
RESEARCH ARTICLE

Malignant infarction of the middle cerebral

artery in a porcine model. A pilot study

Fuat Arikan1,2☯*, Tamara Martı́nez-Valverde2, Ángela Sánchez-Guerrero2,
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Abstract

Background and purpose

Interspecies variability and poor clinical translation from rodent studies indicate that large

gyrencephalic animal stroke models are urgently needed. We present a proof-of-principle

study describing an alternative animal model of malignant infarction of the middle cerebral

artery (MCA) in the common pig and illustrate some of its potential applications. We report

on metabolic patterns, ionic profile, brain partial pressure of oxygen (PtiO2), expression of

sulfonylurea receptor 1 (SUR1), and the transient receptor potential melastatin 4 (TRPM4).

Methods

A 5-hour ischemic infarct of the MCA territory was performed in 5 2.5-to-3-month-old female

hybrid pigs (Large White x Landrace) using a frontotemporal approach. The core and pen-

umbra areas were intraoperatively monitored to determine the metabolic and ionic profiles.

To determine the infarct volume, 2,3,5-triphenyltetrazolium chloride staining and immuno-

histochemistry analysis was performed to determine SUR1 and TRPM4 expression.

Results

PtiO2 monitoring showed an abrupt reduction in values close to 0 mmHg after MCA occlu-

sion in the core area. Hourly cerebral microdialysis showed that the infarcted tissue was

characterized by reduced concentrations of glucose (0.03 mM) and pyruvate (0.003 mM)

and increases in lactate levels (8.87mM), lactate-pyruvate ratio (4202), glycerol levels

(588 μM), and potassium concentration (27.9 mmol/L). Immunohistochemical analysis

showed increased expression of SUR1-TRPM4 channels.

Conclusions

The aim of the present proof-of-principle study was to document the feasibility of a large ani-

mal model of malignant MCA infarction by performing transcranial occlusion of the MCA in
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the common pig, as an alternative to lisencephalic animals. This model may be useful for

detailed studies of cerebral ischemia mechanisms and the development of neuroprotective

strategies.

Introduction

Stroke is the second most common cause of death and the third most common cause of dis-

ability-adjusted life years worldwide[1]. One-third of strokes occur in children and young and

middle-aged adults[1], ischemic stroke (IS) being the most common subtype[2]. The rationale

for aggressive therapy in IS is based on the fact that after acute ischemia, a variable amount of

hypoperfused brain is at risk of permanent infarction (ischemic penumbra), but it may be

potentially salvaged by early restoration of cerebral blood flow (CBF). The aim of translational

research in IS is to improve neurological outcomes: it is the focus for basic science and clinical

researchers, funding agencies, and the industry as a whole[3]. Despite remarkable advances in

the understanding of the pathophysiology of ischemic lesions, however, ongoing efforts to

identify novel molecular targets have not yet yielded new pharmacological therapies[4].

The term ‘malignant’ middle-cerebral artery (MCA) infarction was coined by Hacke et al.

in 1996 to describe a form of IS that involved at least 50% of the MCA territory, followed an

uniform clinical course, and resulted in transtentorial herniation and death in most patients

despite optimal medical treatment[5]. To elucidate the pathophysiology of IS and develop neu-

roprotective therapies, animal models have been widely used. Despite limitations and ethical

concerns, animal models are invaluable for investigating the pathogenesis of cerebral ischemia

and evaluating the consequences of pharmacological intervention[6]. Since the early 1980s, the

traditional animal model of IS has been occlusion of the MCA in the rat[7]. However, thera-

peutic strategies that appear efficacious in these experimental models have not been proven so

when translated to patients. One explanation for this failure may be interspecies variability in

cerebrovascular physiology, which may contribute to the divergent outcomes observed in

rodent and human studies. The lysencephalic rodent brain is barely one-thousandth of the

weight of the human brain and the proportions of grey and white matter also differ when com-

paring humans and rodents[8]. Humans, like other gyrencephalic species, have a considerably

higher percentage of white matter (>60%) compared to lissencephalic species, such as rats or

mice, which have only ~10%[8–10]. As a consequence of the recurrent failed translation to

humans, the Stroke Therapy Academic Industry Roundtable (STAIR) recommended the use

of large animal stroke models—e.g. pigs or nonhuman primates—before testing drugs or

endovascular recanalization strategies in clinical trials[11].

Pigs have been described as excellent experimental animals for medical research because of

the similarities between human and porcine biology. The pig brain is gyrencephalic and has a

white-gray matter ratio similar to that of the human brain[10–12]. In a pivotal paper, Imai

et al. presented a new, well-designed model of focal IS in the miniature pig that produced

remarkable consistency in terms of infarct size, which was achieved by electrocoagulation of

the 2 MCAs[13]. The aim of the present work is to present a proof-of-principle study describ-

ing a feasible large animal model of large hemispheric stroke in the common pig (Sus scrofa
domestica) and to elucidate some of its potential advantages as an alternative to the few gyren-

cephalic models already available. Furthermore, this model will allow the use of all the modern

neuromonitoring clinical tools that cannot be used easily in rodents.

In the present study we will show and discuss the results obtained using a porcine model.

We characterized the volume of the infarction, the metabolic patterns of the ischemic tissue,
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the partial pressure of brain tissue oxygen (PtiO2), and the ionic profile of the extracellular

space. We also explored at a molecular level the expression of sulfonylurea receptor 1 (SUR1)

and transient receptor potential melastatin 4 (TRPM4), previously described in the brain of

patients with multiple sclerosis [14], in subarachnoid hemorrhage[15], in cerebral infarcts[16],

and in posttraumatic brain contusions[17]. TRPM4 is a calcium-activated nonselective cation

channel that is expressed de novo after brain ischemia and injury. It is involved in the modula-

tion of the brain immune response and the development of ischemic brain edema—and onco-

tic cell death—through the regulation of Ca2+ homeostasis, cationic fluxes, and membrane

depolarization [14–18]. To our knowledge, this is the first study to explore these receptors in

large IS-induced gyrencephalic mammals.

