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Abstract

The involvement of heme oxygenase 1 (HO-1) in the modulation of the antinociceptive

effects of opioids in type 1 diabetes has been demonstrated but the role played by the tran-

scription factor Nrf2 in the regulation of painful neuropathy and in the effects and expression

of δ-opioid receptors (DOR) in type 2 diabetes, has not been studied. In male BKS.Cg-m

+/+Leprdb/J (db/db) mice, the anti-allodynic effects produced by a Nrf2 transcription factor

activator, sulforaphane (SFN) administered alone and combined with two DOR agonists, [d-

Pen(2),d-Pen(5)]-Enkephalin (DPDPE) and (+)-4-[(αR)-α-((2S,5R)-4-Allyl-2,5-dimethyl-1-

piperazinyl)-3-methoxybenzyl]-N,N diethylbenzamide (SNC-80), were evaluated. The

effects of SFN on glucose levels and body weight as well as on the proteins levels of Nrf2,

HO-1, NAD(P)H: quinone oxidoreductase 1 (NQO1), MAPKs (JNK) and DOR in sciatic

nerve from db/db mice were also assessed. This study showed that the administration of

SFN dose dependently reversed mechanical allodynia, reduced hyperglycemia and body

weight gain associated to type 2 diabetes and significantly increased the anti-allodynic

effects of DPDPE and SNC-80 in db/db mice. This treatment normalized the down regula-

tion of Nrf2 and NQO1 and enhanced the protein levels of HO-1 in db/db mice. Moreover,

the administration of SFN also inhibited the JNK phosphorylation and DOR down-regulation

in the sciatic nerve of diabetic mice. Our data indicated that SFN treatment is effective in

reversing mechanical allodynia and enhancing DOR antinociceptive effects in db/db mice

which effects might be mediated by activating Nrf2 signaling, reducing hyperglycemia, inhib-

iting JNK phosphorylation and avoiding DOR down-regulation in the sciatic nerve of these

animals. These results propose SFN, alone and/or combined with DOR agonists, as inter-

esting approaches for the treatment of painful diabetic neuropathy associated to type 2 dia-

betes in mice.

Introduction

Diabetic neuropathy and oxidative stress are two of the major complications associated with

the development of diabetes that affects between 40–50% of people who suffer from this
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disorder. The clinical characteristics of diabetic neuropathy ranging from sensory deficit to

allodynia (painful reaction to innocuous stimuli), and an increased sensitivity to painful stimu-

lus [1, 2]. However, despite being one of the major symptoms of this metabolic disorder, dia-

betic neuropathy remains difficult to treat which highlight the importance of finding new

therapeutic strategies.

Hyperglycemia is one of the principal mechanisms involved in the development of diabetes

and in the numerous complications associated with this disease including diabetic neuropathy

[2–4]. Therefore, high glucose levels by increasing the production of reactive oxygen species

(ROS) and inflammatory mediators are prominent contributors to nerve dysfunction and the

subsequent pain observed in diabetic patients. The induction of ROS is a characteristic of oxi-

dative stress, and insulin can promote its elimination by regulating the production of several

intracellular antioxidants in a Nrf2 transcription factor dependent pathway [5]. This transcrip-

tion factor, in addition to modulating the expression of numerous genes which control the

immune and inflammatory responses [6], also regulates the expression of several genes which

control antioxidant and detoxifying enzymes, such us the heme oxygenase 1 (HO-1) and NAD

(P)H quinone oxidoreductase 1 (NQO1). The overexpression of these enzymes inhibited sev-

eral neuro-inflammatory responses responsible for the induction of diabetic neuropathy,

revealing the important modulatory role played by the activation of Nrf2 signaling pathway

against oxidative stress and the inflammatory cascade associated to diabetes [6].

It is well known that the over-expression of HO-1 is associated with potent anti-inflamma-

tory and antinociceptive effects [7, 8]. Indeed, the administration of HO-1 inducer com-

pounds, such as cobalt protoporphyrin IX (CoPP) inhibits acute thermal nociception [9],

inflammatory [10–12], visceral [11] as well as neuropathic pain induced by nerve injury, vin-

cristine injection, or associated with type 1 diabetes in rodents [8, 13, 14]. Nevertheless, the

possible antinociceptive effects produced by the activation of the Nrf2 signaling pathway on

the mechanical allodynia associated with type 2 diabetes in mice have not been studied.

Mitogen activated protein kinases (MAPK) are a group of intracellular messenger proteins

that transmit signals from cell membranes to receptors to the nucleus. The MAPK family

consists of extracellular signal-regulated protein kinases (ERKs), p38 kinases, and c-Jun

NH2-terminal kinases (JNK). It is well known that MAPKs play a critical role in the etiology of

diabetic neuropathy [15] and several authors have demonstrated that the activation of ERKs

and p38 is involved in the development of the mechanical allodynia observed in the early

stages of db/db mice [16, 17]. However, little is known about the role played by JNK in the

early stages of diabetes in this animal model as well as to the effects of SFN treatment on its

expression.

