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Abstract. We give a complete algebraic characterization of the non-degenerated cen-
ters for planar trigonometric Liénard systems. The main tools used in our proof are the
classical results of Cherkas on planar analytic Liénard systems and the characterization
of some subfields of the quotient field of the ring of trigonometric polynomials. Our
results are also applied to some particular subfamilies of planar trigonometric Liénard
systems. The results obtained are reminiscent of the ones for planar polynomial Liénard
systems but the proofs are different.

1. Introduction and main results

The aim of this paper is to characterize the non-degenerated centers for the planar
systems associated to the second order trigonometric Liénard differential equations θ̈ =
g(θ) + f(θ)θ̇, where f, g are trigonometric polynomials with real coefficients and the dot
denotes the derivative with respect to the time.

The analysis of equations of this form is motivated by a number of problems resulting
from pendulum-like equations appearing in the literature. Equations of this form, like
θ̈ + sin(θ) = εθ̇ cos(nθ), or the Josephson equation θ̈ + sin(θ) = ε[a − (1 + γ cos(θ)) θ̇],
are considered in [9, 16, 17] or [2, 14, 18, 19], respectively. Also the perturbed whirling

pendulum, θ̈ = sin θ(cos θ − γ) + ε(cos θ + α) θ̇, see [15] falls in this class. Here a, γ, α
and ε are real constants and n ∈ N.

As usual we will write the above second order trigonometric differential equation as
the autonomous planar system

{
θ̇ = y,

ẏ = g(θ) + yf(θ),
(1)

and we will assume that f(0) = 0, g(0) = 0, g′(0) < 0, where the prime denotes the
derivative with respect to θ. These hypotheses on g imply that the origin is either a
center or a weak focus. Our main result is:

Theorem 1. System (1) has a center at the origin if and only if

(i) Either f = αg for some α ∈ R, or
(ii) There exist a real trigonometric polynomial p and two real polynomials f1 and g1

satisfying p′(0) = 0, g1(p(0))p′′(0) < 0, and such that

f(θ) = f1(p(θ))p
′(θ), g(θ) = g1(p(θ))p

′(θ). (2)
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Jaume Giné, Clàudia Valls, J. Differential Equations, vol. 263, 3928–3942, 2017.
DOI: [10.1016/j.jde.2017.05.008]

10.1016/j.jde.2017.05.008


2 A. GASULL, J. GINÉ, AND C. VALLS

The proof of this result is based on the following tools. First, the characterization of
the non-degenerated centers for analytic differential equations given by Cherkas in [3],
developed in [5] and later improved for polynomial Liénard systems in [4]. Secondly, a
version of Luröth Theorem (see [20] or Theorem 5 below) for trigonometric polynomials
given in [7, 13] and stated as Theorem 7. We will recall these results in Section 2.

From condition (2), by introducing the functions

F (θ) =

∫ θ

0

f(s) ds, G(θ) =

∫ θ

0

g(s) ds, (3)

if follows that, for trigonometric Liénard systems having a center of type (ii),

F (θ) = F1(p(θ)), G(θ) = G1(p(θ)), (4)

for some polynomial functions F1 and G1, with p′(0) = 0, G′1(p(0))p′′(0) < 0. This
equivalent expression is commonly used to characterize the centers of polynomial Liénard
systems, see [4].

We want to remark that the centers of item (i) in the theorem have explicit global
first integrals,

H(θ, y) =

{
y2 − 2G(θ), when α = 0,

(1 + αy) exp
(
α2G(θ)− αy

)
, when α 6= 0.

(5)

On the other hand, the centers of item (ii) correspond to orbitally reversible centers
with respect to a given curve, see [4, 6, 21], or the proof of the sufficiency part of the
theorem.

Nevertheless the case of item (i) can also be written similarly that the one of item (ii)
simply taking f1 = α, g1 = 1, and p = G, but notice that in this case G does not need
to be necessarily a trigonometric polynomial.

There are several differences between polynomial and trigonometrical polynomials that
make that our proof of Theorem 1 is not a simple consequence of the parallel result for
the polynomial case (see [4] or Theorem 4 below). Two of the more are:

• The primitive of a polynomial is again a polynomial, while the primitive of a
trigonometric polynomial is a trigonometrical polynomial plus kθ for some k ∈ R.
• The ring of polynomials is a Unique Factorization Domain while the ring of

trigonometric polynomials is not. This can be seen for instance looking at the
celebrated identity sin2 θ = 1− cos2 θ = (1 + cos θ)(1− cos θ). It holds that sin θ
divides the right hand expression but it does not divide either 1+cos θ or 1−cos θ.

