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ORIGINAL ARTICLE

The neural correlates of obsessive-compulsive disorder: a

multimodal perspective

PS Moreira'**%, P Marques'**%, C Soriano-Mas*>, R Magalhaes'>3, N Sousa'?*?, JM Soares'** and P Morgado'*?

Obsessive-compulsive disorder (OCD) is one of the most debilitating psychiatric conditions. An extensive body of the literature has
described some of the neurobiological mechanisms underlying the core manifestations of the disorder. Nevertheless, most reports
have focused on individual modalities of structural/functional brain alterations, mainly through targeted approaches, thus possibly
precluding the power of unbiased exploratory approaches. Eighty subjects (40 OCD and 40 healthy controls) participated in a
multimodal magnetic resonance imaging (MRI) investigation, integrating structural and functional data. Voxel-based morphometry
analysis was conducted to compare between-group volumetric differences. The whole-brain functional connectome, derived from
resting-state functional connectivity (FC), was analyzed with the network-based statistic methodology. Results from structural and
functional analysis were integrated in mediation models. OCD patients revealed volumetric reductions in the right superior
temporal sulcus. Patients had significantly decreased FC in two distinct subnetworks: the first, involving the orbitofrontal cortex,
temporal poles and the subgenual anterior cingulate cortex; the second, comprising the lingual and postcentral gyri. On the
opposite, a network formed by connections between thalamic and occipital regions had significantly increased FC in patients.
Integrative models revealed direct and indirect associations between volumetric alterations and FC networks. This study suggests
that OCD patients display alterations in brain structure and FC, involving complex networks of brain regions. Furthermore, we
provided evidence for direct and indirect associations between structural and functional alterations representing complex patterns
of interactions between separate brain regions, which may be of upmost relevance for explaining the pathophysiology of the

disorder.
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INTRODUCTION

Obsessive-compulsive disorder (OCD) is one of the most disabling
psychiatric conditions, impacting occupational, academic and
social functioning' and affecting 2 to 3% of the worldwide
population.2 OCD is characterized by the occurrence of obsessions
(intrusive, persistent and inappropriate thoughts, urges or images)
and compulsions (repetitive or ritualistic behaviors or mental acts
performed to reduce the anxiety caused by the obsessions).>*
Despite the availability of pharmacological and cognitive-
behavioral interventions, these treatments are not effective for a
significant number of patients.’ This highlights the limited
understanding of the neurobiological mechanisms of OCD.®

The pathophysiology of OCD has been widely conceptualized
within the cortico-striato-thalamo-cortical (CSTC) model.” Accord-
ing to this model, tracts from frontal regions project to the
striatum and then, travel through direct and indirect pathways to
the thalamus and project back to the frontal regions. This model
has been corroborated by several reports of structural and
functional alterations observed in magnetic resonance imaging
(MRI) studies. In particular, volumetric alterations within the
orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and
thalamus have been reported in patients (for example, refs. 8-10).
Furthermore, early evidence from functional imaging studies
indicated an increased metabolism and hyperactivity in several

brain regions in OCD patients during task performance, including
the basal ganglia (BG),""'? OFC'® and ACC.'* On the opposite,
a decreased activation in the dorsolateral prefrontal cortex
(DLPFQ)'® and parietal cortex'®'® has been described. Emerging
evidence suggests a broader cortical dysfunction, involving
structural and functional alterations of the anterior insula, lateral
and medial temporal lobe regions.?® Furthermore, recent multi-
modal meta-analytic evidence highlights the relevance of the
cerebellum and the parietal cortex for the OCD pathophysiology.?'

Resting-state fMRI (rs-fMRI) studies have also provided impor-
tant biomarkers of OCD. For instance, alterations in the normal
patterns of functional connectivity (FC) in resting-state networks
(RSNs) have been reported in children with OCD, including a
significantly increased connectivity between the dorsal striatum
and ventromedial frontal cortex, and a decreased FC between
dorsal striatum and medial dorsal thalamus to rostral and dorsal
ACC, respectively.?? In addition, increased FC within the auditory
and cingulate networks was also reported in a pediatric sample.”
Adult OCD individuals exhibited decreased FC of the dorsal
striatum and lateral PFC, and of the ventral striatum with ventral
tegmental area,”* as well as a decreased dorsal ACC-right anterior
operculum FC during rest?® Altered FC in the default-mode
network (DMN) has been reported, particularly its connections
with OFC and ACC,*?° and with middle frontal gyrus and
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putamen.?® Moreover, FC alterations between frontoparietal/
ventral attention network (VAN) and the structures comprising
the DMN, thalamus, lateral frontal cortex and somatosensory/
motor regions were observed.?’ Using a graph-theory approach,
drug-free patients were found to present a diminished FC
between the DMN and frontoparietal regions;?’ interestingly,
these alterations were abolished after SSRI treatment.

Altogether, the abovementioned results suggest that a large
variety of brain areas and circuits are involved in the pathophy-
siology of the disease. In particular, FC abnormalities have been
mainly observed in orbitofrontal, cingulate, striatal and default-
mode regions. Nevertheless, these results were observed using
theoretically driven investigations. To the best of our knowledge,
the use of whole-brain exploratory approaches to assess FC
patterns in OCD patients is scarce, with few notable
exceptions.?®%°In these studies, OCD patients were characterized
by a reduced FC within the lateral prefrontal cortex and an
increased FC within the dorsal striatum and thalamus, as well as
with a hyperconnectivity between basal ganglia and cerebellar
regions. Nevertheless, none of the abovementioned strategies
integrated structural findings in their analyses. Thus, despite the
variety of studies investigating structural and functional MRI
patterns in OCD patients, a comprehensive integration of distinct
modalities is still unclear. The use of this multimodal/integrative
approach may be of upmost relevance, as it may provide useful
information on how distinct MRI modalities (that is, brain structure
and function) are associated with each other.3° Consequently, it
will enable a further exploration of our understanding of the
pathophysiological core features of OCD. With this purpose, we
conducted a multimodal study, using voxel-based morphometry
and whole-brain functional connectivity analyses, respectively, in
which structural and FC data were integrated in mediation
models. We hypothesize that OCD patients will be characterized
by disrupted structural and FC patterns of large-scale brain
networks, as manifested by alterations at the whole-brain level.
Furthermore, in accordance with recent developments on the
study of OCD, it is anticipated that FC alterations will be observed
in networks comprising regions outside of the CSTC model.