Several studies have shown that diabetic painful neuropathy is difficult to treat due to its

resistance to opioids, in particular to μ-opioid receptor (MOR) agonists [18, 19]. In contrast to

MOR agonists, some studies have demonstrated the potential antinociceptive effects produced

by δ-opioid receptor (DOR) agonists in diabetic animals. Indeed, the intracerebroventricular,

intrathecal and systemic administration of DOR agonists inhibited the nociceptive responses

associated to type 1 diabetes in rodents [20–22]. A recent study has been also demonstrated

that the antinociceptive effects produced by DOR agonists in streptozotocin-induced type 1

diabetes in mice were significantly increased by its co-treatment with an HO-1 inducer com-

pound [22]. Nonetheless, the role played by the systemic administration of DOR agonists on

the mechanical allodynia observed in db/db mice and the effects produced by the Nrf2 tran-

scription factor inducer (SFN) on the antinociceptive effects of DOR agonists and its expres-

sion in type 2 diabetic animals has not been assessed.

Therefore, in order to evaluate the possible analgesic effects of SFN and DOR agonists,

administered alone or in combination in type 2 diabetes neuropathy, in this study we used a
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well characterized model of diabetes, db/db mice, which exhibit characteristics of type 2 diabe-

tes, including hyperglycemia, obesity as well as mechanical allodynia from 7–12 weeks of age

[23–26]. In these animals we evaluated: (1) whether administration of a well-established tran-

scription factor Nrf2 activator (SFN) might effectively attenuates the mechanical allodynia

associated with diabetes; (2) the effects of SFN on hyperglycemia and body weight; (3) the anti-

nociceptive effects produced by the subcutaneous administration of two specific DOR agonists

([d-Pen(2),d-Pen(5)]-Enkephalin; DPDPE) and (+)-4-[(αR)-α-((2S,5R)-4-Allyl-2,5-dimethyl-

1-piperazinyl)-3-methoxybenzyl]-N,N diethylbenzamide (SNC-80) alone and combined with

SFN; (4) the reversibility of DPDPE and SNC-80 antinociceptive effects by their co-adminis-

tration with a specific DOR antagonist, naltrindole; (5) the effects of SFN treatment on the

proteins levels of Nrf2, HO-1, NQO1, JNK and DOR expression in the sciatic nerve of diabetic

animals.

Material and methods

Animals

The experiments were performed in 7 weeks old male type 2 diabetic (BKS.Cg-m+/+Leprdb/J;

db/db) mice and heterozygotes as control (db/+) mice acquired from Charles River Laborato-

ries (France). Animals were housed under 12/12-h light/dark conditions in a room with con-

trolled temperature (22˚C) and humidity (66%). Animals had free access to food and water

and were used after 6 days of acclimatization to housing conditions. All experiments were con-

ducted between 9:00 AM and 5:00 PM. All efforts were made to minimize animal suffering

and to reduce the number of animals used.

All experimental procedures within this study were carried out in accordance with the rec-

ommendations in the Guide for the Care and Use of Laboratory Animals of the National Insti-

tutes of Health. The protocol was approved by the local Ethical Committee of our Institution

(Comissió d’Etica en l’Experimentació Animal i Humana de la Universitat Autònoma de Bar-

celona). This study was carried out in strict accordance with Universitat Autònoma de Barce-

lona (Permit Number: 6266).

Mice were monitored daily for general health and well-being and the body weight, abnor-

mal postures, appearance of skin and hair, and behavior were evaluated.

Nociceptive behavioral tests

Mechanical allodynia was quantified by measuring the hind paw withdrawal response to von

Frey filament stimulation. In brief, animals were placed in methacrylate cylinders (20 cm

high, 9 cm diameter; Servei Estació, Barcelona, Spain) with a wire grid bottom through

which the von Frey filaments (North Coast Medical, Inc., San Jose, CA) with a bending force

in the range of 0.008–3.5 g were applied by using a modified version of the up–down para-

digm, as previously reported by Chaplan et al. (1994) [27]. The filament of 3.0 g was used as a

cut-off. Then, the strength of the next filament was decreased or increased according to the

response. The threshold of response was calculated from the sequence of filament strength

used during the up–down procedure by using an Excel program (Microsoft Iberia SRL, Bar-

celona, Spain) that includes curve fitting of the data. Clear paw withdrawal, shaking, or lick-

ing of the paw was considered as a nociceptive-like response. Both hind paws were tested.

Animals were allowed to habituate for 1 h before testing in order to allow an appropriate

behavioral immobility.
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Western blot analysis

Control and db/db mice treated with SFN were killed by cervical dislocation and tissues from

sciatic nerves were removed immediately after sacrifice, frozen in liquid nitrogen, and stored

at -80˚C until assay. Samples of sciatic nerves from two animals were pooled into one experi-

mental sample to obtain enough protein levels for performing the Western blot analysis. The

Nrf2, HO-1, NQO1, total JNK, phosphorylated JNK and DOR protein levels were analyzed.