The first difference produces the family (i) in Theorem 1. Notice again that for this
family of centers, neither F nor G need to be trigonometric polynomials for a system
(1) with a center at the origin. The second difference is overcome by using a isomor-
phism between the field of quotients of trigonometrical polynomials Rt(θ) and the field
of rational functions R(x), see Section 2 for details. As we will see, this transformation
allows to work with rational functions instead of dealing with trigonometric polynomials
and then use the usual divisibility tools. This approach turns out to be very useful for
questions dealing with trigonometric polynomials, see for instance [7, 8, 13, 11] for other
situations where it is used.
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The explicit characterization of the centers provided in Theorem 1 can be applied to
list all the centers for concrete subfamilies of system (1). As usual, the degree of a real
trigonometric polynomial is given by the highest harmonic in its Fourier expansion. For
instance, we prove:

Corollary 2. Consider the Liénard differential systems (1) with either f or g trigono-
metric polynomials of prime degree. Then the origin is a center if and only one of the
following conditions hold:

(a) f(θ) = αg(θ) for some α ∈ R,
(b) f(θ) = f1(G(θ))g(θ), with G ∈ Rt[θ], f1 ∈ R[x],
(c) g(θ) = g1(F (θ))f(θ), with F ∈ Rt[θ], g1 ∈ R[x] and g1(0)f ′(0) < 0,
(d) f(θ) = f1(cos θ) sin θ and g(θ) = g1(cos θ) sin θ with f1, g1 ∈ R[x] and g1(1) < 0.

The proof of this corollary and other applications of Theorem 1 are given in Section 4.
The case of degenerated centers for system (1), that is g(0) = g′(0) = · · · = g(2k)(0) =

0, g(2k+1)(0) < 0 for some k > 0, together with some monodromy conditions, could be
treated with similar tools following the ideas of [10].

2. Preliminary results

Next result of Cherkas ([3]) characterizes theoretically the non-degenerated centers for
analytic Liénard systems.

Theorem 3. The Liénard differential system

ẋ = y,

ẏ = g(x) + yf(x),
(6)

with f, g real analytic in a neighborhood of zero with g(0) = 0, g′(0) < 0 has a center at
the origin if and only if there exists a real analytic function z defined in a neighborhood
of zero with z(0) = 0, z′(0) = −1 such that

F (x) = F (z(x)) G(x) = G(z(x)), (7)

where F and G are given in (3).

Moreover, Theorem 3 implies that all centers orbitally reversible, see again [4, 6, 12,
21]. Nevertheless it is difficult to apply it for characterizing the centers for polynomial
Liénard systems of a given degree. In this situation, the following result of Christopher
([4]) gives an algebraic and effective solution to the problem.

Theorem 4. The Liénard differential system (6) with f, g real polynomials with g(0) = 0,
g′(0) < 0 has a center at the origin if and only if there exist real polynomials q, f1 and
g1 satisfying q′(0) = 0, g1(q(0))q′′(0) < 0, and such that

f(x) = f1(q(x))q′(x), g(x) = g1(q(x))q′(x).

Theorem 1 can be seen as the trigonometric version of the above result.
To state Lüroth Theorem and its variants, first we introduce some notation. Let R(x)

denote the quotient field of the ring of polynomials R[x] with coefficients in R and let
Rt(θ) denote the quotient field of the ring of trigonometric polynomials Rt[θ], also with
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coefficients in R. It is well-known that Rt(θ) is isomorphic to R(x) by means of the map
Φ: Rt(θ)→ R(x) defined by

Φ(sin θ) =
2x

1 + x2
and Φ(cos θ) =

1− x2
1 + x2

. (8)

Finally, we will denote by R(U1, U2, . . . , Un) the subfield of R(x) (resp. Rt(θ)) generated
by Uj ∈ R(x) (resp. Uj ∈ Rt(θ)) for j = 1, 2, . . . , n.

Given a real trigonometric polynomial p we call deg(p) = ` the degree of the Fourier
series corresponding to p, that is

f(θ) =
∑̀

k=−`
ake

kiθ, a−k = ak, with a` 6= 0.

It holds that

Φ(p(θ)) =
M(x)

(1 + x2)`
, withM ∈ R[x], deg(M) ≤ 2` and gcd(M(x), 1 + x2) = 1.

(9)
Moreover, the converse is also true: for each M under the above hypotheses, there exists

a trigonometric polynomial, p, of degree `, such that Φ(p(θ)) = M(x)
(1+x2)`

, see [7, 8].