MATERIALS AND METHODS

Participants

A sample of 80 subjects (40 OCD patients, 40 controls) participated in this
study. Healthy controls were recruited to match OCD patients for age, sex,
educational level and ethnical origin. All the participants were right-
handed and had no history of neurological or comorbid disorders. OCD
patients were characterized with a comprehensive clinical assessment. The
diagnosis of the disorder was established by experienced psychiatrists,
using a semi-structured interview based on Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition (DSM-IV)-TR. Then, the Mini-
International Neuropsychiatric Interview (MINI), a short structured diag-
nostic interview, was administered to confirm OCD diagnosis and to
identify any current psychiatric (non-OCD) comorbidity. Patients that met
criteria for additional Axis | psychiatric disorders at the time of the study
were not included in this study. The severity of the disease was assessed
using the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS?"). Hamilton
Anxiety Rating Scale (HAM-A) and Hamilton Depression Rating Scale (HAM-
D) were used to assess anxiety and depression symptoms, respectively. All
OCD patients were under medication: the majority of patients (72.2%) was
receiving SSRI medication (fluxomanine, 150-300 mg day”; fluoxetine,
40-80 mg day ~; sertraline: 100-200 mg day ™ "), 11.1% of the sample was
receiving TCA (clomipramine, 150-300 mg day_‘), 16.7% was receiving
combined pharmacological intervention. All the patients were receiving
stable doses for at least three months prior to the imaging session. The
sample characterization is presented on Table 1.

The study was conducted according to the Declaration of Helsinki
principles and was approved by the Ethics Committee of Hospital de Braga
(Portugal). The study goals were explained, and written informed consent
was obtained from each participant.
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Table 1. Socio-demographic and clinical characteristics of patients
with OCD and HC
Characteristic OCD (n=40) HC (n=40) Difference
Age, years 26.28 +6.62 26.45+5.39 t7=0.13,
P=0.897
Education, years 13.53+225 14.63+3.20 trg=1.78,
P=0.079
Sex, n (%) males 13 (32.5%) 13 (32.5%) —
Y-BOCS, total score  24.93 +5.69 — —
Y-BOCS, obsessions 13.48+3.10 — —
Y-BOCS, compulsions 11.45+3.36 — —
Age of onset, years  19.41 +6.27 — —
HAM-A, total score 5.10+4.40 — —
HAM-D, total score 6.05+4.70 — —
Medication
% SSRI 72.20% — —
% TCA 11.10% — —
% combined 16.70% — —
Time with 23.19+28.75 — —
medication,
months
Motion spikes 7.35+3.95 6.35+3.32 tzgy=—1.23,
P=0.224
Abbreviation: HAM-A, Hamilton Anxiety Rating Scale; HAM-D, Hamilton
Depression Rating Scale; HC, healthy controls; OCD, obsessive-compulsive
disorder; Y-BOCS, Yale-Brown Obsessive Compulsive. Values are presented
as mean +s.d. Spikes are volumes with high motion, discarded while
estimating connectivity patterns.

MRI protocol

The imaging sessions were performed at Hospital de Braga using a
clinically approved 1.5T Siemens Magnetom Avanto MRI scanner (Sie-
mens, Erlangen, Germany) equipped with a standard 12 channel receive-
only head coil. Details on the imaging parameters are described in the
Supplementary Information.

Volumetric analysis

Before any data processing and analysis, all the acquisitions were visually
inspected to confirm that they were not affected by significant artifacts
and that participants had no gross anatomical abnormalities. For the
volumetric analysis, a Voxel-Based Morphometry (VBM) analysis was
performed with FSL-VBM (ref. 32, http:/fsl.fmrib.ox.ac.uk/fsl/fslwiki/
FSLVBM), an optimized VBM protocol*®> implemented using tools from
the FMRIB Software Library (FSL v5.0.9, www.fmrib.ox.ac.uk/fsl), using the
recommended analytical pipeline (Supplementary Information).

Data preprocessing of functional data

Data preprocessing was performed using FSL tools. Images were corrected
for slice timing using the first slice as reference and then motion corrected
by aligning every volume with the mean volume using a rigid-body (six
degrees of freedom) spatial transformation. As a means to further reduce
the possible contamination of motion on functional connectivity, motion
scrubbing was performed, to identify and exclude time points in which
head motion could have a critical impact. Following the recommendations
from Van Dijk et al.** only participants with < 20 outlier time points were
included in the analysis, ensuring that more than 5 min of motion-free data
was obtained for each subject. None of the participants exceeded head
motion higher than 2 mm in translation or 1° in rotation. Images were non-
linearly normalized to the MNI standard space using an indirect procedure
(Supplementary Information). Linear regression of motion parameters,
mean white-matter (WM) and cerebrospinal fluid (CSF) signal and motion
outliers was performed to reduce motion related variance in fMRI signals
and the residuals of the regression were used for the subsequent
analysis.>>® Finally, images were spatially smoothed with a Gaussian
kernel of 8 mm full-width at half-maximum (FWHM) and band-pass filtered
(0.01-0.08 Hz).
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Figure 1.

Overview of the methodological approach. Structural and functional magnetic resonance imaging (MRI) sequences were acquired.

For the structural acquisitions, a voxel-based morphometry analysis was conducted to detect clusters with significantly between-group
differences. For the functional acquisitions, the time-series of Anatomical Automatic Labelling (AAL) cortical and subcortical brain regions was
extracted to create group-specific matrices, corresponding to the correlation between regions. Afterwards, a network-based statistic approach
was implemented to detect networks with significantly different functional connectivity between groups. As the final step, the structural and
functional results were analyzed in integrative models, using mediation analyses.

