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Abstract

Human peripheral blood cells are relevant ex vivo models for characterizing diseases and eval-

uating the pharmacological effects of therapeutic interventions, as they provide a close reflec-

tion of an individual pathophysiological state. In this work, a new approach to evaluate the

impact of nanoparticles on the three main fractions of human peripheral blood cells by nuclear

magnetic resonance spectroscopy is shown. Thus, a comprehensive protocol has been set-up

including the separation of blood cells, their in vitro treatment with nanoparticles and the extrac-

tion and characterization of metabolites by nuclear magnetic resonance. This method was

applied to assess the effect of gold nanoparticles, either coated with chitosan or supported on

ceria, on peripheral blood cells from healthy individuals. A clear antioxidant effect was observed

for chitosan-coated gold nanoparticles by a significant increase in reduced glutathione, that

was much less pronounced for gold-cerium nanoparticles. In addition, the analysis revealed

significant alterations of several other pathways, which were stronger for gold-cerium nanopar-

ticles. These results are in accordance with the toxicological data previously reported for these

materials, confirming the value of the current methodology.

Introduction

Blood cells are interesting ex vivo models to study the pathophysiological state of diseases, and

to predict the beneficial or toxic effect promoted by new therapies, with a high translationality

to clinical studies by considering the patient’s specific characteristics. The reason is the fact

that blood cells are altered in disease and can reflect the condition and state of different organs

and tissues [1]. Thus, the study of the interaction of blood cells with medicines can provide us
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with an early indication of the effect of a certain therapy on the human body. For instance,

erythrocytes or red blood cells (RBCs) have been used as disease models for assessing drugs as

they are sensitive to many disorders, including diabetes, Wilson’s disease and Alzheimer’s dis-

ease [2–5]. Moreover, neutrophils have been analysed to obtain information about the diagno-

sis, mechanism of action and therapy of different diseases, such as tuberculosis, malaria,

allergic reactions or tumours [6–12]. Furthermore, lymphocytes have shown to be altered in

lung diseases, inflammatory processes leading to allergic diseases, during atherosclerotic pla-

que development, in cardiovascular diseases and during tumour progression [13–20].

Metabolomic profiling is a comprehensive method that allows the quantification of a large

number of different metabolites in a single analysis in a non-targeted way that can provide use-

ful information to study disease and the effect of treatments.[21–24] Proton nuclear magnetic

resonance (1H-NMR) spectroscopy has proven fast and reproducible for obtaining good qual-

ity structural and semi-quantitative information about the metabolome of cells [21,25]. Meta-

bolic profiling of cells has been previously applied to a wide range of in vitro models to help

gain insight into basic and disease metabolisms, especially in combination with genomics and/

or proteomics data [26]. Although some studies about the metabolic profile of blood cells can

be found, to our knowledge, very limited data about blood cell analysis by NMR spectroscopy

from patients available [27–35]. The analysis of the metabolic profile of blood cells could not

only provide a method for identifying new biomarkers for disease diagnosis, but also for in

vivo evaluating the effects of new therapeutic treatments (e.g., nanomedicines) at a patient

level [22–24].

Nanomedicine is the application of nanotechnological systems to medicine. The impact of

this technology has augmented dramatically over the last few years due to its applications

(drug delivery, prevention of drug metabolisation, diagnostic agent, etc.) [36,37]. Thanks to its

advantages, to date several nanometric systems have been approved for human use, and more

than 240 are in different clinical trial phases. This situation creates the need to implement a

wider range of methodological tools to optimize the design of new nanomaterials in early

stages of their development and to assess their effect during clinical trials [38]. Blood is one of

the first environments that comes into contact with a nanomedicine when it is injected or

when it enters the bloodstream via other administration types, which makes the study of the

interaction of nanoparticles with different blood components highly relevant. Comprehensive

studies have been reported on the effect of nanomaterials on both the immune and coagulating

systems. They include the analysis of the impact of these compounds on the morphology, cell

cycle and proliferation of different types of blood cells [39–44]. Indeed, new nanomaterials are

designed to make this interaction as controlled and advantageous as possible, and blood cells

have even been employed as carrier cells for nanoparticles to reach their destiny more effi-

ciently [45,46]. In this context, the focus of our study was to evaluate the potential of metabolo-

mics by NMR to characterize the metabolic profile of peripheral blood cells before and after

treatment with nanoparticles. To test our approach, we have chosen gold nanoparticles as

model systems, because they are one of the most promising nanomedicines, that have been

suggested for a wide range of different applications; e.g., medical imaging and therapies in can-

cer, neurodegenerative diseases or diabetes [47–58]. One of its most promising properties is its

capacity to eliminate an excess of oxidant species generated in stress situations (antioxidant

behavior), which is beneficial for many biomedical applications. Most of these applications

involve a direct contact with peripheral blood, whose impact can be evaluated by our method.

