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LIMIT CYCLES FOR A VARIANT OF A
GENERALIZED RICCATI EQUATION

JAUME LLIBRE1 AND CLAUDIA VALLS2

Abstract. In this paper we provide a lower bound for the max-
imum number of limit cycles surrounding the origin of systems
(ẋ, ẏ = ẍ) given by a variant of the generalized Riccati equation

ẍ + εx2n+1ẋ + bx4n+3 = 0,

where b > 0, b ∈ R, n is a non–negative integer and ε is a small
parameter. The tool for proving this result uses Abelian integrals.

1. Introduction and statement of the main results

Some variants of the generalized Riccati equation

(1) ẍ + αx2n+1ẋ + x4n+3 = 0,

have been studied for several authors, see for instance [8], [5], and the
references quoted there. In the first paper the authors studied mainly
the following variant of equation (1)

ẍ + (2n + 3)x2n+1ẋ + x4n+3 + ω2x = 0,

showing numerically that such differential equation exhibits isochronous
oscillations. In the second paper the authors study the variant of equa-
tion (1)

ẍ + (2n + 3)x2n+1ẋ + x4n+3 + ω2x2n+1 = 0,

and they find the analytical expression of some particular solutions.

In the present paper we will study the following variant of the gen-
eralized Riccati equation (1)

(2) ẍ + εx2n+1ẋ + bx4n+3 + εa(x + yq(x)) = 0,

where a, b ∈ R with b ̸= 0, n is a non–negative integer, ε is a small
parameter and q(x) is a polynomial of degree m.
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Equation (1) can be written as

ẋ = y,

ẏ = −bx4n+3 − εa(x + yq(x)) − εx2n+1y,
(3)

or equivalently in the form

ẋ = −∂H

∂y
+ εP (x, y),

ẏ =
∂H

∂x
+ εQ(x, y),

(4)

where

(5) H(x, y) =
y2

2
+

bx4n+4

4n + 4
,

and
P (x, y) = 0, Q(x, y) = −a(x + yq(x)) − x2n+1y.

Observe that for b > 0 there is a family of ovals γh ⊂ H−1(h) contin-
uously depending on a parameter h > 0 and varying in the compact
components of H−1(h). Moreover all the ovals γh fill up the plane R2

when h varies on all positive real numbers. These ovals are periodic
orbits of the Hamiltonian system (4) with ε = 0.

The objective of this paper is to find the maximum number of values
of h (that we denote by h∗) for which it bifurcate from γh∗ a limit cycle
of the differential system (4) for |ε| > 0 sufficiently small.

Theorem 1. For |ε| > 0 sufficiently small there are systems (3) with
b > 0 having m limit cycles Γh∗

m
that when ε → 0 tend to periodic orbits

γh∗
m

of the Hamiltonian system (3) with b > 0 and ε = 0. Moreover
there are polynomials q(x) for which the differential system (3) with
b > 0 and |ε| > 0 sufficiently small has exactly m limit cycles.

The proof of Theorem 1 is given in section 2.

Note that Theorem 1 is closely related to the weakened 16th Hilbert
problem proposed by Arnold in [1, 2] which in its turn is closely related
to determining an upper bound for the number of limit cycles of a
perturbed Hamiltonian system of the form in (4). For other papers on
limit cycles see for instance [6, 7] and the references quoted there.

2. Proof of Theorem 1

To prove Theorem 1 we will use use the following Theorem whose
proof can be obtained, for instance, in [4].
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Theorem 2. Assume that there is a family of ovals γh ⊂ H−1(h),
continuously depending on h ∈ (a, b). Define the Abelian integral as

(6) I(h) =

∫

γh

P (x, y) dy − Q(x, y) dx.

If there exists an h∗ ∈ (a, b) such that I(h∗) = 0 and I ′(h∗) ̸= 0 then
for ε sufficiently small, the Hamiltonian system (4) has at most one
limit cycle Γh∗ which tends to γh∗ as ε → 0.

