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The word representation (as in “neural representation”), and many of its related terms,
such as to represent, representational and the like, play a central explanatory role in
neuroscience literature. For instance, in “place cell” literature, place cells are extensively
associated with their role in “the representation of space.” In spite of its extended use,
we still lack a clear, universal and widely accepted view on what it means for a nervous
system to represent something, on what makes a neural activity a representation, and
on what is re-presented. The lack of a theoretical foundation and definition of the notion
has not hindered actual research. My aim here is to identify how active scientists use
the notion of neural representation, and eventually to list a set of criteria, based on
actual use, that can help in distinguishing between genuine or non-genuine neural-
representation candidates. In order to attain this objective, I present first the results
of a survey of authors within two domains, place-cell and multivariate pattern analysis
(MVPA) research. Based on the authors’ replies, and on a review of neuroscientific
research, I outline a set of common properties that an account of neural representation
seems to require. I then apply these properties to assess the use of the notion in two
domains of the survey, place-cell and MVPA studies. I conclude by exploring a shift in
the notion of representation suggested by recent literature.

Keywords: hippocampus, MVPA, mental representation, neural representation, place-cell research,
representation

INTRODUCTION

The word “representation” (as in “neural representation”), and many of its related terms, such
as “to represent,” “representational” and the like, play a central explanatory role in neuroscience
literature. For instance, in “place cell” literature, place cells are extensively associated with their
role in “the representation of space.” Lately, the notion of representation has gained more visibility
since the development of new methods that try to translate brain mapping markers (such as
BOLD signals) into stimuli features, and vice versa. Indeed, the development of methods such as
multivariate pattern analysis (MVPA), which attempts to identify the contents of brain activity, has
put the notion of representation in the center of the debate.

All of these uses seem to be anchored upon a clear and accepted conception of “representation,”
at least in the domain of neuroscience. However, as has already been stated, “put briefly, though
there is a vast quantity of on-going research dependent on representations, and though there is
a vast quantity of ongoing research on representation, no scientist knows how representations
represent” (Dietrich, 2007, p. 1, italics in the original). Indeed, we still lack clear, universal and
widely accepted views on what it means for a nervous system to represent something, on what
makes a neural activity a representation, and on what is re-presented.
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A bibliographic search for the term “neural representation”
yields a wealth of papers using the term but very few addressing
the notion itself or examining its properties, implications, or
theoretical models. The few of them that do meet such criteria
are not recent (DeCharms and Zador, 2000; Markman and
Dietrich, 2000a,b; Edelman, 2003). It is true that if we look
for a related term, such as “neural code,” the literature indeed
provides theoretical treatments of the notion in abundance.
However, the notion of neural code concerns only a part of the
notion of neural representation: the way a neural representation
holds information. More importantly, it also assumes that neural
representations are based on handling information in a codified
manner. There are, however, other views of neural representation
that do not require a neural code, such as, for example, dynamic
systems approaches (Eggermont, 1998). Hence, focusing on the
neural code will beg the question that I intend to address here:
that is, examining the notion of neural representation itself.

The lack of a theoretical foundation and definition of the
notion does not seem to have any impact on actual research,
after all. As with many other terms, such as circuit, area, process,
system, or network, we need not define it every time we use it nor
give a specific reference for the term to be able to use it properly.
In fact, there seems to be a conventional wisdom about the notion
(as with all other basic widely used and not-defined terms) that
has allowed authors to use the term without worrying much about
details.

In this sense, whether or not it is useful to analyze the
notion of “neural representation” is a legitimate question, as
researchers use the term without having a working model of
what it corresponds to and yet still produce relevant scientific
work. However, in my opinion, the project is both legitimate
and useful. The notion of “neural representation” is central to
neuroscience, because, in the majority of studies, it corresponds
to “what is to be explained,” such as, characterizing what a
spike train corresponds to, and or “how we explain it,” by
using representations to explain, for instance, how animals
navigate efficiently. In short, the notion of neural representation
plays a central role in explanations of the neural mechanisms
underlying brain function. This means, among other things,
that assuming a particular notion of representation constrains
the questions one asks experimentally, the design of the
experiments themselves and the interpretation of the results.
If scientists can do without a clear idea about the notion, it
is not because it is absent from their work, but because they
implicitly assume a particular model of the notion. Hence, in
my opinion, exploring such implicit models of the notion, and
what they imply, is necessary and timely. To consider that
the brain can code for objective features of the environment
such as an Euclidean coordinate map of geographical space,
or to consider that the brain cannot code for objective
features of the environment point to quite divergent models
of brain function. The experimental questions, designs and
interpretations of assuming one or the other approach develop
completely different frameworks. Therefore, in my opinion, it
is critical to understand the model of “neural representation”
that neuroscientists assume, and to characterize what the model
implies empirically.

Such is my aim here: to carry out a model-dependent
analysis of “neural representation,” that is, an analysis whereby
the experimental findings in neural-representation studies are
supposed to fit the theoretical model derived from the authors’
replies, and the literature on the topic. Specifically, I first show
the results of a survey of authors of empirical studies in two
domains—place-cell and MVPA research. This allows me to
identify what such authors have in mind when they use the
notion. Based on their replies and on a review of their research,
I outline a set of common properties that an account of neural
representation seems to require. I then apply these properties on
the two domains of the survey: place-cell and MVPA studies.
I conclude with a speculative note based on recent theoretical
approaches.

SURVEY

I carried out an online survey of authors of studies in two
domains: place-cell research and MVPA research. These two
domains examine neural activity at very different levels of
analysis, using very different methodologies and techniques,
but sharing the notion of “neural representation” as a central
element of their research. On one hand, under the label of
“place-cell research,” I classify studies that focus on the firing
characteristics of hippocampal neurons in awake and free-
moving animals. These sorts of studies has provided data
associating environmental stimuli and behavior with neuronal
activity. The electrophysiological data capture a number of
different dynamics of activity and coherence among groups of
cells, including “place cells,” which have a preferential spatial
location and “grid cells,” which produce a preferential periodic
array of locations’ activity, as well as other neurons associated
with spatial activity, such as “head direction” or “border”
neurons. On the other hand, under the label “MVPA research,”
I include studies that use multivariate statistical tools, known
as classifiers, to characterize the encoding and decoding of
environmental features in BOLD-based activation patterns. Both
field studies share the aim of understanding how a brain makes
sense of the world based on a comprehensive model that
encompasses cellular, neural systems and behavioral data using
different methodologies and units of analysis.

Methods
Selection of Authors
I identified candidate studies by searching for peer-reviewed
publications published between 2010 and 2015 in Scopus. For
MVPA research, I used the following search string:

PUBYEAR > 2009 AND PUBYEAR < 2016 AND TITLE-
ABS-KEY (“fMRI”) AND TITLE-ABS-KEY (“represent∗”)
AND (TITLE-ABS-KEY (“MVPA”) OR TITLE-ABS-KEY
(“multivoxel”) OR TITLE-ABS-KEY (“multi-voxel”))

For place-cell research, I used the string:

PUBYEAR > 2009 AND PUBYEAR < 2016 AND TITLE-
ABS-KEY (“place cells”) AND TITLE-ABS-KEY (“represent∗”)
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The searches produced 231 papers for MVPA research and 250
for place-cell research. I then scanned each paper for the stem
“represent∗,” and selected only those studies that used the notion
“representation” in the general intended meaning of “standing
for” some feature or stimulus in the world, in contrast to when it
was used in the sense of “portraying,” such as, “Figure 1 represents
the position of the cell...”.

