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Abstract In the idling brain, neuronal circuits transition between periods of sustained firing (UP

state) and quiescence (DOWN state), a pattern the mechanisms of which remain unclear. Here we

analyzed spontaneous cortical population activity from anesthetized rats and found that UP and

DOWN durations were highly variable and that population rates showed no significant decay

during UP periods. We built a network rate model with excitatory (E) and inhibitory (I) populations

exhibiting a novel bistable regime between a quiescent and an inhibition-stabilized state of

arbitrarily low rate. Fluctuations triggered state transitions, while adaptation in E cells paradoxically

caused a marginal decay of E-rate but a marked decay of I-rate in UP periods, a prediction that we

validated experimentally. A spiking network implementation further predicted that DOWN-to-UP

transitions must be caused by synchronous high-amplitude events. Our findings provide evidence

of bistable cortical networks that exhibit non-rhythmic state transitions when the brain rests.

DOI: https://doi.org/10.7554/eLife.22425.001

Introduction
A ubiquitous pattern of spontaneous cortical activity during synchronized brain states consists of the

alternation between periods of tonic firing (UP states) and periods of quiescence (DOWN states)

(Luczak et al., 2007; Steriade et al., 1993a; Timofeev et al., 2001). Cortical UP and DOWN

dynamics take place during slow-wave-sleep (SWS) (Steriade et al., 1993a) and can also be induced

by a number of anesthetics (Steriade et al., 1993a). More recently however, similar synchronous cor-

tical dynamics have been observed not only in awake rodents during quiescence (Luczak et al.,

2007; Petersen et al., 2003), but also in animals performing a perceptual task, both rodents

(Sachidhanandam et al., 2013; Vyazovskiy et al., 2011) and monkeys (Engel et al., 2016).

Spontaneous activity resembling UP and DOWN states has been found in cortical slices in vitro

(Cossart et al., 2003; Fanselow and Connors, 2010; Mann et al., 2009; Sanchez-Vives and

McCormick, 2000), in slabs (Timofeev et al., 2000) and in vivo under extensive thalamic lesions

(Steriade et al., 1993b). This suggests that the underlying mechanism has an intracortical origin. In

such scenario, the standard hypothesis postulates that during UP periods a fatigue mechanism of

cellular origin – e.g. spike frequency adaptation currents or synaptic short-term depression –

decreases network excitability until the state of tonic firing can no longer be sustained and the corti-

cal network switches into a DOWN state (Contreras et al., 1996; Sanchez-Vives and McCormick,

2000). During DOWN periods, in the absence of firing, the fatigue variables recover until the circuit

becomes self-excitable and autonomously transitions into an UP state (Cunningham et al., 2006;

Le Bon-Jego and Yuste, 2007; Poskanzer and Yuste, 2011; Sanchez-Vives and McCormick, 2000;

Timofeev et al., 2000). This mechanism of activity dependent negative feedback causing oscillatory

UP-DOWN dynamics has been implemented by several computational models (Bazhenov et al.,
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2002; Benita et al., 2012; Chen et al., 2012; Compte et al., 2003b; Ghorbani et al., 2012;

Hill and Tononi, 2005; Parga and Abbott, 2007). However, although commonly described as a

slow oscillation, the rhythmicity of UP-DOWN dynamics has not been systematically quantified and

seems to depend on the details of the preparation (Chauvette et al., 2011; Erchova et al., 2002;

Lampl et al., 1999; Ruiz-Mejias et al., 2011).

Alternatively, there is strong evidence suggesting that UP-DOWN transitions in neocortical cir-

cuits are coupled with activity in subcortical and limbic areas. Thalamocortical neurons for instance

can endogenously oscillate at low frequencies (Hughes et al., 2002; McCormick and Pape, 1990),

cause cortical UP states when stimulated (Rigas and Castro-Alamancos, 2007) or modulate the UP-

DOWN dynamics when suppressed (David et al., 2013; Lemieux et al., 2014) and their spontane-

ous activity correlates with UP state onset (Contreras and Steriade, 1995; Slézia et al., 2011;

Ushimaru et al., 2012). Moreover, the timing of hippocampal sharp-wave ripples (Battaglia et al.,

2004), or basal ganglia activity (Ushimaru et al., 2012) also tends to precede DOWN to UP transi-

tions. Finally, intracortical stimulation can effectively cause UP-DOWN transitions (Beltramo et al.,

2013; Shu et al., 2003) even when only a few dozen neurons are stimulated (Stroh et al., 2013). In

total, these findings describe a system whose macroscopic UP-DOWN dynamics are sensitive to tem-

poral fluctuations of both external inputs and local circuit activity. Such a network would in principle

generate unpredictable and therefore irregular UP-DOWN dynamics, since transitions are no longer

dependent exclusively on local cortical internal dynamics.

The interplay of fatigue mechanisms and fluctuations causing transitions between two states has

been theoretically studied in the developing spinal cord (Tabak et al., 2011; 2000), and in the con-

text of UP-DOWN dynamics mostly in networks composed of excitatory units (Holcman and Tso-

dyks, 2006; Lim and Rinzel, 2010; Mattia and Sanchez-Vives, 2012; Mejias et al., 2010). Most

models of spontaneous activity are however theoretically founded on the balance between excit-

atory (E) and inhibitory (I) populations (Amit and Brunel, 1997; van Vreeswijk and Sompolinsky,

1998), a dynamic state that can quantitatively mimic population spiking activity during desynchron-

ized states (Renart et al., 2010). Analysis of cortical responses in the visual cortex suggest that corti-

cal networks operate in the inhibition-stabilized regime, in which recurrent excitatory feedback alone

is strong enough to destabilize the network activity but feedback inhibition maintains stability

(Ozeki et al., 2009). In spite of growing evidence showing that the interaction between E and I pop-

ulations is critical in generating spontaneous activity, the conditions under which an EI network

model can exhibit a robust bistability between a low-rate inhibition-stabilized state and a quiescent

state are still not well understood (Latham et al., 2000). To develop such a model, we first per-

formed population recordings of ongoing cortical activity during synchronized brain state epochs in

rats under urethane anesthesia (Détári and Vanderwolf, 1987; Luczak et al., 2007;

Murakami et al., 2005; Whitten et al., 2009). Analysis of population single-unit spiking dynamics,

showed irregular UP and DOWN periods and no decay of the average rate during UPs. Given these

constraints, we built an EI network model that, capitalizing on the firing threshold non-linearity and

the asymmetry of the E and I transfer functions, exhibited a novel type of bistability with a quiescent

(DOWN) and a low-rate state (UP). External input fluctuations into the network caused the irregular

UP-DOWN transitions. Adaptation in E cells in contrast, did not cause transitions and had a different

effect on the E rate in each of the two states: while it exhibited recovery during DOWN periods, it

showed almost no decay during UP periods due to the balanced nature of the UP dynamics. In addi-

tion, a spiking network implementation of the model revealed that external input fluctuations to neu-

rons in the network cannot respond to simple independent Gaussian statistics but must include

stochastic, synchronous high-amplitude events that can trigger DOWN-to-UP transitions. Our model

provides the first EI network that exhibits stochastic transitions between a silent and a low rate inhi-

bition-stabilized attractor matching the statistics of UP and DOWN periods and population rate

time-courses observed in the cortex.

Results
To investigate the mechanisms underlying the generation of spontaneous cortical activity, we

recorded the spiking activity from large populations of neurons (mean ±SD = 64±23 cells) in deep

layers of somatosensory cortex of urethane-anesthetized rats (n = 7 animals) (Barthó et al., 2004;

Luczak et al., 2009). Because brain state under urethane can vary spontaneously (Détári and
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Vanderwolf, 1987; Luczak et al., 2007; Murakami et al., 2005; Whitten et al., 2009), we selected

the most clearly synchronized epochs characterized by the stable presence of high-amplitude, slow

fluctuations in cortical local field potential (LFP) signals (Figure 1A; see Materials and methods)

(Harris and Thiele, 2011; Steriade et al., 2001). During these epochs, the instantaneous population

rate R tð Þ, calculated by merging all the recorded individual spike trains, displayed alternations

between periods of tonic firing and periods of silence (Luczak et al., 2007), a signature of UP and

DOWN states from an extracellular standpoint (Figure 1B–C) (Cowan and Wilson, 1994; Sanchez-

Vives and McCormick, 2000; Steriade et al., 1993a). Despite the clear presence of UP and DOWN

states, the population activity displayed no clear traces of rhythmicity as revealed by strongly

damped oscillatory structure in both autocorrelograms of LFP and R tð Þ (Figure 1D and E, respec-

tively). Motivated by this, we hypothesized that the cortical circuit might transition between two net-

work states in a random manner (Deco et al., 2009; Mejias et al., 2010; Mochol et al., 2015).

Using a probabilistic hidden semi-Markov model (Chen et al., 2009), we inferred the instantaneous
L
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Figure 1. Synchronized brain activity under urethane anesthesia in the rat somatosensory cortex and the detection

of putative UP and DOWN periods. (A) Local field potential during 5 s of synchronized state displaying high-

amplitude slow fluctuations. (B) Population raster of 92 simultaneously recorded single units exhibiting the

alternation between periods of tonic spiking activity and periods of neural quiescence (cells sorted based on mean

firing rate). (C) Instantaneous population rate R tð Þ (grey) is used to identify putative U (orange) and D (purple)

periods. The detection algorithm is based on fitting a Hidden Markov Model (HMM) and computing the posterior

probability of the hidden state being in an UP state (green) (see Materials and methods). (D) Average

autocorrelogram of LFP (20 s windows) for one example experiment. (E) Average autocorrelogram of R(t) for

different (n = 7) experiments (example experiment in black).

DOI: https://doi.org/10.7554/eLife.22425.002

Jercog et al. eLife 2017;6:e22425. DOI: https://doi.org/10.7554/eLife.22425 3 of 33

Research article Neuroscience

https://doi.org/10.7554/eLife.22425.002
https://doi.org/10.7554/eLife.22425


state of the circuit from the population rate R tð Þ by extracting the sequence of putative UP (U) and

DOWN (D) periods (Figure 1C, Materials and methods).

UP and DOWN duration statistics during synchronized states
The statistics of U and D period durations showed skewed gamma-like distributions (Figure 2A and

B right; Figure 2—figure supplement 1). The mean duration across different experiments displayed

a wide range of values (Figure 2B left; mean ±SD:<U>= 0.43 ± 0.19 s, <D> = 0.46 ± 0.1 s, n = 7),

whereas the coefficients of variation CV(U) and CV(D) of U and D periods, defined as the standard

deviation divided by the mean of the period durations within experiments, were systematically high

(Figure 2B middle, mean ±SD: CV(U) = 0.68 ± 0.09, CV(D) = 0.69 ± 0.1; median CV(U) = 0.64, CV(D)

= 0.71). The irregularity in the U and D periods did not result from slow drifts in the mean U or D

durations caused by variations of brain state as confirmed by computing the CV2 (Holt et al., 1996),

a local measure of irregularity that is less affected by slow variations in the statistics (mean ±SD:

CV2(U) = 0.86 ± 0.13, CV2(D) = 0.75 ± 0.17; see Materials and methods). The high variability of U

and D periods is consistent with the non-periodicity of the dynamics revealed in the autocorrelation

function (Figure 1D–E).
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Figure 2. Statistics of U and D periods during synchronized brain activity. (A) Distribution of U and D durations for

one example experiment (same as Figure 1). Inset shows the mean and coefficient of variation (CV) of U and D

durations. (B) Summary of period duration mean (left), CV (middle), and gamma-fit shape parameter (right) across

experiments (n = 7 rats). While average durations are quite heterogeneous across experiments, the period

duration variability is consistently large. (C) Left: D duration (Di) vs the consecutive U duration (Ui) exhibit weak but

significant serial correlation. Values more than 3 standard deviations away from the mean (circles) were discarded

for correlation analysis. Red line shows linear regression. Right: Cross-correlogram between the Di and Ui

sequences for different lags (k) in a single experiment. Magenta dashed line represent the mean cross-

correlogram from a local shuffled (see Materials and methods). Light (dark) grey dashed line showing 95% C.I.

point-wise (global) error bands. (D) Summary of cross-correlation analysis for the different experiments, displaying

consistent positive correlations across experiments for lags k = 0 and k = 1.