From (8) it can be seen that

Φ(p′(θ)) =
M̃(x)

(1 + x2)`
:=

1
2
dM(x)
dx

(1 + x2)− `xM(x)

(1 + x2)`
(10)

and the degree of M̃ is at most 2`, see [11].
To contextualize the result that we need, let us recall first the Lüroth theorem ([20]),

then the version used in [4] to prove Theorem 4 and finally the version given in [7, 13],
see Theorem 7.

Theorem 5. (Lüroth Theorem) Let K be a non-trivial subfield of R(x). Then K =
R(u) for some u ∈ K.

Theorem 6. Let K be a subfield of R(x) containing a non-constant polynomial. Then
K = R(p) for some polynomial p.

Theorem 7. Let K be a subfield of Rt(θ) containing a non-constant trigonometric poly-
nomial. Then either K = R(tan(nθ

2
)) for some n ∈ N or K = R(r) for some trigonomet-

ric polynomial r.

The possibilities for the generator of K appearing in Theorem 7 not having an equiv-
alent version in Theorem 6 are essentially due to the well-known identity

1

1 + tan2(θ)
= cos2(θ).

Next consequence of Theorem 7 is the one that we will use in this paper.

Proposition 8. Let K = R(U, V ) be the subfield of Rt(θ) generated by the two elements
U, V ∈ Rt(θ). Assume that:

(a) U is a non-trivial trigonometric polynomial, that is U ∈ Rt[θ] and it is non-constant.
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(b) There exists a real analytic function z, defined in a neighborhood of zero, with z(0) =
0, z′(0) = −1 and such that

U(θ) = U(z(θ)), V (θ) = V (z(θ)).

Then K = R(r) for some trigonometric polynomial r satisfying r′(0) = 0.

Proof. By Theorem 7, if W is a generator of K then W is either tan(nθ/2), for some
n ∈ N, or a trigonometric polynomial. Notice that the property U(θ) = U(z(θ)), satisfied
also by V, is inherited for all the elements of K. Hence, in particular, it holds that
W (θ) = W (z(θ)).

In any case, taking derivatives at zero,

W ′(θ) = W ′(z(θ))z′(θ)⇒ W ′(0) = −W ′(0)⇒ W ′(0) = 0.

Since d
dθ

tan(nθ/2)
∣∣
θ=0

= n/2 6= 0, this implies that W = r is a trigonometric polynomial
and r′(0) = 0, as we wanted to prove. �

3. Proof of Theorem 1

First we prove sufficiency. Under conditions of item (i) the origin is a center because
it is a monodromic critical points and the first integrals given in (5) are well defined at
this point.

Assume that conditions (2) of item (ii) hold, that is f(θ) = f1(p(θ))p
′(θ) and g(θ) =

g1(p(θ))p
′(θ) for some real polynomials f1 and g1 and some trigonometric polynomial p,

satisfying p′(0) = 0, p′′(0)g1(p(0)) < 0. Then, by using the non-invertible map

(θ, y)→
(
θ̄, ȳ
)

=
(
p(θ)− p(0), y

)
=
(p′′(0)

2
θ2 + 0(θ3), y

)
,

we can rewrite system (1) in the form

˙̄θ = p′(θ)ȳ, ˙̄y = p′(θ)
(
g1
(
θ̄ + p(0)

)
+ ȳf1

(
θ̄ + p(0)

))
= p′(θ)

(
ĝ1(θ̄) + ȳf̂1(θ̄)

)
,

for some f̂1, ĝ1 ∈ R[x]. After the new parametrization of the time ds
dt

= p′(θ), the above
system is transformed into

dθ̄

ds
= ȳ,

dȳ

ds
= ĝ1(θ̄) + ȳf̂1(θ̄).

This new system is nonsingular at the origin because ĝ1(0) = g1(p(0)) 6= 0. So, it has a
local analytic first integral, and this first integral can be pulled back to a first integral of
system (1) around the singularity, producing a center. See [4, Thm. 9b] for more details
or [1, Lem. 2] for another application of this idea in a different context for proving the
existence of a center.

Now we prove necessity. It follows from Theorem 3 that system (1) has a center at
the origin if and only if there is a real analytic function z in a neighborhood of the origin
such that z(0) = 0 and z′(0) = −1 which satisfies (7),

F (θ) = F (z(θ)), G(θ) = G(z(θ)). (11)

We consider two different subcases.
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Case 1: Either F or G are trigonometric polynomials. Assume for instance that G is a
trigonometric polynomial and f 6= 0. If f = 0 the proof is trivial. The case when F is a
trigonometric polynomial follows using similar ideas.