From the selected set of publications, I identified the
corresponding authors and removed authorship duplication,
resulting in 266 papers in total, corresponding to 132 MVPA
authors and 134 place-cell authors.

Questions
The online survey consisted of an email directed to the
corresponding author with the subject “Research Query” and the
following text:

∗ What is your intuitive definition of representation? (I am
especially interested in your intuitive approach, because I
believe it might reveal a richer picture of the notion than the
one offered by academic definitions)

∗ In your opinion, can representation be measured?
∗ If so, what would be the measure of representation (mutual

information, reliable correlations. . .)?
∗ What unit of analysis should be used (cell, local population of

cells, networks. . .)?
The answers of all the authors will be treated anonymously.
At most, if the survey is eventually published, I might include,
for illustrative purposes, some literal definitions, without
indicating its author.

I introduced the preference of intuitive definitions, because
the survey was intended to reveal the actual uses of the notion
and to explicitly avoid the temptation of relying on dictionary
definitions. Additionally, I decided to include some examples,
such as “mutual information” or “local population of cells,”
because in a pilot survey that I had carried out among colleagues
of mine who did not participate in the survey, I found that readers
had some doubts about what I was referring to as “measures of
representation” or “levels of analysis.”

The emails were sent from March 28, 2016, until April 8, 2016.
There were 102 responses (38.4%) that included replies to the
questions and 14 refusals (5.2%), mainly attributed to a lack of
time. There were 150 (56.3%) emails that went unanswered.

This study was carried out in accordance with the
recommendations of the Comissió d’Ètica en l’Experimentació
Animal i Humana (CEEAH) at the Universitat Autònoma de
Barcelona. Consent was obtained by email from the survey
participants.

MINIMAL DEFINITION

First, the authors’ replies reflected a general concurrence that
a general theory of neural representation was lacking. As one
author put it bluntly: “We don’t know how the brain represents.”
However, there are some basic aspects of the notion about which
there seemed to be some sort of agreement.

Regarding the question of definition, there likely were as many
definitions as there were authors’ replies; however, all but one of
the authors endorsed the idea that neural representation demands
two components: a neural component and an environmental
component. The neural component is usually referred as a
“pattern of neural activity” or simply “neural activity,” as well
as related terms such as “neural substrate,” “neural response,”
or “spike activity.” Only fifteen authors did not use a neural
term to refer to the internal component. I will return to this
point below, upon describing the different conditions for neural
representation. For the environmental component, there was a
wider variety of terms, among which we could determine three
main semantic domains. First, there were those authors who used
expressions such as “external world,” “outside world,” and “the
environment;” second, there were those authors who used terms
such as “stimulus,” “stimulus features” or “stimulus properties;”
and, finally, there were those authors who used terms such as
“behavior,” “state of the animal” or “dimension of experience,”
although in this case, the qualification of “environmental
component” is less clear, since it could include internal elements
such as, “hunger” or “pain,” for example.

Regarding the type of relationship that exists between neural
activity and the environmental component, the authors seemed
to recognize that “representing” involves a special relationship
between both components by which the neural component stands
for the environmental one. The exact wordings of the replies
could be further classified into four different, but probably not
incompatible, approaches. First, there are authors who used
verbs such as “point” or “designate.” These authors seemed
to embrace a neutral position in which the representational
relation would only be defined by the connection between the
neural component and the representee, leaving open the specifics
of the relation. Second, there were the authors who defended
the idea that to represent is for a neural activity to carry
information about the environmental feature that the neural
activity is supposed to represent. This description corresponds
to the model suggested in the few extant theoretical models
of neural representation: “a representation can be understood
as a signal that is used in a transformation of information”
(DeCharms and Zador, 2000). Note, however, that we have two
very different types of information that are used interchangeably
in neuroscience. On one hand, we have Shannon information,
which is a measure of the efficiency of the communication
channel. The brain is sometimes treated as a communication
channel, and information is used as measure of the statistical
dependency between a signal—say, a specific firing rate—and
certain stimuli properties. This is the usual use of the notion in
place-cell research. On the other hand, information can be used
in the sense of “semantic information”—that is, as the content of
what a neural representation is supposed to be causally, or at least
reliably, correlated. In contrast to Shannon information, semantic
information is not the measure of the statistical relationship
between the thing and the neural representation; rather, it is the
thing (e.g., a rabbit or a banana) that the representation is about.
This is the usual use in MVPA research. Both types of information
are not incompatible, but they correspond to different measures;
therefore, they should not be used without specifying what sort
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of information is assumed. Neither the replies of the authors nor
extant hypotheses about neural representation clarify which type
of information should be the one to take into consideration. We
will have to leave the issue unresolved for the moment.

Third, there were those authors who used verbs such as
“encode” or “code.” In doing so, they seemed to characterize
the representational relation as one involving some formal
correspondence between the constituents of the neural pattern
and the environmental feature. The neural codes that have been
proposed to date have been based on the frequency and timing
dimensions of a spike train. However, despite the large number
of studies and models that have studied the neural code, we still
do not know what code the brain uses and whether it is at the
basis of neural representations.

Finally, we have those authors who used verbs such as “map,”
“model,” “mirror,” “picture,” or “copy.” These authors seem
to characterize the representational relation as one based on
a rationale of isomorphism between neural representations
and their representees. In other words, representations would
be representations because they resemble their representee.
Isomorphism is a loose notion that suggests a structure-
preserving relation between the representation and the
representee, such as the relation by which a map resembles
a territory because the map holds a spatial resemblance
with the territory. Among others, the possible topographical
representations of space in the hippocampus, the results of
mental rotation experiments and MVPA mind-reading studies
based on similarity measures have all suggested that neural
representations might implement certain structure-preserving
relations with their respective representees. The problem with
isomorphism, however, is that it can be arbitrarily applied in so
many ways that it can ultimately undermine its explanatory role.
The fact is that we can potentially establish arbitrary mappings
between any two patterns if we are patient enough when looking
for a suitable isomorphism (Putnam, 1988). Therefore, even if
the authors using this set of terms can be grouped together, one
cannot be sure whether the sort of isomorphism they have in
mind is equivalent.

The four semantic domains that I have proposed to distinguish
among the authors’ replies have to be taken with a pinch of salt. It
would indeed be misleading to take the use of the terms “encode,”
“carry information,” “map,” as absolute markers of a particular
theory. Moreover, as has already been noted, there are still no
reference theories against which to contrast the use of these terms;
hence, we cannot be sure whether the authors were truly implying
what I have suggested in my summaries. More importantly, the
four different approaches are not, in principle, incompatible with
each other; consequently, they could eventually be subsumed into
a common model. Moreover, I believe we can provide a minimal
definition that could be supported by the majority of the authors,
namely:

A neural representation is a pattern of neural activity that stands for
some environmental feature in the internal workings of the brain.

Even if this definition reliably characterizes a minimal shared
conception of neural representation among active researchers,
it still holds true that authors use the notion regardless of not

having any theory of neural representation available. However,
as written above, this has not been a hindrance. In fact,
neuroscientists overcome the lack of a theoretical framework
by a number of implicit or explicit assumptions about how to
characterize instances of neural representations. This has allowed
neuroscientists to yield a large and homogeneous corpus of
empirical studies, regardless of the domain of study.