Whole-brain connectome

Whole-brain functional connectomes were built by extracting the mean
time-series of 116 cortical, subcortical and cerebellar regions from the
Anatomical Automatic Labelling (AAL) atlas3” A symmetric adjacency
matrix R was then produced, where each cell r; corresponded to the
correlation coefficient (r) between the time-series of regions i and j. This
matrix was then transformed with Fisher’s r-to-Z transformation to convert
Pearson coefficients r to normally distributed Z-values. Individual matrices
were then aggregated for further statistical analysis.

Statistical analysis

Statistical group comparisons on volumetric and functional MRI data were
conducted using two-samples t-tests, adjusted for confounding effects. For
the different analysis, sex and age were used as between-subjects’
covariates.

VBM analysis was performed voxel-wise with a General Linear Model
(GLM) using a non-parametric permutation procedure as implemented in
the randomise tool from FSL.*® Threshold-free cluster enhancement (TFCE)
was used to detect widespread significant differences, whereas controlling
the family-wise error rate (FWE-R) at a=0.05. Each contrast underwent
5.000 permutations.

The identification of significantly different FC subnetworks between
groups at the whole-brain connectome was performed through the
network-based statistic (NBS) procedure, implemented with NBS.3° The
differences between the adjacency matrices of each group were estimated
with 5.000 random permutations, based on two different thresholds for
significance: a=0.001 and a=0.0001. Networks were considered signifi-
cant at a=0.05 family-wise error (FWE) corrected. BrainNet Viewer (http://
www.nitrc.org/projects/bnv) was used to display significant networks.*

Associations between symptoms’ severity and structural/functional
findings were evaluated computing Pearson correlations between total
Y-BOCS score and findings significantly different between groups.

With the goal of integrating structural and functional findings, mediation
models were established. For these models, direct (that is, the impact of
the independent on the dependent variable) and indirect effects (that is,
the impact of one proposed mediator variable on the key relationship)
were evaluated. For both approaches, bootstrap sampling was implemen-
ted to generate bias-corrected 95% confidence intervals to estimate
indirect and interactive effects.

An overview of the methodological pipeline is summarized on Figure 1.

RESULTS

Sample characteristics

As shown in Table 1, the groups are similar with respect to sex,
age and education level. As represented, all the participants were
taking medication. The Y-BOCS total score ranged from 11 to 35
(M=24.93, s.d.=5.69). The groups did not differ on the number of
motion outliers (tzg=—1.23, P=0.224).

Volumetric analysis

Results from the VBM analysis revealed that OCD patients had
significantly reduced volumes in one cluster comprising 394
voxels with peak on the right temporal middle gyrus, extending to
the superior temporal gyrus (Figure 2). We will refer to this region
as the superior temporal sulcus (STS). No results of volumetric
increases in OCD patients were found.

Whole-brain functional connectivity

Using the most restrict threshold (P < 0.0001), it was noted that
OCD patients displayed significantly reduced FC in two subnet-
works with short-range configurations: the first subnetwork
(orbitofrontal-temporal pole subnetwork, OFC-TM) comprised
anterior regions, including the bilateral medial orbitofrontal cortex
(mOFC), bilateral temporal poles and the subgenual anterior
cingulate cortex (sgACC) (Figure 3a; P=0.010); the second
subnetwork (occipital-sensorimotor, Occ-SM) was formed by the
connection between left postcentral and bilateral lingual gyri
(Figure 3a; P=0.045). Using the less restrict threshold (P < 0.001),
it was observed that these subnetworks were aggregated in a
main single network with wide-range properties, which was also
constituted by edges connecting occipital and sensorimotor brain
regions and also involving edges connecting the temporal middle
gyrus to the mOFC (Figure 3b; P=0.039). In contrast, even though
no networks with significantly different FC patterns were
identified with the more restrict threshold, using the less restrict
threshold, a network (thalamic-occipital, Thal-Occ) with marginally
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OCD<HC
Voxels Score X Y Z
394 575 54-26-2
374 42-300
368 36-20 -4

Figure 2. Volumetric differences obtained using a voxel-based
morphometry (VBM) analysis. Obsessive compulsive disorder
(OCD) patients display significantly reduced volumes in one cluster
(with 394 voxels), with peak on the middle temporal gyrus (MTG,
t(78) = 575)

significant increased FC (P=0.057) in OCD patients was identified,
encompassing edges connecting the thalamus to occipital inferior,
lingual and fusiform gyri (Figure 3d).

Associations between symptom’s severity and structural/
functional findings

The Y-BOCS total score revealed a significant negative association
with the fronto-temporal subnetwork with decreased FC in OCD
patients (r=-0.325, P=0.040). No associations between symp-
toms’ severity and the other functional and volumetric findings
were found.

Mediation effects between structural and functional findings

Bivariate correlations revealed that the volumetric and FC findings
were significantly associated (Supplementary Table 1), enabling
the test for mediation effects. Different models were conducted,
using the volumetric differences as either independent or
dependent variables. It was observed that, controlling for
confounding effects (sex and age), the mean FC of the OFC-TP
subnetwork significantly mediated the association between
volumetric differences and the mean FC of the Occ-SM subnet-
work (Figure 4a), as observed by a significant indirect between
these variables. On the other hand, we could also observe that
there was a significant indirect effect of the mean FC of the Thal-
Occ subnetwork on volumetric differences within the STS, which
was mediated by two mediator variables, corresponding to the
mean FC of the Occ-SM and OFC-TP subnetworks (Figure 4b).