Material and methods

Experimental procedures and ethics statement

All procedures described in this study were approved by the animal experimentation ethics

committee of the Vall d’Hebron Research Institute (protocol number 69/14) and were con-

ducted in compliance with Spanish legislation and the directives of the European Union for

animal research (2010/63/EU). All experiments were performed in 2.5-to-3-month-old female

hybrid pigs (Large White x Landrace) weighing 30 to 40 Kg. Animals were sourced from A.M.

Animalia Bianya S.L. animal center (Girona, Spain) and recorded in the registry of breeding

centers, suppliers, and users of experimental animals with reference number G9900009. The

transport company was authorized and certified to perform this service. Animals were previ-

ously acclimated to our facilities and housed in conventional pens for at least 1 week with free

access to water and twice-daily feedings using a conventional diet. Animals underwent fasting

for 12 hours before surgery but had free access to water with diluted sucrose. Only specimens

with a satisfactory examination were included in the study. The pigs were kept under general

anesthesia for the entire duration of the experiment and they did not experience any pain or

distress.

Housing conditions and diet

Environmental parameters were recorded and regulated daily. Temperature was maintained

within a range of 19 to 21˚C and humidity was 45 to 65%. Driven air was 100% external, pre-

filtered, filtered with 95% efficiency, and processed with a renewal rate of 15 to 20 cycles per

hour. The photoperiod was programmed for 12 hours of light and 12 hours of darkness, day-

light hours being from 8:00 a.m. to 8:00 p.m. The animals had a minimum floor space of 0.5

m2. They were usually housed as a group of 4 to 6 animals with an area of 8 to 12 m2. Beds of

wood shavings were provided, and for environmental and social enrichment we installed

chains, balls, cylinders, hot plates of soil, an infrared plate in the ceiling, and alfalfa and sugar

lumps as positive reinforcement.

The animals were monitored daily using the following criteria: appearance and body condi-

tion, observed behavior and habits, food and drink intake, and clinical follow-up after the pro-

cedure. Any anomalies or incidences were recorded. Observation of the animals was carried

out by caregivers, technicians, research personnel, animal welfare advisers, and the veterinari-

ans attending the animals. During the 24-hour period, a remote surveillance system involving

a webcam was used to allow animals to be recorded and to study and assess their state, with

the additional advantage of studying their behavior without the presence of people. In accor-

dance with Spanish regulations (the Department of Agriculture, Food and Rural Affairs), all

pigs went through a program of prevention and health surveillance and were vaccinated

against Aujeszky disease.

Malignant infarction model in pig
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Anesthesia and analgesia

While still in the pen, animals were sedated with an intramuscular injection of 4 mg/kg of Tile-

tamine+Zolazepam (Zoletil 1001, Virbac SA, Esplugues del Llobregat, Barcelona, Spain) and 2

mg/kg of Xylacine (Xilagesic 20%1, Laboratorios Calier SA, Les Franqueses del Vallès, Barce-

lona, Spain). After loss of reflexes, the pigs were transported on a trolley. A venous catheter

was placed in the auricular vein and an arterial catheter was placed in the auricular artery. Pre-

oxygenation with 100% oxygen was applied using a facemask while the animals were asepti-

cally washed. In the operating room, intravenous (IV) anesthesia was induced with Propofol

(Propofol1, B Braun Medical SA, Melsungen AG, Germany) at 4 mg/kg. Endotracheal intuba-

tion was immediately performed and anesthesia maintained with 60% oxygen and 2% isoflur-

ane (Isoflo, Abbott laboratories Ltd, Saint-Laurent, Québec, Canada) for the duration of the

experiment. Ringer lactate (Ringer lactate, B Braun Medical SA) was continuously infused

at 10 ml/kg/h and an IV constant-rate infusion of 6 μg/kg/h of Fentanyl (Fentanest1, Kern

Pharma SL, Terrasa, Barcelona, Spain) was also administered for analgesia. In order to prevent

an increase in intracranial pressure (ICP), a single bolus of 10% mannitol (Fresenius Kabi

España SA, Barcelona, Spain) was infused at 0.5 g/kg immediately before craniotomy.

Physiological monitoring

Venous and arterial blood pressures were continuously monitored using arterial catheters

placed in the cava vein and the femoral artery, respectively. Both catheterizations were per-

formed through an ultrasound-guided technique. Anesthesia and ventilation parameters were

controlled with an Aespire-79001 device (GE Healthcare, General Electric Company, Fair-

field, CT, USA), while heart rate, oxygen saturation, end-tidal CO2, and respiratory rate were

monitored with an S/5TM Compact anesthesia monitor Datex-Ohmeda1 (Datex-Ohmeda,

Inc, Madison, WI, USA). A urinary catheter was also inserted. Core temperature was moni-

tored with a rectal thermometer and controlled with a heating pad in order to maintain a stable

core temperature of 38.5˚C.

Surgical approach and occlusion of the middle cerebral artery

A frontotemporal approach was performed in the lateral position according to the surgical

description by Imai et al.[13]. A curved skin incision was performed starting at the zygoma

and extending to just above the right orbit. The frontotemporal bone and the orbital rim were

exposed. Craniotomy was performed with a single burr hole made on the anterior aspect of the

superior temporal line and then expanded using a Kerrison rongeur. The bone in the lateral

part of the roof of the orbit was aggressively removed to facilitate access to the basal cisterns.