Is it possible to extract these assumptions from the survey
and from their actual research? I think that the answer is in
the affirmative, and in what follows, I will present the set of
properties that can be seen to configure common criteria for
building empirical accounts of neural representation. For reasons
of clarity, I will address these properties within the three main
components of any account of neural representation: (a) the
pattern of neural activity; (b) the environmental representee; and
(c) the association between the two. I will address each one in
turn, and I will then use them to assess the two domains of focus
in this paper: MVPA and place-cell research.

CRITERIA FOR NEURAL ACTIVITY

As I indicated above, the most common idea among authors
was that neural representation corresponds to some pattern of
neural activity. Nevertheless, the authors seemed very flexible
and pragmatic in accepting what type of neural activity might
underlie a certain neural representation. For the unit of analysis,
only one author considered that the notion of representation
belongs exclusively to the conscious level, whereas the rest
adopted a pragmatic and comprehensive approach addressing
how the attribution of representational properties is a contextual
criteria that depends on the feature or stimulus to be represented:
different features are represented in different levels of analysis,
from cells to networks. Among the different replies, such
expressions as the following were common: “any level of analysis
can work (cells, networks, behavior),” “all analysis levels of the
organization of the nervous system can be considered pertinent,”
“the unit of analysis is not fixed, functional roles can be attributed
at any descriptive level,” “representations can occur in single cells,
small networks, and across the entire brain,” and “the unit of
analysis can again be anything, as long as is clear that any claims
are also made on the level of analysis.”

In contrast, with the flexibility found relative to the type
of neural activity considered to reflect neural representation,
the authors and extant literature have been quite strict in
the operational and formal features that any candidate should
exhibit. I have summarized the features that a pattern of neural
activity must exhibit to be endorsed as a neural representation in
the following three conditions:

(i) A pattern of neural activity must be well-formed.
(ii) A pattern of neural activity must be self-contained.

(iii) A pattern of neural activity must be neurally sound.

The first condition required of patterns of neural activity is
for them to be “well-formed.” I have borrowed the notion of
“well-formedness” from the domain of linguistics. In linguistics, a
well-formed sentence is one that is judged to be correct according
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to the set of rules and constraints of the grammar under scrutiny.
In transferring the term to the domain of neural representation,
the idea is that the representational competence should be based
on a specific “grammar” that explains how constituent parts
must be formed, as well as what rules and constraints should be
followed to build each particular pattern of neural activity. More
importantly, the grammar also explains how a particular pattern,
based on the combination of the basic features of the neural
activity, relates to specific features of a particular representee.
For instance, in the case of place-cell research, the grammar of
the representational roles is based on such features as timing
(e.g., latency and duration) or spike rate. Note, however, that at
present, the grammars suggested for place cells or MVPA patterns
are merely hypotheses, because we still do not know the codes
that are actually used by the brain. In any event, extant grammars
are sufficient to systematically identify a specific pattern of neural
activity as a possible neural representation and to distinguish it
from other neural activities that are considered—for instance,
noise.

Regarding the second condition, by “self-containment,” I
mean the property of being able to fulfill the representational
role regardless of whether the representee is present. The
self-containment condition is a fundamental property for
neural representation. Classically, it has been assumed in all
representational models of cognition (Johnson-Laird, 1983;
Pylyshyn, 1984; Pinker, 2004), in more modern approaches
to neural representation (Wilson, 2002; Grush, 2004), and
even in discussions of the representational capabilities of the
hippocampus (Wamsley and Stickgold, 2010; Mayford and
Reijmers, 2016). The fact is that without self-containment we
cannot properly talk about representation. As one author phrased
it, “We think of neural representations as a pattern of neural
activity that allows a subject to re-experience the original stimulus
even when it is not physically present,” whereas another reply
maintained that “the same pattern of activity can then be used for
planning or retrieval of memory about the previous experience.”
Indeed, a basic role of a representation is precisely to substitute
the representee in the internal workings of the brain and allow
thinking, planning or imagining about the representee without
the representee being present. The self-containment of neural
representation requires that the pattern of neural activity be
capable, unto itself, of substituting the content, causal roles
and inferential processes of the representee in the internal
workings of the brain. The assessment of self-containment is
not straightforward, because we need an independent assessment
that the neural representation works as a substitute of the
environmental element, and this might be outside the scope
of present neuroscientific methodology. However, it can be
indirectly assessed by means of the very same methodology
employed to identify neural activity. For example, one can assess
such an assumption by activating the particular representation
under scrutiny, without the representee being present, and prove
that it contributes to inferential processes in the same way as
would occur if the representee were present.

Finally, we have the neurally sound condition. By “neurally
sound,” I understand here that any candidate for neural
representation must be based on a sound account of how

the measure employed (BOLD signal, spike activity, etc.) is a
correlate of the representational activity. This is an implicitly held
assumption that can be derived from the authors’ replies or extant
neuroscience. For example, as one author put it: “We obviously
need first to understand how our variables correspond to the
neural activity that underlies a particular representation.” More
specifically, as another author maintained: “What we call neural
representation based on our measurement techniques may have
little or nothing to do with how relevant information is actually
being processed in the brain.” For one thing, the development of
new techniques and methods of revealing brain activity results
in a number of measures that are correlated to neuronal activity.
However, the connection of these correlations to the actual
neural activity that underlies the suggested representation is in
some cases still a matter of discussion. The problem is that
without a sound account, research runs the risk of losing sight
of what the variables really measure. Therefore, the need for
a justifiable rationale of the neural basis of the approach is
especially necessary.

CRITERIA FOR REPRESENTEES

By “representee,” authors tend to refer to some element of the
environment of the individual. Common to what all authors
included in such a category is some mention of stimuli, in general,
or of particular features or properties of relevant stimuli. The
fact is that there is no special choice in the category or scale
for a representee; it can be an object, the slope of a line, a
behavior, a place, etc. The sole inclusion criteria that authors
seemed to support for representees are that the candidate must
be relevant for the studied organism and that the organism
must be in possession of mechanisms that can detect such a
representee. Categories and scales notwithstanding, the authors’
replies and extant research have suggested that there are certain
requirements that the representee has to satisfy to be accepted as a
suitable candidate. I have summarized these requirements in the
following properties:

(i) Representees must be measurable magnitudes.
(ii) Representees must be self-subsistent.

(iii) Representees must be meaningful for the organism in
question.

Let us address first the measurable requirement, which
states that the representee must be some type of physical
magnitude present in the environment (DeCharms and Zador,
2000). Extant research and authors’ replies recognize that
magnitudes can correspond to a wide variety of environmental
phenomena at different categories and scales, including objects,
behaviors, places or properties, with the only condition that they
be quantifiable by measurement. This is particularly relevant
because neuroscientists often focus their study on features that
are not physically quantifiable magnitudes themselves but are
supervenient on physical quantities. For instance, color is a
feature of objects that is usually studied as the content of
representations; however, what one perceives as color is not a
quantifiable property in itself but the outcome of the processing
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of different physical properties of the object, as well as of
other elements. Color perception depends on the source of light
illuminating the object, the spectrally selective reflectance of that
light by the object, the surface of the object, the illuminating
variability in the scene, and certain contingencies in the neural
activity that mediates visual experience. In this case, even if
we will consider “color” as the feature of study, the physical
magnitude that will have to be considered the representee is the
set of physical magnitudes of objects that can be used to represent
color perception. Once a first order of representees is established,
even then it would only be possible to talk about the neural
representation of “color” if the proposal were also to explain how
first-order neural representations are processed to yield a neural
activity that could correspond to the neural representation of
color. Another example would be subjective or abstract variables,
such as beauty. Likewise, with color, abstract or subjective
variables would have to be transformed into objective measurable
magnitudes to be characterized as a representee. Beauty, for
example, could be transformed into a set of operational properties
(e.g., symmetry) that could be quantified.