Several approaches have been proposed to maintain the structure of gold as nanoparticles

and to prevent agglomeration by adjusting their properties for biomedical applications. For

instance, to increase their biocompatibility and activity against oxidative stress, gold nanopar-

ticles have been supported on ceria nanoparticles or assembled in chitosan [59–63]. A wide
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range of different medical applications, including glucose sensors, antifilarial and antibacterial

agents, have been proposed for these modified gold nanoparticles, however none of them has

entered clinical trials yet. Both materials have their advantages and disadvantages, for instance,

ceria particles are soluble at physiological pH, which is not always the case for materials coated

with chitosan, that sometimes need an acid pH at higher concentrations. On the other hand,

ceria materials can agglomerate or form crowns with proteins, compromising their bio-distri-

bution, with is minimized in chitosan derived materials. To our knowledge, no apoptotic toxic-

ity has been described for either of these gold nanoparticles. However, no coherent information

can be found about their effect on cell viability and proliferation. While some works have found

no impact in this regard, other studies have described a significant reduction in cell viability

and proliferation for both materials [59,64–68]. The reason for these divergent results may be

variation in the size, shape or net charge of nanoparticles, important features than have been

well described to cause different effects on cells [69]. In this context, the development of new

biomedical methodologies to monitor effects of nanoparticles, which can provide a better

understanding of the mechanism related to certain therapeutic and/or toxic effects, may con-

tribute to the optimized design of these materials. Specifically, in the case of functionalized gold

nanoparticles, for which a wide range clinical applications have been proposed that are waiting

to be transferred to clinics, a previous evaluation step of their effect on peripheral blood cells

could provide a fast and effective filter before starting any clinical trial.

In our work, we first optimized a global protocol to analyze the metabolic profile of the

three main types of blood cells (erythrocytes, polymorphonuclear leukocytes (PMNs) and

mononuclear leukocytes (PBMCs)) that can be isolated in parallel from one patient sample.

The cell fractions from different healthy volunteers (n = 4) were then separately exposed to

nanoparticles based on gold, and stabilised on ceria nanoparticles or chitosan, with antioxidant

properties. The metabolomic profile of the treated cells was thereupon compared with the pro-

file of the untreated control cells. With this proof of concept, we intended to show that system-

atic metabolic changes can be detected in peripheral human blood cells after treatment with

nanoparticles. This information can contribute, together with other toxicological studies or

therapeutic data, to evaluate new nanomedicines in preclinical phases from a translational

point of view, establishing a precedent in this field.

Materials and methods

Chemicals and materials

Solvents and reagents were purchased from: Sigma-Aldrich (Ficoll-Paque Plus, Ficoll-Paque

Plus, PBS, fetal bovine serum, penicillin, streptomycin, amphotericin B, L-glutamine, chitosan,

HAuCl4, sodium citrate, AgNO3, sodium phosphate dibasic dihydrate), Scharlab (methanol,

chloroform, acetone, sodium hydroxide), Gibco (RPMI 1640 medium), Rhodia (CeO2), and

Eurisotop (deuterated water, deuterated chloroform, deuterated trimethylsilyl propanoic acid,

trimethylsilane). Materials were purchased from Scharlab, Life Technologies, and Falcon BD.

Gases were supplied by Air-Liquide.

Human subjects

The inclusion criteria were as follows: Caucasian healthy males (2) and females (2), 35–40

years, no alcoholics, no smoker, and no familiar with previous chronic diseases. All partici-

pants were recruited at the Outpatient’s Department of the Endocrinology Service at Vall

d’Hebron University Hospital. The study was conducted according to the guidelines laid down

in the Declaration of Helsinki, and all procedures were approved by the Ethics Committee of
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Vall d’Hebron University Hospital. Subjects have been properly instructed and have indicated

that they consent to participate by signing the appropriate informed consent paperwork.