The dura mater was opened with a semicircular flap. Two different brain regions were moni-

tored intraoperatively by placing a polarographic Clark-type electrode (CC1.2 sensor, Integra

Neurocare, Plainsboro, NJ, USA) and a CMA microdialysis probe (CMA-71, 8010320, M Dial-

ysis AB, Solna, Sweden). The first area was labeled as the core area (CORE), with probes placed

in the rostral sylvian gyrus of the frontal lobe corresponding to the vascular territory of the

MCA in the common pig[13, 19]. These catheters recorded brain oxygenation and metabolism

of the infarction area induced by the occlusion of the MCA. The second area, labeled the pen-

umbra area (PENUMBRA), was monitored with 1 microdialysis probe placed in the ectosagit-

tal rostral gyrus of the frontal lobe corresponding to a border area of the vascular territory

between the MCA and the anterior cerebral artery (ACA)[13, 19]. Once the dura was opened,

the operating microscope was positioned and a brain retractor was gently used to open the

arachnoid and expose the basal cisterns, the optic nerve, the internal carotid artery, and

the 2 MCAs. Ischemia was induced by clipping both MCAs (Fig 1), after which a control

Malignant infarction model in pig
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angiography was performed. Using a right femoral approach and a 5-French intravascular

sheath, the carotid artery was catheterized with a 5-French intra-arterial catheter (Tempo 5,

Cordis Corporation, Miami, FL, USA) to anatomically confirm the correct clipping of the 2

MCA branches. Euthanasia was scheduled at least 5 hours after the cerebral infarction was

established: pigs received an IV dose of 2 g of thiobarbital (Thiopental, B Braun Medical SA).

Brain tissue oxygen monitoring and microdialysis

Polarographic Clark-type electrodes (CC1.P1 sensor, Integra Neurocare) were connected to

a tissue oxygen pressure monitor (Licox1 CMP system, Integra Neurocare), and the data

obtained throughout the entire PtiO2 monitoring period were stored in a laptop and exported

to a flat file for statistical analysis. The main objective of using these probes was to obtain

real-time brain oxygenation levels and confirm that the surgical procedure was successful in

establishing a reliable ischemic model with a severe drop in PtiO2. Cerebral MD probes were

Fig 1. Basal vascular supply (1), angiographic study (2), and surgical view of the basal circulatory anastomosis (3) in the common

pig. The most relevant arteries in the pig are shown in the angiographic study. Note that the animal presents a network of small bilaterally

interconnected vessels called rete mirabile, the site from which the internal carotid artery originates intracranially. Rete mirabile are perfused

on both sides by the ascending pharyngeal artery, which originates from the common carotid artery. In contrast to humans, it should be noted

that in each hemisphere 2 middle cerebral arteries (MCAs) emerge from the internal carotid arteries, 1 coursing laterally and the other rostrally

(the latter provides vascularization to the olfactory tract).

doi:10.1371/journal.pone.0172637.g001
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perfused with a sterile isotonic central nervous system fluid containing 147 mmol/L of NaCl,

1.2 mmol/L of CaCl2, 2.7 mmol/L of KCl, and 0.85 mmol/L of MgCl2 (P000151, M Dialysis

AB, Stockholm, Sweden) at a fixed flow rate of 0.3 μL/min using a microinfusion pump

(CMA-402, M Dialysis AB). During the non-ischemic monitoring period (basal), microvials

were changed every 30 minutes, while during ischemia microdialysate samples were collected

every 60 minutes until death. Lactate ([Lac]brain), pyruvate ([Pyr]brain), glucose ([Glu]brain),

and glycerol ([Gly]brain) were monitored using the point-of-care IscusFlex analyzer (M Dialysis

AB). After hourly measurements were completed, microvials were placed on a rack designed

to seal them and prevent evaporation (M Dialysis AB). All racks were stored at -20˚C until ion

analysis was carried out.

Histological examination and infarct volume assessment

Immediately after death, brains were carefully extracted and placed on ice for 15 minutes.

Microdialysis and PtiO2 probes were not removed in order to identify the exact insertion site.

Five-mm coronal slices were obtained and stained with 2,3,5-triphenyltetrazolium chloride

(TTC; 93140; Sigma-Aldrich, Inc., St. Louis, MO, USA) to determine the infarct volume. Each

brain slice was placed in a 60-mm dish, covered with 1% TTC solution (dissolved in 0.9%

saline), and incubated at 37˚C under dark conditions for 30 minutes. Using TTC staining, via-

ble gray matter was stained red or pink and infarcted tissue remained a pale cream or white

color (Fig 2). Next, both sides of each section were rinsed twice in 0.9% saline solution and

fixed with 4% formol for 7 days. The placement of the catheters was identified post-mortem

and classified using 3 possible categories: infarct core, ischemic penumbra, and healthy brain.

All brain slices were photographed (Nikon D750, Nikkor 50mm Lens, Nikon and Essilor Inter-

national Joint Research Center Co., Ltd., Kanagawa, Japan). For infarct volume assessment,

TTC images from both sides of the brain slices were digitalized by using a flatbed scanner (HP

Scanjet G4010, Hewlett Packard Enterprise, Sant Cugat del Valles, Barcelona, Spain). The final

infarct volume of all animals was quantified by 1 of the investigators (TMV) using ImageJ soft-

ware (Wayne Rasband, National Institutes of Health, USA). We calculated the volume of the

infarct by adding the infarct volumes of each cut, which were obtained by multiplying the

mean of the infarct area (the area that remains pale cream or white after TTC staining) of the

anterior and posterior surface of each sample by the thickness of each slice. The total volume

of the supratentorial brain was also obtained using the same software to sum up the volume of

each slice (also obtained by multiplying the thickness of each slice by the mean of the anterior

and posterior areas). The infarct volume was expressed in cm3 and as a percentage of the total

volume of the brain in each animal.