The self-subsistence condition for representees is the
symmetric condition of the self-containment of neural
representation. Indeed, if a representation is a relation between
two components, these two components must be independent;
otherwise we would not be able to establish a relation. Therefore,
we must be able to detach and characterize the representee
independently from the neural activity. As one author put
it, “the thing represented must be a distinct element of the
world.” This is essential for representations. Representations
are conceived as the building blocks of knowledge because they
provide an explanation of how we know a piece of the world—by
representing it—but they also provide an explanation of how we
do not know a piece of the world—by not representing it—as
well as an explanation of how we wrongly believe to know a
piece of the world—by misrepresenting it. Indeed, the nature
of the representational function implies that the relation can
malfunction: the organism can misrepresent something in the
world as something else. Hence, if the representation is supposed
to truthfully represent some component of the world, we, as
independent observers, must be capable of saying whether the
component of the world (a fruit, a form or a place) is there
or not. We must be able to say, “there is a rabbit,” “there is
no rabbit,” or “there is a fox, as a basis for asserting,” “the
organism has correctly represented the rabbit as a rabbit” or “the
organism has misrepresented the fox as a rabbit.” Therefore, the
representee must be autonomously characterizable; otherwise,
the representee cannot be represented at all.

Finally, we have the meaningful requirement. The issue
of meaningfulness is widely accepted as critical and has
been subjected to very extensive analyses. In general, by
“meaningful,” authors seem to suggest that the representee has
to have a certain biological value (adaptive, ecological, etc.) or
individual sense for the organism. For instance, some replies
concurred with the idea that representees can only correspond
to “meaningful dimensions of experience (e.g., location),” while
another maintained that “whether or not (. . .) a ‘representation’
[in the sense of representee] has any relevance to the operation

of that brain requires further empirical enquiry [than simply
attesting the association]. Some ‘representations’ will be merely
epiphenomenal, indicating something to the experimenter that
has no direct relationship to the operation of the brain.” Hence,
the need for this condition comes from the fact that the
environment offers an open set of ways of being characterized,
and only a determinate sub-set of those are the ones that
organisms use as sources of knowledge. These elements are
therefore the ones that are supposed to be “represented.” The
problem is that the meaningfulness of the environment for
a particular organism is not a given. If the scientist selects
some piece of the environment because she simply believes it is
relevant, without independent evidence apart from an educated
guess, she runs the risk of establishing a spurious correlation.
As I indicated in the case of the neurally sound condition, the
versatility of the new techniques and methods of correlation
between brain activity and environmental magnitudes makes
it relatively easy to find correlations for reasonable ways of
segmenting the environment, regardless of its meaningfulness for
the organism under study. For example, assume that a scientist
believes that “things that weigh less than 125 g” is a possible
representee. Moreover, assume that she finds a neural component
that reliably and solely correlates with “things that weigh less
than 125 g” and that such a neural component complies with the
well-formed, neurally sound and self-containment requirements.
Then, if we do not introduce the meaningful condition, she will
be licensed to consider it to be a good candidate for representee.
Of course, it could certainly be that “things that weigh less
than 125 g” would be a meaningful representee, but the point
here is that the choice of the representee must be based on as
much independently based evidence as possible. The choice of a
representee should take into account its biological value to the
organism for that particular type of situation or function, the
sensory and cognitive endowment of the particular organism, and
the developmental stage of the organism, as well as other factors.
In very simple organisms, meaningfulness can be associated with
feeding, protective or reproductive elements. Obviously, as we
get to more complex organisms, the notion of meaningfulness
becomes more loose and, therefore, more difficult to assess. In
general, though, we could say that the piece of the environment
that has meaning must be inferred from the way the organism
responds to such an element, that is, attesting that it has causal
consequences in the behavior of the individual. In contrast, if
a particular piece of the environment is singled out but has
no impact on the behavior of the individual, then it would be
advisable to avoid it.

CRITERIA FOR THE
REPRESENTATIONAL RELATION

Any account of neural representation is based on the relation
between the patterns of neural activity and specific representees.
It is the representational relationship that defines an account
of representation. As we have seen, though, we still lack
a general theory of neural representation and, logically, of
the representational connection. Therefore, it would also
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seem difficult to identify how specific empirical accounts of
representational associations should look. However, as we have
seen, neuroscientists seem to overlook this difficulty by assuming
that the representational relationship exists and that their task
is to identify a possible relation between two components,
regardless of the nature of the relation in question.

In general, the different representational approaches (MVPA
and place cell research) use statistical measures to identify
relations between neural activity and environmental magnitudes.
Indeed, this type of statistical correlation is the basis for nearly all
uses of representation in neuroscience. Furthermore, according
to the survey responses, the authors were very flexible with regard
to the specific statistical measures used. The survey and extant
literature seem to show a pragmatic flexibility regarding the ways
of identifying and characterizing the representational association.
Generally, any measure that identifies a correlation between a
particular representee and a particular pattern of neural activity is
acceptable, including mutual information, similarity analysis and
the like. Common among the replies were expressions such as the
following: “Any measure that determines the degree of mutual
information can be used” or “representation can be measured
in many ways, including both linear correlation and information
theory measures.”

The only condition that the survey and extant literature have
seemed to ask that a representational correlation show is for
it to be reliable. I understand this term “reliable” to refer to
the methodological condition of showing that the correlation
be consistent and replicable. This requires that the approach
prove that, under the same method in different circumstances
and under different methods in the same circumstances, the
correlations will identify the same patterns of neural activity for
the very same representees (Yang et al., 2012). This is especially
important for various reasons. First, it is important to discard
spurious correlations, owing to the evanescence common to
patterns of neural activity. Correlation methods can indeed find
links between patterns of neural activity and representees that
are contingent to the specific conditions of the measure. Thus, it
could be that, 2 h later or in some other moment, the correlation
would not hold. For example, neural representations can change
rapidly due to a number of circumstances, such as training or
denervation (Froemke et al., 2007; David et al., 2012; Wymbs
and Grafton, 2015). On the other hand, it is important to accept
only genuine correlations. If the representation is assumed to
be about a representee, then the approach must also show that
its candidate for representee correlates with the neural activity
under different tokens of the same representee. Therefore, to be
considered a genuine correlation between a representee and a
neural activity, it must hold independent of the situation.

The previous set of criteria subsumes, in my opinion, the
commonalities of any account of neural representation shared by
both the authors and extant research. It is true that, as discussed
previously, there are as many versions of neural representation
as there are authors addressing this issue, but my impression is
that the proposal I present herein should not dissatisfy many
authors. Moreover, I believe that it will be helpful in providing a
benchmark against which to assess specific experimental studies
that claim to identify and characterize neural representations,

and it will also be helpful in identifying how to improve
those characterizations in those cases that do not comply with
the requirements. I will provide an example of how such an
assessment would look when applied to the set of conditions
in the two research domains of the survey—that is: place-cell
research and MVPA studies. They also provide good example
for withstanding scrutiny relative to the definition that I have
presented above.