Tissues were homogenized in ice-cold lysis buffer (50 mM Tris�Base, 150 nM NaCl, 1% NP-

40, 2 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, 0.5 Triton X-100, 0.1% sodium dode-

cyl sulfate, 1 mM Na3VO4, 25 mM NaF, 0.5% protease inhibitor cocktail, and 1% phosphatase

inhibitor cocktail). All reagents were purchased from Sigma (St. Louis, MO) with the exception

of NP-40 from Calbiochem (Darmstadt, Germany). The crude homogenate was solubilized for

1 h at 4˚C, sonicated for 10 s and centrifuged at 4˚C for 15 min at 700 g. The supernatant

(60 μg of total protein) was mixed with 4 x laemmli loading buffer and then loaded onto 4%

stacking/10% separating sodium dodecyl sulfate polyacrylamide gels. The proteins were

electrophoretically transferred onto PVDF membrane for 120 min, blocked with TBST + 5%

nonfat dry milk or BSA and subsequently incubated overnight at 4˚C with polyclonal rabbit

anti-Nrf2 (1:200, Abcam, Cambridge, United Kingdom); anti-HO-1(1:400, Stressgen, Ann

Arbor, MI), anti-NQO1 (1:400, Sigma, St. Louis, MO), anti-phosphorylated JNK (1; 200, Cell

Signaling Technology (Danvers, MA, USA), anti-total JNK (1; 200, Cell Signaling Technology

(Danvers, MA, USA) and anti-DOR (1:1000, Chemicon-Millipore) antibodies.

The proteins were detected by a horseradish peroxidase-conjugated anti-rabbit secondary

antibody (GE Healthcare, Little Chalfont, Buckinghamshire, United Kingdom) and visualized

with chemiluminescence reagents (ECL kit; GE Healthcare) and by exposure onto hyperfilm

(GE Healthcare). The intensity of blots was quantified by densitometry. The membranes were

stripped and re-probed with a monoclonal rabbit anti-β-actin antibody (1:5000, Abcam, Cam-

bridge, United Kingdom) used as a loading control.

Experimental design

Body weight and glucose levels from the tail blood were measured. One drop of tail blood was

analyzed using a glucometer (OneTouch1 UltraMini1). Blood glucose and body weight were

measured at 0, 7 and 11 days after SFN or vehicle treatment. For measuring mechanical allody-

nia, animals were habituated for 1 h to von Frey filaments test during 4 days. After the habitua-

tion period, baseline measurements were established (n = 6 animals per group). Animals were

tested at 0, 1, 3, 5, 7, 9 and 11 days after SFN or vehicle treatment.

We evaluated the effects on body weight, glucose levels and mechanical allodynia of the

subcutaneous administration of 2.5, 5 and 10 mg/kg of SFN compared to vehicle (n = 6 ani-

mals per dose). In these experiments, db/+ mice treated with an equal volume of vehicle were

used as controls (n = 6 animals per group). The doses of SFN were selected in accordance to

previous pilot studies and other works [28].

In a second set of experiments, we evaluated the mechanical anti-allodynic effects of the

subcutaneous administration of different doses of DPDPE and SNC-80 (0.15, 0.5, 1 and 5 mg/

kg) compared to vehicle in db/db mice (n = 6 animals per dose) and the reversibility of its

effects by the co-administration of 2 mg/kg of naltrindole, a specific DOR antagonist, with a

high dose (5 mg/kg) of DPDPE or SNC-80 in db/db mice. The doses of DPDPE and SNC-80

were chosen from the dose-response curves studies, as the ones that produced a maximal anti-

nociceptive effect.

In a third set of experiments, the anti-allodynic effects produced by the intraperitoneal

administration of 10 mg/kg of SFN alone or combined with the subcutaneous administration
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of 0.15 mg/kg of DPDPE and with 0.5 mg/kg of SNC-80 in db/db mice were evaluated (n = 6

animals per group). The doses of DPDPE and SNC-80 were chosen from the dose-response

curves performed in this study, as the ones that produced a reduced antinociceptive effect.

Finally, on day 11 of treatment with 10 mg/kg of SFN or vehicle, mice were sacrificed and

tissues removed, frozen and preserved for western blot assays to evaluate the protein levels of

Nrf2, HO-1 and NQO1, total and phosphorylated JNK and DOR in sciatic nerves from db/db

mice. In these experiments, db/+ mice treated with vehicle have been used as controls (n = 4

samples per group).

Drugs

SFN was acquired from Merck Chemicals and Life Science S.A.U. (Madrid, Spain), dissolved

in dimethyl sulfoxide (DMSO; 1% solution in saline) and administered intraperitoneally 2–3

hours before behavioral testing. DPDPE, SNC-80 and naltrindole were purchased from

Sigma-Aldrich (St. Louis, MO). DPDPE was dissolved in saline solution (0.9% NaCl) and

SNC-80 and naltrindole were dissolved in DMSO (1% solution in saline). DPDPE and SNC-80

were administered subcutaneously and naltrindole intraperitoneally, 30 min before behavioral

testing. All compounds were freshly prepared before use and administered in a final volume of

10 ml/kg. Control animals received the same volume of vehicle.