Immunohistochemistry

For immunohistochemistry analysis, samples from the different areas (core, penumbra, and

healthy contralateral brain) were obtained. All samples were dehydrated with different alcohol

solutions (70˚, 90˚, and 100˚). Brain tissue samples were cryoprotected using 30% sucrose and

embedded in a Tissue-Tek optimal cutting temperature compound (4583; Sakura Finetek

Europe B.V, Alphen aan den Rijn, The Netherlands). From these blocks, 10-μm sections were

obtained using a cryostat (Leica CM3050 S; Leica Biosystems, Heidelberg, Germany), mounted

on glass slides, and stored at -20˚C until analysis was carried out. For immunohistochemistry

analysis, sections were incubated in a blocking solution containing 2% donkey serum (D9663;

Sigma-Aldrich) and 0.2% Triton-X (T8787; Sigma-Aldrich) in 0.1 M phosphate-buffered

saline for 1 h. Next, cryosections were incubated for 1 hour at room temperature and then for

48 hours at 4˚C with the primary antibodies goat anti-SUR1 1:100 (Santa Cruz Biotechnology,

Malignant infarction model in pig
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Santa Cruz, CA, USA) and chicken anti-TRPM4 1:500 (custom anti-TRPM4 antibodies

described by Woo et al.[2]). Fluorescent-labeled, species-appropriate secondary antibodies

(Invitrogen™, Eugene, OR, USA) were used for visualization. Omission of primary antibodies

served as a negative control. Sections were cover-slipped with polar mounting medium con-

taining antifade reagent and the nuclear dye 4,6-diamino-2-phenylindole (P36935; Invitro-

gen). Fluorescent signals were visualized using an epifluorescence microscope (BX61

Olympus; Olympus Corporation, Tokyo, Japan).

Quantitative immunohistochemical analysis in neurons and vessels

To calculate SUR1/TRPM4-positive neurons and endothelial cells, between 4 and 8 randomly

captured 440×330-μm2 images from the cortex (NEURONS) and the white and grey matter

(VESSELS) were taken with an epifluorescence BX61 Olympus microscope. The primary anti-

bodies used were mouse anti-NeuN 1:100 (MAB377, Millipore Corporation, Billerica, MA,

USA) for neurons and CD31: mouse anti-CD31 1:100 (M082329; Dako, Carpinteria, CA,

USA) for vessels. Next, all images were quantified using the plugin Cell Counter (Kurt De Vos;

http://rsb.info.nih.gov/ij/plugins/cell-counter.html) from the Image J 1.47v program (Wayne

Rasband, National Institutes of Health, Bethesda, MD). Using the total number of neurons

and vessels (NeuN and CD31-positive cells, respectively), the percentage of SUR1/TRPM4-po-

sitive cells was calculated.

Semi-quantitative immunohistochemical analysis in astrocytes

To evaluate SUR1 and TRPM4 expression in the astrocytes, we used an anti-GFAP 1:3000

mouse antibody (C9205, Sigma-Aldrich). Next, the whole section was quantified by a single

observer using a semi-quantitative scale to count the following: 1) GFAP-positive cells (0:

absent, 1: scant, 2: moderate, and 3: numerous) and 2) SUR1-positive cells and TRPM4-posi-

tive cells of each type (0: none; 1: in a few cells; 2: in many cells, and 3: in almost all or all cells).

Ionic profile of the extracellular space

After hourly microdialysis measurements were completed, the microvials were placed in a

rack designed to seal them and prevent evaporation (MDialysis AB). All racks were stored at

-20˚C until analysis could be performed. Prior to analysis, the microvials were defrosted on ice

and the ionic profile was determined using an ICP-MS analyzer (Agilent 7500ce, Agilent Tech-

nologies, Santa Clara, CA, USA) with collision cell technology using He as inert gas at 5 mL/

min. All concentrations obtained were corrected using a previously-defined linear model

described previously[20].

Statistical analysis

Data were analyzed and summarized using the SPSS program for Mac (Version 20, SPSS, Inc.,

New York, USA). Because most variables followed a non-normal distribution, data were sum-

marized using the median, minimum, and maximum. Immunohistochemical findings of

SUR1 and TRPM4 were compared using nonparametric tests and statistical significance was

Fig 2. Two representative 5-mm brain coronal slices from animal #3 stained with 1% 2,3,5-Triphenyltetrazolium

chloride (TTC) solution and showing the ischemic core at 7.5 h after left MCA occlusion. Note how with TTC staining

the entire territory of the left MCA (i.e. the infarcted territory) remains a pale cream or white color, while the non-infarcted

viable brain stains red or pink. In this particular case, the entire MCA territory was affected, including the 3 MCA sub-

territories (deep, superficial anterior, and posterior). The deep territory of the MCA includes the caudate nucleus, the internal

and the external capsules, the preoptic area, and the hypothalamus.

doi:10.1371/journal.pone.0172637.g002
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defined as p�0.05. Graphics were created using R v3.2.0 (R Foundation for Statistical Comput-

ing, Vienna, Austria; http://www.R-project.org) and the integrated development environment

R Studio v0.99.903 (RStudio, Inc., Boston, MA, USA; http://www.rstudio.com).

Results

Ischemic period and infarct volume

A total of 5 animals were included in the study. Two of the 5 animals (#1 and #4) died early

after ischemic induction and did not complete the study protocol. Both animals presented

severe hypotension 30 min after MCA occlusion that could not be reverted with fluidotherapy

and vasoactive drugs, resulting in cardiac arrest before the experiment could be completed.

Despite active resuscitation, animal #1 died 4.5 hours after MCA occlusion and in animal #4

death occurred 4 hours after MCA clipping. The median ischemic time achieved in our study

was 6.5 hours (min: 4, max: 7.5 h). The median infarct volume was 12.3 cm3 (min: 6.6, max

15.8 cm3), representing on average 18.4% of the total brain volume (min: 9.5%, max: 25.1%).