DOI: https://doi.org/10.7554/eLife.22425.003

The following source data and figure supplement are available for figure 2:

Source data 1. U and D period durations and statistics for individual experiments.

DOI: https://doi.org/10.7554/eLife.22425.005

Figure supplement 1. Distributions of U and D period durations for individual experiments.

DOI: https://doi.org/10.7554/eLife.22425.004
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We then asked whether the lengths of U and D periods were independent, as if the transitions

between the two network states would reset the circuit’s memory, or if in contrast they were corre-

lated by a process impacting the variability of several consecutive periods. We computed the linear

cross-correlation Corr Ui;Diþkð Þ (Figure 2C left, for k = 0) between pairs of periods separated in the

D-U sequence by a lag k (Figure 2C, right). The cross-correlation Corr Ui;Diþkð Þ displayed consis-

tently non-zero values for k = 0 and k = 1 (mean ±SD: 0.21 ± 0.09, 0.17 ± 0.09, respectively; signifi-

cant cross-correlation in 6/7 animals, p<0.05 permutation test), whereas it remained close to zero for

the rest of lags, showing that period duration correlation is limited to adjacent periods (Figure 2C–

D). The positive correlation between adjacent periods was not due to slow changes in their duration,

as we corrected by the correlation obtained from surrogate D-U sequences obtained from shuffling

the original sequence within 30 s windows (see Materials and methods). Positive correlations

between consecutive periods of activity and silence can be generated when fluctuation driven transi-

tions are combined with an adaptive process such as activity-dependent adaptation currents

(Lim and Rinzel, 2010; Tabak et al., 2000): if a fluctuation terminates a U period prematurely with-

out much build-up in adaptation, the consecutive D period also tends to be shorter as there is little

adaptation to recover from. However, a major role of adaptation currents in dictating UP-DOWN

dynamics (Compte et al., 2003b) seems at odds with the lack of rhythmicity and the highly variable

U and D durations, indicative of a stochastic mechanism causing the transitions between network

states.

Spiking activity during UP and DOWN states
We next searched for more direct evidence of an adaptive process by examining the time course of

the population firing rate R tð Þ during U and D periods (see Figure 1C; see Materials and methods).

The mean firing rate in U periods was low (mean ±SD: 3.72 ± 0.9 spikes/s, n = 7). Moreover, D peri-

ods displayed occasional spiking (mean ±SD rate 0.018 ± 0.007 spikes/s; see e.g. Figure 3A–B and

Figure 3—figure supplement 1), in contrast with the idea that DOWN periods do not display spik-

ing activity (Chauvette et al., 2010), but see (Compte et al., 2003b). Thus, our hypothesis was that

adaptation currents, if present, would induce a decay in R tð Þ during Us and an increase during Ds,

and this impact on R tð Þ dynamics should be more evident during longer periods due to a larger accu-

mulation (during Us) or recovery (during Ds) of the adaptation. For each experiment, we aligned the

rate R tð Þ at the DOWN-to-UP (DU) and UP-to-DOWN (UD) transition times (Figure 3A). We then

computed the average rates RDU tð Þ and RUD tð Þ across all DU and UD transitions, respectively, with

t ¼ 0 representing the transition time (Figure 3B-C; mean across experiments = 598 transitions;

range 472–768). Because Us and Ds had different durations, we selected long periods (U, D > 0.5 s)

and compared RDU tð Þ and RUD tð Þ at the beginning and end of each period (mean number of Us 181,

range 61–307; Ds 202, range 55–331). To specifically assess a change in rate during the U period,

we compared the average RDU tð Þ in the time window t = (50, 200) ms (beginning of U) with the aver-

age RUD tð Þ in the window t = (�200,–50) ms (end of U), which we referred to as U-onset and U-offset

windows, respectively. The windows were chosen 50 ms away from t = 0 to avoid the transient

change due to the state transitions (Figure 3C–D). We found no significant mean difference between

population average rate at U-onset and U-offset windows across our experiments (mean ±SD onset

minus offset population rate 0.04 ± 0.40 spikes/s, p=1, Wilcoxon signed rank, n = 7 animals). The

equivalent analysis performed on D periods yielded a small but significant mean increase in the pop-

ulation rate between the D-onset and D-offset windows (mean ±SD �0.014 ± 0.013 spikes/s,

p=0.047, Wilcoxon signed rank test). To examine in more detail the lack of population rate change

during Us, we looked at the modulation of individual neuron rates normalized by the overall tempo-

ral average of each unit (Figure 3E). We found that the change between U-onset and U-offset aver-

aged across all our neurons (n = 448 cells) was not significantly different from zero (Figure 3E right,

mean ±SD of the onset vs offset difference of normalized rates 0.057 ± 1.163, p=0.12, Wilcoxon

signed rank test) but that the recovery during D periods was significant (Figure 3E left; mean ±SD

�0.015 ± 0.087, p=0.0002, Wilcoxon signed rank test). Some individual neurons however did show a

significant modulation between U-onset and U-offset, but the decrease found in a fraction of the

neurons was compensated with a comparable increase in another fraction of neurons (Figure 3E

right). Thus, at the population level, spiking activity during U periods displayed a sustained time

course with no significant traces of rate adaptation.
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Rate model for UP and DOWN dynamics
To understand the network and cellular mechanisms underlying the generation of stochastic U-D

dynamics, showing U-D serial correlations and sustained rates during U periods, we analyzed a

computational rate model composed of an excitatory (E) population recurrently coupled with an

inhibitory (I) population (Latham et al., 2000; Ozeki et al., 2009; Tsodyks et al., 1997; Wilson and

Cowan, 1972). The excitatory-inhibitory (EI) network model described the dynamics of the mean

instantaneous rates rE and rI of each population in the presence of fluctuating external inputs. In

addition, the E population included an adaptation mechanism, an additive hyperpolarizing current a

that grew linearly with the rate rE (Figure 4A; see Materials and methods). We did not consider

adaptation in the inhibitory population for simplicity, and because inhibitory neurons show little or

no spike-frequency adaptation when depolarized with injected current (McCormick et al., 1985).

Our aim was to search for a regime in which, in the absence of adaptation and external input fluctua-

tions, the network exhibited bistability between a quiescent (D) and a low-rate state (U) fixed point.

Although bistability in low-dimensional EI networks has been described since the seminal work of

Wilson and Cowan (1972), previous models primarily sought to explain bistability between a low-

rate and a high-rate state, and exploited the combination of expansive and contractive non-
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Figure 3. Population spiking statistics during U and D periods. (A) Example of instantaneous population rate R tð Þ with U and D detected periods (as in

Figure 1). (B–C) Each U period is aligned at the DU (B, left) and UD (B, right) transition times in order to compute the instantaneous population rate

averaged across transitions RDU tð Þ (C, dark grey) and RUD tð Þ (C, light grey), respectively. Only periods longer than 0.5 s (asterisks in B) were included in

the average. (D) Comparison of population rate at the onset and offset of Us and Ds done by overlaying RDU tð Þ and a time-reversed RUD tð Þ. Onset and

offset windows defined during D and U periods (shaded) were used to test significance of changes in the rate. (E) Normalized firing rates from all

individual neurons (448 cells from n = 7 animals) during onset and offset windows. Left: D periods. Right: U periods. Average across cells is shown in

red. Gray bands show 95% C.I. of the histograms obtained from onset-offset shuffled data (see Materials and methods).

DOI: https://doi.org/10.7554/eLife.22425.006

The following source data and figure supplement are available for figure 3:

Source data 1. Instantaneous population rate averaged across transitions RDU tð Þ and RUD tð Þ for individual experiments.

DOI: https://doi.org/10.7554/eLife.22425.008

Figure supplement 1. Firing rate statistics for single units during U and D periods.

DOI: https://doi.org/10.7554/eLife.22425.007
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linearities produced by the transfer function (Amit and Brunel, 1997; Renart et al., 2007;

Wilson and Cowan, 1972), short-term synaptic plasticity (Hansel and Mato, 2013; Mongillo et al.,

2008) or the divisive effect of inhibitory conductances (Latham et al., 2000) (see Discussion). We

found that the expansive nonlinearity of the transfer function alone was sufficient to obtain bistability

between D and U states. Given this, we chose the simplest possible transfer function with a thresh-

old: a threshold-linear function (Figure 4B, see Materials and methods). Our choice to only use an

expansive threshold non-linearity constrained strongly the way in which the network could exhibit

bistability as can be deduced by plotting the nullclines of the rates rE and rI (Figure 4C): only when

the I nullcline was shifted to the right and had a larger slope than the E nullcline, the system exhib-

ited two stable attractors (Equation 20 in Materials and methods). This configuration of the null-

clines was readily obtained by setting the threshold and the gain of the I transfer function larger

than those of the E transfer function (Figure 4B), a distinctive feature previously reported when intra-

cellularly characterizing the f - I curve of pyramidal and fast spiking interneurons in the absence of

background synaptic activity (Cruikshank et al., 2007; Schiff and Reyes, 2012). This difference in
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Figure 4. Rate model for fluctuations and adaptation induced UP and DOWN dynamics. (A) Network composed

of recurrently connected inhibitory (I, blue) and excitatory (E, red) populations, with E exhibiting rate adaptation a

(t) and both populations receiving independent fluctuating external inputs. (B) Transfer functions for the E and I

populations are threshold-linear with unequal thresholds qE < qI and unequal gains gE < gI. This marked

asymmetry is at the origin of the bistability obtained in the network. (C) In the absence of adaptation, the phase

plane of rates rE vs. rI shows the E and I nullclines (red and blue, respectively) whose intersections determine two

stable (U and D) and one unstable (un) fixed points. The separatrix (dashed line) divides the phase plane into the

basins of attraction of the D and U stable points. (D, E) Schematics of fluctuations-induced DU and UD transitions

in the absence of adaptation (b = 0) and adaptation-induced transitions in the absence of fluctuations (s = 0),

respectively. Traces of rE(t), rI(t) and adaptation a(t) illustrate steady fluctuating rates during U periods when there

is no adaptation (D), and a periodic alternation between U and D characterized by a strongly decaying I rate

during Us when there is no fluctuations (E). Top insets show the network trajectories in the phase-plane taken at

different time points (vertical dotted lines). Notice the downward (upward) displacement of the E-nullcline during

U (D) periods (red arrows in E). Connectivity parameters: JEE = 5, JEI = 1, JIE = 10, JII = 0.5 s; Transfer function

parameters: gE = 1, gI = 4 Hz, qE = 0, qI = 25 a.u.
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gains and thresholds in the E and I populations was not a necessary condition to obtain the bistabil-

ity: alternatively, a proper selection of connectivity parameters with identical E and I transfer func-

tions could satisfy the conditions to obtain similar bistable function (see Materials and methods,

Equations [20-22]). This novel bistable regime yielded a quiescent D state, and arbitrarily low firing

rates for both E and I populations during U states, depending on the values of the thresholds and

the synaptic weights (Figure 4C). This is remarkable as in most bistable network models the rate of

the sustained activity state is constrained to be above certain lower bound (see Discussion). More-

over, in this bistable regime, the U state is an inhibition-stabilized state, a network dynamical condi-

tion in which the excitatory feedback is so strong that would alone be unstable, but is balanced with

fast and strong inhibitory feedback to maintain the rates stable (Ozeki et al., 2009; Tsodyks et al.,

1997) (see Materials and methods).