DISCUSSION

In this work, we conducted an exploratory multimodal MRI
investigation to study volumetric and FC patterns in OCD patients.
We observed that OCD patients display volumetric reductions of
one cluster comprising the right medial and superior temporal
gyri and significantly altered FC in distinct subnetworks, particu-
larly a reduced FC in networks connecting the medial OFC,
temporal poles, lingual and postcentral gyri; and on the opposite,
patients had increased FC in a network composed of connections
involving the thalamus and occipital regions. Mediation analyses
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revealed that the association between structural findings and
specific FC networks were mediated by other FC networks.

Volumetric alterations in OCD patients

We observed that OCD patients display volumetric reductions of
one cluster with peak on the right STS, extending to both the
medial and superior temporal gyri. This result is corroborated by
previous reports, which implicated the superior temporal cortex
on the pathophysiology of the disease.*' Furthermore, in a meta-
analytic investigation, it was demonstrated that OCD patients
display a reduction of the middle temporal gyrus during the aging
process.*?

Decreased functional connectivity in OCD patients

In our study, a FC network comprising connections between
bilateral mOFC and bilateral temporal pole, as well as between the
left temporal pole and the sgACC, revealed decreased FC in OCD
patients. The mOFC is functionally connected with default-mode
network, autonomic and subcortical regions, including the ventral
striatum, amygdala and the hippocampus,**** being relevant for
multiple psychological processes, including episodic memory,
reward, decision-making and fear.**** Previous studies demon-
strated bilateral volume reductions*® and hypo-functioning of the
mOFC during extinction recall in OCD.” Furthermore, the temporal
pole, is directly linked to prefrontal brain regions, through a large
white-matter tract, the uncinate fasciculus. Owing to its dense
connections with the amygdala and the OFC, the temporal pole is
considered an important hub of the affective brain circuit.*” The
temporal pole, together with the sgACC, were implicated in the
mental effort to overcome fear.*® With respect to OCD pathophy-
siology, these nodes have been previouslg/ associated with the
severity of harm/checking symptoms** and dysfunctional
beliefs.>® A recent report also revealed a decrease in the structural
connectivity among these regions in OCD, highlighting the role of
emotional processing on the clinical manifestations of the
disorder.®' Altogether, and due to the fact that this subnetwork
was significantly associated with the severity of OCD symptoms, it
seems reasonable to hypothesize that the reduced link between
OFC and these ‘affective’ hubs may contribute to a deficient
emotional processing and a consequent impaired regulation of
the anxiety following obsessive thoughts.

Another subnetwork with decreased FC in OCD patients was
composed of edges involving bilateral lingual gyrus and the left
postcentral. Previous studies reported alterations in functional®
and structural®® connectivity patterns of this region in OCD
patients. The lingual gyrus was proposed to be involved in the
processing of emotionally charged visual stimuli®* and with the
generation of somatic arousal,>® which is typically dgsregulated in
disorders of the obsessive-compulsive spectrum.>® It has been
recently hypothesized that its activity is tightly linked to the
phenomenology of OCD, where, for instance, intrusive thoughts or
images of dirt, provoke strong emotional responses in patients
with contamination obsessions.’® In addition, the activity of the
lingual gyrus, together with the amygdala and orbital regions, was
reported to be elicited by emotional, unpleasant, stimuli,®” being
also activated during the visualization of fearful faces.”® Providing
further evidence for this hypothesis, it has been demonstrated
that the activity of this brain region is altered in psychiatric
conditions  characterized by anxious®® and depressive
symptoms.®° Altogether, it is reasonable to hypothesize that this
network of reduced FC may underlie an altered emotional
processing, particularly related with fear content. Following this
hypothesis, the decreased FC between visual and sensorimotor
networks herein observed may be contextualized in line with a
previous hypothesis suggesting that an exaggerated FC between
distinct sensory regions may contribute to a heightened encoding
of fear-related stimuli during task performance.®’ Despite the fact
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Mean FC

Whole-brain networks with altered functional connectivity (FC) in obsessive-compulsive disorder (OCD) patients, using two primary

thresholds: networks with significantly decreased FC (blue) in OCD patients at P < 0.0001 (a) and P < 0.001 (b) levels are presented on the top;
(c) no networks with significantly increased FC was found at the P < 0.0001 level; (d) a network with significantly increased FC (red) was found
in OCD patients at P < 0.001 level. Bar graphs correspond to individual levels of mean FC in each group. On the middle, the t-statistic
corresponding to each individual edge is represented for networks with increased and decreased FC levels.

that our findings are in apparent contradiction with the above-
mentioned report, it is important to note that whereas Wiemer’s
findings were obtained while subjects were viewing emotional,
fear-related stimuli, our results were obtained with the absence of
stimuli, that is, during rest. As such, it is reasonable to hypothesize
that the abnormal FC between these regions may be context-
dependent, being highly connected during the processing of
emotional information, and hypoconnected in default brain
processing.

Increased functional connectivity in OCD patients: extension of the
typical CTSC model

A network with marginally significant increases of FC between
thalamic and occipital brain regions was observed in OCD
patients. The most widely accepted neurobiological models of
OCD rely on an increased cerebral metabolism in circuits involving
the thalamus, OFC and the striatum—the CTSC model—which is
thought to underlie behavioral alterations in multiple domains,
including reward processing, action selection or habit-based
functioning. This hypothesis is partially corroborated by our

results in which edges with (marginally) significant increases in
resting-state FC, connecting the thalamus to cortical regions were
found in OCD patients. Furthermore, the involvement of other
regions not included in the CTSC model also corroborates more
recent models, in which parietal, occipital and cerebellar regions
have been identified as relevant for the pathophysiology of the
disease.?'