Statistical analysis

The statistical analysis was performed using the “Statistical Package for Social Sciences” (SPSS,

version 17 for Windows, IBM España, Madrid, Spain). Data are expressed as mean ± standard

error of the mean (SEM). The initial comparison of glucose levels, body weight and mechanical

allodynia between db/db and db/+ mice was evaluated by an unpaired Student’s t test. The

effects produced by continuous administration of several doses of SFN on mechanical allody-

nia, glucose levels and body weight in db/db versus db/+ mice treated with vehicle were evalu-

ated by a two-way ANOVA repeated measures (treatment and days of administration as

between factors of variation) followed by the corresponding one-way ANOVA and Student

Newman Keuls test.

The comparison of the anti-allodynic effects produced by the subcutaneous administration

of different doses of DPDPE, SNC-80 or vehicle was evaluated by using a one way ANOVA fol-

lowed by the Student Newman Keuls test. The reversal of the antinociceptive effects produced

by DPDPE or SNC-80 with naltrindole was also analyzed using a one way ANOVA followed

by the Student Newman Keuls test. The comparison of the effects produced by the administra-

tion of SFN on the anti-allodynic effects of DPDPE and SNC-80 was also assessed by using a

one way ANOVA followed by the Student Newman Keuls test. In these experiments, antinoci-

ception in von Frey filaments is expressed as the percentage of maximal possible effect, where

the test latencies pre (baseline) and postdrug administration are compared and calculated

according to the following equation:

Maximal possible effect ð%Þ ¼ ½ðdrug � baselineÞ=ðcut‐off � baselineÞ� x 100

Changes in the protein levels of Nrf2, HO-1, NQO1, JNK and DOR in the sciatic nerve

from db/db mice treated with SFN or vehicle versus db/+ mice treated with vehicle were ana-

lyzed by a one-way ANOVA followed by the Student Newman Keuls test. A value of p< 0.05

was considered significant.
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Results

Diabetic neuropathy

In accordance to other reports, higher levels of glucose in db/db mice (492.8 ± 14.7 mg/dL)

versus db/+ mice (176.3 ± 7.8 mg/dL; p< 0.001; unpaired Student t test; n = 6 animals per

group), increased body weight (39.8 ± 0.8 g) in db/db mice versus (21.4 ± 0.3 g) in db/+ mice

were observed (p< 0.01; unpaired Student t test; n = 6 animals per group). Furthermore,

mechanical allodynia was also demonstrated in db/db mice. Indeed, a significant decrease of

the threshold for evoking paw withdrawal to a mechanical stimulus in the hind paws of db/db

mice (1.7 ± 0.1 von Frey filament strength, g) versus db/+ mice (2.7 ± 0.1 von Frey filament

strength, g; p< 0.001; unpaired Student’s t test; n = 6 animals per group) was demonstrated.

Effect of SFN treatment on mechanical allodynia

The effects of intraperitoneal administration of different doses (2.5, 5 and 10 mg/kg) of SFN

during 11 consecutive days on the mechanical allodynia in db/db mice were also studied. On

days 0, 1, 3, 5, 7, 9 and 11 of treatment with SFN (Fig 1) the nociceptive responses were

assessed. The two way ANOVA repeated measures revealed a significant effect of the treatment

(p< 0.001), days of administration (p< 0.001) and their interaction (p< 0.001). That is, the

significant decrease of the threshold for evoking hind paw withdrawal to a mechanical stimu-

lus observed in db/db mice treated with vehicle was normalized in animals treated with SFN

during 11 consecutive days (p< 0.001; one-way ANOVA versus db/db mice treated with vehi-

cle). Moreover, while the mechanical allodynia observed in db/db mice was attenuated on day

5 of treatment with 10 mg/kg of SFN, lower doses of the drug (2,5 and 5 mg/kg) reduced the

Fig 1. The anti-allodynic effects produced by the intraperitoneal administration of SFN in db/db mice. Mechanical allodynia in the hind paws of

db/db mice intraperitoneally treated with vehicle or SFN (2.5, 5 and 10 mg/kg) during 11 consecutive days is shown. The effects of vehicle in db/+ mice

are also represented. Data are shown at day 0, 1, 3, 5, 7, 9 and 11 of SFN treatment and expressed as von Frey filaments strength (g). For each day

evaluated, * indicates significant differences versus db/+ mice treated with vehicle (p < 0.05, one-way ANOVA followed by the Student Newman Keuls

test) and + indicates significant differences versus db/db mice treated with vehicle (p < 0.05, one-way ANOVA followed by the Student Newman Keuls

test). Results are shown as mean values ± SEM; n = 6 animals per experimental group.

https://doi.org/10.1371/journal.pone.0180998.g001
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response on days 7 and 11, respectively (p< 0.001; one-way ANOVA versus their respective

db/db mice treated with vehicle).