Table 1 summarizes data on the ischemic period and the infarct volume for all animals. Ani-

mals with a larger infarcted area (14.2 cm3 in animal #3 and 15.8 cm3 in animal #5) had a lon-

ger clipping time (7.5 h and 7 h respectively). Animal #4, which had a shorter ischemic period

(4 h), had the lowest volume of infarcted tissue (6.6 cm3).

PtiO2 monitoring

PtiO2 values are summarized in Table 2. With the exception of animal #5, PtiO2 monitoring

was very reliable in confirming the establishment of the infarction. PtiO2 levels dropped imme-

diately after clipping the arteries, reaching minimum values approximately 60 min after clip

placement. In a sole animal (#5), no changes in PtiO2 were observed after MCA occlusion,

despite confirmation by cerebral angiography of the correct clipping of the 2 branches. In this

animal, post-mortem study revealed that the PtiO2 probe had been placed outside the area of

infarction, while an angiographic control confirmed the occlusion of both MC arteries. PtiO2

data for this animal was excluded from statistical analysis, but its metabolic data was used.

Ischemia values are expressed as median (minimum-maximum). PtiO2 data of animal #5

was excluded from statistical analysis after confirming in the post-mortem study that the PtiO2

probe had been placed outside the area of infarction. For the sake of clarity, values under

detection were considered to be 0, although the lower detection limits were 0.1 mmol/L for

glucose and 0.01mmol/L for pyruvate. When pyruvate was under this limit, an L/P index was

not calculated (N/A).

Table 1. Ischemic period and infarct volume in pig specimens.

Animal Ischemic period (h) Infarct volume (cm3) Infarct volume (%)

1 4.5 12.3 18.4

2 6.5 9.1 13.8

3 7.5 14.2 23.6

4 4 6.6 9.5

5 7 15.8 25.1

TTC images from both sides of the brain slices were digitalized and the final infarct volume was quantified by

adding the volume of each slice, which was obtained by multiplying the thickness by the mean area of the

anterior and posterior areas of each slice.

doi:10.1371/journal.pone.0172637.t001
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Basal levels in the penumbra area were only available in the animal #5, and therefore

minimum and maximum values in the penumbra area were not available in the basal

determination.

Brain microdialysis monitoring

Values for the different metabolites measured at baseline and after ischemia in the core and

penumbra are summarized in Table 2. A cerebral MD catheter was implanted in the ischemic

core in all the animals and in the ischemic penumbra in the final 3 animals.

Changes in the core. A significant decrease in [Glu]brain in the core was observed in all

animals soon after occlusion, with the exception of animal #4. Post-mortem analysis of the

brain of this animal showed that the cerebral MD probe had been placed in an infarcted area,

but there had been significant collateral circulation around the necrotic tissue that might

explain the observed readings in [Glu]brain. In all animals, the drop in [Glu]brain was followed

by a significant drop in [Pyr]brain to undetectable levels and a significant increase in [Lac]brain,

with a consequent increase in the lactate/pyruvate ratio (LPR) (Fig 3 and Table 2). A typical

example of the metabolic changes observed in both the core and the penumbra in 1 animal

(#5) is shown in Fig 3. A significant increase in [Gly]brain was observed in the core of all ani-

mals and reached a maximum value of 794 μmol/L in 1 animal.

Changes in the penumbra. Heterogeneous changes were found in all metabolites for the

penumbra, showing a variable degree of metabolic stress (Table 2) or even progression to non-

viable tissue at the end of the experiment in 2 animals (#3 and #4). The small number of ani-

mals in this pilot study precludes a statistical analysis of the metabolic profile of the penumbra,

however it may be noted that a significant reduction in [Glu]brain (~50%) with respect to the

baseline values was observed in most animals. In 2 animals (#3 and #4) the decrease was more

marked at the end of the experiment, indicating recruitment of the penumbra into the core.

[Lac]brain increased in the penumbra, but it was less marked than in the core (Fig 3 and

Table 2). The same trend was observed with LPR. [Gly]brain also increased in all animals but

did not reach the levels observed in the core, with the exception of animal #5.

Ionic profile of the extracellular space

After MCA clipping, ionic data were obtained hourly for the entire period in both brain

regions. Due to the minimum required dialysate for the ionic analysis, it was not possible to

obtain the medians, minimums, and maximums of the 3 ions during the baseline period. Dur-

ing the ischemic period the ionic profile in the core was compiled from 24 valid determina-

tions, and in the penumbra area the ionic profile was made from 19 valid determinations. The

ionic profile was significantly different for each monitored brain area. The ischemic core was

characterized by an increase in median K+ to 27.9 mmol/L (min: 4.0, max: 49.4), while penum-

bra presented increased Na+ levels (median 164.0 mmol/L; min: 130.7, max: 208.0). Table 3

summarizes the ionic data of the extracellular space.

SUR1-TRMP4 expression

All sections were examined by a single observer (LC), who carried out a quantitative or semi-

quantitative analysis, depending on the cell type, for SUR1 and TRPM4 expression (Fig 4). In

neurons, immunofluorescence showed that the expression of both the regulatory subunit

(SUR1) and the pore forming subunit (TRPM4) were significantly increased in the neurons in

the penumbra area and in the ischemic core when compared with the contralateral healthy

hemisphere (Kruskal-Wallis, p = 0.01 in both cases). A summary of the semi-quantitative find-

ings for SUR1-positivity and TRMP4-positivity are shown in Table 4. A mild overexpression

Malignant infarction model in pig
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of SUR1 and TRPM4 was detected in the GFAP-positive cells in the normal brain tissue sam-

ples. Both the penumbra and core samples presented strong SUR1 overexpression, with mod-

erate expression of the TRPM4 channel (Fig 4). For endothelial cells (CD31+ cells), we did not

find any significant difference in SUR1 expression when comparing the core, the penumbra,

and the contralateral healthy tissue. However, we did find a significant difference in TRPM4

expression when comparing the 3 different regions in all cells (Kruskal-Wallis, p = 0.02) (Fig 4

and Table 4).