We know that G(θ) = G(z(θ)) with G being a non-trivial trigonometric polynomial
because g′(0) < 0. Moreover, f 6= 0. From (11) we get

f(θ) = f(z(θ)) z′(θ) and g(θ) = g(z(θ)) z′(θ), (12)

that is, g(θ)/f(θ) = g(z(θ))/f(z(θ)).
Now, consider the subfield of R(x), K = R

(
G, f/g

)
. By applying Proposition 8 with

U = G, V = f/g it holds that K = R(p) for some trigonometric polynomial p with
p′(0) = 0.

As a consequence,

G(θ) =
G1

G2

(p(θ)) and
f

g
(θ) =

f3
f4

(p(θ)) (13)

with G1/G2 ∈ R(x), f3/f4 ∈ R(x) and gcd(G1, G2) = gcd(f3, f4) = 1.
Following the ideas in [7] we will prove first that we can choose G2 = 1. From (8)

and (9) we have that
G1

G2

( M

(1 + x2)`

)
=

N

(1 + x2)j
, (14)

with M,N ∈ R[x], gcd(M, 1+x2) = gcd(N, 1+x2) = 1 and deg (M) ≤ 2` and deg(N) ≤
2j. Adding, if necessary, a constant to p(θ) we can assume that deg (M) < 2`.

Now suppose, in order to get a contradiction, that deg(G2) ≥ 1. Thus we obtain

(1 + x2)d2`Ĝ1(M, (1 + x2)`)

(1 + x2)d1`Ĝ2(M, (1 + x2)`)
=

N

(1 + x2)j
,

where Ĝ1 and Ĝ2 denote the homogenization of G1 and G2 and d1, d2 are their respective
degrees.

First we show that gcd(Ĝ2(M, (1 + x2)`), (1 + x2)d2`Ĝ1(M, (1 + x2)`)) = 1. To see this

we will prove that Ĝ2(M, (1+x2)`) does not share roots (real or complex) with (1+x2)d2`

or with Ĝ1(M, (1 + x2)`)). Indeed, let z ∈ C be a root of Ĝ2(M, (1 + x2)`)) and suppose

first that z is also a root of 1 + x2. If we write G2 =
∑d2

j=0 ajx
j with ad2 6= 0 we have

Ĝ2(M(x), (1 + x2)`) =

d2∑

j=0

ajM
j(x)(1 + x2)(d2−j)`

and, as a consequence, Ĝ2(M(z), (1 + z2)`) = ad2M
d2(z) = 0. Since ad2 6= 0 it holds that

M(z) = 0 which contradicts to the fact that gcd(M, 1 + x2) = 1. So, 1 + z2 6= 0.

Assume now that z is also a root of Ĝ1(M(x), (1 + x2)`)). Since 1 + z2 6= 0, we obtain
that

G1

(
M(z)

(1 + z2)`

)
= G2

(
M(z)

(1 + z2)`

)
= 0

which contradicts that gcd(G1, G2) = 1.
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Therefore, we have that Ĝ2(M, (1 + x2)`) = (1 + x2)k for some 0 ≤ k ≤ d2`. Since

Ĝ2(M, (1+x2)`) = ad2M
d2 +(1+x2)`L for some L ∈ R[x], ad2 6= 0 and gcd(M, 1+x2) = 1

we get that k = 0 and then Ĝ2(M, (1 + x2)`) is a constant polynomial.

If we decompose the homogeneous polynomial Ĝ2(M, (1 + x2)`) in its real irreducible
components we will obtain that for each one of them, say T we have

T (M, (1 + x2)`) ∈ R.

If deg(T ) = 2 this last property is impossible because
(
aM + b(1 + x2)`

)2
+ c2(1 + x2)2` ∈ R

with a 6= 0, c 6= 0, b ∈ R, never holds due to deg(M) < 2`.
If deg(T ) = 1 then it should happen that aM + b(1 + x2)` ∈ R for some a, b ∈ R.

Again using that deg(M) < 2` the only possibility is b = 0 and M ∈ R.
Then the only irreducible factor of T is x. HenceG2(x) = xd2 for some d2 ≥ 0. If d2 > 0

then, since gcd(G1, G2) = 1, it holds that G1(0) 6= 0 and deg(Ĝ1(M, (1 + x2)`)) = 2d1`.
Therefore

G1

G2

( M

(1 + x2)`

)
=

(1 + x2)d2`Ĝ1(M, (1 + x2)`)

(1 + x2)d1`
=
Ĝ1(M, (1 + x2)`)

(1 + x2)(d1−d2)`
,

with deg(Ĝ1(M, (1+x2)`)) = 2d1`, which is in contradiction with (14). Therefore d2 = 0
and G2 ∈ R. So we can take G2 = 1 and this yields that G(θ) = G1(p(θ)). Then
g(θ) = g1(p(θ))p

′(θ), with g1 = G′1 ∈ R[x], as we wanted to show.