Effects of SFN treatment on the blood glucose levels and body weight

In this study, the effects of the intraperitoneal administration of different doses (2.5, 5 and 10

mg/kg) of SFN for 11 consecutive days on blood glucose levels and body weight of db/db mice

were investigated. On days 0, 7 and 11 of treatment, blood glucose levels and body weight were

measured. The two way ANOVA repeated measures revealed a significant effect of the treat-

ment (p< 0.001) but not of the days of administration and their interaction. Indeed, although

the increased blood glucose levels observed in db/db mice (p< 0.001; one-way ANOVA versus

db/+ mice treated with vehicle) were significantly reduced by the administration of SFN at 10

mg/kg during 11 consecutive days (p< 0.001; one-way ANOVA versus db/db mice treated

with vehicle; Fig 2A), SFN treatment at 2,5 and 5 mg/kg did not produce any significant effect

on the glucose levels.

The effects of SFN treatment on body weight were also evaluated. The two way ANOVA

repeated measures revealed a significant effect of the treatment (p< 0.001) and days of admin-

istration (p< 0.001) but not of their interaction. Indeed, a significant reduction in body weight

of db/db mice treated with 5 and 10 mg/kg of SFN at 7 and 11 days of treatment was demon-

strated (Fig 2B; p< 0.001; one-way ANOVA versus db/db mice treated with vehicle).

Effects of the administration of DPDPE and SNC-80 on the mechanical

allodynia

The subcutaneous administration of DPDPE (Fig 3A) or SNC-80 (Fig 3B) dose-dependently

inhibited the mechanical allodynia in db/db mice. Indeed, the anti-allodynic effects produced

by 0.15, 0.5, 1 and 5 mg/kg of DPDPE or SNC-80 were significantly higher than those pro-

duced in their corresponding db/db saline or vehicle treated animals (p< 0.001, one way

ANOVA followed by the Student Newman Keuls test).

Reversal of the antinociceptive effects of DPDPE and SNC-80 by

naltrindole

The anti-allodynic effects produced by the subcutaneous administration of 5 mg/kg of DPDPE

(Table 1) or SNC-80 (Table 2) in db/db mice were completely reversed by intraperitoneal

administration of a selective DOR, naltrindole at 2 mg/kg (p< 0.001; one way ANOVA fol-

lowed by Student Newman Keuls test). The intraperitoneal administration of naltrindole in

db/db mice did not have any significant effect on the mechanical nociceptive response evalu-

ated in this study.

Effects of SFN treatment on the anti-allodynic effects of DPDPE and

SNC-80

The effects of the intraperitoneal administration of 10 mg/kg of SFN or vehicle (DMSO 1%)

on the anti-allodynic effects produced by the subcutaneous administration of low doses of

DPDPE (0.15 mg/kg), SNC-80 (0.5 mg/kg), saline or vehicle in db/db mice were investigated.

Our results showed that the administration of SFN combined with the subcutaneous adminis-

tration of a low dose of DPDPE (Fig 4A) significantly enhanced the mechanical anti-allodynic

effects produced by these drugs as compared to their respective control groups treated with

vehicle plus saline or DPDPE as well as to animals treated with SFN plus saline (p< 0.01, one

way ANOVA followed by the Student Newman Keuls test). Similar results were obtained
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Fig 2. Effects of SFN treatment on blood glucose levels and body weight in db/db mice. The glucose levels (mg/dL) and body weight

(g) in db/db mice treated with vehicle or SFN at 2.5, 5 and 10 mg/kg during 0, 7 and 11 consecutive days are shown. Glucose levels (A) and

body weight (B) in db/+ mice treated with vehicle are also represented. For each parameter and day evaluated, * indicates significant

differences as compared to db/+ mice treated with vehicle (p < 0.001 one-way ANOVA followed by the Student Newman Keuls test) and +

indicates significant differences as compared to db/db mice treated with vehicle (p < 0.001 one-way ANOVA followed by the Student

Newman Keuls test). Results are shown as mean values ± SEM; n = 6 animals per experimental group.

https://doi.org/10.1371/journal.pone.0180998.g002
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Fig 3. Effects of the subcutaneous administration of DPDPE or SNC-80 on the mechanical allodynia.

Anti-allodynic effects of the subcutaneous administration of different doses (logarithmic axis) of DPDPE (A)

or SNC-80 (B) and their respective controls in the hind paws of db/db mice are represented. Data are

expressed as mean values of maximal possible effect (%) ± SEM (6 animals for dose). For each drug and

dose, * indicates significant differences versus their respective db/db saline or vehicle treated mice (p < 0.05,

one-way ANOVA followed by the Student Newman Keuls test). Results are shown as mean values ± SEM.

https://doi.org/10.1371/journal.pone.0180998.g003
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regarding SNC-80 (Fig 4B). That is, the co-administration of SFN and SNC-80 significantly

enhanced the mechanical anti-allodynic effects produced by this drug as compared to their

respective control groups treated with vehicle plus vehicle or SNC-80 as well as to mice treated

with SFN plus vehicle (p< 0.01, one way ANOVA followed by the Student Newman Keuls

test).

