LIMIT CYCLES FOR A VARIANT OF A GENERALIZED RICCATI EQUATION

JAUME LLIBRE1 AND CLAUDIA VALLS2

Abstract. In this paper we provide a lower bound for the maximum number of limit cycles surrounding the origin of systems $(\dot{x}, \dot{y} = \ddot{x})$ given by a variant of the generalized Riccati equation

$$\ddot{x} + \varepsilon x^{2n+1}\dot{x} + bx^{4n+3} = 0,$$

where $b > 0$, $b \in \mathbb{R}$, n is a non-negative integer and ε is a small parameter. The tool for proving this result uses Abelian integrals.

1. Introduction and statement of the main results

Some variants of the generalized Riccati equation

$$\ddot{x} + \alpha x^{2n+1}\dot{x} + x^{4n+3} = 0,$$ \hspace{1cm} (1)

have been studied for several authors, see for instance [8], [5], and the references quoted there. In the first paper the authors studied mainly the following variant of equation (1)

$$\ddot{x} + (2n + 3)x^{2n+1}\dot{x} + x^{4n+3} + \omega^2 x = 0,$$

showing numerically that such differential equation exhibits isochronous oscillations. In the second paper the authors study the variant of equation (1)

$$\ddot{x} + (2n + 3)x^{2n+1}\dot{x} + x^{4n+3} + \omega^2 x^{2n+1} = 0,$$

and they find the analytical expression of some particular solutions.

In the present paper we will study the following variant of the generalized Riccati equation (1)

$$\ddot{x} + \varepsilon x^{2n+1}\dot{x} + bx^{4n+3} + \varepsilon a(x + yq(x)) = 0,$$ \hspace{1cm} (2)

where $a, b \in \mathbb{R}$ with $b \neq 0$, n is a non-negative integer, ε is a small parameter and $q(x)$ is a polynomial of degree m.

2010 Mathematics Subject Classification. 37G15, 37D45.

Key words and phrases. generalized Riccati system, Limit cycles, weak 16th Hilbert problem, Abelian integral.
Equation (1) can be written as
\begin{align*}
\dot{x} &= y, \\
\dot{y} &= -bx^{4n+3} - \varepsilon a(x + yq(x)) - \varepsilon x^{2n+1}y,
\end{align*}
(3)
or equivalently in the form
\begin{align*}
\dot{x} &= \frac{\partial H}{\partial y} + \varepsilon P(x, y), \\
\dot{y} &= \frac{\partial H}{\partial x} + \varepsilon Q(x, y),
\end{align*}
(4)

where
\begin{equation}
H(x, y) = \frac{y^2}{2} + \frac{bx^{4n+4}}{4n+4},
\end{equation}
(5)
and
\begin{align*}
P(x, y) &= 0, \\
Q(x, y) &= -a(x + yq(x)) - x^{2n+1}y.
\end{align*}

Observe that for \(b > 0 \) there is a family of ovals \(\gamma_h \subset H^{-1}(h) \) continuously depending on a parameter \(h > 0 \) and varying in the compact components of \(H^{-1}(h) \). Moreover all the ovals \(\gamma_h \) fill up the plane \(\mathbb{R}^2 \) when \(h \) varies on all positive real numbers. These ovals are periodic orbits of the Hamiltonian system (4) with \(\varepsilon = 0 \).

The objective of this paper is to find the maximum number of values of \(h \) (that we denote by \(h^{\ast} \)) for which it bifurcate from \(\gamma_h^{\ast} \) a limit cycle of the differential system (4) for \(|\varepsilon| > 0 \) sufficiently small.

Theorem 1. For \(|\varepsilon| > 0 \) sufficiently small there are systems (3) with \(b > 0 \) having \(m \) limit cycles \(\Gamma_{h_m} \) that when \(\varepsilon \to 0 \) tend to periodic orbits \(\gamma_{h_m}^{\ast} \) of the Hamiltonian system (3) with \(b > 0 \) and \(\varepsilon = 0 \). Moreover there are polynomials \(q(x) \) for which the differential system (3) with \(b > 0 \) and \(|\varepsilon| > 0 \) sufficiently small has exactly \(m \) limit cycles.

The proof of Theorem 1 is given in section 2.

Note that Theorem 1 is closely related to the weakened 16th Hilbert problem proposed by Arnold in [1, 2] which in its turn is closely related to determining an upper bound for the number of limit cycles of a perturbed Hamiltonian system of the form in (4). For other papers on limit cycles see for instance [6, 7] and the references quoted there.

2. Proof of Theorem 1

To prove Theorem 1 we will use use the following Theorem whose proof can be obtained, for instance, in [4].
Theorem 2. Assume that there is a family of ovals \(\gamma_h \subset H^{-1}(h) \), continuously depending on \(h \in (a, b) \). Define the Abelian integral as

\[
I(h) = \int_{\gamma_h} P(x, y) \, dy - Q(x, y) \, dx.
\]

If there exists an \(h^* \in (a, b) \) such that \(I(h^*) = 0 \) and \(I'(h^*) \neq 0 \) then for \(\varepsilon \) sufficiently small, the Hamiltonian system (4) has at most one limit cycle \(\Gamma_{h^*} \) which tends to \(\gamma_{h^*} \) as \(\varepsilon \to 0 \).

