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PROPER RATIONAL AND ANALYTIC FIRST INTEGRALS FOR

ASYMMETRIC 3-DIMENSIONAL LOTKA-VOLTERRA SYSTEMS

JAUME LLIBRE1 AND CLÀUDIA VALLS2

Abstract. We go beyond in the study of the integrability of the classical
model of competition between three species studied by May and Leonard [19],
by considering a more realistic asymmetric model. Our results show that there
are no global analytic first integrals and we provide all proper rational first

integrals of this extended model by classifying its invariant algebraic surfaces.

1. Introduction and statement of the main results

Nonlinear differential equations govern many branches of applied mathematics,
physics and sciences in general. A 3–dimensional system with two first integrals
whose gradients are linearly independent in R3 (except perhaps in a zero Lebesgue
measure set) is completely solvable in the sense that the intersections of the invari-
ant levels of these two first integrals determine the trajectories of the system. On
the other hand, the knowledge of only one first integral does not determine com-
pletely the phase portrait of the system but reduces the study of its dynamics by
one dimension (i.e. from dimension 3 to dimension 2). Therefore knowing whether
there exists a first integral is important in the qualitative theory of differential
equations. Different methods exist for studying the existence of first integrals of
non–linear ordinary differential equations relying on: the well-known Darboux the-
ory of integrability [8, 18], the so-called Noether symmetries [5], the so-called Lie
symmetries [1, 24], the well-known Painlevé analysis [3], the use of Lax pairs [12],
the so-called direct method [9, 10], the well-known Carleman embedding procedure
[6, 2], the so-called linear compatibility analysis method [25], etc.

In the present paper using the well-known Darboux theory of integrability we
determine the existence of first integrals in some given classes for the following
asymmetric model that studies the competition among three species and that is
the asymmetrization of the initial model used by May and Leonard [19]. This
asymmetric model is

Ẋ = X(1 − X − a1Y − b1Z),

Ẏ = Y (1 − b2X − Y − a2Z),

Ż = Z(1 − a3X − b3Y − Z),

(1)
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where

0 < ai < 1 < bi for i = 1, 2, 3,

and the dot denotes derivative with respect to the time t. Model (1) was studied
by Chi, Hsu and Wu in [7] and it controls the competition between three species
with the same intrinsic growth rates and different competition coefficients. From
the results on a two-dimensional competitive system [26], the assumption 0 < ai <
1 < bi for i = 1, 2, 3 ensures that there is an orbit on the xy-plane connecting the
equilibrium (0, 1, 0) to the equilibrium (1, 0, 0), an orbit on the xz-plane connecting
the equilibrium (1, 0, 0) to the equilibrium (0, 0, 1), and an orbit on the yz-plane
connecting the equilibrium (0, 0, 1) to the equilibrium (0, 1, 0). May and Leonard
[19] were the first to study the symmetric case that is, when a1 = a2 = a3 and
b1 = b2 = b3.

The symmetric case was studied intensively from the view point of the dynamics
by several authors including May and Leonard themselves and from the view of
of the integrability by Leach and Miritzis in [13] (obtaining partial results) and
by Llibre and Valls in [16] characterizing completely the polynomial, rational and
analytic first integrals. The asymmetric model, being much more realistic, has
been studied from the dynamical point of view in [7]. There the authors proved
the asymptotic stability of a stationary point in certain parameter regions, which
precludes the existence of a global analytic first integral. In this paper we study
the polynomial, rational and global analytic first integrals for all the values of the
parameters.

In order to study the integrability of system (1) we first do the change of variables

x = Xe−t, y = Y e−t, z = Ze−t, s = et,

and system (1) becomes

x′ = −x(x + a1y + b1z),

y′ = −y(b2x + y + a2z),

z′ = −z(a3x + b3y + z),

(2)

where 0 < ai < 1 < bi for i = 1, 2, 3, and the prime denotes derivative with respect
to s.