Integration of structural and functional findings

We observed that the structural and functional findings herein
obtained were significantly associated. Nevertheless, it was noted
that the associations between structural and specific functional
results were significantly mediated by specific FC patterns that
altered the relationship between structure and function: the mean
FC of OFC-TP subnetwork significantly mediated the association
between volumetric differences within the STS and Occ-SM
subnetwork (model 1); the mean FC of Occ-SM and OFC-TP
subnetworks significantly mediated the association between the
mean FC of the Thal-Occ subnetwork and volumetric differences

Translational Psychiatry (2017), 1-8
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Figure 4. Mediation models. (a) Mediator effects of the orbitofrontal-temporal pole subnetwork (OFC-TP) on the association between
volumetric differences within the superior temporal sulcus (STS) and the mean functional connectivity (FC) of the occipito-sensorimotor
subnetwork (Occ-SM); (b) mediator effects of the occipito-sensorimotor (Occ-SM) and orbitofrontal-temporal pole (OFC-TP) subnetworks on
the association between the mean FC of the thalamic-occipital subnetwork (Thal-Occ) and volumetric differences. Both models revealed
significant indirect effects between independent and dependent variables, controlling for confounding factors (sex and age). Values next to
each arrow represent standardized coefficients. Values in parenthesis correspond to standardized coefficients when the effects of mediator

variables are removed.

within the STS (model 2). According to these results, two distinct
hypotheses are proposed.

Hypothesis 1: Direct and indirect contributions of volumetric
alterations to a decreased connectivity between the STS and the OFC,
and between the OFC and posterior regions, respectively.

The results from the mediation model revealed that the
association between structural findings and the mean FC of the
Occ-SM subnetwork was significantly mediated by the mean FC of
the OFC-TP subnetwork. One possible explanation of this
mediation effect relies on the hypothesis that the structural
reductions of the STS may contribute to a diminished number of
tracts of the arcuate fasciculus (one subcomponent of the superior
longitudinal fasciculus (SLF), connecting regions from the
temporal lobe to frontal areas) in OCD patients. Consequently,
this may contribute to a diminishment of the projections between
the OFC and limbic areas (for example, the temporal pole, through
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the uncinate fasciculus), contributing to an impaired behavioral
and emotional regulation. In turn, projections from the OFC to
occipital brain regions (for example, the lingual gyri), and to
posterior brain regions (through another subcomponent of the
SLF) may in turn be diminished.

Hypothesis 2: Hyperconnectivity between thalamic-cortical
projections has an impact on volumetric reductions on the superior
temporal sulcus mediated by abnormal FC involving posterior and
anterior regions.

Another alternative hypothesis, which follows an inverse path of
the one proposed in the first hypothesis, suggests that volumetric
alterations are a consequence rather than a cause of FC
alterations. We have previously discussed that the Thal-Occ
network may represent the aberrant CSTC loops typically
described in OCD patients. This network is significantly associated
with the remaining observed structural and functional between-



group differences. Nevertheless, it was found that the association
between this network and volumetric differences was significantly
mediated by both subnetworks with decreased FC in OCD
patients. In this context, one may hypothesize that the hypercon-
nectivity of the loops projecting from the thalamus to parietal and
occipital cortical regions may have an impact on the occipito-
sensorimotor connectivity. Projections from these regions to
orbitofrontal regions, through the SLF, may disturb the function-
ing of the OFC and its synchrony with limbic regions and the
temporal pole (linked via the uncinate fasciculus). An impaired
feedback between these regions may, in turn, result in an
impaired structural connectivity between the OFC and the STS
(throughout the arcuate fasciculus), which may ultimately cause
volumetric reductions in this area.

Strengths and limitations

It is worth to acknowledge some strengths and limitations
associated with this work. The first strength is associated with
the multimodal approach here implemented. With this, we could
provide complementary evidence for abnormal structural and
functional brain patterns in OCD patients and how they can be
integrated to understand the neural mechanisms associated with
the disorder. In addition, the group differences were identified
using very conservative approaches, with restrict thresholds for
assessing both volumetric (with non-parametric permutation
testing) and whole-brain (P <0.001 and P < 0.0001) differences.
Thus, considering the recent debate associated with the problem
of false-positive findings in neuroimaging experiments, this
conservative strategy enables an additional level of confidence
in the reported findings.

On the other hand, it is relevant to highlight that the network
with increases in FC (the Thal-Occ network) was identified with
marginally significant results. Thus, these results need to be
interpreted with additional caution. Other limitations pertain to
the characteristics of the sample. One aspect relies on the fact that
our sample was under medication. Recent reports have demon-
strated that specific FC alterations stabilize after pharmacological
intervention in OCD patients.?” Consequently, it is reasonable to
speculate that the pharmacological treatment could ameliorate
the differences herein obtained. Nevertheless, it is important to
mention that the duration of medication was not associated with
the magnitude of the differences between OCD and HC groups,
considering either the structural and functional alterations here
described (data not shown). Another important issue pertains to
the high heterogeneity observed among OCD patients. It is also
important to highlight that the hypotheses raised with this work
strongly rely on structural connections between particular brain
regions. Thus, our theoretical model could be better sustained
with the complementary characterization with diffusion tracto-
graphy approaches.

CONCLUSIONS

In sum, we could detect a variety of functional and structural brain
alterations in OCD patients. Using this multimodal approach, we
could integrate these results in an integrated, theoretical model
that may provide useful insights associated with the pathophy-
siology of the disorder. In addition, our results reinforce the
importance of extending the CSTC model to fully understand the
pathophysiology of the disease.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

The neural correlates of obsessive-compulsive disorder
PS Moreira et al

ACKNOWLEDGMENTS

PSM is supported by the FCT fellowship grant with the number PDE/BDE/
113601/2015 from the PhD-iHES program; PM is funded by the Fundacao Calouste
Gulbenkian (Contract Grant Number: P-139977; project ‘Better mental health during
ageing based on temporal prediction of individual brain ageing trajectories
(TEMPO)’); RM is supported by the FCT fellowship grant with the number PDE/BDE/
113604/2015 from the PhD-iHES program. The present work was supported by
SwitchBox-FP7-HEALTH-2010-grant 259772-2 and co-financed by the Portuguese
North Regional Operational Program (ON.2-O Novo Norte) under the National
Strategic Reference Framework (QREN), through the European Regional Develop-
ment Fund (FEDER). CS-M is funded by a Miguel Servet contract from the Carlos IIl
Health Institute of Spain (CPII16/00048). We would also like to acknowledge Patricio
Costa for his aiding in the implementation of the mediation models.

