54)

(i) λ4 = λ5 = 0,

(ii) λ2 = λ5 = 0,

(iii) λ3 − λ6 = 0,

(iv) λ5 = 0, λ4 + 5(λ3 − λ6) = 0, λ3λ6 − 2λ2
6 − λ2

2 = 0.

Theorem 36. A quadratic polynomial differential system (33) has a weak center
at the origin if and only if a linear change of coordinates x, y and a scaling of time
t it can be written as one of the following systems

(55)
ẋ = −y (1 + 3λ3y) − λ3x

2,

ẏ = x (1 + 3λ3y) − λ3xy;

(56)
ẋ = −y ((1 − λ6y) − λ3x

2,

ẏ = x ((1 − λ6y) − λ3xy;

(57)
ẋ = −y (1 + λ2x − λ6y) − x(λ2x + λ6y),

ẏ = x (1 + λ2x − λ6y) − y(λ2x + λ6y);

(58)
ẋ = −y − λ3x

2,

ẏ = x − λ3xy;

(59)
ẋ = −y (1 − λ6y) − 2λ6xy,

ẏ = x (1 − λ6y) − 2λ6y
2.

Proof. Indeed, differential system (33) can be rewritten as (14) if and only if

(60) λ4 + λ6 + 3λ3 = 0, λ5 + 4λ2 = 0.

Consequently system (33) becomes

ẋ = −y(1 + λ2x − λ6y) − x(λ3x + λ2y),

ẏ = x(1 + λ2x − λ6y) − y(λ3x + λ2y),

In view of (54) and taking into account the condition (60) we get λ4 = λ2 = λ5 =
0 and λ6 = −3λ3, then we obtain the differential system (55); λ5 = λ2 = 0, and
λ4 +λ6 +3λ3 = 0, then we obtain the differential system (56); λ3 = λ6, λ5 = −4λ2,
and λ4 = −4λ3, then we obtain the differential system (57); λ5 = λ2 = 0, λ4 +
5(λ3 − λ6) = 0 and λ6(λ3 − 2λ6) = 0, then we have either λ5 = λ2 = λ6 = 0,
λ4 + 5λ3 = 0, or λ5 = λ2 = 0, λ3 = 2λ6 and λ4 + 5λ6 = 0. Therefore we get the
differential system (58) or (59). In short, the theorem is proved. �

Remark 37. In the paper [3] the classification of isochronous quadratic centers
is given. From this classification there are only two isochronous centers which are
weak centers, that can be obtained from equation (56) for λ3 = λ6 = −1, and
λ3 = −1, λ6 = 0. These systems are

ẋ = −y + x2 − y2, ẏ = x + 2xy,
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and
ẋ = −y + x2, ẏ = x + xy,

respectively.

Proposition 38. For the cubic polynomial differential system

(61)
ẋ = −y + Ax3 + Bx2y + Cxy2 + Dy3,

ẏ = x + Kx3 + Lx2y + M xy2 + Ny3,

the origin is a center if and only if one of the following sets of conditions hold

(62)

(i) 3A + L + C + 3N = 0,

(3A + L)(B + D + K + M) − 2(A − N)(B + M) = 0,

2(A + N)
(
(3A + L)2 − (B + M)2

)

+(3A + L)(B + M)(B + K − D − M) = 0,

(ii) 3A + L + C + 3N = 0,

2A + C − L − 2N = 0,

B + 3D − 3K − M = 0,

B + 5D + 5K + M = 0,

(A + 3N)(3A + N) − 16DK = 0.

Theorem 39. A cubic polynomial differential system (61) has a weak center at the
origin if and only if after a linear change of coordinates x, y and a scaling of time
t it can be written as one of the following systems If N ̸= 0,

(63)

ẋ = −y

(
1 + Kx2 + (N + L)xy +

(
K − B

2
− LB + LK

2N

)
y2

)

+x
(
N(y2 − x2) + (K + B)xy

)
,

ẏ = x

(
1 + Kx2 + (N + L)xy +

(
K − B

2
− LB + LK

2N

)
y2

)

+y
(
N(y2 − x2) + (K + B)xy

)
;

if N = 0, then we have either the system

(64)
ẋ = −y

(
1 + Kx2 − Dy2

)
+ (K + B)x2y,

ẏ = x
(
1 + Kx2 − Dy2

)
+ (K + B)xy2;

or the system

(65)
ẋ = −y

(
1 + Lxy − Bx2 − Dy2

)
,

ẏ = x
(
1 + Lxy − Bx2 − Dy2

)
.

Proof. Indeed, differential system (61) can be rewritten as (14) if and only if

(66) L + C = A + N, M + D = B + K.

Consequently (61) becomes

ẋ = −y
(
1 + (N − C)xy + Kx2 − Dy2

)
+ x

(
(L − N + C)x2 + (B + K)xy + Ny2

)
,

ẋ = x
(
1 + (N − C)xy + Kx2 − Dy2

)
+ y

(
(L − N + C)x2 + (B + K)xy + Ny2

)
,
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By solving (66) together with (62) (i) we deduce that this system have no solution.
Thus center of cubic system (61) under the conditions (62) (i) is not a weak center.

By solving (66) together with (62) (ii) we deduce that this system have three
solution.

(i) If N ̸= 0 then A + N = 0 and L + C = 0, 2ND = N(B − K) + L(B + K).
This solution provides the differential system (63).

If N = 0 then there exist two solutions.
(ii) If N = 0 then A = 0 and L = 0. This solution provides the differential

system (64).

• (iii)] If N = 0 then A = 0 and K + B = 0. This solution provides the
differential system (65).

Thus the centers of cubic systems (61) under the conditions (62) (ii)
generate three weak centers.

In short, the theorem is proved. �
Remark 40. In the paper [3] the classification of the all isochronous cubic centers
is given. From this classification there are two isochronous centers which are weak
centers, that can be obtained from (63) for N = −1, B = K = 0, and N = −L =
−1, K = B = 0, These cubic systems are

ẋ = −y + x3 − 3xy2 = −y(1 + 2xy) + x(x2 − y2),

ẏ = x + 3x2y − y3 = x(1 + 2xy) + y(x2 − y2),

and
ẋ = −y + x3 − xy2 = −y + x(x2 − y2),

ẏ = x + x + x2y − y3 = x + y(x2 − y2),

respectively.
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