More precisely, we will completely characterize the polynomial, rational and
analytic first integrals of system (2). To do so we introduce some notation. We set

G = z +
(1 − a3)

b1 − 1
x +

(a1 − 1)(a3 − 1)

(b1 − 1)(b2 − 1)
y,

b∗
3 = 1 +

(1 − a1)(1 − a2)(1 − a3)

(b1 − 1)(b2 − 1)
,

k∗
1 =

b1 − 1

1 − a2
> 0,

k∗
2 =

(b1 − 1)(b2 − 1)

(1 − a2)(1 − a3)
> 0,

k∗
3 =

1 − a2 + a2a3 − a3b1 − b2 + b1b2

(1 − a2)(1 − a3)
> 0.

(3)
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Let U ⊂ R3 be an open subset and consider the vector field

(4) X = −x(x + a1y + b1z)
∂

∂x
− y(b2x + y + a2z)

∂

∂y
− z(a3x + b3y + z)

∂

∂z
,

on U related with system (2). A non–constant function H : U → R is a first
integral of X if H(x(t), y(t), z(t)) is constant for all values for which the solution
(x(t), y(t), z(t)) of X is defined on U .

H is a polynomial first integral if H is a polynomial, H is a proper rational first
integral if H is a rational function which is not a polynomial and H is an analytic
first integral if H is an analytic function.

The symmetric case, i.e., when a1 = a2 = a3 = a and b1 = b2 = b3 = b
the polynomial, rational and analytic integrability was studied in [16] where the
authors proved the following result.

Theorem 1. For the differential system (2) with a1 = a2 = a3 = a and b1 = b2 =
b3 = b, the following statements hold.

(a) There are no polynomial first integrals.
(b) The unique proper rational first integrals are rational functions in the vari-

able
xyz

(x + y + z)3

whenever a + b = 2.
(c) There are no global analytic first integrals.

The main result of this paper is the following one.

Theorem 2. For the differential system (2) the following statements hold.

(a) There are no polynomial first integrals.
(b) If b3 = b∗

3 then

xyk∗
1 zk∗

2

Gk∗
3

is a first integral. Additionally, if k∗
1 , k∗

2 , k∗
3 ∈ N, this first integral is the

unique proper rational first integral of the system.
(c) There are no global analytic first integrals.

Note that Theorem 2 reduces to Theorem 1 when a1 = a2 = a3 = a and b1 =
b2 = b3 = b. Therefore in the proof of Theorem 2 we will only consider the case in
which (a1−a2)

2+(a1−a3)
2+(a2−a3)

2 ̸= 0 and (b1−b2)
2+(b1−b3)

2+(b2−b3)
2 ̸= 0.

The integrability of other 3-dimensional Lotka-Volterra systems other than system
(2) has been studied, see for instance [4, 11, 15, 20, 21, 22] and the references
therein.

We must remark that under the condition b3 = b∗
3 the differential system (1)

exhibits a Hopf bifurcation and a family of neutrally stable periodic orbits, see for
a proof [7]; while under the same condition system (2) and system (1) have the first
integral given in statement (b) of Theorem 2.

Note that since system (2) is homogeneous, the knowledge of its homogeneous
polynomial first integrals determine easily all its polynomial and its analytic first
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integrals (see Proposition 7 for further details). With this observation it is clear
that statement (c) of Theorem 2 follows from statement (a) (of the same theorem).

In the proof of Theorem 2 we will use the invariant algebraic surfaces of system
(2). This is precisely on what is based the Darboux theory of integrability which
was introduced by Darboux [8] in 1878. This theory is valid for either real or
complex polynomial differential equations and sometimes the knowledge of complex
invariant algebraic curves is necessary for obtaining all the real first integrals of a
real polynomial differential equation (see for instance [14]).

We say that h = h(x, y, z) ∈ C[x, y, z] \ C is a Darboux polynomial of system (2)
if it satisfies Xh = Kh for some K = K(x, y, z) ∈ C[x, y, z]. The polynomial K
is called the cofactor of h and has degree at most 1. In this case we also say that
h = 0 is an invariant algebraic curve of the vector field X associated to system (2)
and K is also called the cofactor of h = 0. Throughout the paper when we say that
a polynomial is irreducible, we mean irreducible in C[x, y, z]. Moreover, we recall
that the polynomial first integrals are the Darboux polynomials with zero cofactor.