Let us prove that f satisfies a similar property. From (13) we get

f(θ) =
f3(p(θ))g(θ)

f4(p(θ))
=
f3(p(θ))g1(p(θ))

f4(p(θ))
p′(θ) =

f1(p(θ))

f2(p(θ))
p′(θ) (15)

with f1, f2 ∈ R[x] and gcd(f1, f2) = 1. Now we will show that f2 = 1.

From (8), (9) and (10) we have that

f1
f2

( M

(1 + x2)`

) M̃

(1 + x2)`
=

N

(1 + x2)j
,

with M,N ∈ R[x], M̃(x) = 1
2
dM(x)
dx

(1 + x2)− `xM(x), gcd(M, (1 + x2)`) = gcd(M̃, (1 +

x2)`) = gcd(N, (1 + x2)j) = 1, where recall that deg(M) < 2`, and deg(M̃) ≤ 2` and
deg(N) ≤ 2j. We remark that the polynomial N and the integer j are not necessarily
equal to the ones used in the first part of the proof.

Now assume, in order to get a contradiction, that deg(f2) ≥ 1.
Thus we obtain

(1 + x2)d2`f̂1(M, (1 + x2)`)M̃

(1 + x2)d1`f̂2(M, (1 + x2)`)
=

N

(1 + x2)j
, (16)

where f̂1 and f̂2 denote the homogenization of f1 and f2 and d1, d2 their respective
degrees. Again, these dj are in general different to the ones used previously in this proof.
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Proceeding as we did for Ĝ2(M, (1 + x2)`) we can show that f̂2(M, (1 + x2)`) does not

share roots (real or complex) with (1 + x2)d2` or with Ĝ1(M, (1 + x2)`)). So, it follows
from (16) that

Q(x) :=
M̃(x)

f̂2(M(x), (1 + x2)`)
=

1
2
dM(x)
dx

(1 + x2)− `xM(x)

f̂2(M(x), (1 + x2)`)

has to be a polynomial. If we write f2 =
∑d2

j=0 bjx
j, with bd2 6= 0, we have

f̂2(M(x), (1 + x2)`) =

d2∑

j=0

bjM
j(x)(1 + x2)(d2−j)`.

Assume to arrive to a contradiction that b0 = 0. Then f̂2(M(x), (1 + x2)`) = M(x)L(x),
for some polynomial L. In particular, the fact that Q is polynomial implies that M

divides dM(x)
dx

(1 +x2). Since (M, 1 +x2) = 1 this is impossible. Hence b0 6= 0. Therefore,

since deg(M) < 2` we have that deg(f̂2(M, (1 + x2)`)) = 2`d2.

The degree of M̃ is at most 2`. Therefore, using again that Q is a polynomial, we
conclude that d2 ∈ {0, 1}. If d2 = 0 we are done. So we will suppose that d2 = 1, to
arrive again to a contradiction. Under this assumption,

f̂2(M(x), (1 + x2)`)) = b0(1 + x2)` + b1M(x),

M̃(x) =
(
b0(1 + x2)` + b1M(x)

)
k,

for some 0 6= k ∈ R, and b1 6= 0. By using the expression of M̃ , the second equation
above leads to the linear differential equation

dM

dx
=
a+ 2`x

1 + x2
M + b(1 + x2)`−1,

with a = 2kb1 6= 0 and b = 2kb0. If we write M(x) = (1 + x2)`P (x) then P (x) satisfies

dP

dx
=
aP + b

1 + x2
.

Solving it we get that P (x) = − b
a

+ c exp
(
a arctan(x)

)
, for c ∈ R. So

M(x) = (1 + x2)`
(
− b

a
+ c exp

(
a arctan(x)

))
.

Since M must be a polynomial we get that c = 0 but then M(x) = −b(1 + x2)`/a which
is not possible because gcd(M, 1 + x2) = 1 and ` > 0.

Hence, d2 = 0 and f̂2(M, (1 + x2)`) is a constant. Now proceeding as we did for

Ĝ2(M, (1+x2)`) we get that indeed f2 = 1, as we wanted to prove. Therefore (2) follows
with some polynomial p, that satisfies p′(0) = 0. In particular g(θ) = g1(p(θ))p

′(θ).
Taking derivatives and evaluating on θ = 0 we get g′(0) = g̃1(p(0))p′′(0) < 0. This
completes the proof of the theorem in this case.
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Cas 2: Neither G nor F are trigonometric polynomials. We can write F and G as

F (θ) = αθ + F1(θ), G(θ) = βθ +G1(θ)

being α, β ∈ R \ {0} and F1, F2 ∈ Rt[θ]. Note that the function

H(θ) = βF (θ)− αG(θ) = βF1(θ)− αG1(θ)

is a trigonometric polynomial. Moreover if H(θ) = c ∈ R we are in case (i) because
taking derivatives 0 = βf − αg, that is, f/g = α/β ∈ R and we are done.

