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ON THE BIFURCATION OF LIMIT CYCLES DUE TO

POLYNOMIAL PERTURBATIONS OF HAMILTONIAN

CENTERS

ILKER E. COLAK1, JAUME LLIBRE2 AND CLAUDIA VALLS3

Abstract. We study the number of limit cycles bifurcating from the
period annulus of a real planar polynomial Hamiltonian ordinary dif-
ferential system with a center at the origin when it is perturbed in the
class of polynomial vector fields of a given degree.

1. Introduction and statement of the main results

In the qualitative theory of real planar polynomial differential systems
one of the main problems is the determination of limit cycles of a given
vector field. The notion of limit cycle goes back to Poincaré, see [12]. He
defined a limit cycle for a vector field in the plane as a periodic orbit of the
differential system isolated in the set of all periodic orbits. The first works in
determining the number of limit cycles of a given vector field can be traced
back to Liénard [9] and Andronov [1]. After these works, the detection of
the number of limit cycles of a polynomial differential system, intrinsically
related with the so-called 16th Hilbert problem [7], has been extensively
studied in the mathematical community, see for instance the books [3, 14]
and the papers [5, 6, 10, 11].

One of the main tools of producing limit cycles is perturbing a system
having a center. The notion of center goes back to Poincaré, see [12], who
defined a center for a vector field on the real plane as a singular point
having a neighborhood filled with periodic orbits with the exception of the
singular point. If a system has a center then when we perturb it we may
have a limit cycle that bifurcates in the perturbed system from some of the
periodic orbits forming a center. This tool is one of the most effective ways
of producing limit cycles but it requires the knowledge of the first integral of
the unperturbed system (the one having a center). It is well-known that the
determination of first integrals is also a very hard problem. This is why in
this paper we will focus on an unperturbed planar differential system from
which we know a first integral of it.
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More precisely, in this paper we consider the planar polynomial Hamil-
tonian system

(1) ẋ = −Fy, ẏ = Fx,

with Hamiltonian F = F (x, y) of the form

F (x, y) =

n∑

i=1

ciH(x, y)i,

where H(x, y) = (x2 + y2)/2 and the first ci ̸= 0 is positive. We assume
cn ̸= 0 for convenience so that the degree of system (1) is 2n − 1. Note that
H is a first integral of system (1), and since H has a local minimum at the
origin of system (1) has a center at the origin.

In order to simplify the notation we will write system (1) as

(2) ẋ = −y · G(x, y), ẏ = x · G(x, y),

where

(3) G(x, y) =
n∑

i=1

ici

(
x2 + y2

2

)i−1

:= Γ(H(x, y)).

We note that the circles x2 + y2 = constant on which G(x, y) ̸= 0 are
periodic orbits, and that the ones on which G(x, y) = 0 are filled of singular
points of the differential system (2), and consequently of the differential
system (1). Let η > 0 be the smallest real number such that the circle
x2 + y2 = η2 is filled of singular points if it exists, otherwise η = +∞. We
also note that all the singular points of the differential system (2) except the
origin are on circles x2 + y2 = constant where G(x, y) = 0. So the period
annulus of the center at the origin (i.e. the connected set formed by the
union of all the periodic orbits surrounding the origin and having the origin
in its inner boundary) is the annulus {(x, y) ∈ R2 : x2 + y2 < η2}.

First we will study the number of limit cycles that appear when system
(1) (or (2)) is perturbed in the class of all polynomial differential systems in
the form

(4) ẋ = −yG(x, y) + εA(x, y), ẏ = xG(x, y) + εB(x, y),

where A and B are arbitrary real polynomials such that

m = max{deg(A), deg(B)}.

Second, we will study the number of limit cycles that appear when system
(1) (or (2)) is perturbed in the class of all polynomial differential systems in
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the form

ẋ = −yG(x, y) +

∞∑

i=1

εiAi(x, y),

ẏ = xG(x, y) +

∞∑

i=1

εiBi(x, y),

(5)

where Ai and Bi are arbitrary real polynomials such that

m = max{deg(Ai), deg(Bi)} = m for all i = 1, 2, . . ..