Theorem 3. The unique irreducible Darboux polynomials with non–zero cofactor
of system (2) are x, y, z with cofactors −(x + a1y + b1z), −(b2x + y + a2z) and
−(a3x + b3y + z) respectively, for all ai, bi ∈ R for i = 1, 2, 3; and G whenever
b3 = b∗

3 (see (3)) with cofactor −x − y − z.

In Section 2 we state and prove some auxiliary results of system (2) that will be
used in the paper. In Section 3 we prove some results of system (2) restricted to
either x = 0, or y = 0, or z = 0 and that will play an important role in the proof
of Theorem 2. Finally, in section 4 we prove Theorem 3, and in section 5 we prove
Theorem 2.

2. Preliminaries

Proposition 4. Let f ∈ C[x, y, z] and f =

s∏

j=1

f
αj

j be its decomposition into irre-

ducible factors in C[x, y, z]. Then f is a Darboux polynomial of system (2) if and
only if fj are Darboux polynomials of system (2) for j = 1, . . . , j. Additionally, if

K and Kj are the cofactors of f and fj respectively, then K =

s∑

j=1

αjKj.

Proof. See [14]. �

The following three results are well-known and can be proved easily using Dar-
boux theory of integrability (for the second one see also [23] and for the third one
see [17]).

Proposition 5. The homogeneous polynomial differential system (2) has a proper
rational first integral if and only if it has two Darboux polynomials with the same
non–zero cofactor.
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Lemma 6. Any Darboux polynomial f ̸= 0 of the homogeneous polynomial differ-
ential system (2) has a cofactor of the form

(5) K = α1x + α2y + α3z,

with αi ∈ C, i = 1, 2, 3.

Proposition 7. The following statements hold:

(a) Let f be a polynomial and write it in sum of its homogeneous parts as
f =

∑n
j=1 fj. Then f is a Darboux polynomial of the homogeneous polyno-

mial differential system (2) with cofactor K if and only if fj is a Darboux
polynomial of homogeneous polynomial differential system (2) with cofactor
K for j = 1, . . . , n.

(b) Let f be a formal power series and write it in sum of its homogeneous parts
as f =

∑
j≥1 fj, with fj being homogeneous polynomials of degree j. Then

f is a formal first integral of the homogeneous polynomial differential sys
tem (2) if and only if fj is a polynomial first integral of the homogeneous
polynomial differential system (2) for all j ≥ 1.

Proposition 8. The unique irreducible Darboux polynomials of degree 1 with non–
zero cofactor of system (2) are: x, y, z with cofactors −(x + a1y + b1z), −(b2x +
y + a2z) and −(a3x + b3y + z) respectively, for all a, b ∈ R and G whenever b3 = b∗

3

(see (3)) with cofactor −x − y − z.

Proof. It follows easily from direct computations and the definition of Darboux
polynomial. �

3. System (2) restricted to x = 0, or y = 0, or z = 0.

We will consider in this section system (2) restricted to either x = 0, or y = 0,
or z = 0.

Theorem 9. For system (2) restricted to z = 0 the following statements hold.

(a) There are no homogeneous polynomial first integrals.
(b) All the irreducible Darboux polynomials with non–zero cofactor are x and

y for all 0 < a1 < 1 < b2; and additionally (b2 − 1)x + (1 − a1)y.

Proof. First we consider system (2) restricted to z = 0, that is,

(6) ẋ = −x(x + a1y), ẏ = −y(b2x + y).

It follows by direct computations that

H = x1−b2y1−a1((b2 − 1)x + (1 − a1)y)−1+a1b2

is a first integral of system (6). Furthermore, it is a homogeneous polynomial of
degree n ≥ 1 if and only if

1 − a1 = n1, 1 − b2 = n2, a1b2 − 1 = n − n1 − n2, n1 + n2 ≤ n, n1, n2 ∈ N,

or equivalently, if and only if,

1 − a1 = n1, 1 − b2 = n2, n1n2 = n, n1 + n2 ≤ n, n1, n2 ∈ N,
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which is not possible because 0 < a1 < 1 and b2 > 1. Hence statement (a) is
proved.