Otherwise H is a non-constant trigonometric polynomial. Moreover, by using (11)
and (12) notice that

H(θ) = H(z(θ)),
f

g
(θ) =

f

g
(z(θ)).

Similarly that in Case 1, we consider the subfield of R(x), K = R
(
H, f/g

)
. By applying

Proposition 8 with U = H, V = f/g it holds that F = R(p) for some trigonometric
polynomial p, satisfying p′(0) = 0.

Now, proceeding as in Case 1 with G replaced by H we conclude that H(θ) = H1(p(θ))
with H1 ∈ R[x]. Moreover

f

g
(θ) =

f3
f4

(p(θ)) (17)

for some f3, f4 ∈ R[x] and gcd(f3, f4) = 1. Since

g(θ)
(
β
f(θ)

g(θ)
− α

)
= βf(θ)− αg(θ) = H ′(θ),

by using the derivative of H(θ) = H1(p(θ)) and (17), it holds that

g(θ) =
H ′(θ)

β f(θ)
g(θ)
− α

=
H ′(θ)

β f3(p(θ))
f4(p(θ))

− α
=

H ′(θ)f4(p(θ))

βf3(p(θ))− αf4(p(θ))

=
H ′1(p(θ))f4(p(θ))

βf1(p(θ))− αf2(p(θ))
p′(θ) =

g1(p(θ))

g2(p(θ))
p′(θ),

with g1, g2 ∈ R[x], g2 6= 0 and gcd(g1, g2) = 1. Now proceeding as in the study (15) in
Case 1, replacing f by g, and fj(p(θ)) by gj(p(θ)), for j = 1, 2 we can show that g2 = 1
and so g(θ) = g1(p(θ))p

′(θ) with g1 ∈ R[x], as we wanted to see.
Furthermore, from (17),

f(θ) =
f3(p(θ))

f4(p(θ)
g(θ) =

f3(p(θ)g1(p(θ))

f4(p(θ))
p′(θ) =

f1(p(θ))

f2(p(θ)
p′(θ),

with f1, f2 ∈ R[x], gcd(f1, f2) = 1, and again we can prove that f2 = 1. Hence the
theorem follows as in Case 1.

4. Applications

In the Corollay 2, using Theorem 1, we characterize the Liénard differential systems
(1) having a center at the origin when either f or g are trigonometric polynomials of
prime degree.
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Proof of Corollary 2. By applying Theorem 1 we know that the two families of centers
correspond to the ones given in item (i) and (ii) of the theorem. The first case, (a),
corresponds to item (i).

Assume now that conditions of item (ii) of the Theorem hold. For convenience we use
the following equivalent expressions to conditions (ii) of the theorem, see (4),

F (θ) = F1(p(θ)), G(θ) = G1(p(θ)), (18)

with p ∈ Rt[θ], F1, G1 ∈ R[x], p′(0) = 0 and G′1(p(0))p′′(0) < 0. Notice that F,G ∈ Rt[θ],
deg(F ) = deg(f) and deg(G) = deg(g).

From (18) it holds that

deg(f) = deg(F ) = deg(F1) deg(p), and deg(g) = deg(G) = deg(G1) deg(p).

Assume first that deg(g) is prime. Therefore, one of the following situations happens:

(I) deg(G1) = 1 and deg(p) = deg(g), or
(II) deg(G1) = deg(g) and deg(p) = 1.

In case (I), G1(x) = ax + b, 0 6= a ∈ R. Then G(θ) = ap(θ) + b, and consequently
p(θ) = (G(θ)− b)/a. Hence, by (18),

F (θ) = F1

(G(θ)− b
a

)
= F̂1(G(θ)).

Taking derivatives in this last expression we get that f(θ) = f1(G(θ))g(θ), with f1 = F̂ ′1.
Therefore we have obtained the centers described in item (b).

In case (II), p(θ) = a cos θ + b sin θ + c with a, b, c ∈ R, a2 + b2 6= 0. Taking into
account that p′(0) = 0 we get that b = 0. Then a 6= 0 and

F (θ) = F1(a cos θ + c) = F̂1(cos θ).

Taking once more derivatives, we obtain the centers of case (d).
The case where deg(f) is prime gives rise to the centers of item (c), or again, to some

centers in case (d). This completes the proof of the corollary. �

The following corollaries give the characterization of the centers of system (1) when f
and g are trigonometric polynomials of degree at most 3, in terms of the coefficients of
the their respective Fourier series and we also study in detail the degree 4 case.