We first write the polynomial \(q(x) = \sum_{i=0}^{n} q_i x^i \). Note that the unperturbed system (2) (with \(\varepsilon = 0 \)) is Hamiltonian with the Hamiltonian \(H \) given in (5). The periodic orbits of the unperturbed system (2) with \(h > 0 \) are the ovals \(\gamma_h \). Now we will use Theorem 2 and so we shall compute the Abelian integral \(I(h) \) given in (6). We have

\[
I(h) = \int \int_{H(x,y) \leq h} \frac{\partial}{\partial y} (x^{2n+1} y + a(x + yq(x))) \, dx \, dy
= \int \int_{H(x,y) \leq h} (x^{2n+1} + aq(x)) \, dx \, dy
= \int \int_{H(x,y) \leq h} x^{2n+1} \, dx \, dy + \sum_{i=0}^{m} q_i \int \int_{H(x,y) \leq h} x^i \, dx \, dy
= 2 \int_{-\pi}^{\pi} x^{2n+1} \left(2h - \frac{b}{2(n+1)} x^{4(n+1)} \right)^{1/2} \, dx
+ 2a \sum_{i=0}^{m} q_i \int_{-\pi}^{\pi} x^i \left(2h - \frac{b}{2(n+1)} x^{4(n+1)} \right)^{1/2} \, dx,
\]

where

\[
\pi = \left(\frac{4h(n+1)}{b} \right)^{1/(4(n+1))}.
\]

Note that for any integer \(j \) we have

\[
\int_{-\pi}^{\pi} x^j \left(2h - \frac{b}{2(n+1)} x^{4(n+1)} \right)^{1/2} \, dx = \frac{2^{j-n}}{2^{j-n+2}} (1 + (-1)^j) b^{-\frac{j+1}{4n+4}} (n + 1)^{\frac{j+1}{4n+4}} \sqrt{\pi} \Gamma \left(\frac{j+4n+5}{4n+4} \right) \bar{h}^{\frac{j+4n+5}{4n+4}} (j + 1) \Gamma \left(\frac{j+6n+7}{4n+4} \right),
\]

being \(\Gamma(\cdot) \) the Gamma function. If \(\bar{h} = h^{1/(4(n+1))} \) and

\[
B_{j,n} = \frac{2^{j-n}}{2^{j-n+2}} (1 + (-1)^j) b^{-\frac{j+1}{4n+4}} (n + 1)^{\frac{j+1}{4n+4}} \sqrt{\pi} \Gamma \left(\frac{j+4n+5}{4n+4} \right)
\]

\[
\frac{(j + 1) \Gamma \left(\frac{j+6n+7}{4n+4} \right)}{(j + 1) \Gamma \left(\frac{j+6n+7}{4n+4} \right)}
\]
Then
\[J(h) = I(h) = 2h^{4n+5} \left(B_{2n+1,n}h^{2n+1} + a \sum_{i=0}^{m} q_i B_{i,n}h^i \right). \]

Note that \(J(h) \) has at most \(m \) simple positive zeros if \(m \geq 2n + 1 \), and by generalized Descartes theorem (see the Appendix) \(J(h) \) has at most \(m \) simple positive zeros if \(m < 2n + 1 \).

Since the coefficients \(q_i \) are arbitrary, we can choose a perturbation \(q(x) \) in such a way that \(J(h) \) has exactly \(m \) simple positive zeros, and consequently there are differential systems (3) with \(m \) limit cycles. This concludes the proof of the theorem.

3. Appendix

We recall the Descartes Theorem about the number of zeros of a real polynomial (for a proof see for instance [3]).

Descartes Theorem Consider the real polynomial \(p(x) = a_{i_1}x^{i_1} + a_{i_2}x^{i_2} + \cdots + a_{i_r}x^{i_r} \) with \(0 \leq i_1 < i_2 < \cdots < i_r \) and \(a_{i_j} \neq 0 \) real constants for \(j \in \{1, 2, \cdots, r\} \). When \(a_{i_j}a_{i_{j+1}} < 0 \), we say that \(a_{i_j} \) and \(a_{i_{j+1}} \) have a variation of sign. If the number of variations of signs is \(r-1 \), then \(p(x) \) has at most \(m \) positive real roots. Moreover, it is always possible to choose the coefficients of \(p(x) \) in such a way that \(p(x) \) has exactly \(r-1 \) positive real roots.

Acknowledgements

The first author is partially supported by a MINECO grant number MTM2013-40998-P, an AGAUR grant number 2014SGR-568 and the grants FP7-PEOPLE-2012-IRSES 318999 and 316338. The second author is partially supported by FCT/Portugal through UID/MAT/04459/2013.

References

1 Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain.

E-mail address: jllibre@mat.uab.cat

2 Departamento de Matemática, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal.

E-mail address: cvalls@math.ist.utl.pt