It is also straightforward by direct computations that the unique irreducible
Darboux polynomials of system (6) are x and y and (b2 −1)x+(1−a1)y (note that
a1 ̸= 1, b2 ̸= 1 and that irreducible homogeneous polynomials in two variables are
necessarily of degree one).

To complete the proof of the proposition we will proceed by contradiction. Let f
be an irreducible homogeneous Darboux polynomial of system (6) of degree n ≥ 2
and so it satisfies

(7) −x(x + a1y)
∂f

∂x
− y(b2x + y)

∂f

∂y
= (α1x + α2y)f, α1, α2 ∈ C.

First we assume that α1 ̸= 0 or α2 ̸= 0. If we restrict equation (7) to x = 0 and
denote the restriction of f to x = 0 by f , then f = f(y) ̸= 0 (otherwise f would be
reducible) is a homogeneous polynomial of degree n. We write it as f = β0y

n with
β0 ∈ C \ {0}. Clearly f satisfies

−y2 df

dy
= α2yf.

So f = α0y
−α2 with α0 ∈ C \ {0}. Now equating the two expressions for f we get

α2 = −n. In a similar manner restricting to y = 0 we get that α1 = −n. Thus
K = −n(x + y) and equation (7) becomes

−x(x + a1y)
∂f

∂x
− y(b2x + y)

∂f

∂y
= −n(x + y)f.

Since b2 ̸= 1 and a1 ̸= 1, we introduce the change of variables (X, Y ) = ((b2 −1)x+
(1 − a1)y, y). In these new variables system (6) becomes

X ′ =
X

1 − b2
(X + (a1 + b2 − 2)Y ), Y ′ =

Y

1 − b2
(b2X + (a1b2 − 1)Y ).

We have that f̃ = f̃(X,Y ) = f(x, y) satisfies

X

1 − b
(X + (a1 + b2 − 2)Y )

∂f̃

∂X
+

Y

1 − b2
(b2X + (a1b2 − 1)Y )

∂f̃

∂Y

=
n

1 − b2
(X + (b2 + a1 − 2)Y )f̃ .

(8)

Let now f̂ be the restriction of f̃ to X = 0. Since f is irreducible, f̂ ̸= 0, and f̂
satisfies (8) restricted to X = 0, that is

(a1b2 − 1)Y 2

1 − b2

df̂

dY
=

n

1 − b2
(b2 + a1 − 2)Y f̂ .

Solving this linear differential equation we obtain f̂ = β0y
n(2−a1−b2)/(1−a1b2), with

β0 ∈ C \ {0}. Since f̂ has degree n, we must have 2 − a1 − b2 = 1 − a1b2, or
equivalently (a1 − 1)(b2 − 1) = 0. That is a1 = 1 or b2 = 1, a contradiction. This
completes the proof. �

Theorem 10. For system (2) restricted to x = 0 the following statements hold.

(a) There are no homogeneous polynomial first integrals.
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(b) All the irreducible Darboux polynomials with non–zero cofactor are x and
y for all 0 < a2 < 1 < b3; and additionally (b3 − 1)x + (1 − a2)y.

Theorem 11. For system (2) restricted to y = 0 the following statements hold.

(a) There are no homogeneous polynomial first integrals.
(b) All the irreducible Darboux polynomials with non–zero cofactor are x and

y for all 0 < a3 < 1 < b1; and additionally (b1 − 1)x + (1 − a3)y.

Theorems 10 and 11 are proved in the same way as Theorem 9.

4. Proof of Theorem 3

In order to prove Theorem 3 we first study the irreducible homogeneous Darboux
polynomials of degree n ≥ 2 of system (2) with non–zero cofactor. This is the
content of the following theorem.

Theorem 12. System (2) has no irreducible homogeneous Darboux polynomials of
degree n ≥ 2 with non–zero cofactor.

Proof. Let f be a homogeneous irreducible Darboux polynomial of degree n ≥ 2
with non-zero cofactor. In view of Lemma 6 we can assume that K = α1x+α2y+α3z
with (α1, α2, α3) ∈ C3 \ {(0, 0, 0)}.