Human peripheral blood cells isolation

The isolation of erythrocytes, PMNs and PBMCs leukocytes was carried out using a Ficoll-

Paque gradient method [70]. 20 mL of peripheral blood freshly extracted from healthy volun-

teers was carefully poured into a tube with 40 mL of Ficoll and let stand for approximately 20

min, obtaining 3 phases. The upper ring consisted of leukocytes while erythrocytes concen-

trated as a pellet at the bottom. The leukocyte ring was carefully transferred in a tube with the

same volume of Ficoll, avoiding mixing and, subsequently, centrifuged at 300 g for 25 min at

20˚C. A pellet of PMNs cells and an intermediate ring with PBMCs cells were isolated sepa-

rately through the following methodology. For the isolation of PBMCs, the PBMCs ring was

transferred to a tube with the same volume of PBS and centrifuged at 300 g for 5 min at 20˚C

during 5 min. The supernatant was discarded and the pellet containing the PBMCs was kept

on ice. For the isolation of PMNs, the pellet of PMNs, containing remainders of erythrocytes,

was treated for 5 min with 1 mL of erythrocyte lysis buffer. Subsequently, the mixture was cen-

trifuged at 300 g for 5 min at 20˚C and the supernatant was discarded. The resulting pellet was

resuspended in the same volume of PBS and centrifuged at 300 g for 5 min at 20˚C. The super-

natant was discarded and the pellet containing the PMNs was kept on ice. For the isolation of

erythrocytes, the erythrocyte pellet was transferred to a tube with the same volume of PBS and

centrifuged at 200 g for 5 min at 4˚C without acceleration and brake. The supernatant was dis-

carded and the erythrocyte pellet was washed with PBS again. Finally, after discarding the

supernatant, the pellet containing the erythrocytes was kept on ice.

The resultant pellet of all the peripheral blood cells were: i) for direct metabolomic analysis,

washed with PBS again and finally stored at -80˚C after adding 0.5 mL of ice-cold methanol

(for 20 million cells) or ii) for treatment with nanoparticles, resuspended in 1 mL of complete

RPMI 1640 medium for cell counting and diluted in more RPMI 1640 until obtaining a solu-

tion of 5 million cells/mL (M/mL)

Treatment of blood cells with nanoparticles

Twenty million PMNs and PBMCs, and 40 million erythrocytes were transferred to cell culture

flasks at a concentration of 5 M/mL in a Telstar BIO Laminar flow cabinet. Cells were cultured

in a RPMI 1640 medium consisting of 10% fetal bovine serum (FBS), 1% of antibiotic mixture

(50 μg/mL Penicillin, 50 μg/mL Streptomycin), 1% (2.5 μg/mL) Amphotericin B and 2.05%

L-Glutamine. To add the nanomaterials, the following procedures were carried out: a) AuCeO2:

a 1 mg/mL dispersion of AuCeO2 in water was prepared, and then diluted to 20 μg/mL with

medium. The pH was readjusted to 6.5 with 0.1 M of acetic acid. b) AuChi: a 1 mg/mL solution

of AuChi in 0.1% acetic acid was prepared, and then diluted to 20 μg/mL with medium. The pH

was readjusted to 6.5 with 0.1 M of NaOH. For control samples, the pH of the medium was

directly adjusted to 6.5 with 0.1 M of acetic acid. Flasks were then incubated in an IGO 150

(Jouan, Saint-Herblain, France) incubator during 24 h without stirring at 37˚C and 5% of CO2.

After incubation with the different treatments, the content of each flask of cells was transferred

to a falcon tube and the remaining cells were scraped off in PBS and added to the tube. Leuko-

cyte cells were centrifuged at 300 g and 20˚C during 5 min and erythrocytes at 200 g and 4˚C

during 10 min without acceleration and brake. Supernatants were then discarded, the pellets

resuspended in the same volume of PBS and centrifuged again under the same conditions.

Then, leukocytes cells were centrifuged at 11000 g and 20˚C during 5 min and erythrocytes at

200 g and 4˚C during 10 min. Supernatants were discarded, 0.5 mL of ice-cold methanol was
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added to the pellets, that were stored at -80˚C until performing the extraction for 1H-NMR

analysis.

Extraction of polar and nonpolar metabolites for 1H-NMR experiments

Frozen samples were placed on ice, allowed to that for 5 min, and then subjected to an extrac-

tion procedure. Then, 250 μl of chloroform at 4˚C per 20 million cells were added to the corre-

sponding pellets and let stand for 30 min. Samples were then homogenized with a vortex, cells

resuspended with a pipette and transferred to a 1.5 ml tube. For uniform cell breakage, samples

were submitted to three freeze-thaw cycles with liquid nitrogen. Then, 400 μL of distilled water

and 400 μL of chloroform were added to each sample which then was vortexed. Samples were

then centrifuged at 13000 g for 20 min at 4˚C to separate phases. The solution was separated

into an upper water/methanol phase (with polar metabolites, aqueous phase), an interphase

containing mainly proteins, DNA/RNA and cell membranes, and a lower chloroform/metha-

nol phase (with lipophilic compounds, organic phase). To obtain dry extracts, the aqueous

phase was lyophilized overnight and the organic phase removed using a speed vacuum concen-

trator. Extracts were stored at -80˚C until sample preparation for the 1H-NMR experiments.