There are two ways in which transitions between U and D states can occur. On the one hand,

transitions could be driven by external input fluctuations, which were modeled as a stochastic pro-

cess with zero mean and short time constant (Figure 4D). This fluctuating input reflected either affer-

ents coming from other brain areas whose neuronal activity was stochastic and uncorrelated with the

cortical circuit internal dynamics or the stochasticity of the spiking happening during U periods which

was not captured by the dynamics of the rates (Holcman and Tsodyks, 2006; Lim and Rinzel,

2010). On the other hand, in the absence of fluctuations, state transitions could also occur solely

driven by adaptation currents (Figure 4E). Because the adaptation time constant was much longer

than the time constants of the E and I rates, the dynamics of the rates rE(t) and rI(t) relaxing rapidly

to their steady-state can be decoupled from the slow changes in a(t) (Latham et al., 2000;

Rinzel and Lee, 1987). The network dynamics can be described in the phase plane (rE(t), rI(t)) with

variations in a(t) causing a displacement of the E-nullcline. In particular, during U periods the build-

up in adaptation produced a downward displacement of the E-nullcline (Figure 4E). If adaptation

strength b was sufficiently large the displacement increased until the U state was no longer a fixed

point and the network transitioned to the only stable fixed point D. Recovery of adaptation during D

periods shifted the E-nullcline upwards until the D state disappeared and there was a transition to

the U state (Figure 4E). In this limit cycle regime the network exhibited an oscillatory behavior with

a frequency close to the inverse of the adaptation recovery time constant. When the two types of

transitions are combined, two types of stability in U and D states can be distinguished: (1) metasta-

ble, referred to a state that was stable to the dynamics of both the rates and the adaptation but

could transition away due to input fluctuations; (2) quasi-stable, referred to a state that was stable

for the fast rate dynamics but unstable for the slow adaptation dynamics, plus it was also susceptible

to fluctuation-driven transitions.

UP and DOWN state statistics in the model
To quantify the relative impact of activity fluctuations and adaptation in causing U-D transitions in

the data, we compared the dynamics of the model for different adaptation strengths b and different

values of the E-cell effective threshold qE (defined as the difference between the activation threshold

and the mean external current). The (qE,b) plane was divided into four regions with UD alternations,

corresponding to the four combinations of metastability and quasi-stability (Figure 5A). Since only

metastable states tend to give exponentially distributed durations with CV ~1, the large variability

found in both U and D durations (Figure 2B) constrained the model to the subregion where both

states were metastable and UD and DU transitions were driven by fluctuations (red area in

Figure 5A). The existence of serial correlations between consecutive U and D in the data

(Figure 2C–D) discarded an adaptation-free regime (b = 0), in which transitions were solely driven

by fluctuations and the duration of each period was independent of previous durations (Figure 5B

right). Thus, we explored a regime with b >0 but still in the region where both states were metasta-

ble (Figure 5B, green square) and the input fluctuations produced alternation dynamics (Figure 5C

top) with broad U and D duration distributions and relatively high CVs (Figure 5D top). The magni-

tude of the fluctuations was adjusted to obtain frequent transitions in this region and serial correla-

tions quantitatively comparable with the data (Figure 5—figure supplement 1). Moreover, the rates

showed an autocorrelation function qualitatively similar to the data, with negative side-lobes but no

clear traces of rhythmicity (Figure 5E). Adaptation introduced correlations across consecutive peri-

ods (Figure 5D bottom) because at the transition times the system kept a memory of the previous

period in the adaptation value a(t). For adaptation to introduce substantial correlations, aðtÞ had to
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be variable at the transition times (Lim and Rinzel, 2010), a condition that required adaptation to

be fast, to vary within one period, but not too fast to prevent reaching the equilibrium (Figure 5C

bottom trace). Thus, when a strong fluctuation caused a premature UD transition, i.e. a short Uk,

adaptation had no time to build up and tended to be small, increasing the probability of a prema-

ture DU transition in the following D period, i.e. a short Dkþ1. Conversely, a long Uk recruited strong

adaptation that required a long Dkþ1 to recover (see highlighted examples in Figure 5C). In this
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Different dynamical regimes of the model as a function of the adaptation strength b and the effective threshold qE.

Each U and D state is either meta-stable or quasi-stable depending on whether the transitions to the opposite

state can be caused by fluctuations or adaptation + fluctuations, respectively (see arrow code in top inset). There

are five region types: regions with a single stable state and no transitions (dark purple and dark orange), a region

with both U and D meta-stable (light red), one with both U and D quasi-stable (white) and mixed regions with a

meta-stable and a quasi-stable state (light orange and light purple). (B) Statistics of U (top) and D (bottom) periods

obtained from numerical simulations: mean durations (left), duration CV (center) and of cross-correlation CC of

consecutive periods (right) as a function of b and qE. The region analyzed is marked in A (gray rectangle).

Fluctuations were s = 3.5. White areas indicate very low transition rate. (C–E) Model example quantitatively

reproducing some U-D statistics of the data. The b and qE used are marked in B (green square; qE = 4.8 a.u.,

b = 0.7 Hz�1). Example traces of rE(t), rI(t), and a(t) show U-D transitions with irregular durations (C). Black and gray

filled dots indicate the adaptation values at the UD and DU transition times, respectively. The corresponding

histograms illustrate the variability of these values (C bottom right). (D) Top: Distributions of U and D period

durations. Bottom: Cross-correlograms of D and U periods for different lag values (compare with Figure 2C). Grey

dashed lines show global error bands and magenta dashed line shows mean CC of shuffles. (E) Autocorrelogram

of rE(t) shows no traces of rhythmicity.

DOI: https://doi.org/10.7554/eLife.22425.010

The following figure supplement is available for figure 5:

Figure supplement 1. Statistics of U and D durations as a function of the adaptation strength b and the effective

threshold qE for different amplitude of fluctuating external inputs.

DOI: https://doi.org/10.7554/eLife.22425.011
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regime, the dynamics of adaptation a(t) alone did not cause transitions but did strongly modulate

the probability that an external fluctuation would cause a transition (Moreno-Bote et al., 2007).

Altogether, this analysis suggests that the observed U-D dynamics occurred in a regime with strong

random fluctuations, that these fluctuations were necessary to cause the transitions, and that adapta-

tion modulated the timing of the transitions and consequently introduced correlations between the

duration of consecutive periods.

Dynamics of E and I populations during UP and DOWN states: model
and data
According to the model, adaptation currents in the E population can parsimoniously account for the

U-D serial correlations but this is in apparent contradiction with the fact that the population rate R tð Þ
in the data did not decrease significantly during U periods (Figure 3C–E). To reconcile these two

seemingly contradictory observations we used the model with the parameters that matched the

data’s U and D statistics (Figure 5C–E) to characterize the time course of the rates rE(t) and rI(t) aver-

aged across DU and UD transitions. Interestingly, the average rE(t) at the beginning and at the end

of U periods did not show much difference whereas the average rI(t) showed a larger decrease over

the U period (Figure 6A). Thus, although only the E and not the I population included intrinsic adap-

tation mechanisms, it was rI(t) the one that exhibited the most pronounced decay during U periods.

This was a direct consequence of the specific conditions that gave rise to bistability in our model:

the difference in thresholds, that is, qI > qE, and the fact that the I-nullcline has a higher slope than

the E-nullcline (Equation 21 in Materials and methods). These features imposed that as adaptation

built up during U periods, the downward displacement of the E-nullcline caused a greater decrease

in rI(t) than in rE(t) (compare ‘decay’ colored bands in Figure 6B). With this arrangement the drop in

rE(t) could be made arbitrarily small by increasing the slope of the I-nullcline (Figure 6B). Note that
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this feature of the model is not dependent on its specific regime of operation, as it would similarly

apply in an adaptation-driven regime (Figure 4E). During D periods the average rE(t) did show a sub-

stantial increase due to the recovery of adaptation, whereas the rI(t) did not. This was because in the

D state, the quiescent network behaved as isolated neurons reflecting the dynamics of intrinsic

adaptation which was only present on E cells. In sum, if the majority of the neurons that we recorded

experimentally were excitatory, the model could explain why adaptation currents did not cause a

significant decrease in the average rate during U periods (Figure 3C–D). The model in addition pre-

dicts that the rate of inhibitory neurons should exhibit a noticeable decrease during U periods.

Motivated by this prediction, we investigated the dynamics of the rates of excitatory and inhibi-

tory neurons during U and D periods in the experimental data. Based on spike waveforms, isolated

units from n = 5 experiments were classified into putative interneurons (I) and putative excitatory

neurons (E), following previously described procedures (Barthó et al., 2004). The average rate for E

and I populations (RE tð Þ and RI tð Þ, respectively) displayed similar profiles across UD alternations,

although higher values were observed for I cells during Us (see example experiment in Figure 6C).

To assess the modulation of the rates during U periods, we looked at the normalized individual rates

of all the E and I neurons (n = 330 and 21, respectively). As predicted by the model (Figure 6A-B), I

cells displayed a significant rate decay during U periods that was not observed in E cells (Figure 6D;

mixed-effects ANOVA with factors neuron type (E/I), onset/offset and neuron identity and experi-

ment as random factors: interaction neuron type x onset/offset F(1,349)=6.3, p=0.013). During D

periods, E cells also showed a significant increase in rate (Wilcoxon signed rank test p=0.0092), just

like that observed in the whole cell population, whereas no rate change was found in I cells (not

shown). Although these changes observed during D periods were also predicted by the model,

properly testing the significance of this interaction would require a larger data set with more I cells.

The validation of the prediction on the counter-intuitive emergent dynamics of E and I rates during

U periods strongly suggests that the mechanism dissected by the model underlies the putative bist-

ability observed in cortical circuit dynamics.

Dynamics of state transitions in a spiking EI network
To assess whether the mechanism for state transitions proposed by the rate model could generate

UP-DOWN dynamics in a more biophysically realistic circuit we built a network composed of

NE = 4000 excitatory and NI = 1000 inhibitory leaky integrate-and-fire spiking units (Ricciardi, 1977)

(all-to-all connectivity). We used current-based synapses (Brunel and Sergi, 1998) and introduced a

spike-based after-hyperpolarization (AHP) current in E cells (Wang, 1998; La Camera et al., 2004).