We shall prove that K = −n(x + y + z). By Theorem 9 we have that f̃ =
f(x, y, 0) = cxm1ym2((b2 − 1)x + (1 − a1)y)n−m1−m2 with m1,m2 ≥ 0 and then, by
Proposition 4, the cofactor is

(9) K = ((1 − b2)m2 − n)x + ((1 − a1)m1 − n)y.

Moreover the cofactor K is also equal to α1x + α2y. This means that

(10) α1 = (1 − b2)m2 − n, and α2 = (1 − a1)m1 − n.

Similarly, by Theorem 10 we have that f = f(0, y, z) = c1y
m3zm4((b3 − 1)x + (1 −

a2)y)n−m3−m4 with m3,m4 ≥ 0 and then the cofactor is K = ((1 − b3)m3 − n)y +
((1−a2)m4 −n)z. Moreover the cofactor K is also equal to α2y +α3z. This means
that

(11) α2 = (1 − b3)m3 − n, and α3 = (1 − a2)m4 − n.

It follows from (10) and (11) that (1−b3)m3−n = (1−a1)m1−n and so (1−b3)m3 =
(1 − a1)m1 with m1,m3 ≥ 0. Since b3 > 1 and a1 < 1 the unique possibility is
m1 = m3 = 0.

Doing the same with the restriction of f to y = 0 we get that m2 = m4 = 0.
From (10) and (11) we get α1 = α2 = α3 = −n. In short K = −n(x + y + z) and
f satisfies

−x(x+a1y + b1z)
∂f

∂x
−y(b2x+y +a2z)

∂f

∂y
− z(a3x+ b3y + z)

∂f

∂z
= −n(x+y + z)f.

We denote by f̃ = f̃(x, y) the restriction of f to z = 0. Since αi = −n for
i = 1, 2, 3, it follows from the above discussion in the case that we restricted to
z = 0 that f̃ = f(x, y, 0) = c0x

m1ym2((b1 − 1)x + (1 − a1)y)n−m1−m2 with cofactor

(9). Therefore m1 = m2 = 0 and so f̃ = ((b1 − 1)x + (1 − a1)y)n and f =
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c0((b − 1)x + (1 − a)y)n + zg, where g = g(x, y, z) is a homogenous polynomial of
degree n−1. Proceeding analogously for the restrictions of f to x = 0 and to y = 0
we can write f in the following three forms

f = c0((b2 − 1)x + (1 − a1)y)n + zg0 = c1((b3 − 1)y + (1 − a2)z)n + xg1,

= c2((b1 − 1)z + (1 − a3)x)n + yg2,
(12)

for some homogeneous polynomials g0, g1, g2 of degree n − 1. Note that ci ̸= 0 for
i = 1, 2, 3 otherwise f would be reducible. We consider two cases.

Case 1: b3 ̸= b∗
3. Evaluating (12) on x = z = 0 we get

(13) c0(1 − a1)
n = c1(b3 − 1)n.

Evaluating (12) on x = y = 0 we obtain

(14) c1(1 − a2)
n = c2(b1 − 1)n,

and on y = z = 0, we have

(15) c0(b2 − 1)n = c2(1 − a3)
n.

From (13) and (14) we get

c0 = c2
(b1 − 1)n(b3 − 1)n

(1 − a1)n(1 − a2)n
,

and so from (15) using that c2 ̸= 0 we must have
(

(b1 − 1)(b2 − 1)(b3 − 1)

(1 − a1)(1 − a2)

)n

= (1 − a3)
n,

and since all the factors are positive we obtain

(b1 − 1)(b2 − 1)(b3 − 1)

(1 − a1)(1 − a2)
= 1 − a3,

which yields

b3 = 1 +
(1 − a1)(1 − a2)(1 − a3)

(b1 − 1)(b2 − 1)
= b∗

3,

which is not possible.