We first write the polynomial q(x) =
∑n

i=0 qjx
j. Note that the un-

perturbed system (2) (with ε = 0) is Hamiltonian with the Hamiltonian
H given in (5). The periodic orbits of the unperturbed system (2) with
h > 0 are the ovals γh. Now we will use Theorem 2 and so we shall
compute the Abelian integral I(h) given in (6). We have

I(h) =

∫ ∫

H(x,y)≤h

∂

∂y
(x2n+1y + a(x + yq(x))) dx dy

=

∫ ∫

H(x,y)≤h

(x2n+1 + aq(x)) dx dy

=

∫ ∫

H(x,y)≤h

x2n+1 dx dy + a

m∑

i=0

qi

∫ ∫

H(x,y)≤h

xi dx dy

= 2

∫ x

−x

x2n+1

(
2h − b

2(n + 1)
x4(n+1)

)1/2

dx

+ 2a
m∑

i=0

qi

∫ x

−x

xi

(
2h − b

2(n + 1)
x4(n+1)

)1/2

dx,

where

x =
(4h(n + 1)

b

)1/(4(n+1))

.

Note that for any integer j we have
∫ x

−x

xj

(
2h − b

2(n + 1)
x4(n+1)

)1/2

dx =

2
j−n
2n+2 (1 + (−1)j) b− j+1

4n+4 (n + 1)
j+1
4n+4

√
π Γ

(
j+4n+5
4n+4

)

(j + 1)Γ
(

j+6n+7
4n+4

) h
j+4n+5
4n+4 ,

being Γ(·) the Gamma function. If h = h1/(4(n+1)) and

Bj,n =
2

j−n
2n+2 (1 + (−1)j) b− j+1

4n+4 (n + 1)
j+1
4n+4

√
π Γ

(
j+4n+5
4n+4

)

(j + 1)Γ
(

j+6n+7
4n+4

)
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Then

J(h) = I(h) = 2h
4n+5

(
B2n+1,nh

2n+1
+ a

m∑

i=0

qiBi,nh
i
)

.

Note that J(h) has at most m simple positive zeros if m ≥ 2n+1, and
by generalized Descartes theorem (see the Appendix) J(h) has at most
m simple positive zeros if m < 2n + 1.

Since the coefficients qi are arbitrary, we can choose a perturbation
q(x) in such a way that J(h) has exactly m simple positive zeros, and
consequently there are differential systems (3) with m limit cycles. This
concludes the proof of the theorem.

3. Appendix

We recall the Descartes Theorem about the number of zeros of a real
polynomial (for a proof see for instance [3]).

Descartes Theorem Consider the real polynomial p(x) = ai1x
i1 +

ai2x
i2 + · · · + airx

ir with 0 ≤ i1 < i2 < · · · < ir and aij ̸= 0 real
constants for j ∈ {1, 2, · · · , r}. When aijaij+1

< 0, we say that aij and
aij+1

have a variation of sign. If the number of variations of signs is
r−1, then p(x) has at most m positive real roots. Moreover, it is always
possible to choose the coefficients of p(x) in such a way that p(x) has
exactly r − 1 positive real roots.
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LIMIT CYCLES 5

[5] A. Ghose-Choudhury and P. Guha, An analytic technique for the
solutions of nonlinear oscillators with damping using the Abel Equation,
arXiv:1608.02324v1.

[6] J. Llibre and L. Roberto, On the periodic orbits of the third-order dif-
ferential equation x′′′ − µx′′ + x′ − µx = εF (x, x′, x′′), Applied Mathematics
Letters 26 (2013),425–430.

[7] J. Llibre and M.A. Teixeira, Limit cycles bifurcating from a 2–dimensional
isochronous cylinder, Applied Mathematics Letters 22 (2009), 1231–1234.

[8] A. Sarkar, P. Guha, A. Ghose-Choudhury, J.K. Bhattacharjee,
A.K. Mallik and P.G.L. Leach, On the properties of a variant of the
Riccati system of equations, J. Phys. A: Math. Theor. 45 (2012), 415101 (9
pp).
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