Let η0 = η if η < +∞, and let η0 < +∞ if η = +∞. Then we can param-
eterize the set of periodic orbits surrounding the origin and intersecting the
interval (0, η0) by h such that h = x2/2 = H(x, 0) with x ∈ (0, η0). We de-
fine the Poincaré map Pε(h) for system (4) on (0, x0), and the displacement
map ∆(h, ε) = Pε(h) − h which has a power series representation

∆(h, ε) = εM1(h) + ε2M2(h) + · · ·

that converges for sufficiently small ε. The functions Mi(h), defined for
h ≥ 0, are called the i–th Melnikov function, and each positive simple zero
of the first non–vanishing Melnikov function corresponds to a limit cycle of
system (4).

In order to study the limit cycles that bifurcate from an unpertubed
system when we perturb it, the vast majority of the papers study the simple
zeros of M1(h), assuming that it is the first non-vanishing Melnikov function.
There are much fewer papers studying the simple zeros of M2(h) assuming
that it is the first non-vanishing Melnikov function, and there very few
papers which study the simple zeros of M2(h) assuming that it is the first
non-vanishing Melnikov function. In this paper we will study the simple
zeroes of all the Melnikov functions Mk for an arbitrary k, assuming that it
is the first non-vanishing Melnikov function.

As far as we know there are only two papers that provide a similar result
working with Melnikov functions at any order and perturbing the linear
center ẋ = −y, ẏ = −x. The first one goes back to Iliev [8] were he was the
first one in doing so. Due to the fact that this is an extremely hard problem
involving very difficult computations, he started with the linear center, i.e.,
system (2) with G = 1. Following the ideas of Iliev, in [2] the authors study
the number of zeros of the Melnikov function at any order for system (2)
in the case in which G = (x2 + y2)m−1. Our system (2) generalizes the
systems studied in [8] and [2] because the unperturbed part is taken to be
more general and we extend their results to this more general situation.

Our first main result is the following.
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Theorem 1. The first non–vanishing Melnikov function Mk(h) for system
(4) has at most [k(m − 1)/2] + (k − 1)(n − 1) positive zeros counting their
multiplicities.

Here [p] denotes the integer part of the real number p.

The second main result of the paper is the following.

Theorem 2. The first non–vanishing Melnikov function Mk(h) for system
(5) has at most

(i) [(m−1)/2]+2(k−1)(n−1) positive zeros counting their multiplicities
if m ≤ 2n − 1,

(ii) [k(m−1)/2]+(k−1)(n−1) positive zeros counting their multiplicities
if m ≥ 2n − 1.

When G = 1 the bounds obtained in Theorem 2 coincide with the upper
bounds obtained in [8]. When n = m − 1 and ci = 0 for i = 1, . . . , m − 1,
system (2) coincide with the one studied in [2]. However, the upper bounds
provided by Theorem 2 are larger than those obtained in [2] due to the fact
that our G is full. Since a particular case of our system is the system studied
in [2] where the authors obtain a better bound and prove that the bounds
are not reached, and since the bounds in Theorem 1 are the same as those
in statement (ii) of Theorem 2, we believe that the bounds in Theorem 2
are not going to be reached.

The paper is divided as follows. In section 2 we introduce three lemmas
that will be used in the proofs of Theorem 1 and 2. The proof of Theorem
1 is given in section 3 and the proof of Theorem 2 is given in section 4.

2. Preliminary results

We first present a lemma, proved in [8], which will be a key factor in
calculating the Melnikov functions.

Lemma 3. Any polynomial one–form τ of degree s can be expressed as

(6) τ = dQ(x, y) + q(x, y) dH + α(H)y dx

where Q(x, y), q(x, y) and α(h) are polynomials of degree s + 1, s − 1 and
[(s − 1)/2], respectively.

Corollary 4. For a polynomial one–form τ of degree s we have
∫
H=h τ =

−α(h)2πh where α(h) is a polynomial of degree [(s − 1)/2].

Proof. The proof follows directly from Lemma 3. �
Corollary 5. Let τ be a polynomial one–form of degree s. Then the one–
form τ/Gl can be expressed as

τ

Gl
= dS + r dH +

α(H)

Gl
y dx,
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where

S =
Q

Gl
, r =

qG + lQJ

Gl+1
, J =

n∑

i=2

i(i − 1)H i−2,

such that Q(x, y), q(x, y) and α(h) are polynomials of degree s + 1, s − 1
and [(s − 1)/2], respectively.