DISCLAIMER

The paper has not been published previously, or is under
consideration for publication elsewhere, in English or in any other
language.

REFERENCES

1 Koran LM, Thienemann ML, Davenport R. Quality of life for patients with
obsessive-compulsive disorder. Am J Psychiatry 1996; 153: 783-788.

2 Ruscio A, Stein D, Chiu W, Kessler R. The epidemiology of obsessive-compulsive dis-

order in the National Comorbidity Survey Replication. Mol Psychiatry 2008; 15: 53-63.

Stein DJ. Obsessive-compulsive disorder. Lancet 2002; 360: 397—405.

Huey E, Zahn R, Krueger F, Moll J, Kapogiannis D, Wassermann E et al. A psy-

chological and neuroanatomical model of obsessive-compulsive disorder. J Neu-

ropsychiatry Clin Neurosci 2008; 20: 390-408.

Franklin ME, Sapyta J, Freeman JB, Khanna M, Compton S, Almirall D et al. Cog-

nitive behavior therapy augmentation of pharmacotherapy in pediatric obsessive-

compulsive disorder: the Pediatric OCD Treatment Study Il (POTS Il) randomized

controlled trial. JAMA 2011; 306: 1224-1232.

Melloni M, Urbistondo C, Sedeno L, Gelormini C, Kichic R, Ibanez A. The extended

fronto-striatal model of obsessive compulsive disorder: convergence from event-

related potentials, neuropsychology and neuroimaging. Front Hum Neurosci 2012;

6: 259.

Milad MR, Rauch SL. Obsessive-compulsive disorder: beyond segregated cortico-

striatal pathways. Trends Cogn Sci 2012; 16: 43-51.

Atmaca M, Yildirim H, Ozdemir H, Tezcan E, Poyraz AK. Volumetric MRI study of

key brain regions implicated in obsessive—compulsive disorder. Prog Neuro-

psychopharmacol Biol Psychiatry 2007; 31: 46-52.

9 Kang D-H, Kim J-J, Choi J-S, Kim YI, Kim C-W, Youn T et al. Volumetric investigation
of the frontal-subcortical circuitry in patients with obsessive-compulsive disorder.
J Neuropsychiatry Clin Neurosci 2004; 16: 342-349.

10 Rotge J-Y, Guehl D, Dilharreguy B, Tignol J, Bioulac B, Allard M et al. Meta-analysis
of brain volume changes in obsessive-compulsive disorder. Biol Psychiatry 2009;
65: 75-83.

11 Friedlander L, Desrocher M. Neuroimaging studies of obsessive—compulsive
disorder in adults and children. Clin Psychol Rev 2006; 26: 32—49.

12 Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET.
Integrating evidence from neuroimaging and neuropsychological studies of
obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci
Biobehav Rev 2008; 32: 525-549.

13 Alptekin K, Degirmenci B, Kivircik B, Durak H, Yemez B, Derebek E et al. Tc-99m
HMPAO brain perfusion SPECT in drug-free obsessive-compulsive patients with-
out depression. Psychiatry Res 2001; 107: 51-56.

14 Molina V, Montz R, Martin-Loeches M, Jimenez-Vicioso A, Carreras J, Rubia F. Drug
therapy and cerebral perfusion in obsessive-compulsive disorder. J Nucl Med
1995; 36: 2234-2238.

15 Nakao T, Okada K, Kanba S. Neurobiological model of obsessive—compulsive
disorder: evidence from recent neuropsychological and neuroimaging findings.
Psychiatry Clin Neurosci 2014; 68: 587—-605.

16 Maltby N, Tolin DF, Worhunsky P, O'Keefe TM, Kiehl KA. Dysfunctional action
monitoring hyperactivates frontal—striatal circuits in obsessive—compulsive dis-
order: an event-related fMRI study. Neuroimage 2005; 24: 495-503.

17 van den Heuvel OA, Veltman DJ, Groenewegen HJ, Witter MP, Merkelbach J, Cath
DC et al. Disorder-specific neuroanatomical correlates of attentional bias in
obsessive-compulsive disorder, panic disorder, and hypochondriasis. Archiv Gen
Psychiatry 2005; 62: 922-933.

18 Viard A, Flament MF, Artiges E, Dehaene S, Naccache L, Cohen D et al. Cognitive
control in childhood-onset obsessive—compulsive disorder: a functional
MRI study. Psychol Med 2005; 35: 1007-1017.

Hw

w

(o)}

~

<]

Translational Psychiatry (2017), 1-8



The neural correlates of obsessive-compulsive disorder
PS Moreira et al

20

2

2

N

23

2

S

2

v

26

27

2

o

29

30

3

32

33

3

S

35

36

37

3

co

3

O

40

4

Remijnse PL, Nielen MM, van Balkom AJ, Cath DC, van Oppen P, Uylings HB et al.
Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive-
compulsive disorder. Archiv Gen Psychiatry 2006; 63: 1225-1236.

Stern ER, Fitzgerald KD, Welsh RC, Abelson JL, Taylor SF. Resting-state functional
connectivity between fronto-parietal and default mode networks in obsessive-
compulsive disorder. PLoS ONE 2012; 7: e36356.

Eng GK, Sim K, Chen S-HA. Meta-analytic investigations of structural grey matter,
executive domain-related functional activations, and white matter diffusivity in
obsessive compulsive disorder: an integrative review. Neurosci Biobehav Rev 2015;
52: 233-257.