1H-NMR experiments

Frozen cell pellets were placed on ice and allowed to thaw for 5 min. To the aqueous phase was

solubilised in 550 μL of phosphate buffer (100 mM Na2HPO4 pH 7.4, in D2O) containing 0.1

mM of deuterated trimethylsilyl propanoic acid (TSP-D4). The organic extract was dissolved

in 550 μL of cold deuterated chloroform (CDCl3 with 0.03% trimethylsilyl propanoic acid,

TMS). Samples were stored at 4˚C, equilibrated at RT for 15 min before analysis and analysed

the same day. 1H-NMR spectra of extracts were recorded at 27˚C on a Bruker AVII600 MHz

spectrometer using a 5 mm TCI cryoprobe and processed using Topspin3.2 software (Bruker

GmbH, Karlsruhe, Germany). 1H 1D noesy NMR spectra were acquired with 256 free induc-

tion decays (FIDs), 64k data points, a spectral width of 30 ppm and a relaxation delay of 4s.

Water presaturation was applied for aqueous samples. The FID values were multiplied by an

exponential function with a 0.5 Hz line broadening factor. Total Correlation Spectroscopy

(TOCSY) and multiplicity Heteronuclear Single Quantum Correlation (HSQC) were per-

formed on representative samples with 256–512 t1 increments, 32–96 transients and a relaxa-

tion delay of 1.5 s. TOCSY spectra were recorded using a standard MLEV-17 pulse sequence

with mixing times (spin-lock) of 65 ms.

Synthesis and characterization of gold-chitosan nanoparticles (AuChi)

AuChi nanoparticles were synthesized as previously reported [60]. Briefly, 200 mg of low

molecular weight chitosan were added to 100 mL of miliQ water containing 1% of acetic acid.

Then, the mixture was heated at 90˚C with vigorous stirring until complete dissolution of chit-

osan. Subsequently, 1.3 mL of a 9.6 mM HAuCl4 x 3H2O aqueous solution was added slowly

to the chitosan solution and the mixture was stirred for 5 min. Afterward, 250 μL of a 0.1 M

sodium citrate solution was added and the mixture was stirred for another 5 min. Later, the

mixture was quickly cooled in a water-ice bath. Then, the solution was filtered through a

0.22 μm cellulose filter and characterized. The hydrodynamic size and the zeta potential were

determined by dynamic light scattering (DLS) (Zetasizer Nano ZS (Malvern Instrument,

UK)). The gold nanoparticle size was determined by high resolution transmission electron

microscopy (HR-TEM) (Philips CM300FEG 100 kV). Finally, the content of gold was deter-

mined by inductively coupled plasma (ICP) (Varian 715-ES ICP-Plasma).
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Synthesis and characterization of gold-ceria nanoparticles (AuCeO2)

AuCeO2 nanoparticles were synthesized following a protocol previously described by our

group [59]. Briefly, 200 mg of HAuCl4 x 3H2O were dissolved in 40 mL of distilled water at

RT. Then, a solution of 0.2 M NaOH was added until pH = 10 while the mixture was stirred

vigorously. Once the pH was stable, a suspension of 1.0 g CeO2 in 13 mL of distilled water was

added slowly, adjusting the pH of the mixture to 10 with 0.2 M NaOH. When the pH was sta-

ble, the mixture was stirred vigorously overnight. After that, the dispersion was filtered and

washed with several litres of distilled water until no traces of chlorides were detected by the

AgNO3 test. Then, the solid was washed with 2x100 mL of acetone, dried and placed in a fur-

nace. The sample was then heated from RT to 300˚C at a rate of 8˚C/min during 4.5 h, in pres-

ence of H2. After that, the furnace was shut down until reaching room temperature. Then,

nanoparticles were dissolved on PBS and the resultant solution was filtered through a 0.22 μm

cellulose filter. The gold nanoparticle size was determined by HR-TEM (Philips CM300FEG

100 kV). The hydrodynamic size and zeta potential of the solid were analyzed by DLS (Zetasi-

zer Nano ZS (Malvern Instrument, UK)). Finally, the content of gold was determined by ICP

(Varian 715-ES ICP-Plasma).