Proof. Choose the polynomials Q, q and α as in Lemma 3. Then the proof
follows by substitution. �

We rewrite system (4) as

dH − ε
ω

G
= 0,

where ω = A(x, y)dy − B(x, y)dx is a polynomial one–form of degree m.
We will calculate the Melnikov functions for system (4) using the following
well–known result due to Françoise [4] and Roussarie [13].

Lemma 6. For system (4) we have

M1(h) =

∫

H=h
Ω1,

where Ω1 = ω/G. In addition, if for some k ≥ 2 we have M1(h) = . . . =
Mk−1(h) ≡ 0, then

Mk(h) =

∫

H=h
Ωk,

where Ωk = rk−1ω/G, and rk−1 is determined successively by Ωi = dSi +
ri dH for i = 1, . . . , k − 1.

We rewrite system (5) as

dH − ε
ω1

G
− ε2 ω2

G
− . . . = 0,

where ωi = Ai(x, y)dy − Bi(x, y)dx is a polynomial one–form of degree m
for each i = 1, 2, . . .. We will calculate the Melnikov functions for system
(4) using the following well–known result due to Françoise [4] and Roussarie
[13].

Lemma 7. For system (5) we have

M1(h) =

∫

H=h
Ω1,

where Ω1 = ω/G. In addition, if for some k ≥ 2 we have M1(h) = . . . =
Mk−1(h) ≡ 0, then

Mk(h) =

∫

H=h
Ωk,

where

Ωk =
ωk

G
+

k−1∑

i=1

rk−i
ωi

G
,
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and rk−i is determined successively by Ωi = dSi + ridH for i = 1, . . . , k − 1.

3. Proof of Theorem 1

In order to proof Theorem 1 we first prove the following lemma where we
look at the ri in Lemma 6 in more detail.

Lemma 8. Assume M1(h) = . . . = Mk−1(h) ≡ 0 for some k ≥ 2, and
define p0 = 1. For i = 1, . . . , k − 1 let pi be the polynomial such that the
function ri of Lemma 6 is ri = pi/G2i, and let Qi and qi defined satisfying
pi−1ω = dQi + qidH, see Lemma 3. Then pi is a polynomial of degree
i(2n − 3) + im given by pi = qiG + (2i − 1)QiJ .

Proof. We know by Lemma 6 that

M1(h) =

∫

H=h
Ω1 =

∫

H=h

ω

G
=

1

Γ(h)

∫

H=h
ω,

and by Lemma 3 that

ω = dQ1 + q1 dH + α(H)y dx,

where Q1, q1 and α are polynomials of degree m+1, m− 1 and [(m− 1)/2],
respectively. Using this information and induction on k we shall prove that
pi is a polynomial of degree i(2n − 3) + im given by pi = qiG + (2i − 1)QiJ
for i = 1, . . . , k − 1.

Let k = 2. Then we have M1(h) ≡ 0, which means ω = dQ1 + q1dH due
to Corollary 4. By Lemma 6 we have Ω2 = r1ω/G where Ω1 = dS1 + r1 dH.
Then by Corollary 5 we obtain

r1 =
q1G + Q1J

G2
=

p1

G2
,

and consequently deg(p1) = 2n − 3 + m. Hence the statement is true for
k = 2.

Now assume that the statement holds for some arbitrary k > 2. Then we
have M1(h) = . . . Mk−1(h) ≡ 0 and

(7) ri =
pi

G2i
=

qiG + (2i − 1)QiJ

G2i
,

for i = 1, . . . , k − 1, where deg(pi) = i(2n − 3) + im. To show that the
statement holds for k + 1, we further assume that Mk(h) =

∫
H=h Ωk ≡ 0.

Then by Lemma 6 we get

Ωk = rk−1
ω

G
= dSk + rk dH,

for some functions Sk and rk. We know from (7) that

Ωk =
pk−1ω

G2k−1
,
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where pk−1ω is a polynomial one–form of degree (k−1)(2n−3)+km, which
can be expressed as dQk + qk dH, where deg(Qk) = (k −1)(2n−3)+km+1
and deg(qk) = (k − 1)(2n − 3) + km − 1, by Lemma 3 because Mk(h) ≡ 0.
Hence by Lemma 6 and Corollary 5 we obtain

Ωk = d

(
Qk

G2k−1

)
+

qkG + (2k − 1)QkJ

G2k
dH.