Effects of SFN treatment on Nrf2, HO-1, NQO1, JNK and DOR protein

levels

The protein levels of the transcription factor Nrf2, HO-1, NQO1, JNK and DOR in the sciatic

nerve from db/db mice treated with 10 mg/kg of SFN or vehicle as well as from db/+ mice

treated with vehicle are shown. Our results demonstrated that the reduced expression of Nrf2

observed in the sciatic nerve of diabetic mice (Fig 5A; p< 0.022; one-way ANOVA versus

db/+ mice treated with vehicle) was reversed by the administration of SFN (p< 0.022; one-

way ANOVA versus db/db mice treated with vehicle). Our results also shown that while the

sciatic nerve protein levels of HO-1 were not altered in diabetic mice (Fig 5B), a significant

increased expression of this enzyme was observed in the sciatic nerve from db/db mice treated

with SFN (p< 0.03; one-way ANOVA versus db/+ and db/db mice treated with vehicle).

Moreover, the decreased expression of NQO1 observed in the sciatic nerve from db/db mice

(Fig 5C; p< 0.013; one-way ANOVA versus db/+ mice treated with vehicle) was completely

reversed by SFN treatment.

Our results also demonstrated that the increased phosphorylation of JNK observed in the

sciatic nerves of db/db mice in comparison to db/+ mice treated with vehicle (Fig 6; p< 0.001;

one-way ANOVA) was inhibited with SFN treatment. Finally, regarding DOR protein levels,

our data revealed that SFN treatment also reversed the decreased expression of DOR in the

Table 1. Effects of the subcutaneous administration of 5 mg/kg of DPDPE alone or combined with 2

mg/kg of naltrindole on the mechanical allodynia (von Frey filaments strength, g) in db/db mice.

Treatment Mechanical response von Frey filaments strength (g)

saline-vehicle 1.7 ± 0.1

DPDPE -vehicle 3.0 ± 0.1*

DPDPE-naltrindole 1.7 ± 0.1

saline-naltrindole 1.8 ± 0.1

Results are shown as mean values ± SEM; n = 6 animals per experimental group.

* p < 0.05 denotes significant differences versus saline plus vehicle treated group (one way ANOVA,

followed by the Student Newman Keuls test)

https://doi.org/10.1371/journal.pone.0180998.t001

Table 2. Effects of the subcutaneous administration of 5 mg/kg of SNC-80 alone or combined with 2

mg/kg of naltrindole on the mechanical allodynia (von Frey filaments strength, g) in db/db mice.

Treatment Mechanical response von Frey filaments strength (g)

vehicle-vehicle 1.7 ± 0.2

SNC-80 -vehicle 2.7 ± 0.1*

SNC-80-naltrindole 1.7 ± 0.2

vehicle-naltrindole 1.8 ± 0.1

Results are shown as mean values ± SEM; n = 6 animals per experimental group.

* p < 0.05 denotes significant differences versus vehicle plus vehicle treated group (one way ANOVA,

followed by the Student Newman Keuls test).

https://doi.org/10.1371/journal.pone.0180998.t002
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Fig 4. Effects of SFN on the anti-allodynic effects of DPDPE and SNC-80. Anti-allodynic effects of the

subcutaneous administration of 0.15 mg/kg of DPDPE (A) or 0.5 mg/kg of SNC-80 or their respective vehicle in the

hind paws of db/db mice pretreated with 10 mg/kg of SFN or vehicle are represented. The effects of the

intraperitoneal administration of SFN alone are also shown. For each drug tested, * denotes significant differences

versus mice treated with vehicle plus saline or vehicle (p < 0.05, one way ANOVA followed by Student Newman
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sciatic nerve from diabetic mice (Fig 7; p< 0.025; one-way ANOVA versus db/db mice treated

with vehicle).

Discussion

In this study, we demonstrated that the intraperitoneal administration of SFN completely

reversed the mechanical allodynia and reduced glucose levels and body weight gain in a mouse

model of type 2 diabetes. In addition, the decreased sciatic nerve protein levels of Nrf2 and

NQO1 associated to diabetes were reversed by SFN treatment, which also enhanced the

expression of HO-1 and reduced the phosphorylation of JNK in the sciatic nerve of diabetic

Keuls test), + denotes significant differences versus animals treated with vehicle plus drug (p<0.05, one way

ANOVA followed by the Student Newman Keuls test) and # denotes significant differences versus animals treated

with SFN plus saline or vehicle (p < 0.05; one way ANOVA followed by the Student Newman Keuls test). Data are

expressed as mean values of the maximal possible effect (%) ± SEM; n = 6 animals per experimental group.

https://doi.org/10.1371/journal.pone.0180998.g004

Fig 5. Effects of SFN treatment on the protein levels of Nrf2, HO-1 and NQO1 in the sciatic nerve from diabetic mice. The protein levels of Nrf2