Case 2: b3 = b∗
3. From (3) we have

G = z +
(1 − a3)

(b1 − 1)(b2 − 1)
((b2 − 1)x + (1 − a1)y),

and from (12) we get

f = c0((b2−1)x+(1−a1)y)n+zg0 = c̃0

( (1 − a3)

(b1 − 1)(b2 − 1)

)n

((b2−1)x+(1−a1)y)n+zg0,

where

c̃0 = c0

( (1 − a3)

(b1 − 1)(b2 − 1)

)−n

.

Moreover, using the Newton’s binomial formula we can also write

(16) f = c̃0G
n + zg1,
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for some homogeneous polynomial g1 of degree n − 1. Indeed, note that

Gn =

(
z +

(1 − a3)

(b1 − 1)(b2 − 1)
((b2 − 1)x + (1 − a1)y)

)n

=
n∑

j=0

(
n

j

)
zj

( (1 − a3)

(b1 − 1)(b2 − 1)
((b2 − 1)x + (1 − a1)y)

)n−j

=
( (1 − a3)

(b1 − 1)(b2 − 1)

)n

((b2 − 1)x + (1 − a1)y)n

+
n∑

j=1

(
n

j

)
zj

( (1 − a3)

(b1 − 1)(b2 − 1)
((b2 − 1)x + (1 − a1)y)

)n−j

=
( (1 − a3)

(b1 − 1)(b2 − 1)

)n

((b2 − 1)x + (1 − a1)y)n + zg2,

for some homogeneous polynomial g2. Then taking g1 = g0 − c̃0g2 we obtain (16).
It follows from (16) and the fact that Gn is a homogeneous polynomial of degree n
with cofactor −n(x + y + z) that

−n(x + y + z)(c̃0G
n + zg1) = X (c̃0G

n + zg1) = −n(x + y + z)c̃0G
n + X (zg1),

and so

X (zg1) = X (z)g1 + zX (g1) = −z(a3x + b3y + z)g1 + zX (g1) = −n(x + y + z)zg1.

Hence,

X (g1) = (−n(x + y + z) + a3x + b3y + z)g1.

We will show that g1 = 0. We consider two different cases.

Case 2.1: g1 is not divisible by z. Let g∗
1 the restriction of g1 to z = 0. Then by

assumptions we have that g∗
1 ̸= 0 and so, g∗

1 is a homogeneous Darboux polynomial
of degree n − 1 of system (6) with cofactor −n(x + y) + a3x + b3y. It follows from
the arguments used in the proof of Theorem 9 that

(1 − b2)m2 − n = −n + a3, (1 − a1)m1 − n = −n + b3,

which is not possible because b2 > 1 and 0 < a3 < 1. So this case is not possible.

Case 2.2: g1 is divisible by z. We write g1 = zℓh with ℓ an integer satisfying
0 < ℓ < n and h a homogeneous polynomial of degree n − ℓ that satisfies

X (h) = (−n(x + y + z) + (ℓ + 1)(a3x + b3y + z))h.

Let h∗ be the restriction of h to z = 0. Then by assumptions of we have that h∗ ̸= 0
and so, h∗ is a homogeneous Darboux polynomial of degree n−ℓ of system (6) with
cofactor −n(x + y) + (ℓ + 1)(a3x + b3y). It follows from the arguments used in the
proof of Theorem 9 that in this last case we must have

(1 − b2)m2 − n = −n + (ℓ + 1)a3, (1 − a1)m1 − n = −n + (ℓ + 1)b3,

which is not possible because b2 > 1 and 0 < a3 < 1. So this case is not possible.

In short g1 = 0 and it follows from (16) that f = c̃0G
n in contradiction with

the fact that f is irreducible because n > 1. This concludes the proof of the
theorem. �

Now we prove Theorem 3.
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Proof of Theorem 3. The proof follows directly from Proposition 8 and Theorem 12.
�

5. Proof of Theorem 2

Let f be a homogeneous polynomial first integral of degree n. It follows from
Theorem 9 that f can be written as f = zh1 with h1 a polynomial of degree n− 1.
Moreover it follows from Theorem 10 that f can also be written as f = xh2 with
h2 a polynomial of degree n − 1 and in view of Theorem 11 it can also be written
as f = yh3 with h3 a polynomial of degree n − 1. Hence, f can be written as

f = zh1, f = xh2, f = yh3

which yields
f = xyzg,

where g is a polynomial of degree n − 3. Taking into account that X (f) = 0 we get
that

xyzX (g) −
(
(1 + b2 + a3)x + (a1 + 1 + b3)y + (b1 + a2 + 1)z

)
xyzg = 0,

that is, after simplifying by xyz,

X (g) =
(
(1 + b2 + a3)x + (a1 + 1 + b3)y + (b1 + a2 + 1)z

)
g.