Corollary 9. System (1) with f and g trigonometric polynomials of degree at most 3,

f(θ) = a0 + a1 cos θ + a2 sin θ + a3 cos(2θ) + a4 sin(2θ) + a5 cos(3θ) + a6 sin(3θ),

g(θ) = b0 + b1 cos θ + b2 sin θ + b3 cos(2θ) + b4 sin(2θ) + b5 cos(3θ) + b6 sin(3θ),

has a center at the origin if and only if a0 + a1 + a3 + a5 = 0, b0 + b1 + b3 + b5 = 0,
b2 + 2b4 + 3b6 < 0, and one of the following conditions holds:

(I) a1 = a3 = a5 = b1 = b3 = b5 = 0;
(II)

(
a0, a1, a2, a3, a4, a5, a6

)
= α

(
b0, b1, b2, b3, b4, b5, b6

)
for some α ∈ R.
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Corollary 10. System (1) with f and g trigonometric polynomials of degree 4,

f(θ) =a0 + a1 cos θ + a2 sin θ + a3 cos(2θ) + a4 sin(2θ) + a5 cos(3θ)

+ a6 sin(3θ) + a7 cos(4θ) + a8 sin(4θ),

g(θ) =b0 + b1 cos θ + b2 sin θ + b3 cos(2θ) + b4 sin(2θ) + b5 cos(3θ)

+ b6 sin(3θ) + b7 cos(4θ) + b8 sin(4θ),

with b27 + b28 6= 0, has a non-degenerated center at the origin if and only if a0 + a1 + a3 +
a5 +a7 = 0, b0 +b1 +b3 +b5 +b7 = 0 and b2 +2b4 +3b6 +4b8 < 0, and one of the following
conditions holds.

(I) a1 = a3 = a5 = a7 = b1 = b3 = b5 = b7 = 0;
(II)

(
a0, a1, a2, a3, a4, a5, a6, a7, a8

)
= α

(
b0, b1, b2, b3, b4, b5, b6, b7, b8

)
for some α ∈ R.

(III) There exit a real trigonometric polynomial

p(θ) = p0 + p1 cos θ + p2 sin θ + p3 cos(2θ) + p4 sin(2θ),

with p23 + p24 6= 0, p(0) = p0 + p1 + p3 = 0, p′(0) = −p2 − 2p4 = 0 and two real
polynomials f1(x) = 2αcx+ b and g1(x) = 2cx+ d, such that

f(θ) = f1(p(θ))p
′(θ), g(θ) = g1(p(θ))p

′(θ), (19)

c 6= 0 and g1(0)p′′(0) = −(p1+4p3)d < 0. In particular, it holds that
(
a5, a6, a7, a8

)
=

α
(
b5, b6, b7, b8

)
.

Proof of Corollaries 9 and 10. The equalities f(0) = a0 + a1 + a3 + a5 + a7 = 0, g(0) =
b0 + b1 + b3 + b5 + b7 = 0 and g′(0) = b2 + 2b4 + 3b6 + 4b8 < 0, are the conditions to have
a weak focus at the origin.

Cases (I) correspond to the case (d) of Corollary 2. The second cases (II) correspond
to item (a) in Corollary 2. Notice that

c2 sin θ + c4 sin(2θ) + c6 sin(3θ) + c8 sin(4θ)

=
(
c2 − c6 + 2(c4 − 2c8) cos θ + 4c6 cos2 θ + 8c8 cos3 θ

)
sin θ.

Finally, the case (III) in Corollary 10 happens when the trigonometric polynomial p
of Theorem 1 is of degree 2 and f1 and g1 are degree 1 polynomials in p. Notice that
this type of cases only appears when the degrees of f and g are not prime.

From Theorem 1 we know that (19) holds for some real trigonometric polynomial

p̃(θ) = p̃0 + p̃1 cos θ + p̃2 sin θ + p̃3 cos(2θ) + p̃4 sin(2θ),

of degree at most 2 and for some real polynomials f̃1(x) = 2ãx+ b̃ and g̃1(x) = 2c̃x+ d̃.
From the condition b27 + b28 6= 0 we have that p̃23 + p̃24 6= 0 and c̃ 6= 0. Taking p(θ) =
k(p̃(θ) − p̃(0)) and the corresponding f1 and g1 for a suitable k ∈ R we get all the
conditions (III).

To prove that
(
a5, a6, a7, a8

)
= α

(
b5, b6, b7, b8

)
holds notice that

f(θ) = 2αc p(θ)p′(θ) + b p′(θ) and g(θ) = 2c p(θ)p′(θ) + d p′(θ).