Therefore we get

rk =
pk

G2k
=

qkG + (2k − 1)QkJ

G2k

where deg(pk) = k(2n − 3) + km. �

Proof of Theorem 1. As a result of Lemma 8, we have that if for some k ≥ 2
M1(h) = . . . = Mk−1(h) ≡ 0 then

Mk(h) =
1

(Γ(h))2k−1

∫

H=h

(
qk−1G + (2k − 3)Qk−1J

)
ω

has at most [k(m − 1)/2] + (k − 1)(n − 1) positive zeros taking into account
their multiplicities due to Corollary 4, concluding the proof of Theorem
1. �

4. Proof of Theorem 2

In order to proof Theorem 2 we first prove the following lemma where we
look at the ri in Lemma 7 in more detail.

Lemma 9. Assume that M1(h) = . . . = Mk−1(h) ≡ 0 for some k ≥ 2.
Then Ωk as in Lemma 7 can be written as Ωk = τk/G2k−1 where τk is a
polynomial of degree

deg(τk) =

{
m + 4(k − 1)(n − 1), if m ≤ 2n − 1,

km + (k − 1)(2n − 3), if m ≥ 2n − 1.

Proof. First we will prove by induction on k that for k ≥ 2 we have that the
ri for i = 1, . . . , k − 1 given in Lemma 6 satisfies

(8) ri =
qiG + (2i − 1)QiJ

G2i
:=

pi

G2i
,

where qi and Qi are polynomials such that

(9) deg(qi) =

{
m + 4(i − 1)(n − 1) − 1, if m ≤ 2n − 1,

im + (i − 1)(2n − 3) − 1, if m ≥ 2n − 1,

and deg(Qi) = deg(qi) + 2.

Let k = 2. Then we have

M1(h) =

∫

H=h
Ω1 =

1

Γ(h)

∫

H=h
ω1 ≡ 0,
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which means

ω1 = dQ1 + q1 dH

where Q1 and q1 are polynomials of degree m + 1 and m − 1, respectively,
due to Lemma 3 and Corollary 4. Then by Corollary 5 we get

Ω1 =
ω1

G
= d

(
Q1

G

)
+

q1G + Q1J

G2
dH,

and thus

r1 =
q1G + Q1J

G2
,

which prove the induction hypothesis for k = 2.

Now assume that the lemma holds for some arbitrary k > 2. Then by(8)
we have

Ωk =
ωk

G
+

k−1∑

i=1

rk−i
ωi

G
=

ωk

G
+

k−1∑

i=1

pk−iωi

G2k−2i+1

=
ωkG

2k−2 +
∑k−1

i=1 pk−iωiG
2i−2

G2k−1
:=

τk

G2k−1
.

(10)

We see that deg(ωkG
2k−2) = m + 4(k − 1)(n − 1) and by the induction

hypothesis (see (8) and (9)) we obtain

deg(pk−iωiG
2i−2) =





2m + 4(k − 1)(n − 1) − (2n − 1), if m ≤ 2n − 1,

km + (k − 1)(2n − 3)

+ (1 − i)
(
m − (2n − 1)

)
,

if m ≥ 2n − 1.

In particular the degree of τk is

(11) deg(τk) =

{
m + 4(k − 1)(n − 1), if m ≤ 2n − 1,

km + (k − 1)(2n − 3), if m ≥ 2n − 1.

and the lemma is proved if we end the induction process.

To end the induction process, i.e. that (8) and (9) hold for k + 1, we
further assume that Mk(h) ≡ 0. Then we have τk = dQk + qk dH. This
together with (11) completes the induction process. �

Proof of Theorem 2. As a result of Lemmas 7 and 9, we have that if M1(h) =
. . . = Mk−1(h) ≡ 0 for some k ≥ 2, then

Mk(h) =
1

(Γ(h))2k−1

∫

H=h
τk.

Now the proof of Theorem 2 follows from Lemma 9 and Corollary 4. �
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équation differentielles III, IV 1 (1885), 167–244; 2 (1886), 155-217.

[13] R. Roussarie, Bifurcation of planar vector fields and Hilbert’s 16th problem, (IMPA
1995).

[14] Y. Yanqian, Theory of Limit Cycles Vector Fields, Translations of Math. Monographs
66, Amer. Math. Soc. Providence, RI, 1986.

1 Department of Mathematics, Drexel University, 15 S. 33rd Street, Philadel-
phia, PA, 19104, USA

E-mail address: ilkercolak@gmail.com
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