Fig 3. The representative pattern of microdialysis values in the ischemic core and in the penumbra of animal #5. We used PtiO2 data from animal #2

to represent the PtiO2 drop after clipping both MCAs because the probe had been misplaced outside the core in animal #5 (image not shown) and because

baseline data was missing in some of the remaining animals. The increase in PtiO2 in the first 2 hours may be explained by the running time of PtiO2 probes.

The clip illustrated at the top of the diagram shows the time in which clipping of both MCAs was carried out. PtiO2 data in animal #2 was consistent with the

typical PtiO2 profile observed in all but 1 animal (#5). In the ischemic core, a rapid decrease in [Glu]brain was observed after occlusion, followed by a significant

drop in [Pyr]brain and a significant increase in [Lac]brain and in the lactate/pyruvate ratio (LPR). LPR values 2 hours after clipping could not be calculated

because [Pyr]brain levels were undetectable and therefore LPR rose to infinite values. A significant increase in [Pyr]brain was also observed in the core,

reaching a plateau at 5 h post-ischemia. In the penumbra area, [Lac]brain and the LPR values also increased, but they were not as pronounced as in the core.

[Pyr]brain levels were unstable in the penumbra and at 4 to 7 h after clipping followed the same pattern as [Glu]brain. Glycerol also increased in the penumbra,

reaching levels well above those observed in the samples taken from the core.

doi:10.1371/journal.pone.0172637.g003
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Table 3. Ionic data of the extracellular space in both monitored brain areas.

Monitored area [Na+] mmol/L [K+] mmol/L [Cl-] mmol/L

Ischemic core 154.1 (135.3–199.8) 27.9 (4.0–49.4) 157.0 (132.3–187.0)

Ischemic penumbra 164.0 (130.7–208.0) 7.5 (3.7–44.0) 157.7 (147.2–208.0)

Values are summarized as median (min-max). Due to the minimum required volume for ion analysis, the

median, minimum, and maximum values of the 3 ions in the core were made from 24 valid determinations,

and in the penumbra area they were made from 19 valid determinations.

doi:10.1371/journal.pone.0172637.t003

Fig 4. SUR1 expression in astrocytes, neurons, and capillary endothelial cells. The figure shows fluorescent double labeling

for GFAP (panel A), NeuN (panel B), CD31 (panel C) and SUR1 in the core and penumbra regions. The most lateral column on

the right shows the merged images of the controls (i.e. contralateral healthy tissue). Original magnification = 20×(A) and 40× (B,

C). Nuclei were counterstained with DAPI. All tissue sections were obtained from animal #5 7 hours after ischemia onset.

doi:10.1371/journal.pone.0172637.g004
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Discussion

Most treatments used to manage patients with IS (e.g. intravenous rtPA, intra-arterial treat-

ments, and mechanical thrombectomy) seek to obtain rapid recanalization of the occluded

artery and reperfuse the ischemic brain to reduce the final amount of necrotic brain[3, 21].

However, no effective neuroprotective strategies have been found to reduce either brain

edema or the amount of ischemic brain that is recruited to the core once the attempt to reopen

the occluded artery has failed. Sudden deprivation of oxygen and glucose to the brain elicits a

series of pathological cascades that contribute to the affected brain tissue’s progression to

necrosis. Excitotoxicity, metabolic derangements, tissue acidosis, accumulation of intracellular

calcium cations, neuroinflammation, excessive production of free radicals, disrupted BBB and

brain edema, apoptosis, and the overexpression of channels involved in regulating sodium and

potassium all play critical roles in ischemic damage and in the deterioration of the penumbra

[22]. Many drugs and agents that have been shown to reduce the infarct size in animal models

—mostly in rodents—have failed dramatically in the clinical arena[4, 22]. This is particularly

relevant for patients with malignant IS for whom space-occupying brain edema is the most

important cause of death and disability[23] and the only treatment option is to conduct de-

compressive craniotomy to reduce the dismal mortality they nonetheless present with maximal

medical treatment[23]. Among the many reasons suggested for the clinical trial failures, 1 very

important factor is the lack of an animal model to reproduce the complex cascades observed in

humans after IS[22]. To date, most experimental animal models use animals with lissencepha-

lic brains, such as the mouse or the rat. The proportions of grey and white matter in rodents

differ from that of humans. Gyrencephalic species have a higher percentage of white matter

than lissencephalic species[8, 9], an anatomical difference that may lead to different mecha-

nisms of cellular injury and recovery[24]. Recent studies have shown that in patients with

stroke, the degree of affected motor function is more closely related to white matter integrity

than to the BOLD response of cortical motor areas[25]. In addition, aquaporin-4 (AQP-4)—a

main player in ischemic brain edema—is exclusively expressed by astrocytes. Stokum et al.

have shown in a rodent experimental model of ischemia that subcortical white matter is much

more susceptible to post-ischemic tissue swelling than cortical grey matter, and that cortical

astrocytes exhibit unchanged expression in AQP-4, while white matter astrocytes exhibit a sig-

nificant increase in AQP-4 expression after induced ischemia[26]. Those authors confirmed

their findings in humans and suggested that white matter may play an underestimated active

role in the formation of cerebral edema following ischemia[26].

There is a wide consensus that developing new therapeutic strategies in animal models is

crucial despite the ethical concerns that animal experimentation raises. As some authors

emphasize, ethical issues and animal welfare constitute an important limitation that should

be clearly weighed against their scientific potential, medical benefit, and the availability of

Table 4. Expression of SUR1 and TRPM4 in neurons and vessels. Results are shown as median (min–

max) of the percentage of SUR1/TRPM4-positive neurons and vessels versus the total number in these 2 cell

types.