PROBING MVPA’S ASSUMPTIONS

Recent years have seen the development of a new set of techniques
of analyzing neuroimaging data. Specifically, multivariate pattern
analysis (MVPA) tools have been used to map stimuli features
into BOLD signals across the brain and vice versa. The ambitious
scope of the approach has led authors to use the label of “neural
mind reading” in describing such studies. A neural reading
MVPA analysis usually involves a three-space model: the stimuli
input information, the feature space, and the BOLD signal.
A visual stimulus, for instance, is characterized along axes that
correspond to the luminance of each pixel, and a natural scene
is represented by a single point in the input space. In such
a feature space, each axis corresponds to a single feature, and
each stimulus is represented by one point in that feature space.
Finally, the activity space represents the activation of all the voxels
within an ROI (region of interest): the axes correspond to the
individual voxels, and ROI’s activation pattern is identified by a
unique point in the activity space. In general, the transformation
from the input space into the feature space is a non-linear
mapping, whereas the transformation from the feature space to
the particular BOLD activity, or vice versa, is a linear mapping.
In this later case, the mapping involves training a linear classifier
that allows mapping multi-voxel activation patterns onto specific
stimulus labels.

The MVPA approach has already yielded impressive results,
but does MVPA withstand the scrutiny of our operational
definition?

Assessment of MVPA-Based Patterns of
Neural Activity
As stated above, the conditions for patterns of neural activity
to be considered neural representation are soundness, well-
formedness, and self-containment. For well-formedness, MVPA
research seems to satisfy the condition. It is true that, as I
said above, the grammar defining the particularities of well-
formedness should be derived from the theory of neural
representation supported by the specific approach (in this case,
MVPA). However, as stated previously, we still lack such a theory.
MVPA has assumed the idea that even if we do not know how
representations work, we know they exist. Hence, the task is to
reveal them, and MVPA does this in a systematic and formal way
that can be considered to be a grammar of sorts by prescribing
what the basic constituents of a pattern of neural activity should
be and how such constituents are combined to build a particular
pattern. Specifically, MVPA departs from the BOLD activity of
single voxels by creating multivoxel patterns of activity, and these
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patterns are then treated as points in a multidimensional space
with as many dimensions as voxels there are in the analysis. If we
have only two voxels, then a particular pattern can be conceived
as a line on a plane based on each voxel’s activity. For more
than two voxels, the plane reflects higher-dimensional space.
Then, each multivoxel BOLD activity can be transformed in a
multidimensional pattern, and all such patterns can be classified
in, for example, two different conditions. It is true there are
different versions of the grammar employed that, among other
things, depends on the type of classifiers—that is, the algorithms
classifying the data into conditions. In any event, each version
provides its own grammar, with specific rules and constraints,
therefore making it possible to assess the well-formedness of its
neural representations. Therefore, MVPA can be said to comply
with the well-formedness condition in what concerns the form of
the pattern of neural activity, awaiting an understanding of how
such a form is the outcome of the representational encoding.

Next, we address the condition of self-containment, that is,
the condition that assumes that the pattern should comply with
its role regardless of the representee being there. Despite the
dearth of studies, there are nevertheless a few that have directly
probed this condition. Specifically, the authors of these studies
have applied MVPA methods to decode imagined movements
(Filimon et al., 2015) and have therefore demonstrated that
MVPA patterns are activated in the representee’s absence that
overlapping patterns that are activated when the movement
is executed. Therefore, even if asserting that MVPA complies
with the self-containment condition (for example, proving the
contribution to inferential processes) remains relegated to the
future, preliminary evidence does suggest that compliance is
plausible.

Finally, regarding the neurally sound condition, MVPA faces
more challenges than it did to meet the previous two conditions.
First, the underlying neural characterization of the BOLD signal
is still a matter for discussion. In principle, the magnitude of
the BOLD signal is associated with the magnitude of underlying
neural activation. This has led to the widespread consideration
that there is a linear association between BOLD response
and the implication of specific neural structures in cognitive
processing. However, the BOLD signal actually measures blood
oxygenation, which is an indirect measure of neural activity, and
the relationship between neural function and the BOLD signal
has yet to be characterized in detail. Many aspects of neural
activity (e.g., synaptic activity, spiking activity, glial metabolic
activity) contribute to the BOLD signal, and the functional
implication of the specific neural activity underlying a BOLD
signal is not comprehensively known. Therefore, much more
precise information about the relationship between the BOLD
signal, neural activity and cognitive processing is needed before
we can rely on BOLD-data analysis to understand the neural
activity being tapped when using MVPA techniques. Likewise,
it is still unclear how changes in BOLD signals across time are
to be correlated with neural activity. In this sense, the temporal
and spatial resolution of the BOLD signal is not adapted to
neuronal activity. In the window of time that a BOLD signal is
characterized, many relevant neural activities implicating many
different neural representations might have taken place without

permitting detection by MVPA classifiers. Furthermore, we still
do not know at what level (i.e., neuronal, neuronal group,
systems) the information relevant to the task is processed, and
it could be the case that the measured signal is irrelevant
for probing the informational level (Rolls and Treves, 2011).
Moreover, it could be that in a single voxel, we could have
different levels of informational process and exchange, such that
MVPA may only be sensitive to one of them. As Haynes frames
it, “Neither the information contained in single voxels nor in
ensembles of voxels can be directly related to the information
encoded in single neurons. The sampling of neural activity by
fMRI voxels is highly indirect and involves the magnetization
level of blood as a marker of neural activity, a pooling of many
thousand neurons per voxel, and a sluggish and non-linear
hemodynamic response” (Haynes, 2015, p. 262). Thus, I believe
that any interpretation of MVPA results has to take into account
this uncertainty and avoid strong assumptions about its neural
import. As Serences and Saproo have written, “MVPA approaches
are an extremely powerful tool for determining if there is a
difference between activation patterns evoked by experimental
conditions. However, the reliance on a weighted pooling of
information across many voxels obscures information about
exactly how the pattern of underlying neural activity changes
as a function of task demands” (Serences and Saproo, 2012,
p. 440). The fact remains that MVPA consists of a set of powerful
mathematical tools that identify subtle patterns of correlation
between huge matrices of numbers. Such an approach is so
versatile and productive that one runs the risk of losing sight of
what the numbers really measure. Therefore, for the moment, we
must say that the jury is still out regarding the neural soundness
of the MVPA approach.

Assessing MVPA-Based Representees
Let us address now the conditions for sanctioning the way
MVPA characterizes representee candidates. For the measurable
and self-subsistence conditions, MVPA can be said to comply
with both conditions for representees. MVPA methods require
that representees be measurable variables that are characterized
independently as stimuli features, properties or categories.
A simple representee can be, for example, a category, such
as “animate objects,” which are to be distinguished from
another category, such as “inanimate objects.” It is true that
the categorization is made by the scientist, but there are also
examples where the stimulus is transformed into a set of physical
dimensions. For example, any visual stimulus whatsoever—say, a
landscape—may be selected and then transformed into a feature
space where the scene is characterized by different dimensions
that correspond to the luminance of each pixel, such that the
scene is ultimately represented by a single point in the input
space. In such a feature space, each axis corresponds to a single
feature, and each stimulus is represented by one point in that
feature space. In sum, MVPA fully complies with the measurable
and self-subsistence conditions.