The EI asymmetry in spike threshold and f - I gain described in the rate model was implemented

and, using standard mean-field methods (Amit and Tsodyks, 1991), we revealed the same network

bistability described above (compare Figures 7A and 4C): a saddle node bifurcation gave rise to a

quiescent branch (DOWN) co-existing with a low-rate branch (UP; Figure 7B). Numerical simulations

showed that while the network was in the UP state the AHP current increased moving the system

along the upper branch towards the saddle-node and just causing a small decrease in rE. However,

because we chose a small AHP amplitude so that the network operated in the bistable regime (see

fixed points in Figure 7B), the adaptation buildup alone did not trigger an UP to DOWN transition.

It was the current fluctuations produced by the irregular activity during UP periods that triggered UP

to DOWN transitions. However, once the network was in the DOWN state the external independent

Gaussian inputs only caused subthreshold membrane fluctuations in E cells that sat far away from

the spiking threshold (voltage std. dev. 2.5 mV with distance from resting voltage to threshold of

12.4 mV). In these conditions, there was no spiking activity during DOWN periods and the network

could not transition to the UP state (not shown). To make these subthreshold fluctuations effective in

driving transitions, we first depolarized neurons so that their resting potential during the D state was

closer to threshold and the recovery from adaptation alone was almost sufficient to cause the transi-

tions (Figure 7—figure supplement 2A–E). This ad hoc depolarization was sufficient to generate

UP-DOWN alternations but prevented the membrane potential from showing bi-modality (Figure 7—

figure supplement 2F), the intracellular signature of UP and DOWN states. Moreover, the alterna-

tions had a very small serial correlation between consecutive D and U periods, Corr(D,U), (Figure 7—

figure supplement 2I) because adaptation at the time of the DOWN-to-UP transition was narrowly

distributed, did not retain information about the length of the DOWN period, and could thus not

constrain the duration of the following U period (Lim and Rinzel, 2010).
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We thus reasoned that the most parsimonious way to cause a DOWN to UP transition without dis-

rupting the bi-modality of the membrane potential was to maintain resting neurons hyperpolarized

and to introduce stochastic brief external excitatory synchronous inputs that caused large amplitude

depolarizing voltage bumps in a targeted subpopulation of E and I neurons (DeWeese and Zador,

2006). The statistics of occurrence times of these bumps were Poisson (Tan et al., 2013) and their

frequency (~2–3 Hz) and amplitude (~10–15 mV) were set so that (i) they could cause DOWN to UP

transitions (Figure 7C–E) with non-rhythmic structure (Figure 7G) and yield U and D interval distribu-

tions similar to the data (Figure 7H) and (ii) the effectiveness in causing a transition was not all-or-

none but depended on the population average AHP current amplitude Ia (Figure 7—figure supple-

ment 1E). This dependence occurs because the distance to the saddle point limiting the basin of

attraction of the DOWN state decreases with Ia (Figure 7B, red dashed line). This meant that some

kicks during DOWN periods failed to cause a transition, giving rise to sporadic sparse firing during

DOWN periods also seen as large bumps in the membrane potential of the targeted cells (see aster-

isks in Figure 7C; see Discussion). Because of this dependence of the transition probability on the

recovery of the AHP current, the transition dynamics displayed serial correlations Corr(D, U)

(Figure 7I), as observed in the data (Figure 2C-D). Once in the UP state, the external kicks caused

an excess of excitatory and especially inhibitory activity that destabilized the UP state and generated

a transition to the DOWN state. Because the effectiveness of the kicks causing these transitions also

depended on the average AHP current (Figure 7—figure supplement 1F), there were significant

serial correlations Corr(U,D) quantitatively comparable to the data (Figure 7I). As explained by the

rate model, the averaged population rate rE(t) showed very weak decrease along the UP period

whereas rI(t) decayed much more strongly, until the overshoot caused by kicks at the UP offset

(Figure 7J). Neurons displayed a bi-modal distribution of the membrane potential (Figure 7F; Fig-

ure 7—figure supplement 1E) and during UP periods they fired low rate irregular spike trains (CV

of the Inter-spike-interval was 0.74 for E cells and 0.94 for I cells). In sum, a spiking network model

was able to reproduce the results described in the rate model given there exists a mechanism to

generate stochastic, synchronous large-amplitude bumps.

Discussion
Using cortical population recordings we have shown that UP and DOWN period durations are irregu-

lar and show positive serial correlation, but there is no significant decrease of population rate during

UP periods. These findings seem inconsistent with one another, as some support, while other chal-

lenge the idea that UP-DOWN dynamics are caused by cell or synaptic adaptive mechanisms. Using

a standard EI rate model network, we have proposed a novel bistable regime based only on the

expansive threshold non-linearity of the transfer function and on a reported difference between E

and I spiking thresholds. While fluctuations produce transitions between the quiescent state (D) and

the inhibition-stabilized state of arbitrarily low rate (U), adaptation acting on the E population

Figure 7 continued

example I (blue) and E (red) neurons (only the neuron in the top receives kicks), train of external kicks (tick size represents kick amplitude) (C), spike

rastergram of 100 E and 100 I cells (D), population averaged rates rE(t) vs. rI(t) (E top) and population averaged AHP current Ia(t) (E bottom). Orange and

purple horizontal lines indicate U and D intervals detected automatically as with the experimental data (compare with Figure 1). (F) Membrane voltage

distributions for E and I cells (top and middle neurons shown in C). Vertical dashed lines display their spiking thresholds �E and �I . (G) Autocorrelogram

of the population averaged rate rE(t). (H) Distribution of U and D durations (dots) and gamma fits (lines). Legend shows the mean and CV of U and D

durations (order parameter of the fits were gU = 1.1;0.7 and gD = 2.3;0.4 - shape;scale parameters). (I) Cross-correlogram of D and U periods for

different lag values (compare with Figure 2C). Light (dark) grey dashed lines show 95% C.I. point-wise (global) error bands. (J) Population averaged

rates rE and rI (top) and AHP current Ia (bottom) as a function of time, aligned at DU and UD transitions (as in Figure 6A,C).

DOI: https://doi.org/10.7554/eLife.22425.013

The following figure supplements are available for figure 7:

Figure supplement 1. Kicks impinging on a minority of neurons induce coherent network transitions, with effectiveness depending on AHP current

values.

DOI: https://doi.org/10.7554/eLife.22425.014

Figure supplement 2. UP and DOWN dynamics in the EI spiking network model caused by independent Gaussian noise.

DOI: https://doi.org/10.7554/eLife.22425.015
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facilitates the effect of fluctuations causing the transitions. Paradoxically, because of the difference

in E and I thresholds, adaptation causes a marginal decay of E rates but a significant decay of I rates

during UP periods. This counterintuitive prediction, specific to our model, was validated in the

experimental data.

Adaptive processes constitute the mechanistic hallmark for the generation of cortical UP and

DOWN dynamics (Contreras et al., 1996; Sanchez-Vives and McCormick, 2000; Timofeev et al.,

2000). This principle has been used in several computational models, by implementing synaptic

short-term depression (Bazhenov et al., 2002; Benita et al., 2012; Ghorbani et al., 2012; Hill and

Tononi, 2005; Holcman and Tsodyks, 2006; Mejias et al., 2010), or activity-dependent adaptation

currents (Compte et al., 2003b; Destexhe, 2009; Latham et al., 2000; Mattia and Sanchez-Vives,

2012). Consistent with an adaptive process generating the dynamics, UP and DOWN states

observed in vitro display clear rhythmicity with Gaussian shaped UP and DOWN duration distribu-

tions (Mattia and Sanchez-Vives, 2012). An in vivo study using ketamine anesthesia in mice

reported reduced UP and DOWN duration variability across multiple cortical areas with CVs around

0.2–0.4 (Ruiz-Mejias et al., 2011). Moreover, a comparison of the UP and DOWN dynamics in the

cat observed under ketamine anesthesia and those found in slow wave sleep (SWS) showed that the

alternations were more rhythmic under ketamine (Chauvette et al., 2011). In contrast, our data dis-

played large variability (mean CV(U)~CV(D) ’0.7) and skewed distributions of UP and DOWN period

durations (Figure 2B), in agreement with previous studies using urethane anesthesia (Dao Duc

et al., 2015; Stern et al., 1997). Although a direct comparison between the UP-DOWN dynamics

under urethane anesthesia and during natural sleep has not been made, urethane seems to mimic

sleep in several aspects. First, it induces spontaneous alternations between synchronized and

desynchronized states (Curto et al., 2009; Steriade et al., 1994), resembling the alternations

between SWS and REM sleep (Clement et al., 2008; Whitten et al., 2009). Second, the irregular

UP-DOWN transitions observed under urethane anesthesia seem to resemble the variability

observed in SWS (Ji and Wilson, 2007; Johnson et al., 2010). Preliminary analysis of rat and mouse

prefrontal cortex during SWS with the same population-based U-D detection methods used here

(Materials and methods) showed that U periods had comparable mean length but were more irregu-

lar (CV ~1) than under urethane anesthesia (Figure 1B) whereas D periods were shorter (mean ~150

ms) and slightly more regular (CV ~0.5) (unpublished observations). Such an asymmetry in the dura-

tion and irregularity of U-D periods can be easily reproduced in our model by choosing parameters

in the mixed region where U is meta-stable and D is quasi-stable (Figure 5A light orange).

In addition, we found non-zero correlations between consecutive D-U and U-D period durations,

a feature that was not observed previously in similar experimental conditions (Stern et al., 1997).

Reduced statistical power (~30 U-D/D-U pairs were considered by (Stern et al., 1997) versus a range

of 462–758 pairs in our n = 7 experiments) and different U-D detection methods (intracellular mem-

brane potential thresholding) could be the reasons for this discrepancy.

Bistability in cortical networks at low firing rates
Bistability in a dynamical system refers to the coexistence of two possible steady states between

which the system can alternate (Angeli et al., 2004). This principle has been used to interpret UP

and DOWN states as two attractors of cortical circuits (Cossart et al., 2003; Shu et al., 2003) and it

seems to underlie higher cognitive functions (Compte, 2006; Durstewitz, 2009). In particular, multi-

stability in recurrent cortical networks has been postulated to underlie the persistent activity

observed during the delay period in working memory tasks (Amit and Brunel, 1997). Extensive the-

oretical work has shown that based on the change in curvature of the neuronal f - I curve, that is,

from expansive to contractive, recurrent network models generate two types of co-existing attrac-

tors: a spontaneous state with arbitrarily low rates (falling in the expansive part of the f - I curve) and

a sustained activity attractor where the reverberant activity of a subpopulation of neurons could be

maintained at a rate on the contractive part of the f - I curve (Amit and Brunel, 1997;

Brunel, 2000a; Wang, 2001). Thus, unless additional mechanisms are included, e.g. synaptic short-

term depression and facilitation (Barbieri and Brunel, 2007; Hansel and Mato, 2013;

Mongillo et al., 2012) or fined-tuned EI balance (Renart et al., 2007), the rate of persistent states is

lower-bounded by the rate where the f - I curve changes from convex to concave (~10–20 spikes/s).

Moreover, because of this the sustained attractor operates in an unbalanced supra-threshold regime

where spike trains tend to be more regular (i.e. lower inter-spike-interval CV, [Barbieri and Brunel,
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2007; Hansel and Mato, 2013; Renart et al., 2007]) than those observed in the data

(Compte et al., 2003b).