Fitzgerald KD, Welsh RC, Stern ER, Angstadt M, Hanna GL, Abelson JL et al.
Developmental alterations of frontal-striatal-thalamic connectivity in obsessive-
compulsive disorder. J Am Acad Child Adolesc Psychiatry 2011; 50: 938-948. e3.
Weber AM, Soreni N, Noseworthy MD. A preliminary study of functional con-
nectivity of medication naive children with obsessive—compulsive disorder. Prog
Neuro-Psychopharmacol Biol Psychiatry 2014; 53: 129-136.

Harrison BJ, Soriano-Mas C, Pujol J, Ortiz H, Lopez-Sola M, Herndndez-Ribas R et al.
Altered corticostriatal functional connectivity in obsessive-compulsive disorder.
Archiv Gen Psychiatry 2009; 66: 1189-1200.

Fitzgerald KD, Stern ER, Angstadt M, Nicholson-Muth KC, Maynor MR, Welsh RC
et al. Altered function and connectivity of the medial frontal cortex in pediatric
obsessive-compulsive disorder. Biol Psychiatry 2010; 68: 1039-1047.

Jang JH, Kim J-H, Jung WH, Choi J-S, Jung MH, Lee J-M et al. Functional con-
nectivity in fronto-subcortical circuitry during the resting state in obsessive-
compulsive disorder. Neurosci Lett 2010; 474: 158-162.

Shin D-J, Jung WH, He Y, Wang J, Shim G, Byun MS et al. The effects of phar-
macological treatment on functional brain connectome in obsessive-compulsive
disorder. Biol Psychiatry 2014; 75: 606—614.

Anticevic A, Hu S, Zhang S, Savic A, Billingslea E, Wasylink S et al. Global resting-
state fMRI analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity
in obsessive-compulsive disorder. Biol Psychiatry 2014; 75: 595-605.

Vaghi MM, Vértes PE, Kitzbichler MG, Apergis-Schoute AM, van der Flier FE,
Fineberg NA et al. Specific frontostriatal circuits for impaired cognitive flexibility
and goal-directed planning in obsessive-compulsive disorder: evidence from
resting-state functional connectivity. Biol Psychiatry 81: 708-717.

Uludag K, Roebroeck A. General overview on the merits of multimodal neuroi-
maging data fusion. Neurolmage 2014; 102(Part 1): 3-10.

Goodman WK, Price LH, Rasmussen SA, Mazure C, Fleischmann RL, Hill CL et al.
The Yale-Brown obsessive compulsive scale: |. Development, use, and reliability.
Archiv Gen Psychiatry 1989; 46: 1006—-1011.

Douaud G, Smith S, Jenkinson M, Behrens T, Johansen-Berg H, Vickers J et al.
Anatomically related grey and white matter abnormalities in adolescent-onset
schizophrenia. Brain 2007; 130: 2375-2386.

Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A
voxel-based morphometric study of ageing in 465 normal adult human brains.
Neuroimage 2001; 14: 21-36.

Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL. Intrinsic
functional connectivity as a tool for human connectomics: theory, properties, and
optimization. J Neurophysiol 2010; 103: 297-321.

Chai XJ, Castaiidn AN, Ongiir D, Whitfield-Gabrieli S. Anticorrelations in resting
state networks without global signal regression. Neurolmage 2012; 59:
1420-1428.

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but sys-
tematic correlations in functional connectivity MRI networks arise from
subject motion. Neurolmage 2012; 59: 2142-2154.

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N
et al. Automated anatomical labeling of activations in SPM using a macroscopic
anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002; 15:
273-289.

Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation infer-
ence for the general linear model. Neuroimage 2014; 92: 381-397.

Zalesky A, Fornito A, Bullmore ET. Network-based statistic: identifying differences
in brain networks. Neuroimage 2010; 53: 1197-1207.

Xia M, Wang J, He Y. BrainNet Viewer: a network visualization tool for human brain
connectomics. PLoS ONE 2013; 8: e68910.

Choi JS, Kim HS, Yoo SY, Ha TH, Chang JH, Kim YY et al. Morphometric alterations
of anterior superior temporal cortex in obsessive-compulsive disorder. Depress
Anxiety 2006; 23: 290-296.

42

43

a4

4

[V

46

4

~

48

49

50

5

puiy

52

5

w

54

5

(%]

56

5

~

58

59

60

6

=

o099

de Wit SJ, Alonso P, Schweren L, Mataix-Cols D, Lochner C, Menchon JM et al.
Multicenter voxel-based morphometry mega-analysis of structural brain scans in
obsessive-compulsive disorder. Am J Psychiatry 2014; 171: 340-349.

de la Vega A, Chang LJ, Banich MT, Wager TD, Yarkoni T. Large-scale meta-analysis
of human medial frontal cortex reveals tripartite functional organization.
J Neurosci 2016; 36: 6553-6562.

Zald DH, McHugo M, Ray KL, Glahn DC, Eickhoff SB, Laird AR. Meta-analytic
connectivity modeling reveals differential functional connectivity of the medial
and lateral orbitofrontal cortex. Cereb Cortex 2014; 24: 232-248.

Morgado P, Sousa N, Cerqueira JJ. The impact of stress in decision making in the
context of uncertainty. J Neurosci Res 2015; 93: 839-847.

Cardoner N, Soriano-Mas C, Pujol J, Alonso P, Harrison BJ, Deus J et al. Brain
structural correlates of depressive comorbidity in obsessive—compulsive disorder.
Neuroimage 2007; 38: 413-421.

Olson IR, Plotzker A, Ezzyat Y. The enigmatic temporal pole: a review of findings
on social and emotional processing. Brain 2007; 130: 1718-1731.

Nili U, Goldberg H, Weizman A, Dudai Y. Fear thou not: activity of frontal and
temporal circuits in moments of real-life courage. Neuron 2010; 66: 949-962.
van den Heuvel OA, Remijnse PL, Mataix-Cols D, Vrenken H, Groenewegen HJ,
Uylings HB et al. The major symptom dimensions of obsessive-compulsive dis-
order are mediated by partially distinct neural systems. Brain 2009; 132: 853-868.
Alonso P, Orbegozo A, Pujol J, Lépez-Sola C, Fullana MA, Segalas C et al. Neural
correlates of obsessive—-compulsive related dysfunctional beliefs. Prog Neuro-
Psychopharmacol Biol Psychiatry 2013; 47: 25-32.