Regarding the meaningful condition, MVPA faces some
challenges. For one thing, MVPA is based on a priori hypotheses
about the stimuli features that might be represented. Indeed,
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in the great majority of studies, an MVPA results from a pre-
selection by the scientist of the candidate representees, such as
when the scientist studies the distinction between two categories
(Borst and Theunissen, 1999). Classifiers are tools that classify
what the scientist tells them to classify—that is, the scientist has
already made the decision on what must be classified (which
features to select), and how such parameters vary in the chosen
stimulus ensemble can lead to different results. Therefore, the
representee is not a given, but a chosen. Even in the case where
the stimuli are transformed into a set of dimensions, such as
pixel luminance, the scenes to be classified are chosen by the
scientist. This has to be taken into account, because classifiers are
so powerful that they are capable of finding correlations between
nearly any pattern and any feature. Hence, classifiers run the
risk of mapping a set of features that have no representational
relevance. Scientists can easily choose an arbitrary set (for
example, “things that weigh less than 125 g”) and find reliable
patterns of activation that correlate with any such features. The
risk of inferring spurious representees has been discussed by
some authors (Logothetis, 2008; Yang et al., 2012), and the
suggestion to fulfill the condition of meaningfulness is to provide
as much independent evidence supporting the choice as possible.
Therefore, it will be very important for complying with this
condition to assure beforehand what is meaningful vs. what is
not meaningful for a certain organism and then to confirm via
assessment that the MVPA methods do discriminate between
the two, with significant correlations for the former but not for
the latter. At this moment, this is not a general methodological
provision in MVPA studies, although it would be quite easy
to incorporate by showing that within a set of meaningful and
non-meaningful representees, the applied MVPA solely identified
meaningful correlations.

Assessing MVPA-Based Correlations
Multivariate pattern analysis has many available types of
algorithms to establish the correlation between patterns of neural
activity and environmental features. The most common are those
known as the linear support vector machine (SVM), but there
are also others based on nearest neighbor, Bayesian analysis,
linear discriminant analysis, and multinomial logistic regression,
among others. As I indicated above, the authors seemed to be very
flexible in accepting any technique shown to enjoy suitable and
robust technical performance. However, as some authors have
indicated, it is one thing for a method to technically perform; it
is another to assert the scientific relevance of its findings. As one
interviewed scientist phrased it, “It is not enough to show that
a particular algorithm finds a correlation between a candidate
representation and the represented object; we need independent
evidence to sanction such a correlation as genuine.” In the case
of MVPA, the challenge is to show that the actual algorithm
employed is irrelevant with regard to the findings—i.e., that
the MVPA approach is, in general, reliable enough, regardless
of particular algorithms, to find genuine correlations between a
particular pattern of neural activity and its representee. This issue
of reliability has two sides.

On one hand, “reliable” means that different MVPA
algorithms should yield the same results with the same datasets;

otherwise, the pattern of neural activity corresponding to a
particular neural representation would be algorithm-dependent.
In such a case, we would have as many patterns as there were
algorithms available, which would undermine the reliability of
MVPA as a tool to identify neural representations. On the other
hand, “reliable” means that MVPA classifiers should identify
the same patterns of neural activity in all the instances of
its representee; otherwise, MVPA would be context-dependent,
and that would imply that the findings could not be reliably
interpreted as a marker of particular representee but instead
as a marker of the representee-in-context. Regarding the
former aspect of reliability, technique-dependence cannot be
characterized as black and white. The choice of a particular
algorithm depends on a number of factors, beginning with the
question we want to answer (e.g., classification or encoding),
particularities of the task (e.g., the number of features involved),
and the protocol (e.g., high or low number of repetitions), as well
as upon many other factors. Therefore, it might not be useful
to compare two classifiers in the same circumstances. However,
regardless of this caveat, there are already some studies that have
begun assessing how different classifiers identify similar patterns
of neural activity for particular representees (Mur et al., 2009;
Pereira and Botvinick, 2011), with promising results.

Regarding the question of context-dependence, some authors
have made observations leading them to argue that MVPA
findings are indeed context-dependent. However, this is an
empirical question that can only be resolved with further studies.
Moreover, it is conceivable that careful experimental designs can
provide evidence of context-independent MVPA methods, as
some have already shown (Chang et al., 2009).

PROBING PLACE-CELL EMPIRICAL
ACCOUNTS

After decades of research and numerous studies, place-cell
research has demonstrated the existence of some type of
association between information in the environment and the
rate and/or temporal spike activity of neurons. When an animal
moves through the environment, certain neurons preferentially
respond upon passing through a specific location. In the specific
case of place cells, networks of neurons in the hippocampus
show preferential activity in particular spatial locations, or
place fields. Such information is so precise that scientists can
accurately estimate the rat’s position in space by observing the
rate coded output of just 50 simultaneously recorded place
cells. Numerous studies have confirmed and extended these
observations (for reviews, see Moser et al., 2015; Schiller et al.,
2015). Other developments of place-cell research include the
discovery of what is now known as “grid cells” (medial entorhinal
neurons that fire when rats occupy a spatially periodic array of
locations), hippocampal neurons that process head direction and
border cells, as well as other types of cells with spatial firing
characteristics.

The success stories of these discoveries suggest that the
hippocampus supports navigation via some sort of internal
representation of space, as O’Keefe and Nadel (1978) originally
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suggested. Can this representational assumption for place-
cell research withstand the previous criteria for neural
representation?

Assessment of Place-Cell Based
Patterns of Neural Activity
Regarding the well-formedness requirement, place-cell research
faces, as in the MVPA case, the challenge of lacking a theory
of neural representation. However, as we have also seen in the
case of MVPA, place-cell research has overcome this handicap
by assuming that representations exist and that they can be
identified through its methodology. Moreover, the methodology
is so well established and formalized that it can be considered
a grammar, as I have described above: it prescribes what the
basic constituents of a pattern of neural activity should be and
how such constituents are combined to build a particular pattern.
In this sense, place-cell research apparently provides a strong
and well-established characterization of the features of spike
activity that the brain seems to use as an encoding scheme. On
one hand, we have the neuronal firing rate, that is, the average
number of spikes per unit time that provides a rate code; on the
other hand, we have the temporal code, which is based on the
precise timing of single spikes. However, the fact remains that
the jury is still out on the issue of whether the brain uses rate
coding, temporal coding or a combination of both (Masuda and
Aihara, 2007). Moreover, discussions even address the possibility
that there may not be a difference between the temporal and
rate codes (Shinomoto and Koyama, 2007). Furthermore, it is
not even clear how rate/temporal code is associated with a
certain memory/representation. For one thing, reactivating the
neurons of a hippocampal ensemble associated with a context
can be sufficient to trigger the retrieval of a memory, indicating
that it is not necessary to activate the rate/temporal firing
patterns originally associated with the context (Smith and Bulkin,
2014). Therefore, we can say that place-cell research offers the
fundamentals of a neural-code grammar, even if it is still a work
in progress.