Data analysis and statistics
1H-NMR spectra were transformed with a 0.5 line-broadening, and manually baseline and

phase corrected with Topspin 3.2. NMR signals of TSP-D4 (polar spectra) and TMS (non-polar

spectra) were referenced to 0 ppm. For metabolite identification, the 1H and 13C chemical shift

values and multiplicity of the signals were compared with reference data from the spectral data-

bases Human Metabolome Database and the Biological Magnetic Resonance Bank and several

literature reports [29,71,72]. The assignment NAD, NADH, NADP, NADPH, ATP, ADP, acet-

oacetate and sarcosine, was confirmed by spiking the sample with reference compounds. Spec-

tra were normalized to total intensity to minimize the differences in concentration and

experimental error during the extraction process. Optimal integration regions were defined for

each metabolite, trying to select signals without overlapping. Integration was performed with

MestreNova 8.1 utilization the GSD deconvolution option. In the study with gold-nanoparticle

treatments, p-values were calculated with the non-parametric Mann-Whitney U test with IBN

SPSS statistics 21. Pathway analysis was performed with Metaboanalyst [73].

Results and discussion

Optimisation of blood cell isolation, treatment and metabolite extraction

A protocol for the isolation of the different human blood cell types and their metabolites was

initially optimized. To this end, peripheral blood was extracted from healthy individuals and

the three mayor blood cell fractions (RBCs, PMNs and PBMCs) were separated. Two different

methods were tested for evaluating the separation of the different fractions: the Ficoll-Paque

gradient method, and dextran followed by the Ficoll-Paque gradient method. No significant

differences in the quality of the metabolomic profile obtained using both procedures were

found. Therefore, the Ficoll-Paque gradient method was selected for its simplicity and minimal

sample handling. Another important factor to consider is that erythrocytes are particularly

fragile, so they must be centrifuged at a lower speed without acceleration or braking.

After achieving phase separation, cells were submitted to treatment with nanoparticles (see

details in the Supplementary Information). Three different concentrations of cells were tested:

30, 15 and 5 M/mL. Agglomeration and cell death was observed at the two higher concentra-

tions (30 and 15 M/mL), but not at the lowest concentration (5 M/mL). Finally, cells were

Metabolomics of gold nanoparticles on human blood cells by NMR as translational research approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0182985 August 9, 2017 6 / 19

https://doi.org/10.1371/journal.pone.0182985


harvested and subjected to an extraction process with methanol, chloroform and water, a

method that had been successfully applied in previous metabolomics studies [74]. This process

is extremely sensitive to the elimination of metabolites from the medium that could interfere

with the analysis, a process that was achieved by washing with PBS. Furthermore, cold metha-

nol (-20˚C) was added to effectively quench the metabolism of cells. Solvent amounts were

optimised to 500 μL methanol (added directly after cell harvesting), 650 μL of chloroform

(added in two times, before and after cell breakage) and 400 μL of water (added after cell

breakage, to avoid ice-building during the freeze-thaw cycles) per 20 million cells. Smaller sol-

vent volumes produced poorer extractions yields and a less efficient phase separation, while

bigger volumes showed no improvement. As a result of the extraction, two different, aqueous

and organic, fractions were obtained with polar and non-polar metabolites, respectively. For

the NMR analysis, cell extracts were dried and later on dissolved in deuterated solvents to

improve spectrum quality, which contained internal standards (for quantification), and were

buffered in the aqueous phase (for pH control). The whole process is summarised in Fig 1.

Metabolic profile of RBCs, PMNs, and PBMCs blood cells
1H-NMR spectra corresponding to the aqueous and organic extracts of the three peripheral

blood cell types are shown in Fig 2. A detailed assignment of the different spectra was per-

formed based on the 1D and 2D-NMR spectra acquired in this study, as well as the general

information available from public databases, since no exhaustive information regarding the

metabolic content of these blood cells could be found in the literature. Thus, it was possible to

identify more than 80 different polar and non-polar metabolites, or functional groups (Fig 2).

The main metabolites identified in the aqueous phase were amino acids, sugars, organic acids

and nucleotides, whereas in the organic fraction it was possible to identify different types of

lipids, such as mono and polyunsaturated lipids, di- and triglycerols, phospholipids, as well as

cholesterol. This is the first time that the metabolic profile of different kind of blood cells has

been systematically determined by NMR, and the results are coherent with data obtained in

previous studies using GC-MS and LC-MS [75,76].