UP and DOWN states represent in contrast transitions between very different levels of activity: a

quiescent state and a very low rate state. Given that we recorded neurons extracellularly, our esti-

mate of the mean firing rate during UP periods (3.7 spikes/s) is most likely an overestimation. Whole

cell intracellular recordings have reported rates in the range 1–2 spikes/s (Constantinople and

Bruno, 2011), 0.4 spikes/s in Pyramidal L2/3 of the somatosensory cortex of awake mice

(Gentet et al., 2012), 0.1 spikes/s in Pyramidal L2/3 cells in somatosensory cortex during UP periods

in anesthetized rats (Waters and Helmchen, 2006), or 0.1–0.3 spikes/s in V1 neurons of awake mice

(Haider et al., 2013). Juxtacellular recordings have found values near 4–5 spikes/s (Massi et al.,

2012; Sakata and Harris, 2009) whereas Calcium imaging experiments report spontaneous

rates < 0.1 spikes/s (Kerr et al., 2005). Despite UP rates being so low, rate models have commonly

used the change in curvature of the transfer function to generate UP and DOWN dynamics

(Curto et al., 2009; Lim and Rinzel, 2010; Mattia and Sanchez-Vives, 2012; Mochol et al., 2015).

It is also for this reason that most spiking network models generating UP and DOWN transitions

exhibit unrealistically high rates during U periods (in the range 10–40 spikes/s) with relatively regular

firing (Bazhenov et al., 2002; Compte et al., 2003b; Destexhe, 2009; Hill and Tononi, 2005).

An alternative mechanism to generate bistability between UP and DOWN states has been the

shunting or divisive effect of inhibitory synaptic conductances, a mechanism that can produce non-

monotonic transfer functions and yield bistability between a zero rate state and a state of very low

rate (Kumar et al., 2008; Latham et al., 2000; Vogels and Abbott, 2005). Latham and colleagues

(Latham et al., 2000) addressed the question of how to obtain a state of low firing rate (i.e. <1

spikes/s) in a recurrent EI network and concluded that there were two alternative mechanisms: the

most robust was to have a single attractor that relied on the excitatory drive from endogenously

active neurons in the network or from external inputs. In fact, excitatory external inputs have been

widely used to model low rate tonic spontaneous activity (i.e. no DOWN states) in EI networks of

current-based spiking units (Amit and Brunel, 1997; Brunel, 2000b; Vogels and Abbott, 2005).

Alternatively, in the absence of endogenous or external drive, a silent attractor appears and a sec-

ond attractor can emerge at a low rate over a limited range of parameters if inhibition exerts a

strong divisive influence on the excitatory transfer function (Latham et al., 2000). Based on this, a

spiking network of conductance-based point neurons with no external/endogenous activity could

alternate between UP (0.2 spikes/s) and DOWN (0 spikes/s) periods via spike frequency adaptation

currents. Although the authors did not characterize the statistics of UP and DOWN periods, this net-

work could in principle generate positive correlations between consecutive U and D period dura-

tions, Corr(U,D), as long as rate fluctuations caused UP to DOWN transitions for sufficiently different

adaptation values (Lim and Rinzel, 2010). However, since DOWN to UP transitions were caused by

recovery from adaptation, the duration of a D period could not influence the duration of the follow-

ing U period and their network could not produce correlations between consecutive D-U periods

(i.e. Corr(D,U)~0, as in the network shown in Figure 7—figure supplement 2). The model moreover

lacked bi-modality in the membrane voltage and did not specifically predict a distinct decay of rE
and rI during UP periods.

Our model proposes a more parsimonious mechanism underlying UP-DOWN bistability: the ubiq-

uitous expansive threshold non-linearity of the transfer function plus the asymmetry in threshold (qI >

qE) and gain (larger for I than E cells). We used a threshold-linear function for simplicity but other

more realistic choices (e.g. threshold-quadratic) produced the same qualitative results. The threshold

asymmetry is supported by in vitro patch clamp experiments revealing that firing threshold of inhibi-

tory fast-spiking neurons, measured as the lowest injected current causing spike firing, is higher than

that of excitatory regular-spiking neurons (Cruikshank et al., 2007; Schiff and Reyes, 2012). Inhibi-

tion in this model becomes active when external inputs onto E cells during the DOWN state are

strong enough to push the system above the separatrix (Figure 4C) and ignite the UP state. Once

recruited, inhibition is necessary to stabilize the activity because, in its absence, the positive feed-

back would make the UP state unstable, a condition known as an Inhibition-Stabilized Network

(Ozeki et al., 2009). In this regime, excitatory currents are supra-threshold but when combined with

inhibition result in a net subthreshold input current yielding low-rate irregular firing (Figure 7—fig-

ure supplement 2).
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A direct implication of the specific mechanism of bistability in our model was that intrinsic adapta-

tion of excitatory neurons (McCormick et al., 1985) did not cause a noticeable decrease in rE during

the UP periods but instead produced a significant decay in the inhibitory rate rI. We confirmed this

prediction in our data (Figure 6C–D). Interestingly, the same effect was also observed in ketamine

anesthetized animals from both extracellular (Luczak and Barthó, 2012) and intracellular recordings

resolving synaptic conductances (Haider et al., 2006). During DOWN periods, in contrast, the net-

work is not in a balanced state and recovery from adaptation caused a significant increase in the rate

of putative excitatory neurons, as predicted by the model. In sum, our results present the first EI net-

work model with linearly summed inputs exhibiting bistability between a quiescent state and a inhi-

bition-stabilized state with arbitrary low rate.

The role and origin of fluctuations in UP-DOWN switching
Our findings stress the role of input fluctuations inducing transitions between the UP and DOWN

network attractors because noise-induced alternations generate periods with large variability as

found in the data (Figure 2A–B). Adaptation was also necessary to introduce positive serial correla-

tions and to reproduce the observed gamma-like UP-DOWN distributions (compare Figure 2A–B

with Figures 5D and 7H) because it caused a soft refractory period after each transition decreasing

the duration CVs below one (Figure 2B). In our rate model fluctuations were simply introduced by a

time-varying Gaussian input so that in both DU and UD transitions the noise had the same external

origin. In cortical circuits however these two transitions are very different: while in UP-DOWN transi-

tions the fluctuations can originate in the stochasticity of the spiking activity during the UP period,

DU transitions depend on either local circuit mechanisms that do not need spiking activity or on

external inputs to escape from a quiescent state. Our spiking EI network model could use the sto-

chasticity of the recurrent spiking activity to cause transitions from a low-rate UP state to a quiescent

DOWN state but needed synchronous input bumps to cause DOWN to UP transitions (Figure 7).

Other models have proposed that synaptic noise (e.g. spontaneous miniatures) could cause the tran-

sitions from the quiescent state (i.e. DOWN to UP) (Bazhenov et al., 2002; Holcman and Tsodyks,

2006; Mejias et al., 2010). Our analysis shows however that to cause noise-driven transitions from a

quiescent state using independent synaptic fluctuations into each cell (1) neurons need to be depo-

larized unrealistically close to threshold and hence do not display bi-modal voltage distributions, and

(2) the magnitude of adaptation must be tuned such that it brings neurons close to threshold allow-

ing the sparse firing to trigger a transition. In this condition moreover, the network does not gener-

ate positive correlations between D and consecutive U intervals (Figure 7—figure supplement 2).

For this reason we used instead synchronous external input kicks as the inducers of DOWN-to-UP

transitions. These input kicks were also effective driving UP to DOWN transitions but they caused an

excess of E and especially I activity at the UP offset (see UP-offset peaks in Figure 7J). This feature

was not observed in our data but has been observed when triggering UP to DOWN transitions with

electrical stimulation (Shu et al., 2003). When kicks were suppressed during UP periods, UP-to-

DOWN transitions could be triggered by intrinsically generated fluctuations in the spiking activity

and the offset peaks in the E and I rates could be largely reduced (not shown). This seems to suggest

that the two type of transitions could be triggered by different types of events: DOWN to UP would

be triggered by synchronous bumps whereas UP to DOWN by fluctuations in the rates of the two

populations. Modeling such a mixed-factors network would require considering more realistic con-

nectivity patterns (e.g. sparse and spatially organized) in order for the network to intrinsically gener-

ate more realistic spiking variability in the population (Amit and Brunel, 1997; Vogels and Abbott,

2005; Renart et al., 2010; Rosenbaum et al., 2017). For simplicity, we opted for an all-to-all con-

nected network (as opposed to e.g. sparse connectivity) because it was simpler to analyze theoreti-

cally and simulate numerically. In particular, the fluctuations of synaptic input in an all-to-all network

are set as a fixed parameter, independent of the recurrent activity. This allowed us to find the appro-

priate network states and determine their stability using standard mean field techniques (Roxin and

Compte, 2016) and then adjust the magnitude of the fluctuations and kicks to reproduce the transi-

tion dynamics using numerical simulations. We leave for future study the extension of these results

to more realistic sparse connectivity patterns. In a sparse randomly connected EI network for

instance, it would be of interest to study the behavior of this type of bistability as the network size N

increases and synaptic couplings are scaled as in a balanced network, that is, J ~ 1=
ffiffiffiffi

N
p
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(Renart et al., 2010; van Vreeswijk and Sompolinsky, 1998). In the large N limit, balanced net-

works linearly transform external inputs into population average output rate (van Vreeswijk and

Sompolinsky, 1998). This implies that, the larger the network, the more fine tuning of the parame-

ters would be necessary in order to generate this type of bistability.

Previous evidence supporting membrane voltage synchronous bumps
Evidence for temporally sparse synchronous inputs comes from intracellular membrane potential

recordings under some types of anesthesia (pentobarbital or halothane) showing «presynaptic inputs

[...] organized into quiescent periods punctuated by brief highly synchronous volleys, or ‘bumps’»

(DeWeese and Zador, 2006). We postulate that these spontaneous bumps (DeWeese and Zador,

2006; Tan et al., 2013; Taub et al., 2013) (1) are caused by synchronous external inputs impinging

on the neocortex, possibly from thalamocortical neurons (Crunelli and Hughes, 2010), since sponta-

neous bumps resemble sensory evoked responses (DeWeese and Zador, 2006) or from hippocam-

pal Sharp Wave Ripples (Battaglia et al., 2004); (2) their timing resembles a Poisson stochastic

process rather than a rhythmic input (Tan et al., 2013); (3) they lie at the origin of the DOWN-to-UP

transitions that we observe. Despite the fact that UP-DOWN-like activity can emerge in cortical slices

in vitro (Cossart et al., 2003; Fanselow and Connors, 2010; Mann et al., 2009; Sanchez-Vives and

McCormick, 2000) the intact brain can generate more complex UP-DOWN patterns than the iso-

lated cortex, with subcortical activity in many areas correlating with transition times (Battaglia et al.,

2004; Crunelli et al., 2015; Crunelli and Hughes, 2010; David et al., 2013; Lewis et al., 2015;

Slézia et al., 2011; Ushimaru et al., 2012). A recent study however reported very large (>20 mV)

non-periodic synchronous bumps in cortical in vitro slices (Graupner and Reyes, 2013) suggesting

that these events could also be generated within local cortical circuits.