(A), HO-1 (B) and NQO1 (C) from db/db mice treated with vehicle or SFN are represented. The expression of Nrf2, HO-1 and NQO1 from db/+ mice

treated with vehicle has been also represented as controls. For each protein, * indicates significant differences when compared versus db/+ mice

treated with vehicle (p < 0.05, one-way ANOVA followed by Student Newman Keuls test); # indicates significant differences when compared versus db/

db mice treated with SFN (p < 0.05, one-way ANOVA followed by Student Newman Keuls test) and + indicates significant differences when compared

versus db/db mice treated with vehicle (p < 0.05, one-way ANOVA followed by Student Newman Keuls test). Western blots images for Nrf2, HO-1 and

NQO1 proteins in which β-actin was used as a loading control for 4 samples per group are also shown. Data are expressed as mean values ± SEM;

n = 4 samples per group.

https://doi.org/10.1371/journal.pone.0180998.g005
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Fig 6. Effects of SFN treatment on the protein levels of JNK in the sciatic nerve from diabetic mice.

Protein levels of JNK from db/db mice treated with vehicle or SFN are represented. The expression of JNK

from db/+ mice treated with vehicle has been also represented as controls. * indicates significant differences

when compared versus db/+ mice treated with vehicle (p < 0.05, one-way ANOVA followed by Student

Newman Keuls test) and # indicates significant differences when compared versus db/db mice treated with

SFN (p < 0.05, one-way ANOVA followed by Student Newman Keuls test). The density of phosphorylated

JNK and total JNK was determined and the ratio was calculated and represented. Representative examples

of western blots for phosphorylated JNK and total JNK proteins are also shown. Data are expressed as mean

values ± SEM; n = 4 samples per group.

https://doi.org/10.1371/journal.pone.0180998.g006
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Fig 7. Effects of SFN treatment on the protein levels of DOR in the sciatic nerve from diabetic mice.

Protein levels of DOR from db/db mice treated with vehicle or SFN are represented. The expression of DOR

from db/+ mice treated with vehicle has been also shown as controls. * indicates significant differences when

compared versus db/+ mice treated with vehicle (p < 0.05, one-way ANOVA followed by Student Newman

Keuls test) and # indicates significant differences when compared versus db/db mice treated with SFN (p <
0.05, one-way ANOVA followed by Student Newman Keuls test). A representative example of western blot for

DOR proteins, in which β-actin was used as a loading control, is also shown. Data are expressed as mean

values ± SEM; n = 4 samples per group.

https://doi.org/10.1371/journal.pone.0180998.g007

Nrf2 and delta-opioid receptors in neuropathy

PLOS ONE | https://doi.org/10.1371/journal.pone.0180998 July 10, 2017 14 / 19

https://doi.org/10.1371/journal.pone.0180998.g007
https://doi.org/10.1371/journal.pone.0180998


mice. The results of this study also indicated that the administration of each of the two DOR

agonists, DPDPE and SNC-80, dose dependently inhibited the mechanical allodynia in db/db

mice and treatment with SFN increased its anti-allodynic effects by normalizing the down reg-

ulation of DOR in the sciatic nerve of diabetic mice.

It is well known, that the activation of the Nrf2/HO-1 system increased insulin sensitivity

and glucose tolerance in diabetic animals [29, 30]. Moreover the activation of this signaling

pathway also suppressed body weight gain in the high-fat-diet-induced obesity in rodents and

in obese ob mice [29, 31–34] revealing its anti-obesity effects. Our results supported these find-

ings and further demonstrated that activation of Nrf2 by SFN reduced hyperglycemia and obe-

sity associated with type 2 diabetes in db/db mice.

In the present work, we also demonstrated that the intraperitoneal administration of SFN

inhibited the mechanical allodynia associated to type 2 diabetes in a dose dependent manner.

These results are in accordance to the antinociceptive effects produced by this compound in

rats with type 1 diabetes [28] and further revealed the effectiveness of this Nrf2 transcription

factor activator in type 2 diabetic mice.

It is well known that the transcription factor Nrf2 is involved in the regulation of the

antioxidant defense mechanisms by enhancing the production of endogenous antioxidant and

detoxifying enzymes, such as HO-1 and NQO1, and decreasing the expression of several

inflammatory mediators activated by MAPKs [28]. Therefore, in order to evaluate the possible

mechanisms of the anti-allodynic effects produced by SFN in type 2 diabetic mice, we mea-

sured changes in the protein levels of Nrf2, HO-1, NQO1, and JNK in the sciatic nerve from

SFN treated db/db mice. The decreased protein levels of Nrf2 observed in the sciatic nerve

from db/db mice confirmed that the reduced expression of this transcription factor is associ-

ated to diabetes [28, 35]. This down-regulated expression of Nrf2 was consequence of hyper-

glycemia that contributes to prevailing oxidative conditions in peripheral nerves [6]. Our data

also revealed that SFN treatment completely reversed the down regulated protein levels of