Regarding the condition of self-containment, I believe
that place-cell research faces a real challenge. Most place-cell
representational assumptions are based on patterns of neural that
are active only when the supposed representee is present—that is,
when animals are in the place that is supposed to be represented.
In fact, place-cell representations seem to represent only current
location. There are indications, though, that sequences of spatial
firing during exploration were shown to be replayed during
rest or sleep subsequent to the behavioral experience, as if
those patterns were stored in the hippocampal network during
exploration and retrieved later in offline mode (Jadhav et al.,
2012; Jahnke et al., 2015; Ambrose et al., 2016; Deng et al., 2016;
Rothschild et al., 2016). It is thus beginning to be reasonable to
think that neural representations for places can be activated when
necessary. In sum, although the condition of self-containment
has not been fully met by place-cell research, there are indications
that it could eventually be complied with.

Finally, place-cell can be said to represent a neurally sound
approach. The recording of electro-physiological activity is one

of the oldest and most widely used techniques in neuroscience.
Using microelectrodes close to the cell surface, researchers have
been able to record the voltage changes outside the cell, acquiring
information about the number of neuronal action potentials,
or spikes, generated in a unit of time. This provides direct
evidence of neuronal activity; it is therefore difficult to imagine
an approach with a stronger foundation. However, we must not
forget that, as with MVPA, place-cell research lacks a general
theory of neural representation; thus, we still do not know
in virtue of what a particular pattern of neural activity is the
representation of a particular environmental feature. So, at most,
what we can say is that the approach is neurally justified, although
it is still awaiting to ground its basics in a theory of neural
representation.

Assessing Place-Cells’ Representees
As for representees, place-cell research seems to comply fully
with all three criteria. Spatial location is a measurable and
self-subsistent magnitude, and it is also a fundamental and
meaningful aspect of living beings.

However, this compliance may only be a misperception. It
has been well-known from the very beginning of hippocampal
research that place cells are sensitive to non-spatial cues.
The fact is that place cells have been found to be sensitive
to many non-spatial features (Wood et al., 1999), including
odors (Komorowski et al., 2009), tactile inputs (Itskov et al.,
2011), tones (Itskov et al., 2012), timing, (Manns et al., 2007;
MacDonald et al., 2011; Kraus et al., 2013; Wikenheiser and
Redish, 2015; Ranganath and Hsieh, 2016), rewards (Markus
et al., 1995; Wikenheiser and Redish, 2011), expectations
(Skaggs and Mcnaughton, 1998), goals (Breese et al., 1989),
and other motivational states of the individual (Kennedy and
Shapiro, 2009), as well as to higher-order features such as
trajectories (Shapiro et al., 2006; Griffin and Hallock, 2013), task
contingencies, such as the strategy to solve a task (Eschenko and
Mizumori, 2007), and even the type of active/passive role played
by the individual (Terrazas et al., 2005).

Some authors have addressed how non-spatial sensitivity
could affect the spatial representational hypothesis of the
hippocampus, by appealing to second-order functions, such
as context, sequences or predictions. Since the beginning of
hippocampus research, it was quite clear that hippocampal cells
were sensitive to context (Eichenbaum et al., 2012), understood
very generally as a set of background elements in the environment
that determine the meaning of a particular situation. For example,
place cells change their activity patterns in response to changes
in context, regardless of the activity’s occurring in the same
location (for a review, see Smith and Bulkin, 2014). According
to a contextual processing interpretation, spatial cues, although
critical, would only be one component among several that define
context. Another explanation, not necessarily incompatible,
is that the hippocampus might use spatial and non-spatial
information to encode sequences of events. Computational
models have suggested (Rolls and Kesner, 2006), for example,
that place cells could be a time-point marker in a sequence.
Experimental evidence supports this hypothesis, showing that
place-cell activity during navigation activity is spontaneously
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emitted independent of immediate spatial cues as steps in a
sequence (Johnson and Redish, 2007). Based on a similar sort of
evidence, there are authors who suggest that place cell activity
would play a central role in prediction (Buckner, 2010; Lisman
and Redish, 2011). For instance, the fact that place cells do not
simply fire based on inputs that specify a single location but rather
are triggered by inputs to earlier locations that anticipate them
can be understood as an example of sequential processing as well
as a way of predicting future events based on past events (Diba
and Buzsáki, 2007; Pastalkova et al., 2008; Pfeiffer and Foster,
2013, 2015a,b). This idea fosters the intuitive notion that the role
of memory has an adaptive function and is related to the present
and future of the animal (Suddendorf and Corballis, 2007), rather
having the function of preserving the past. Schacter and Addis
(2007) write, “Simulation of future episodes may require a system
that can draw on the past in a manner that flexibly extracts and
recombines elements of previous experiences—a constructive
rather than a reproductive system” (Schacter and Addis, 2007,
p. 774).

The bottom line is that any of these new interpretations
of hippocampal function involve a challenge to the notion of
representee. Neither context, nor sequences nor prediction can
be seen to be a self-subsistent element of the environment.
Rather, they are constructs that do not exist independent of the
specific interaction of the animal with the environment in the
precise moment of the interaction. Moreover, they do not seem
to be elements to be represented—they are not informational
states that map, encode or refer—but instead are constructs
that address the situation. All of this challenges the notion of
neural representation in itself, upon which I will elaborate below.
For the moment, we should conclude that converging evidence
from place-cell research suggests non-compliance with the self-
subsistence condition for representees.

Assessing Place-Cell Representational
Relations
Place-cell research is recognized as one of the best examples
of well-established correlation between an environmental
component, a spatial location, and a pattern of neural activity.
Indeed, place-cell researchers have systematically shown the
strong relationship between a certain pattern of spike activity
in some neurons and a specific location within the active
environment. In this sense, there exists no other scientific
domain wherein the representational relation between an activity
in the brain could be said to be more consistent and replicable,
that is, reliable.

DISCUSSION

Based on the results of the survey and the neuroscientific
literature, I have outlined here a set of conditions that researchers
seem to require for accounts of neural representation. For
patterns of neural activity, the conditions are neural soundness,
well-formedness, and self-containment. By “neurally sound,”
I posit that the proposed approach should have a justifiable
theoretical basis upon which to support the claim that the

variables measured by the approach (a BOLD signal and spike
train in the selected examples) correspond to the neural correlates
of a candidate representee. “Well-formedness,” in turn, refers to
the rules and constraints that should underlie the characterization
of patterns of neural activity. Finally, the “self-containment”
condition refers to the requirement that patterns of neural activity
should show the capacity to substitute the representee in the
internal workings of the brain, without the representee being
present. For representees, the proposal presented here suggests
that representational accounts should select only meaningful,
self-subsistent and measurable representees from the set of all
possible segmentations of the active environment. Finally, the
methods for establishing the relation between the representation
and the representee should be reliable—that is, correlations
should be context- and technique-independent.

I have used this set of conditions to assess extant MVPA
and place-cell research (see Table 1 for a summary of the
assessment). I have shown that MVPA satisfies, at least partially,
the conditions of well-formedness and self-containment for
the patterns of neural representation, while still failing to
fully meet the challenges of neural soundness. MVPA still
needs to prove, in turn, that it is discriminative enough in
relation to identifying only meaningful representees, and it also
must show that it is context- and technique-independent. We
have also seen that place-cell research does partially comply
with the neural soundness condition for patterns of neural
activity. It must also seek to meet the well-formedness condition
by establishing a grammar for the neural code, and it also
remains to be seen whether it will satisfy the self-containment
condition. Concerning the criteria for representees, place-cell
research seems to fully satisfy the measurable, meaningful
and self-subsistent conditions. Finally, place-cell methods of
establishing the relation between patterns of neural activity and
representees fully complies with the reliability criterion. We
can conclude that extant research on representations partially
satisfy the conditions for neural representations and that they
would only need more evidence, better neurophysiological
understanding, and specific neurobiological and conceptual
constraints.