These arguments suggest that DOWN to UP transitions are, at least in part, caused by punctu-

ated external synchronous inputs (Battaglia et al., 2004; Johnson et al., 2010), with slow intrinsic

adaptation mechanisms contributing to modulate the probability that these events trigger a transi-

tion (Moreno-Bote et al., 2007). This complements the view that UP-DOWN dynamics reflect an

endogenous oscillation of the neocortex and connects to the role of UP-DOWN states in memory

consolidation: because in the active attractor (UP) the stationary activity is irregular and asynchro-

nous (Renart et al., 2010), the existence of a silent attractor enables synchronous transient dynamics

in the form of DOWN to UP transitions. These transients generate precise temporal relations among

neurons in a cortical circuit (Luczak et al., 2007), which can cause synaptic plasticity underlying

learning and memory (Peyrache et al., 2009). We speculate that, while the transient dynamics are

triggered by external inputs, adaptation, by introducing refractoriness in this process, parses transi-

tion events preventing the temporal overlap of information packets (Luczak et al., 2015).

Materials and methods

Experimental procedures
This study involved analysis of previously published and new data. Previously published data

(Barthó et al., 2004) was obtained under a protocol approved by the Rutgers University Animal

Care and Use Committee. One new data set was performed in accordance with a protocol approved

by the Animal Welfare Committee at University of Lethbridge (protocol # 0907). All surgeries were

performed under anesthesia, and every effort was made to minimize suffering. Adult, male Sprague-

Dawley rats (250–400 g) were anesthetized with urethane (1.5 g/kg) and supplemental doses of 0.15

g/kg were given when necessary after several hours since the initial dose. We also used an initial

dose of Ketamine (15–25 mg/kg) before the surgery to induce the anesthetized state quickly. We

then performed a craniotomy over the somatosensory cortex, whose position was determined using

stereotaxic coordinates. Next 32 or 64 channels silicon microelectrodes (Neuronexus technologies,

Ann Arbor MI) were slowly inserted into in deep layers of the cortex (depth 600–1200 mm; lowering

speed ~1 mm/hour). Probes had either eight shanks each with eight staggered recording sites per

shank (model Buzsaki64-A64), or four shanks with two tetrode configurations in each (model A4 � 2-

tet-5mm-150-200-312-A32). Neuronal signals were high-pass filtered (1 Hz) and amplified (1,000X)

using a 64-channel amplifier (Sensorium Inc., Charlotte, VT), recorded at 20 kHz sampling rate with

16-bit resolution using a PC-based data acquisition system (United Electronic Industries, Canton,
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MA) and custom written software (Matlab Data Acquisition Toolbox, MathWorks) and stored on disk

for further analysis.

Data analysis
Spike sorting was performed using previously described methods (Harris et al., 2000). Briefly, units

were isolated by a semiautomatic algorithm (http://klustakwik.sourceforge.net) followed by manual

clustering procedures (http://klusters.sourceforge.net). We defined the Population activity as the

merge of the spike trains from all the well isolated units.

Putative E/I neuronal classification
Isolated units were classified into narrow-spiking (I) and broad-spiking (E) cells based on three fea-

tures extracted from their mean spike waveforms: spike width, asymmetry and trough-to-peak dis-

tance. The two classes were grouped in the space of features by k-means clustering (Barthó et al.,

2004; Csicsvari et al., 1998; Sirota et al., 2008).

Synchronized state assessment
We classified the brain state based on the silence density defined as the fraction of 20 ms bins with

zero spikes in the Population activity in 10 s windows (Mochol et al., 2015; Renart et al., 2010).

Epochs with consecutive windows of silence density above 0.4, standard deviation below 0.1 and

longer than 5 min, were considered as sustained synchronized brain state and were used for further

analysis (synchronized states durations mean ±SD: 494 ± 58 s, n = 7 epochs).

UP and DOWN transitions detection
UP-DOWN phases have been commonly defined from intracellular recordings by detecting the

crossing times of a heuristic threshold set on the membrane potential of individual neurons

(Mukovski et al., 2007; Stern et al., 1997), or from local field potential signals (Compte et al.,

2008; Mukovski et al., 2007) or combined together with the information provided by multi-unit

activity (Haider et al., 2006; Hasenstaub et al., 2007). Defining UP-DOWN phases from single-unit

recordings is more challenging because individual neurons fire at low rates discharging very few

action potentials on each UP phase (Constantinople and Bruno, 2011; Gentet et al., 2012;

Waters and Helmchen, 2006). However, pooling the spiking activity of many neurons into a popula-

tion spike train reveals the presence of co-fluctuations in the firing activity of the individual neurons

and allows accurate detection of UP-DOWN phases (Luczak et al., 2007; Saleem et al., 2010). We

used a discrete-time hidden semi-Markov probabilistic model (HMM) to infer the discrete two-state

process that most likely generated the population activity (Chen et al., 2009). Thus, the population

activity spike count was considered as a single stochastic point process whose rate was modulated

by the discrete hidden state and the firing history of the ensemble of neurons recorded. In order to

estimate the hidden state at each time, the method used the expectation maximization (EM) algo-

rithm for the estimation of the parameters from the statistical model (Chen et al., 2009). Although

the discrete-time HMM provides a reasonable state estimate with a rather fast computing speed,

the method is restricted to locate the UP and DOWN transition with a time resolution given by the

bin size (T) for the population activity spike count (10 ms in our case). The initial parameters used for

the detection were: Bin-size T = 10 ms, number of history bins J = 2 (sets the length of the memory,

i.e. J = 0 is a pure Markov process); history-dependence weight b = 0.01 (i.e. b = 0 for a pure Mar-

kov process); transition matrix PDU = PUD = 0.9, PDD = PUU = 0.1; rate during UP periods a = 3, and

rate difference during DOWN and UP periods m = �2 (Chen et al., 2009). The algorithm gives an

estimate of the state of the network on each bin T. Adjacent bins in the same state are then merged

to obtain the series of putative UP (U) and DOWN (D) periods. The series is defined by the onset

toni
� 	M

i¼1
and offset t

off
i

n oM

i¼1

times of the Us, where M is the total number of Us, that determine the i-

th UP and DOWN period durations as (see Figure 1C):

Ui ¼ t
off
i � toni

Di ¼ toni � t
off
i�1

(1)
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Statistics of UP and DOWN durations
The mean and the coefficient of variation of Ui were defined as

<Ui>¼ 1

M

X

M

i¼1

Ui; CV Uið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Uið Þ
p

<Ui>
(2)

where:

Var Uið Þ ¼ 1

M

X

M

i¼1

U2

i

 !

�<Ui>
2 (3)

and equivalently for <Di> and CV Dið Þ. We controlled whether variability in Ui was produced by slow

drifts by computing CV2 a measure of variability not contaminated by non-stationarities of the data

(Compte et al., 2003a; Holt et al., 1996).

The serial correlation between Ui and Diþk, with k setting the lag in the U-D series, e.g. k = 0

(k = 1) refers to the immediately previous (consecutive) DOWN period, was quantified with the Pear-

son correlation coefficient defined as:

Corr Ui;Diþkð Þ ¼ Cov Ui;Diþkð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Uið ÞVar Dið Þ
p (4)

where the covariance was defined as:

Cov Ui;Diþkð Þ ¼ 1

M� jkj
X

M�k

i¼1

Ui�<Ui>ð Þ Diþk �<Di>ð Þ (5)

Values of Ui and Didiffering more than 3 standard deviations from the mean were discarded from

the correlation analysis (circles in Figure 2C). To remove correlations between Ui and Di produced

by slow drifts in the durations we used resampling methods developed to remove slow correlations

among spike trains (Amarasingham et al., 2012). We generated the l-th shuffled series of U periods

uli

n oM

i¼1

by randomly shuffling the order of the Us in the original series Uif gMi¼1
within intervals of 30 s.

The same was done to define the shuffled series of D periods dli

n oM

i¼1

. The two shuffled series lack

any correlation except that introduced by co-variations in the statistics with a time-scale slower than

30 s. We generated L = 1000 independent shuffled series uli

n oM

i¼1

and dli

n oM

i¼1

with l=1,2,...L, com-

puted the covariance Cov uli;d
l
iþk

� �

for each and the averaged over the ensemble

Cov ui;diþkð Þ ¼<Cov uli;d
l
iþk

� �

>l. Finally, the correlation due to co-fluctuations of Us and Ds faster than

30 s was computed by subtracting Cov ui;diþkð Þ from Cov Ui;Diþkð Þ in Equation 5. Significance of the

correlation function Corr Ui;Diþkð Þ was assessed by computing a point-wise confidence interval from

a distribution of L correlograms Corr uli;d
l
iþk

� �

, for l = 1...L (L = 10000), computed from each shuffled

series the same way as for the original series (gray dashed bands in Figure 2C). To take into account

multiple comparisons introduced by the range in lag k, we obtained global confidence intervals

(black dashed bands in Figure 2C) by finding the P of the pointwise intervals for which only a frac-

tion of the correlograms Corr uli;d
l
iþk

� �

crosses the interval bands at any lag k= �7...7 (see

Fujisawa et al., 2008 for details).

Gamma parameter estimates for distributions of U and D durations were computed using the

Matlab built-in function gamfit.

Spike count statistics
We divided the time in bins of dt = 1 ms and defined the spike train of the j-th neuron as:

sj tð Þ ¼
1 if there is a spike2 t; tþ dtð Þ
0 otherwise

�

(6)

The spike count of the j-th neuron over the time window (t-T/2, t+T/2) was obtained from
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nj t;Tð Þ ¼ K � sj
� �

tð Þ (7)

where � refers to a discrete convolution and K tð Þ is a square kernel which equals one in (-T/2,T/2)

and zero otherwise.

The instantaneous rate of the j-th neuron was defined as:

ri tð Þ ¼
ni t;Tð Þ

T
(8)

and therefore the instantaneous population rate was defined as:

R tð Þ ¼
PN

j¼1
nj t;Tð Þ
TN

(9)

where N is the total number of well isolated and simultaneously recorded neurons. We have

dropped the dependence on T from ri tð Þ and R tð Þ to ease the notation. We also defined the instanta-

neous E-population and I-populations rates, RE tð Þ and RI tð Þ respectively, as those computed using

cells in the E and I subpopulations separately.

Population firing statistics during Us and Ds
The instantaneous population rate averaged across Us and Ds and aligned at the D to U transition

(DU) was defined as:

RDU tð Þ ¼ 1

m tð Þ
X

i� t<Uif g
R t oni þ t

� �

; for t > 0 (10)

where t is the time to the DU transition. Because Us had different durations, for each t > 0, the sum

only included the onset time toni if the subsequent period was longer than t < Ui. By doing this we

remove the trivial decay we would observe in RDU tð Þ as tincreases due to the increasing probability

to transition into a consecutive period Diþ1. For t < 0, RDU tð Þ reflecting the population averaged rate

during the Ds, is obtained as in Equation 10 but including the times toni in the sum if the previous D

was longer than jtj < Di�1. Similarly, the average population rate aligned at the offset RUD tð Þ was

defined equivalently by replacing toni
� 	M

i¼1
by the series of offset times t

off
i

n oM

i¼1

. We also defined the

onset and offset-aligned averaged population rate for excitatory (E) and inhibitory (I) populations,

termed RE
DU tð Þ and RE

UD tð Þ for the E case and similarly for the I case. Moreover, the onset and off-

set-aligned averaged rate of the i-th neuron riDU tð Þ and riUD tð Þ were defined similarly using the indi-

vidual rate defined in Equation 8.