Reess TJ, Rus OG, Schmidt R, de Reus MA, Zaudig M, Wagner G et al.
Connectomics-based structural network alterations in obsessive-compulsive dis-
order. Transl Psychiatry 2016; 6: e882.

Mataix-Cols D, Wooderson S, Lawrence N, Brammer MJ, Speckens A, Phillips ML.
Distinct neural correlates of washing, checking, and hoarding symptomdimen-
sions in obsessive-compulsive disorder. Archiv Gen Psychiatry 2004; 61: 564-576.
Szeszko PR, Ardekani BA, Ashtari M, Malhotra AK, Robinson DG, Bilder RM et al.
White matter abnormalities in obsessive-compulsive disorder: a diffusion tensor
imaging study. Archiv Gen Psychiatry 2005; 62: 782-790.

Mitterschiffthaler MT, Kumari V, Malhi GS, Brown RG, Giampietro VP, Brammer MJ
et al. Neural response to pleasant stimuli in anhedonia: an fMRI study. Neuroreport
2003; 14: 177-182.

Critchley HD, Elliott R, Mathias CJ, Dolan RJ. Neural activity relating to generation
and representation of galvanic skin conductance responses: a functional mag-
netic resonance imaging study. J Neurosci 2000; 20: 3033-3040.

Gottlich M, Kramer UM, Kordon A, Hohagen F, Zurowski B. Decreased limbic and
increased fronto-parietal connectivity in unmedicated patients with obsessive-
compulsive disorder. Hum Brain Mapp 2014; 35: 5617-5632.

Moll J, de Oliveira-Souza R, Bramati IE, Grafman J. Functional networks in emo-
tional moral and nonmoral social judgements. Neuroimage 2002; 16: 696—703.
Carlson JM, Reinke KS, Habib R. A left amygdala mediated network for rapid
orienting to masked fearful faces. Neuropsychologia 2009; 47: 1386—1389.

Lai C-H, Wu Y-T. Decreased regional homogeneity in lingual gyrus, increased
regional homogeneity in cuneus and correlations with panic symptom severity of
first-episode, medication-naive and late-onset panic disorder patients. Psychiatry
Res 2013; 211: 127-131.

Veer IM, Beckmann C, Van Tol M-J, Ferrarini L, Milles J, Veltman D et al. Whole
brain resting-state analysis reveals decreased functional connectivity in major
depression. Front Syst Neurosci 2010; 4: 41.

Wiemer J, Pauli P. Enhanced functional connectivity between sensorimotor and
visual cortex predicts covariation bias in spider phobia. Biol Psychol 2016; 121(Pt
B): 128-137.

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International License. The images or

other third party material in this article are included in the article’s Creative Commons
license, unless indicated otherwise in the credit line; if the material is not included under
the Creative Commons license, users will need to obtain permission from the license
holder to reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/

© The Author(s) 2017

Supplementary Information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)

Translational Psychiatry (2017), 1-8


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	The neural correlates of obsessive-compulsive disorder: a multimodal perspective
	Introduction
	Materials and methods
	Participants
	MRI protocol
	Volumetric analysis
	Data preprocessing of functional data

	Table 1 Socio-demographic and clinical characteristics of patients with OCD and HC
	Whole-brain connectome
	Statistical analysis

	Results
	Sample characteristics
	Volumetric analysis
	Whole-brain functional connectivity

	Figure 1 Overview of the methodological approach.
	Associations between symptom&#x02019;s severity and structural/functional findings
	Mediation effects between structural and functional findings

	Discussion
	Volumetric alterations in OCD patients
	Decreased functional connectivity in OCD patients

	Figure 2 Volumetric differences obtained using a voxel-based morphometry (VBM) analysis.
	Increased functional connectivity in OCD patients: extension of the typical CTSC model
	Integration of structural and functional findings

	Figure 3 Whole-brain networks with altered functional connectivity (FC) in obsessive-compulsive disorder (OCD) patients, using two primary thresholds: networks with significantly decreased FC (blue) in OCD patients at Plt0.0001 (a) and Plt0.001 (b) levels
	Figure 4 Mediation models.
	Strengths and limitations

	Conclusions
	PSM is supported by the FCT fellowship grant with the number PDE/BDE/113601�/�2015 from the PhD-iHES program; PM is funded by the Funda&#x000E7;&#x000E3;o Calouste Gulbenkian (Contract Grant Number: P-�139977; project &#x02018;Better mental health during 
	PSM is supported by the FCT fellowship grant with the number PDE/BDE/113601�/�2015 from the PhD-iHES program; PM is funded by the Funda&#x000E7;&#x000E3;o Calouste Gulbenkian (Contract Grant Number: P-�139977; project &#x02018;Better mental health during 
	ACKNOWLEDGEMENTS
	Disclaimer
	REFERENCES



 
    
       
          application/pdf
          
             
                The neural correlates of obsessive-compulsive disorder: a multimodal perspective
            
         
          
             
                Translational Psychiatry 7,  (2017). doi:10.1038/tp.2017.189
            
         
          
             
                P S Moreira
                P Marques
                C Soriano-Mas
                R Magalhães
                N Sousa
                J M Soares
                P Morgado
            
         
          doi:10.1038/tp.2017.189
          
             
                Nature Publishing Group
            
         
          
             
                © 2017 Nature Publishing Group
            
         
      
       
          
      
       
          © 2017 The Author(s)
          10.1038/tp.2017.189
          2158-3188
          7
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/tp.2017.189
            
         
      
       
          
          
          
             
                doi:10.1038/tp.2017.189
            
         
          
             
                tp 7,  (2017). doi:10.1038/tp.2017.189
            
         
          
          
      
       
       
          True
      
   