This yields that g is either 0 (which is not possible because then f = 0 and this is in
contradiction with the fact that f is a homogeneous polynomial first integral, or g is
a Darboux polynomial. Now taking into account that by Proposition 4 any Darboux
polynomial factorizes in irreducible Darboux polynomials, by Propositions 5 and 8
and Theorem 3 any first integral (either a polynomial or a proper rational function)
must be of the form

(17) f =

{
xm1ym2zm3 if b3 ̸= b∗

3,

xm1ym2zm3Gm4 if b3 = b∗
3,

where m1,m2,m3,m4 are integers. We consider two different cases.

Case 1: b3 ̸= b∗
3. In this case we have that f is a polynomial or a proper rational

first integral if and only if f = xm1ym2zm3 , for some integers m1,m2, m3 with
m1 + m2 + m3 + m4 ̸= 0. Therefore, computing the cofactor K of f and setting it
equal to zero we get the equation

0 = (m1 + m2b2 + m3a3)x + (m1a1 + m2 + m3b3)y + (m1b1 + m2a2 + m3)z,

that is,

(18) m1 + m2b2 + m3a3 = 0, m1a1 + m2 + m3b3 = 0, m1b1 + m2a2 + m3 = 0.

This is a linear system in the variables (m1,m2,m3) that can be written as AM = 0
where M = (m1,m2,m3). We compute the determinant of the matrix A and we
get

detA = 1 + a1a2a3 − a3b1 − a1b2 − a2b3 + b1b2b3

= 1 − a2 + a2a3 − a3b1 − b2 + b1b2 + a1(a2a3 − b2)

− (a2a3 − b2) + b3(b1b2 − a2) − (b1b2 − a2)

= (1 − a2)(1 − a3) + (b1 − 1)(b2 − a3) + (b3 − 1)(b1b2 − a2)

+ (a1 − 1)(a2a3 − b2) > 0

(19)
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because ai ∈ (0, 1) and bi > 1 for i = 1, 2, 3. So, the unique solution of (18) is
m1 = m2 = m3 = 0, that is not possible.

Case 1: b3 = b∗
3. In this case we have that f is as in (17), i.e., f = xm1ym2zm3Gm4

for some integers m1,m2,m3 and m4 with m1 + m2 + m3 + m4 ̸= 0. Computing
the cofactor K of f and setting it equal to zero we get the equation

(m1+m2b2+m3a3+m4)x+(m1a1+m2+m3b3+m4)y+(m1b1+m2a2+m3+m4)z = 0.

Solving K = 0 in the variables m1,m2,m3,m4 we get

m2 =
b1 − 1

1 − a2
m1, m3 =

(b1 − 1)(b2 − 1)

(1 − a2)(1 − a3)
m1,

m4 = −1 − a2 + a2a3 − a3b1 − b2 + b1b2

(1 − a1)(1 − a3)
m1,

with m1 ∈ Z. From (3) we have m2 = k∗
1m1, m3 = k∗

2m1 and m4 = k∗
3m1. Now

we consider xyk∗
1 zk∗

2 Gk∗
3 . Since k∗

1 , k∗
2 > 0 and they must be integers, we conclude

that k∗
1 , k∗

2 ∈ N. Moreover, proceeding as in (19) we get that

1 − a2 + a2a3 − a3b1 − b2 + b1b2 = (1 − a2)(1 − a3) + (b1 − 1)(b2 − a3) > 0,

and so k∗
3 < 0. Since it must be an integer we conclude that k∗

3 is a negative integer.
This completes the proof of the theorem.
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