The autocorrelogram of the instantaneous population rate was defined as:

AC tð Þ ¼
PL�t

t¼1
R tð ÞR tþ tð Þ � < R tð Þ > 2

t

L� jtjð Þ Var R tð Þð Þ ; for t > 0 (11)

with the sum in t running over the L time bins in a window of size W. The average <R tð Þ>t and vari-

ance were performed across time in the same window. To avoid averaging out a rhythmic structure

in the instantaneous population rate due to slow drift in the oscillation frequency, we computed

AC tð Þ in small windows W = 20 s thus having a more instantaneous estimate of the temporal struc-

ture. With the normalization used, the autocorrelograms give AC t¼ 0ð Þ ¼ 1 and the values with t > 0

can be interpreted as the Pearson correlation between the population rate at time t and the popula-

tion rate at time tþ t (Figure 1D).

Instantaneous rates at onset and offset intervals
To compare the population rates at the U-onset and U-offset (Figures 3 and 6), we computed for

each neuron the mean of riDU tð Þ over the window t = (50,200) s (U-onset) and the mean of riUD tð Þ
over the window t = (�200,–50) s (U-offset). We positioned the windows 50 ms away of the DU and

UD transitions in order to preclude the possibility of contamination in the mean rate estimations due

to possible misalignments from the U and D period detections. In the averaging we used U and D

periods longer than 0.5 s, so that onset and offset windows were always non-overlapping. Equivalent
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D-onset and D-offset windows were defined in order to compare individual rates during D periods.

To make the distribution of mean rates across the cell population Gaussian, we normalized each of

the rates riDU tð Þ and riUD tð Þ by the overall time-averaged rate of the neuron ri ¼ <ri tð Þ>t finally obtain-

ing onset and offset-aligned normalized averaged rates (e.g. riDU tð Þ=ri). Despite this normalization,

the distribution of the normalized rates in the D-onset and D-offset was non-Gaussian (most neurons

fired no spikes). Thus we used the non-parametric two-sided Wilcoxon signed rank test to compare

onset and offset rates (Figure 3E). To test the rates changes during U periods in E and I neurons we

used a four-way mixed-effects ANOVA with fixed factors onset/offset, E/I and random factors neu-

ron index and animal. We compared the distribution of normalized averaged rate difference at the

U-onset minus the U -offset (Figure 3E right, dark gray histogram) with a distribution obtained from

the same neurons but randomly shuffling the onset and offset labels of the spike counts but preserv-

ing trial and neuron indices (Figure 3E right, light gray bands show 95% C.I. of the mean histograms

across 1000 shuffles). This surrogate data set represents the hypothesis in which none of the neurons

shows any onset vs offset modulation. The comparison shows that there are significant fractions of

neurons showing a rate decrease and increase that compensate to yield no significant difference on

the population averaged rate. The same procedure was followed with the normalized rates in the D--

onset and D-offset but the limited number of non-zero spike counts limited the analysis yielding

inconclusive results (Figure 3E left).

Computational rate model
We built a model describing the rate dynamics of an excitatory (rE) and inhibitory population (rI )

recurrently connected that received external inputs (Wilson and Cowan, 1972). In addition, the

excitatory population had an additive negative feedback term a tð Þ, representing the firing adapta-

tion experienced by excitatory cells (McCormick et al., 1985). The model dynamics were given by:

tE

drE

dt
¼�rE tð Þþ’E JEErE tð Þ� JEIrI tð Þ� a tð Þþs�E tð Þð Þ (12)

tI

drI

dt
¼�rI tð Þþ’I JIErE tð Þ� JIIrI tð Þþs�I tð Þð Þ (13)

ta

da

dt
¼�a tð ÞþbrE tð Þ (14)

The time constants of the rates were tE= 10 ms and tI= 2 ms, while the adaptation time constant

was ta= 500 ms. The synaptic couplings JXY > 0 (with X,Y = E, I), describing the strength of the con-

nections from Y to X, were JEE= 5, JEI= 1, JIE= 10, JII= 0.5 s. Because we are modeling low rates, the

adaptation grows linearly with rE with strength b= 0.5 s. The fluctuating part of the external inputs

s�X tð Þ was modeled as two independent Ornstein–Uhlenbeck processes with zero mean, standard

deviation s= 3.5 and time constant 1 ms for both E and I populations. Because population averaged

firing rates during spontaneous activity fell in the range 0–10 spikes/s, we modeled the transfer func-

tions jX as threshold-linear functions:

’X xð Þ ¼ gX x� �X½ �þ ; X ¼ E; If g (15)

where the square brackets denote z½ �þ¼ z if z > 0 and zero otherwise, the gains were gE = 1 Hz and

gI= 4 Hz and the effective thresholds �E and �I represented the difference between the activation

threshold minus the mean external current into each population. We took �I= 25 a.u. and explored

varying �E over a range of positive and negative values (Figure 5A–B). The choice of thresholds �E <

�I and gains gE < gI reflecting the asymmetry in the f-I curve of regular spiking neurons (E) and fast

spiking interneurons (I) (Cruikshank et al., 2007; Nowak et al., 2003; Schiff and Reyes, 2012), facil-

itated that the model operated in a bistable regime (see below).

Input-output transfer functions are typically described as sigmoidal-shaped functions (Haider and

McCormick, 2009), capturing the nonlinearities due to spike threshold and firing saturation effects.

Since we are interested in modeling spontaneous activity where average population rates are low,

we constrained the transfer functions to exhibit only an expanding non-linearity reflecting the thresh-

old and thus avoid other effects that can only occur at higher rates (the contracting non-linearity
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tends to occur for rates >30 spikes/s (Anderson et al., 2000; Houweling et al., 2010;

Nowak et al., 2003; Priebe and Ferster, 2008). In particular, we modeled jX as piecewise linear

(Schiff and Reyes, 2012; Stafstrom et al., 1984) but the same qualitative bistable regime can be

obtained by choosing for instance a threshold-quadratic function. The model equations (Equa-

tions 12-14) were numerically integrated using a fourth-order Runge-Kutta method with integration

time step dt = 0.2 ms. U and D periods in the model were detected by threshold-based method,

finding the crossing of the variable rE with the boundary 1 Hz, where periods shorter than minimum

period duration of 50 ms were merged with neighboring periods (small changes in threshold and

period durations did not affect qualitatively the results). The computational rate model was imple-

mented in Matlab (MathWorks) using C ++ MEX, and the source code is available at ModelDB

(https://senselab.med.yale.edu/ModelDB, Jercog, 2017).

Fixed points and stability
We start by characterizing the dynamics of the system in the absence of noise. Assuming that the

rates evolve much faster than the adaptation, that is, tE; tI � ta, one can partition the dynamics of

the full system into (1) the dynamics of the rates assuming adaptation is constant, (2) the slow evolu-

tion of adaptation assuming the rates are constantly at equilibrium. Thus, the equations of the null-

clines of the 2D rate dynamics at fixed a, can be obtained from the 2D system given by

Equations 12-13. The nullclines of this reduced 2D system are obtained by setting its left hand side

to zero:

rE ¼ gE JEE rE � JEIrI � a � �E½ �þ (16)

rI ¼ gI JIE rE � JII rI � �I½ �þ (17)

The intersection of the nullclines define the fixed points ðrE að Þ
�

; rI að Þ
�

Þ of the 2D system to which

the rates evolve. Once there adaptation varies slowly assuming that the rates are maintained at

ðrE að Þ
�

; rI að Þ
�

Þ until it reaches the equilibrium at a ¼ b r�E að Þ.
The network has a fixed point in ðrE; rI ; aÞ ¼ ð0; 0; 0Þ if and only if qE � 0 and qI � 0, that is, when

the mean external inputs are lower than the activation thresholds. The stability of this point, corre-

sponding to the DOWN state, further requires qE > 0, thus preventing the activation of the network

due to small (infinitesimal) fluctuations in rE. To find an UP state fixed point with non-zero rates we

substitute in Equations 16-17 the value of adaptation at equilibrium a ¼ brE, assume the arguments

of []+ are larger than zero and solve for (rE,rI), obtaining:

rE ¼
1

jM j JEI �I � JII
0 �Eð Þ (18)

rI ¼
1

jM j JEE
0�bð Þ �I � JIE �Eð Þ (19)

where jMj ¼ JEI JIE � JEE
0�bð Þ JII

0ð Þ, JEE 0 ¼ JEE � 1

gE
and JII

0 ¼ JII þ 1

gI
.

The conditions for this UP state solution to exist are derived from imposing that the right hand

side of Equations 18-19 is positive. The stability of this solution (Equation 21 below) implies that

the determinant jM j is positive and that if rI is positive, then rE is also positive. Thus, provided the

stability (Equations 21-22), the only condition for the solution to exist is that the right hand side of

Equation 19 is positive:

�E<
JEE

0�bð Þ
JIE

�I (20)

Given the separation of time scales described above, this fixed point is stable if the eigenvalues

of the matrix of coefficients of Equations 16 and 17 without the term a (that we assume is constant)

have all negative real part. Because the coefficients matrix is 2 � 2, this is equivalent to impose that

the determinant of the matrix has a positive determinant and a negative trace. These conditions

yield the following inequalities, respectively:

Jercog et al. eLife 2017;6:e22425. DOI: https://doi.org/10.7554/eLife.22425 22 of 33

Research article Neuroscience

https://senselab.med.yale.edu/ModelDB
https://senselab.med.yale.edu/ModelDB
https://doi.org/10.7554/eLife.22425


JII
0 JEE

0< JEI JIE (21)

tI gEJEE þ 1ð Þ<tE gIJII þ 1ð Þ (22)

Equation 21 is equivalent to the condition that the I-nullclines of the 2D reduced system has a

larger slope than the E-nullcline. From the U existence condition in Equation 20 and D stability con-

dition, it can also be derived that JEE
0 > 0, implying that at fixed inhibition, the E-subnetwork would

be unstable (i.e. slope of the E-nullcline is positive). In sum, the conditions for the existence of two

stable U and D states imply that the U state would be unstable in the absence of feedback inhibition

but the strength of feedback inhibition is sufficient to stabilize it. These are precisely the conditions

that define an Inhibitory Stabilized Network state (Ozeki et al., 2009).

Phase plane analysis
In this section we determine the different operational regimes of the network in the (�E,b)-plane

(Figure 5A). In the absence of noise, given that qI � 0, a stable D state exists in the semi-plane

(Figure 5A, purple and red regions):

�E > 0 (23)

Provided that our choice of synaptic couplings JXY and time constants hold the stability conditions

(Equations 21-22), the U state is stable in the semi-plane given by Equation 20 (Figure 5A, orange

and red regions):

b<� JIE

�I
�E þ JEE

0 (24)

In the intersection of these two semi-planes both D and U are stable (bistable region, Figure 5A

red). In contrast, in the complementary region to the two semi-planes, neither U nor D are stable

(Figure 5A white region). There, a rhythmic concatenation of relatively long U and D periods is

observed where the network stays transiently in each state until adaptation triggers a transition (see

e.g. Figure 4E). Because of the separation of time-scales, we refer to this stability to the rate dynam-

ics but not to the adaptation dynamics as quasi-stable states.