It should be stressed that each cell type had a specific metabolomic profile. RBCs, for

instance, exhibited large amounts of lactate, glucose, glutathione, ATP/ADP, ascorbic acid,

creatine and phospholipids. The presence of several of these metabolites has been previously

described in RBCs by other techniques, and their level alterations are associated with diseases

such as sickle cell, Alzheimer’s disease, Wilson’s disease or anaemia [77–81]. Both PMNs and

PBMCs leukocytes contained very large amounts of glycerol, a compound that, among other

functions, is a vital osmoprotective agent for cells in suspension. The levels of metabolites such

as glucose, pyruvate and succinate were higher in PBMCs than in PMNs, perhaps reflecting

the importance of oxidative bioenergetic metabolism of lymphocytes (main fraction of

PBMCs) under basal conditions [82]. Moreover, it has been demonstrated that the bioener-

getic metabolism of neutrophils (main fraction of PMNs) is mainly glycolytic [82]. Accord-

ingly, lactate concentrations were significantly higher in this blood cell type.

In summary, metabolomics profiles obtained by 1H-NMR provide relevant information of

the specific metabolism associated with each cell type, that could be extremely useful from a

clinical point of view.

Effect of nanoparticle treatment on the metabolic profile of RBCs, PMNs,

and PBMCs

Once a reliable protocol for evaluating the metabolomic profile of each cell type was estab-

lished, we evaluated its possible application in nanomedicine. To this end, the effects caused
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by chitosan-capped gold nanoparticles (AuChi) and gold nanoparticles stabilised on ceria nano-

particles (AuCeO2), two promising type of gold nanoparticles for biomedicine, were assessed. A

detailed physical characterization of both nanoparticles revealed mean sizes, determined by

HR-TEM, of 5.65 nm (AuChi) and 5.90 nm (AuCeO2) (S1 File, Fig A and D, respectively).

Moreover, zeta potentials of + 17 mV (AuChi) and -19 mV (AuCeO2), as well as hydrodynamic

sizes of 205 nm (AuChi) and 133 nm (AuCeO2), that are optimal values for biomedical applica-

tions, were determined by DLS (S1 File, Fig B and C, respectively). Finally, the gold content of

both nanoparticles, characterized by ICP, was 1.2% (AuChi) and 0.8 (AuCeO2). Pictorial repre-

sentations of the two-particle systems can be found in Fig 3. The non-toxicity of the nanomater-

ials was confirmed with an MTT-assay (S2 File).

A pilot study was then conducted to evaluate the impact of both nanoparticles in each cell

type. Thus, blood was extracted from healthy volunteers and subjected to the previously

described protocol (Fig 1). To evaluate the effect that the coating had on the blood cells, con-

trol experiments with commercial chitosan and CeO2 were also carried out. The representative
1H-NMR spectra of RBCs, PMNs and PBMCs from freshly peripheral human blood after

being exposed for 24 h to AuChi, AuCeO2 and the vehicle are shown in Fig 3. Significant dif-

ferences in the metabolomic profiles of blood cells after treatment with both nanomaterials

were detected, as shown in Tables 1–3 and Tables A–C in S3 File. To get an overview of the

affected pathways, pathway analysis was performed with the program metaboanalyst, using

metabolites that change significantly as input data (Fig A to F in S4 File). In general, it was

found that the metabolic changes induced by AuChi were less pronounced than those associ-

ated with AuCeO2. This result is in agreement with previous studies indicating a lower AuChi

toxicity compared with AuCeO2 [59,67,68]. Interestingly, it was also found that the metabolic

impact of the nanoparticles was cell-type specific, an indication of the existence of different

mechanism of actions of the nanoparticles in each blood cell type.

The antioxidant effect of nanoparticles, as indicated by an increase in the GSH/GSSG ratio

after treatment with AuChi nanoparticles, was better reflected in PMN cells as they contain a

large number of mitochondria as other cell types. Simultaneously, a drop in lactate was

observed, probably reflecting a reduced glucose conversion (main energy source in neutro-

phils) into lactate, in parallel with an increased insertion of pyruvate into the oxidative citric

acid cycle. These cells have been reported to use glycerol-phosphate for energy production in

mitochondria [83]. Thus, antioxidant materials could have activated glycerol-phosphate oxida-

tion in mitochondria, a process that would explain the observed reduction of glycerol levels. In

this situation, the observed increase of betaine levels, a known osmolyte, could compensate the

decrease of gycerol levels [84]. Another important observation was the decrease in glutamine

levels, revealing an alteration in glutaminolysis, a process that occurs at high rates in immune

system cells [83].