Nrf2 in the sciatic nerve from db/db mice, indicating the participation of this transcription fac-

tor in the anti-allodynic effects produced by SFN on type 2 diabetic mice. Moreover, protein

levels of the antioxidant enzyme HO-1 were significantly increased in the sciatic nerve from

db/db mice treated with SFN. In agreement with our data, an increased expression of HO-1 in

several tissues from type 1 diabetic animals treated with different Nrf2 or HO-1 inducers

compounds has been also previously reported [14, 28, 36, 37]. Tacking account the corrobo-

rated antinociceptive properties produced by the activation of HO-1 under inflammatory and

neuropathic pain conditions [8, 11, 14], our results suggested that the improvement of the

mechanical allodynia induced by SFN in db/db treated mice might be also mediated by

enhancing the HO-1 expression in the sciatic nerve of these animals.

It is well known that NQO1 is a highly inducible enzyme also regulated by the Nrf2 tran-

scription factor and implicated in the protection against oxidative stress. Indeed, NQO1

knockout diabetic mice had increased hyperglycemia and higher ROS expression, revealing

the important neuroprotective role played by this enzyme during diabetes [38, 39]. As

expected, we demonstrated a reduced expression of this enzyme in the sciatic nerve of db/db

mice as occurs in type 1 diabetic animals [28]. More interesting is the fact that SFN treatment

normalized the down-regulated expression of NQO1 in db/db mice, revealing that the anti-

allodynic effects produced by this compound in our diabetic mice might be also in part medi-

ated by the protection against oxidative stress induced by NQO1 in diabetic animals.

Several works demonstrated that a downstream mechanism of inflammation in diabetic

neuropathy include the activation of the JNK pathway [15, 40]. Our results supported these

findings by demonstrating its activation in the sciatic nerve of db/db mice and further revealed

that the induction of Nrf2 also has an inhibitory effect on JNK activation. Since JNK mediated
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multiple inflammatory mediators in type 2 diabetes, a reduction in its activity may be also

involved in the antiallodynic effects of SFN in db/db mice. In summary, our results indicated

that the antinociceptive produced by SFN in db/db mice might be mediated by the activation

of Nrf2 signaling and the consequent reduction in blood glucose levels and JNK phosphoryla-

tion in the sciatic nerve of these animals.

In this study, we also evaluated the role played by DOR on the modulation of painful dia-

betic neuropathy. Our data revealed that the subcutaneous administration of two specific

DOR agonists, DPDPE and SNC-80, inhibited mechanical allodynia in a dose dependent man-

ner. These results are consistent with previous studies, in which the central, spinal or systemic

administration of DPDPE dose-dependently inhibited the mechanical and thermal hypersensi-

tivity manifested in type 1 diabetic animals [20, 22, 41]. Our results supported these findings

and further revealed the potential use of DOR agonists for the treatment of painful diabetic

neuropathy associated to type 2 diabetes. The specificity of the anti-allodynic effects produced

by DPDPE and SNC-80 was demonstrated by the complete reversion of its effects with their

co-administration with naltrindole, a selective DOR antagonist. The present study also dem-

onstrated for the first time, that the administration of SFN significantly enhanced the anti-allo-

dynic effects produced by low doses of DPDPE and SNC-80 in type 2 diabetic mice. These

findings indicated that the antinociceptive effects produced by DOR agonists in type 2 diabetes

might be modulated by the Nrf2 transcription factor activation. Our data also demonstrated

that treatment with SFN avoided the sciatic nerve down regulation of DOR in db/db mice,

indicating that the normalized peripheral expression of DOR induced by this Nrf2 transcrip-

tion factor activator might explained the enhanced anti-allodynic effects produced by DPDPE

and SNC-80 in SFN treated animals. Accordingly, a recent work has demonstrated reduced

mRNA expression of DOR in the spinal cord of type 2 diabetic monkeys [42]. Nevertheless,

the fact that SFN treatment also activated the expression of HO-1 in db/db mice supported the

idea that the improvement of the anti-allodynic actions of DOR agonists produced by SFN

might be also consequence of the induction of HO-1, as occurs in animals with peripheral

inflammation or type 1 diabetes [12, 22]. Nonetheless, the normalization of the sciatic nerve

NQO1 proteins and the inhibition of JNK phosphorylation induced by the Nrf2 inductor

might also contribute to enhance the anti-allodynic effects of DOR agonists in SFN treated

mice.

In conclusion, this study reports for first time that SFN treatment reverses mechanical allo-

dynia and enhances the antinociceptive effects of DOR agonists by normalizing Nrf2, NQO1

and DOR down-regulation, increasing HO-1 expression, reducing hyperglycemia and inhibit-

ing JNK phosphorylation in the sciatic nerve of diabetic mice. These data propose the adminis-

tration of SFN alone and/or combined with DOR agonists as interesting approaches for the

management of painful neuropathy associated to type 2 diabetes in mice.
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