The addition of noise makes that some of the stable solutions now become meta-stable, meaning

that the network can switch to a different state by the action of the noise (i.e. the external fluctua-

tions in our model). This is the case of the bistable region (Figure 5A red) where fluctuations gener-

ate stochastic transitions between the two metastable U and D states (Figure 4D). In the region of D

stability �E > 0, we find a new subregion with noise-driven transitions from a metastable D state to a

quasi-stable U state, and back to D by the action of adaptation (Figure 5A light purple). This subre-

gion is delimited by the condition that U is not stable (i.e. Equation 24 does not hold) but just

because of the existence of adaptation. This can be written by saying that Equation 24 holds if

b = 0:

�E <
JEE

0

JIE
�I (25)

Equivalently, within the region of U stability, noise creates a new subregion with noise-driven tran-

sitions from a metastable U state to a quasi-stable D state, and back to U by the recovery from

adaptation (Figure 5A light orange). This subregion is given by the condition that there is a negative

effective threshold �E < 0 (i.e. caused by a supra-threshold mean external drive) but the adaptation

aU recruited in the U state is sufficient to counterbalance it: aU þ �E > 0. This makes the D transiently

stable until adaptation decays back to zero. Substituting aU ¼ brUE (Equation 14) and rUE by the equi-

librium rate at the U state given by Equation 18, the limit of this subregion can be expressed as

(Figure 5A, light orange region):

b>
JEE

0 JII 0 � JIE JEIð Þ
JEI �I

�E (26)
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Spiking network simulations
We used a network model of leaky integrate-and-fire neurons (Ricciardi, 1977), with NE=4000 excit-

atory and NI=1000 inhibitory neurons ‘all-to-all’ connected. The membrane potential of a neuron i

from population E and I obeys

tE

dVE
i

dt
¼� VE

i �VL

� �

þ IErec tð Þþ IEext;i tð Þ� Ia;i tð Þ (27)

tI

dV I
i

dt
¼� V I

i �VL

� �

þ IIrec tð Þþ IIext;i tð Þ (28)

Whenever the membrane voltage of a X ¼ E; If g neuron exceeds the threshold �X at time t, a

spike is emitted and the membrane voltage is reset to VX
r , that is, whenever VX

i t�ð Þ � �X then

VX
i tþð Þ ¼ VX

r . We used VE
r = -51 mV, V I

r = �49.9 mV and a leak potential of VL = �57.4 mV. The

thresholds were �E = �45 mV and �I = �43.9 mV, and we used no spike refractory time. The mem-

brane time constants were tE = 20 ms and tI = 10 ms. The external input current IXext;i tð Þ ¼
s
ffiffiffiffiffi

tX

p
hi tð Þþ piIkicks tð Þ is composed of: (1) a Gaussian white noise term with std. dev. s = 2.5 mV which

is independent from neuron to neuron, that is, <hi tð Þ hj t� t0ð Þ>¼ dijd t� t0ð Þ and was necessary to

generate uncorrelated firing across neurons given the all-to-all connectivity. (2) A separate source of

randomly occurring input pulses, also called ‘kicks’, impinging coherently on 10% of both E and I

neurons in the network (pi is a binary random variable with probability p=0.1):

Ikicks tð Þ ¼K
X

k

1� e
�t�tk

tk

� �

�
D

t� tk
� �

(29)

with K being the pulses amplitude (220 mV during D, 110 mV during U for E cells; 88 mV during D,

44 mV during U for I cells), tk the rise time (0.5 ms) of the pulses and �
D

tð Þ the step function defined

as 1 in the interval (0, D) and zero otherwise. We used duration D = 2 ms and amplitude K causing a

depolarization of 16.1 mV (6.44 mV) during D (U) periods in E-kicked neurons, and 12.4 mV (4.9 mV)

during D (U) periods in I-kicked neurons. These kicks were necessary to generate synchronous

bumps in the membrane potential that would yield transitions to the UP state during DOWN periods

in the absence of background activity (see Discussion). The amplitude of these events was constant

for the sake of simplicity.

The recurrent input term consisted of inhibitory and excitatory synaptic currents, that is,

IXrec tð Þ ¼ IXErec tð Þ þ IXIrec tð Þ, where IXYrec ¼ JXYsY tð Þ and JXY is the synaptic strength from neurons in popula-

tion Y to neurons in population X. The synaptic variable sX obeyed the following differential

equation

t

X
d

dsX

dt
¼�sX þ uX (30)

t

X
r

duX

dt
¼�uX þ t

X

k

X

NX

j¼1

d t� tkj � dXj

� �

(31)

where the summation is over all spikes emitted by all neurons in population X (all-to-all connectivity)

and the factor t¼ 1 ms ensures that the area under the unitary synaptic event is constant regardless

of the rise and decay time-constants. The synaptic couplings were JEE = 1.4, JEI = �0.35, JIE = 5 and

JII = �1 mV and the rise t

X
r

� �

and decay t

X
d

� �

times of inhibitory synapses were both 1 ms, while

those of excitation were 8 and 23 ms, respectively. These synaptic kinetic constants were chosen in

order to reduce the magnitude of the fast oscillations during UPs. The delays dXj were the same for

all the postsynaptic synapses belonging to the same neuron and uniformly distributed between 0

and 1 ms (0 and 0.5 ms) across E (I) neurons.

In addition, the excitatory neurons displayed an after hyperpolarization (AHP) current Ia that

follows

Jercog et al. eLife 2017;6:e22425. DOI: https://doi.org/10.7554/eLife.22425 24 of 33

Research article Neuroscience

https://doi.org/10.7554/eLife.22425


ta

dIa;i

dt
¼�Ia;iþb

X

k

d t� t ki
� �

(32)

with a slow adaptation time constant ta = 500 ms and adaptation strength b = 300 mVms.

The population averaged AHP current is defined as

Ia tð Þ ¼
X

NE

i¼1

Ia;i tð Þ
NE

(33)

The E and I nullclines of the population averaged rates rE and rI , respectively, are obtained from

the equilibrium firing rate (r0X ), which is given by the self consistent mean-field equation (Ric-

ciardi, 1977; Amit and Brunel, 1997)

r0X ¼ 2tX

Z

���0Xð Þ=s0X

Vr��0Xð Þ=s0X

du eu
2

Z

u

�¥

dv e�v2

2

6

4

3

7

5

�1

(34)

where the average input current to a neuron in population X is given by

�0E ¼ VL þNEJEEr0EtþNIJEIr0Itþ Ia (35)

�0I ¼ VLþNEJIEr0EtþNIJIIr0It (36)

and the standard deviation of the current is given by the external white noise std. dev. s . For this

analysis the AHP current Ia was assumed to be constant at the averaged values observed either at

the UP onset and offset (see dark and light red E-nullclines in Figure 7A, respectively). The bifurca-

tion diagrams (Figure 7B and Figure 7—figure supplement 2B) were obtained by solving the sta-

tionary states of the network from the Fokker Planck equation describing the population dynamics

and determining their stability using linear perturbation analysis (Brunel and Hakim, 1999; Richard-

son, 2007; Roxin and Compte, 2016).

Analysis of spiking network simulations
The spiking network model was implemented in C++, and the code is available at ModelDB (https://

senselab.med.yale.edu/ModelDB, Jercog, 2017). Model equations were numerically integrated

using second-order Runge Kutta, where integration step was defined as dt = 0.05 ms and the total

simulation length was 5000 s (50 simulations of 100 s each, where data from first D and U detected

periods for each simulation was discarded to eliminate possible initial transient effects). For the anal-

ysis of U and D statistics and the rate dynamics in the spiking network simulations we used methods

analogous to those applied on the experimental data. In addition, U and D period detection was

obtained by applying the HMM (Chen et al., 2009) on 100 randomly selected neurons, using the

same parameters as for the experimental data. Onset and offset aligned population rates rE and rI

(Figure 7J) were computed using randomly sampled 90 E and 10 I neurons, respectively, with a mini-

mum U/D period duration of 0.8 s.

In order to study the statistics of UP and DOWN dynamics in the spiking network, where transi-

tions are caused by independent noise among cells (Figure 7—figure supplement 2), external kicks

were not included and E cells were depolarized by 5.6 mV to keep their voltage right below their

spike threshold. In addition, to keep the UP firing rate stabilized at low values, I cells were depolar-

ized by 6 mV and synaptic decay time constant for excitatory synapses were set to t

E
r = 2 ms and t

E
d

= 3 ms. In addition, adaptation strength was set to b = 200 mVms, and HMM detection parameters

chosen as a = 2 and m = �1. The rest of the parameters are the same as those used in main

Figure 7.
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Agència de Gestió d’Ajuts
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thó, Artur Luczak, Data acquisition; Albert Compte, Conceptualization, Investigation, Writing—

review and editing, Data analysis; Jaime de la Rocha, Conceptualization, Investigation, Writing—

original draft, Writing—review and editing, Data Analysis

Author ORCIDs

Daniel Jercog, http://orcid.org/0000-0003-3849-9196

Jaime de la Rocha, http://orcid.org/0000-0002-3314-9384

Ethics

Animal experimentation: This study involved analysis of previously published and new data. Previ-

ously published data (Bartho et al, J Neurophys. 2004, 92(1)) was obtained under a protocol

approved by the Rutgers University Animal Care and Use Committee. One new data set was

acquired in accordance with a protocol approved by the Animal Welfare Committee at University of

Lethbridge (protocol # 0907). All surgeries were performed under anesthesia, and every effort was

made to minimize suffering.

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.22425.017

Author response https://doi.org/10.7554/eLife.22425.018

Jercog et al. eLife 2017;6:e22425. DOI: https://doi.org/10.7554/eLife.22425 27 of 33

Research article Neuroscience

http://orcid.org/0000-0003-3849-9196
http://orcid.org/0000-0002-3314-9384
https://doi.org/10.7554/eLife.22425.017
https://doi.org/10.7554/eLife.22425.018
https://doi.org/10.7554/eLife.22425


Additional files

Supplementary files
. Transparent reporting form.

DOI: https://doi.org/10.7554/eLife.22425.016

References
Amarasingham A, Harrison MT, Hatsopoulos NG, Geman S. 2012. Conditional modeling and the jitter method of
spike resampling. Journal of Neurophysiology 107:517–531. DOI: https://doi.org/10.1152/jn.00633.2011,
PMID: 22031767

Amit DJ, Brunel N. 1997. Model of global spontaneous activity and local structured activity during delay periods
in the cerebral cortex. Cerebral Cortex 7:237–252. DOI: https://doi.org/10.1093/cercor/7.3.237, PMID:
9143444

Amit DJ, Tsodyks MV. 1991. Quantitative study of attractor neural network retrieving at low spike rates: I.
substrate—spikes, rates and neuronal gain. Network: Computation in Neural Systems 2:259–273. DOI: https://
doi.org/10.1088/0954-898X_2_3_003

Anderson JS, Lampl I, Gillespie DC, Ferster D. 2000. The contribution of noise to contrast invariance of
orientation tuning in cat visual cortex. Science 290:1968–1972. DOI: https://doi.org/10.1126/science.290.5498.
1968, PMID: 11110664

Angeli D, Ferrell JE, Sontag ED. 2004. Detection of multistability, bifurcations, and hysteresis in a large class of
biological positive-feedback systems. PNAS 101:1822–1827. DOI: https://doi.org/10.1073/pnas.0308265100,
PMID: 14766974

Barbieri F, Brunel N. 2007. Irregular persistent activity induced by synaptic excitatory feedback. Frontiers in
Computational Neuroscience 1:5. DOI: https://doi.org/10.3389/neuro.10.005.2007, PMID: 18946527
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