In general, the antioxidant impact of the nanoparticles was less pronounced in PBMC cells

than in PMN cells, an indication perhaps of the fact that lymphocytes already rely on an oxida-

tive metabolism for energy production. Also in this case, a drop in glycerol and an increase in

betaine upon AuChi treatment were observed, but these effects did not take place for AuCeO2.

The decrease in phosphocholine derivatives, glycerides (AuChi) and MUFA, PUFA and

Fig 1. Strategy for peripheral blood cell isolation (PBMCs, PMNs and erythrocytes), nanoparticle treatment, polar and no-polar

metabolite extraction, and 1H-NMR analysis. PBMCs, PMNs and erythrocytes samples were isolated from peripheral blood of

healthy human individuals. Samples of each cell type were split an aliquot (20 million cells) for characterization (a), and another aliquot

(40 million cells) for nanoparticle treatments (b). Finally, polar and nonpolar were extracted and the 1H-NMR metabolic profiles

determined (c).

https://doi.org/10.1371/journal.pone.0182985.g001
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Fig 2. 1H-NMR spectra of erythrocytes, PMNs and PBMCs. Polar (a) and non polar (b) 1H-NMR metabolomic

profiles of extracts of the main types of peripheral blood cells. Metabolite assignments are indicated with the following

numbers: 1) 2-hydroxybutyrate, 2) leucine, 3) valine, 4) ethanol, 5) lactate, 6) 2-aminoisobutyrate, 7) alanine, 8) lysine, 9)

acetate, 10) glutamate, 11) reduced glutathione (GSH), 12) oxidized glutathione (GSSG), 13) pyroglutamate, 14)

pyruvate, 15) succinate, 16) glutamine, 17) creatine, 18) phosphocreatine, 19) malonate, 20) spermidine/spermine, 21)

Metabolomics of gold nanoparticles on human blood cells by NMR as translational research approach
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cholesterol (AuCeO2) could also be indicative for an alteration in the glycerophospholipid

metabolism of PBMCs (Table E and F in S4 File).

Metabolic changes induced by nanoparticles on erythrocytes were less pronounced, a pro-

cess that could be explained by the fact that these cells do not possess organelles, (e.g., mito-

chondria), the main target of the antioxidant properties of the gold nanoparticles. RBCs

already possess a strong antioxidant system to protect the Hemo group, so minor antioxidant

effects cannot be easily detected. Therefore, erythrocytes may be optimal sensors for a strong

antioxidant or oxidative effect, but this was not the case for either material employed herein.

Nevertheless, higher ATP levels were detected upon both treatments, a process that could

reflect an altered energetic metabolism of the cells induced by the gold nanoparticles. Also

amino acid metabolism seemed to be affected after treatment with AuCeO2, while AuChi

seems to interfere with sugar metabolism (Table A and B in S4 File).

Several of the detected changes, especially those observed for AuCeO2, have also been

detected in cultured cells treated with different kind of nanoparticles, including the increase in

different amino acids (valine, leucine, isoleucine, glutamate or glutamine) and the decrease in

PC, GPC, formate and ATP [85–88]. The increase of the GSH/GSSG seems to be specific for

nanoparticles with anti-oxidant properties, such as gold and silver nanoparticles, as it has not

been detected for copper, cobalt or titanium nanoparticles.

Control experiments with CeO2 and chitosan revealed that the observed effects were

mainly due to the combination of Au with chitosan and CeO2, as very few significant meta-

bolic changes were observed after treatment with chitosan and CeO2 in the absence of Au

(Tables D–F in S3 File). In the case of RBCs, ATP also increased, which could mean that

part of the alteration in the energetic metabolism of these cells can be already be induced by

the support/coating materials. They also seem to cause a slight decrease in the GSH/GSSG

ratio in these cells, which seems to be compensated by the antioxidant effect of Au when the

materials are combined with gold. For PMNs, a tendency for glucose and GSH to increase,

and lactate to decrease seem to be present when they are treated with chitosan and CeO2,

but these changes are only significant when Au is introduced. Changes in PBMCs (lactate

and acetoacetate) seem not to be related with the changes that take place in the presence of

gold nanoparticles.

In summary, results indicate that chitosan gold nanoparticles possess a relevant oxidative

capacity, especially on PMNs cells, while this effect was much less pronounced for AuCeO2.