Cell

type

SUR1

expression (%)

Contralateral

SUR1

expression

(%)

Penumbra

SUR1

expression

(%) Core

TRPM4

expression (%)

Contralateral

TRPM4

expression

(%)

Penumbra

TRPM4

expression

(%) Core

Neurons 3.63 (0.00–

22.3)

52.0 (18.6–

62.6)

79.3 (66.9–

86.8)

4.72 (0.00–

19.9)

32.9 (22.4–

37.5)

58.5 (40.1–

64.5)

Vessels 40.0 (4.55–

55.7)

65.3 (51.2–

83.9)

72.8 (32.2–

88.7)

61.3 (43.7–

79.6)

77.8 (75.6–

79.0)

87.2 (83.3–

91.1)

doi:10.1371/journal.pone.0172637.t004
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appropriate alternative approaches[27, 28]. For animal experiments on cerebral ischemia, Kur-

oiba and Okeda described the criteria that should be considered when selecting an appropriate

species to ensure the findings have clinical relevance[8]. The animal whose brains are closest

to human brains are non-human primates. However, modelling brain disorders in primates is

very expensive, availability is limited, and relevant ethical considerations remain unresolved

[28].

The pig: A neglected animal model

In the rat, unilateral common carotid artery occlusion and intraluminal thread occlusion of

the internal carotid artery are classic procedures for inducing focal brain ischemia without

intracranial manipulation[8]. Transitioning IS modelling from rodents to large mammals with

gyrencephalic brains that possess a white-gray matter ratio that is closer to the human brain is

crucial for new preclinical models. Pigs are an alternative to primates as a non-rodent species

because of their anatomical and physiological similarities to humans. The pig brain is only 7.5

times smaller than the human brain and is composed of>60% white matter[12, 22]. An added

value of using pigs as experimental animals is that they are widely available due to commercial

production and less constrained by ethical and economic considerations. Pigs have been

widely used in toxicology and experimental surgery, but are only occasionally used in neuro-

scientific research, something that has progressively increased only in the past decade[12]. As

Lind et al. report, most agricultural pigs are derived from the Eurasian wild boar (Sus scrofa)

but there are a large number of breeds with significant anatomical differences[12]. In addition,

pig-producing countries do not generally supply pure breeds, but rather crossbreeds of various

recognized breeds (e.g. Landrace, Yorkshire, Hampshire, and Duroc)[29].

In modelling brain ischemia, researchers should be familiar with the important anatomic,

histopathologic, and clinicopathologic features of the pig brain and neurovascular supply in

order to reproduce a valid model of focal ischemia. Pigs, like other experimental large animals,

have the disadvantage of having a prominent external carotid circulation from which a rete

mirabilis is formed and from which the internal carotid artery originates (Fig 1)[13, 30]. This

collateral circulation, described angiographically by Burbridge et al., has caused some authors

to rule out swine for brain ischemic models. Rete mirabilis restricts the occlusion of the carotid

artery and their branches by intravascular methods and the use of microcatheters[30]. How-

ever, this anatomical variant is also present in other mammals, such as cats, goats, dogs, and

sheep[31].

The second important difference between pigs and humans is that the posterior communi-

cating artery in pigs is comparable in size to the ICA. As a result, the connection between

the anterior and posterior circulation systems is very well developed when compared with

humans. An additional important difference is that in each hemisphere 2 MCAs originate

from the ICA, 1 coursing laterally and another rostrally over the olfactory tract[13].

Considerations when modelling focal brain ischemia in the pig

The same limitations raised by our group concerning the use of models in rodents led a team

at the Aarhus University of Denmark to propose for the first time animal models of infarction

using common pigs with transorbital occlusion of the MCA[32]. That group made important

contributions to the understanding of the cerebrometabolic changes that occur after irrevers-

ible occlusion in pigs. However, in our opinion, that animal model was not introduced in

more centers due to the complexity of surgical access, which is less common in neurosurgery.

Another factor could have been that infarct volumes obtained in this animal model showed a

greater variability, probably due to the non-complete occlusion of the entire territory of the

Malignant infarction model in pig
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MCA; the surgical corridor only gives access to 1 of the 2 branches of the MCA present in the

pig[32–36].

The main anatomical consideration in the model of permanent arterial occlusion we pres-

ent is that MCA occlusion involves an open surgical frontotemporal approach and the clipping

of both MCAs. After a learning curve, the total surgical procedure took approximately 60 min-

utes. We believe this model has many advantages over the classic rodent model. We found that

our model gives a satisfactory representation of malignant IS with a dense, reproducible infarc-

tion that causes early death if untreated. Moreover, the percentage of infarcted volumes we

obtained from animal modeling appears to be consistent and is comparable to the volumes

obtained in the classical models of malignant infarction in rats[37–40]. In addition, this model

allows the use of conventional angiography to confirm optimal arterial occlusion. Like the

minipig model presented by Imai et al., our model is a feasible, large gyrencephalic model of

focal IS that may be more useful than alternative models of focal cerebral ischemia in medium

gyrencephalic animals, such as dogs, cats, or even subhuman primates. The use of vascular

clips instead of coagulation of both MCAs allows for the design of experimental models in

which the clips can be removed at different times after ischemia, modelling temporary ische-

mia and allowing for the study of reperfusion phenomena. In addition, this model allows for

the use of PtiO2 and cerebral MD probes to study the metabolic disorders induced by ischemia,

as well as the ionic disturbances of the ischemic brain and its potential reversibility through

use of various therapeutic strategies. The main disadvantages of using large animals are han-

dling difficulties within experimental facilities and the increased workload for the research

group resulting from multi-hour experiments. When considering which swine species to use

when establishing an animal model, domestic pigs have several advantages over minipigs,

including lower cost and greater availability.