Therefore f(θ)−α g(θ) = (b−αd)p′(θ). Since p′ has degree 2, the above equality implies
that the degree 3 and 4 terms of f and g coincide up the multiplicative constant α, as
we wanted to prove. �
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If one wishes to have the explicit conditions among the coefficients of f and g to
characterize the centers of family (III) of Corollary 10, there is a systematic procedure
to get them. Define the two trigonometric polynomials

s1(θ) := f(θ)−
(
2αc p(θ)p′(θ) + b p′(θ)

)
, s2(θ) := g(θ)−

(
2c p(θ)p′(θ) + d p′(θ)

)
,

where α, b, c and d are real constants and in f we take
(
a5, a6, a7, a8

)
= α

(
b5, b6, b7, b8

)
.

Hence these polynomials have 21 free variables: the 9 coefficients of g; the first 5 coeffi-
cients of f ; three of the coefficients of p (p1, p3 and p4); and α, b, c and d.

By our results the functions s1 and s2 must be identically zero. Hence we expand in
Fourier series both functions and we take all their coefficients. Finally, with the system
generated by equating to zero each of these coefficients, we use the elimination method
of parameters to eliminate the 6 parameters of p1, p3, p4, b, c and d. Then we obtain
the desired center conditions. We omit them because are really huge and the reader
can obtain the conditions following the approach we have described. Instead, we show
some subcases of the system considered in Corollary 10 where we apply this approach
to characterize all the centers of type (III).

In the first one we assume that a3 = a4 = b3 = b4 = 0. Then, the equations obtained
with this elimination method are:

b0 = 0, a0 = 0, a1 + αb5 + αb7 = 0, b1 + b5 + b7 = 0,

a2b6 − αb2b6 = 0, a2b8 − αb2b8 = 0, b25b7 + b26b7 + 6b5b
2
7 + 6b6b7b8 = 0

9b2b7 − 10b5b6 − 9b6b7 − 30b5b8 − 45b7b8 = 0,

3b2b5 + 17b5b6 + 15b6b7 + 60b5b8 + 90b7b8 = 0,

9a2b7 − 10αb5b6 − 9αb6b7 − 30αb5b8 − 45αb7b8 = 0,

3a2b5 + 17αb5b6 + 15αb6b7 + 60αb5b8 + 90αb7b8 = 0,

9b37 − 2b26b7 + 2b5b6b8 − 6b6b7b8 + 6b5b
2
8 + 9b7b

2
8 = 0,

2b25b6 + 12b5b6b7 + 9b6b
2
7 + 6b25b8 + 45b5b7b8 + 54b27b8 = 0,

9b6b
3
7 − 2b36b7 − 18b26b7b8 + 9b5b

2
7b8 + 54b37b8 − 36b6b7b

2
8 = 0,

2b36 − 9b6b
2
7 + 12b25b8 + 63b5b7b8 + 81b27b8 + 27b2b

2
8 − 9b6b

2
8 = 0,

2b35 − 18b26b7 − 63b5b
2
7 + 27b37 − 99b6b7b8 − 18b5b

2
8 − 27b7b

2
8 = 0,

2b5b
2
6 + 18b26b7 − 9b5b

2
7 − 81b37 + 63b6b7b8 − 18b5b

2
8 − 27b7b

2
8 = 0,

4b46b7 − 36b26b
3
7 + 81b57 + 48b36b7b8 − 216b6b

3
7b8 + 180b26b7b

2
8 − 243b37b

2
8 + 216b6b7b

3
8 = 0,

Solving them and doing some tedious but straightforward computations we get that
when a3 = a4 = b3 = b4 = 0 all the centers are inside classes (I) and (II) of Corollary 10.

Similarly, when we consider the subfamily of the system studied in Corollary 10, with
a1 = a2 = a5 = a6 = 0 and b1 = b2 = b5 = b6 = 0, we can prove that all non-degenerated
centers are again the ones given in classes (I) and (II).
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An example of case (III) is given by the following conditions

a0 = b0 = 0, a2 = α/2, a3 = α− a1, a4 = 2a1 − α,(
a5, a6, a7, a8

)
= α

(
− 3,−3/2, 2,−3/2

)
, b1 = (1 + b4)/2,

b2 = 1/2, b3 = (1− b4)/2, b5 = −3, b6 = −3/2, b7 = 2, b8 = −3/2,

where α and a1 are arbitrary real constants and b4 < 5 (this condition comes from
g′(0) < 0). In this exemple f1(x) = 2αx + 3α − a1, g1(x) = 2x + (5 − b4)/2 and
p(θ) = −1− sin θ + cos(2θ) + 1

2
sin(2θ).
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