Furthermore, although both nanoparticles have been described as biocompatible, they have an

impact on several metabolic routes (e.g., the bioenergetic metabolism of cells, amino acid

metabolism, sugar metabolism). Therefore, these characteristics should be taken into consider-

ation for the clinical development of these materials.

phosphocholine (PC), 22) glycerophosphocholine (GPC), 23) carnitine, 24) betaine, 25) taurine, 26) methanol, 27)

proline, 28) glycine, 29) glycerol, 30) ascorbate, 31) guanidino/guanido acetate, 32) 6-phosphogluconate 33) glycolate,

34) phosphoethanolamine, 35) ATP, 37) AMP, 38) NAD+, 39) NADP+, 40) trehalose, 41) phosphoenolpyruvate, 42)

UDP-glucose, 43) UDP-NAG, 43) NADH, 44) uracil/tryptophane, 45) GDP, 46) GTP, 47) NADPH, 48) CTP, 49)

fumarate, 50) tyrosine, 51) histidine/histamine, 52) tryptophane, 53) phenylalanine, 54) guanosine, 55) xanthine, 56)

guanine, 57) hypoxanthine, 58) CTP, 59) CDP, 60) ADP, 61) formate, 62) methionine, 63) aspartate, 64) malate, 65)

glucose, 66) isoleucine, 67) acetoacetate, 68) methylacetoacetate, 69) sarcosine, 71) thymidine, 72) hydroquinone, 73)

pyridoxamine, 74) 4-pyridoxate, 75) nicotinamide, 76) N-Methyl-a-aminoisobutyric acid, 80) cholesterol, 81) lipid CH3-,

82) lipid -CH2-, 83) fatty ester -CH2CH2COO-, 84) polyinsaturated fatty acids (PUFA), 85) monoinsaturated fatty acids

(MUFA), 86) phosphatidylethanolamine, 87) phosphatidycholine, 88) acylglycerophosphoserine, 89) phospholipids, 90)

TAG, 91) spingosine, 92) fatty ester—CH2OCO-.

https://doi.org/10.1371/journal.pone.0182985.g002
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Conclusions

This work presents a preliminary study aiming to contribute to the design and evaluation of

nanoparticles for biomedical applications. A protocol was developed for the monitoring of a

large number of polar and non-polar metabolites from three different types of peripheral

blood cells (RBCs, PMNs, and PBMCs). The protocol was successfully applied to the evalua-

tion of the effect of nanomaterials on these cells, an application that could have important

implications from a traslational point of view. Treatment of the three blood cell types with

gold nanoparticles, which were stabilized on ceria or chitosan, revealed different systematic

changes in the metabolic profile of the cells, which were related to the antioxidant effect of the

materials but also reflected alterations in other metabolomics pathways. In combination with

other analytical and biochemical techniques, this tool could provide relevant information

about the mechanism of action and side effects of new nanomedicines, which in turn could

Fig 3. 1H NMR spectra of the aqueous extracts of RBCs, PMNs and PBMCs after treatment with

nanoparticles. Changes observed in the metabolomic profile of the main peripheral blood cells after 3h of

treatment with vehicle, AuChi and AuCeO2 nanoparticles.

https://doi.org/10.1371/journal.pone.0182985.g003

Table 1. Significant changes in RBCs.

Metabolite AuChi treatment AuCeO2 treatment

ATP " "

betaine - #

GABA - "

glutamate - #

glutamine - #

glycerol phosphate - "

glucose " -

cholesterol - "

PUFA - "

Significant changes (": metabolite increased vs control; #: metabolite decreased vs control) (" or #:

p < 0.05 > 0.01) in the metabolic profile of RBCs after treatment with AuChi and AuCeO2 nanoparticles.

https://doi.org/10.1371/journal.pone.0182985.t001

Table 2. Significant changes in PMNs.

Metabolite AuChi treatment AuCeO2treatment

betaine " "

lactate # #

glutamine " ""

GSSG # #

glucose - "

glycerol # ##

GSH " -

lipid CH2 - #

Significant changes (": metabolite increased vs control; #: metabolite decreased vs control) (" or #: p < 0.05 > 0.01; "" or ##: p < 0.01) in the metabolic

profile of PMNs after treatment with AuChi and AuCeO2 nanoparticles.

https://doi.org/10.1371/journal.pone.0182985.t002
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offer a better way for the optimization and evaluation of these nanoparticles. Interesting fur-

ther projects include the analysis of the effect of different types of nanoparticles, especially

those that are already in clinical trials, and the comparison of the effect that they have on the

blood from patients and from healthy individuals.
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