Metabolic and ionic profile in ischemia

Continuous PtiO2 monitoring is a reliable surrogate measure of rCBF and can detect ischemic

and non-ischemic causes of brain hypoxia, such as low-extractivity hypoxia, shunt hypoxia, or

dysperfusion hypoxia[41–43]. In all cases in which the probe was correctly inserted, PtiO2 lev-

els dropped immediately and were thus a reliable indicator of the complete occlusion of both

MCAs. After a careful anatomical examination of the brain in the only animal in which PtiO2

values did not change, the probe’s tip was found to be located outside the ischemic lesion. To

our knowledge, this is the first report of the ionic profile monitored hourly together with

energy metabolism in a brain IS, with results that are consistent with the patterns found in the

human brain[44]. Malignant strokes cause massive ionic fluxes, with consequent osmotic

water movement across cells and cerebral edema formation. Changes in ionic concentrations

induce water accumulation in the intracellular and extracellular space and cause the injured

brain tissue to swell, resulting in neurological worsening[45]. These ionic disorders are directly

related to the overexpression of different ion channels that can be constitutive or newly synthe-

sized, such as the SUR1-regulated channel TRPM4[16, 45]. TRPM4 belongs to a large family

of proteins that share certain structural similarities. Most members of the TRP family are per-

meable to divalent cations. However, TRPM4 is impermeable to Ca2+ because it exclusively

and non-selectively transports monovalent cations. In situations of ischemia there is an in-

crease in the transcription of SUR1 that is accompanied by overexpression of TRPM4. TRPM4

channels are activated either by an increase in cytosolic Ca2+ or by a decrease in the ATP/ADP

ratio in the cytosolic space. SUR1-TRPM4 is not constitutively present in cells of the central

nervous system, but its transcription increases in neurons, the capillary endothelium, and
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astrocytes several hours after the onset of cerebral ischemia. In the absence of ATP this channel

is activated, favoring edema and oncotic cell death due to the massive entry of ions[16, 18, 46].

The use of brain MD in large animal models offers a unique opportunity to observe the

dynamic ionic changes in the brain over time and opens up a new path to explore the ionic

profile during edema formation and its changes after different therapies.

From a metabolic perspective, our model allowed us to reproduce the changes expected in

permanent focal ischemia and detect the metabolic deterioration of the penumbra (Fig 3).

Furthermore, we found that [Gly]brain increased with time and can be used in experimental

models as a biomarker for the progression of the damaged brain. Glycerol is considered a bio-

marker of brain tissue damage and its concentrations rise during cellular energy failure and

cell damage[47, 48]. However, it is presently unclear whether increased [Gly]brain is associated

with the destruction of the cell membrane and cell death, or whether it is a marker of cell "suf-

fering" with the possibility of reversal. To clarify this distinction, further studies using the same

experimental model are needed.

Limitations of the study

The main limitation of our study was the small sample size inherent to most animal-based

experimental studies. Both cost and ethical issues (ensuring animal welfare) constitute a limita-

tion and the number of animals must be reduced to the minimum required to obtain answers

to predefined scientific questions. The aim of this article is to present a proof-of-principle

study, using a small sample of subjects as per Directive 2010/63/EU of the European Commis-

sion for the protection of animals used for scientific purposes. Due to its small sample size, our

study did not try to look for statistically significant results, but rather described the feasibility

of a large hemispheric stroke in the common pig and elucidated some of its potential advan-

tages as an alternative to rodents. Therefore, we cannot rule out that increasing the sample size

could introduce more variability in the final infarction size.

A second limitation is that our study was not designed to reproduce a reperfused focal

infarction, and therefore we cannot present data on the lesions found after reperfusion or

report on the time needed to obtain a complete infarction versus a reversible focal lesion. Our

main goal was to determine the feasibility of obtaining a reproducible malignant infarction,

and transient ischemia was not an endpoint in our model. Another drawback is that our

model was designed to study only the early phenomena occurring at the very first stages of

complete arterial occlusion, and therefore we cannot present data on the survival of animals,

the degree of brain swelling—which in humans with malignant stroke develops many hours

after the ischemic insult—or the long-term neurological sequelae that have been extensively

studied in rodents that survive an IS. Finally, we must also highlight as a possible limitation of

our study the need for anesthetic agents with possible neuroprotective effects, including pro-

pofol, zolazepam, and mannitol. However, we emphasize the difficulty in limiting their use in

big-animal models since they are needed to facilitate microsurgical access of the cisterns for

the clipping of both MCA branches, thus minimizing injuries secondary to the cerebral

retraction.

Conclusions

We report on the development of a porcine model of malignant IS involving craniotomy and

the clipping of both MCAs as a feasible model that allows for the study of both ischemia-

induced metabolic disorders and disturbances in the ionic profile. We believe that this model

provides an excellent opportunity to better understand the mechanisms of cerebral ischemia

in a human-like gyrencephalic brain and the neglected importance of white matter in post-
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ischemic brain edema, aiding in the development of novel therapeutics that can potentially be

translated to patients. In addition, this model may help in elucidating the mechanisms that

lead to the recruitment of the penumbra to the infarction core and the pathophysiology of

ischemic brain edema. Furthermore, it will allow researchers to test new therapeutic strategies

that, alone or in combination, may target some of the many molecular cascades (specifically,

the SUR1-regulated TRPM4 channel) that may be useful in reducing edema-induced brain

swelling and therefore improving the functional outcome of patients with malignant IS. Our

animal model allows for the study of the temporal profile of TRPM4 overexpression in the

ischemic brain, as well as the other ionic and water channels involved in focal brain ischemia.

More importantly, it may open up a clear line of research on the effects of SUR1-antagonists as

neuroprotective drugs in gyrencephalic animals, the brains of which are very similar to those

of humans.
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