A possible objection to the previous analysis may be the degree
to which it can be generalized, as I only apply the analysis to two

TABLE 1 | Criteria for neural representation and its compliance by research
domains.

Place-cell research MVPA

Neural activity criteria

Well-formedness In process Partially satisfied

Self-containment In process Partially satisfied

Neural soundness Partially satisfied In process

Representee’s criteria

Measurable Satisfied Satisfied

Self-subsistence Satisfied Satisfied

Meaningfulness Satisfied In process

Representational-relation’s criteria

Reliability Satisfied Satisfied
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research domains: place-cell and MVPA studies. While I cannot
prove my analysis can be generalized to all the domains where
neural representation is used, I believe that there are indications
that this could be the case. For one thing, I intentionally chose two
of the more methodologically and theoretically distant domains
in neuroscience, place-cell and MVPA, so as to examine the two
more distant uses of the notion of “neural representation.” Place-
cell settings function at the level of cell activity, while MVPA
focus on patterns of brain activity that encompass the whole
brain. Moreover, place-cell research associates the animal’s real
behavior with direct electrophysiological data; in contrast, MVPA
applies multivariate statistical tools to connect stimuli features
with indirect measures of brain activity. However, what place-
cell and MVPA research have in common is, namely, processing
environmental activity in order to carry out cognitive processes
that are connected to behavior, which is something that is shared
by many other domains in neuroscience, from animal behavior,
up to the more sophisticated cognitive processes of humans.
The fact is that the brain does what it does, regardless of the
different ways we have of studying it; hence, the explanation
of its function cannot be technique-dependent. The notion of
neural representation, even if analyzed in specific domains,
must possess general and shared properties that concern all
levels of analysis. Therefore, I believe the analysis presented
here can be generalized in the sense that it can be applied
to any domain where the notion of “neural representation” is
used.

Moreover, the analysis presented here has opened an
intriguing possibility that may have interesting consequences for
the notion itself. A careful analysis of place-cell multidimensional
sensitivity presents a serious challenge not only to the evaluation
of place-cell representees but also to the notion of neural
representation in general. Let me explain. During decades of
research, the simple representational model of place-cell studies
has been based on the assumption that the hippocampus
was involved in processing a spatial map of the animal’s
environment. This hypothesis has been favored because location
is the most informative and temporally stable feature in the
environment; therefore, it is highly predictable (Ranganath,
2010; Eichenbaum, 2015; Zucker and Ranganath, 2015). As
some authors note (Eichenbaum, 2015), place-place cell research
belongs to the neuroscientific tradition wherein the aim has
been to identify a single “trigger feature” of each neuron, and
then model a circuitry that constructs networks of information
processing from simple to more complex coding features.
Such a model is based on a hierarchy wherein the brain
reconstructs representations in successive stages of processing.
A close analysis of the contextual factors involved in place cell
processing suggest that the spatial representational perspective
of the hippocampus is too simplistic (Eichenbaum et al.,
1999). Research has shown that in realistic contexts, neurons
throughout the hippocampus have very complex firing properties
that challenge the explanatory power of these simple trigger
features for the representation of real-life experiences. The fact
is that when only single-stimulus dimensions are presented,
neurons are impressively selective to a specific representee,
but in natural contexts, place cells have highly complex firing

patterns that reflect a mixed selectivity to multiple dimensions
of ongoing perception, cognition, and behavior. As we have
seen above, converging evidence shows that place cells are
sensitive to a diverse range of cues, including first-order
spatial and non-spatial information, as well as higher-order
processing, such as for tasks, goals, or rewards (Eichenbaum
et al., 1999). Moreover, under appropriate conditions, prospective
activity correlates are detached from stimuli in the immediate
environment and the current spatial behaviors of the animal
(Buckner, 2010). According to Eichenbaum (2015, p. 680),
“this course of observations challenges as too simplistic the
approach in which single spatial trigger features are combined
in models to perform navigational calculations of the ‘inner
GPS’." According to some authors, acknowledging this situation
demands a paradigm shift, or as Eichenbaum have phrased it,
“suggests a theoretical revolution underway” (Eichenbaum, 2015,
p. 680).

I will now examine how this shift affects the notion of
representation. Let us consider the contextual, sequential and
predictive functional interpretations of place-cell activity that
we have examined above. Context is generally understood, in
the area of hippocampal research, as any situation defined
by a coherent set of features occurring within a particular
environment (Smith and Bulkin, 2014). On the basis of this
interpretation, place cells seem to encode contexts that are
defined by a variety of environmental (e.g., location), cognitive
(e.g., task dimensions) and motivational (e.g., goals) factors
directly related to the situation in which the individual is
involved. Such elements would take the form of a coherent
network that would change as a whole in relation with a
particular situation, rather than in a piecemeal fashion for
each feature (Smith and Mizumori, 2006). In turn, researchers
in hippocampal research understand “sequence” to mean any
succession of events that is correlated by place-cell activity
at different time points. Several studies have now shown that
a sequential organization is actively present in hippocampal
networks (Shapiro et al., 2006; Pastalkova et al., 2008; Pfeiffer
and Foster, 2013). Finally, some authors have proposed that
the processing of sequences could also be seen as a way of
predicting the course of events according to present context and
past experiences (Lisman and Redish, 2009, 2011; Wikenheiser
and Redish, 2014).

My view is that any of the previous hypotheses constitutes
a direct challenge to the classical notion of representation by
making the classical view useless for understanding what place
cells actually do. As I mentioned above, a representation involves
a coding, mapping or referring relation between some neural
activity and some environmental component. Nevertheless,
contexts, sequences or predictions do not seem to be descriptions,
maps, or copies of the environment as such. Moreover, they are
not self-subsistent elements of the environment, because they
do not exist independent of the ongoing animal-environment
interaction. Location, for example, does not seem to be treated
by the hippocampus as a re-presentation of the environment but
as a spatial marker related to the contingencies of the situation; it
is one of many dimensions in multidimensional processing that
involves spatial features, but it also taps into the motivational
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state of the individual, the features of the task at hand, the
history of similar interactions and many other informational
elements relevant for the individual in such a situation. Contexts,
sequences or predictions are better understood as complex
information states that integrate different sources of information,
external and internal to the animal, whose function seems to be
structuring the interaction of the animal with the environment in
that particular situation. Therefore, the model of representation
of a neural activity engaged in mapping, copying or referring to
some environmental element cannot characterize the contextual,
sequential or predictive processing; the hippocampus seems to
be doing something not specifically representational with the
information.

Eichenbaum et al. (1999), Lisman and Redish (2009),
Vilarroya (2012, 2014), Zucker and Ranganath (2015) have
already suggested a possible theoretical framework that can
be used to account for the hippocampal function. The shift
suggested by these authors can be summarized as changing
the focus on the hippocampus function from representing the
environment to guiding action through anticipation. Instead of
mapping or encoding processes, the hippocampus might be set to
control the contingencies of a situation by efficiently integrating
environmental, cognitive and motivational information into a
processing state ready to guide the individual in that particular
situation. In other words, the hippocampus could be better
seen as a system with the function of providing a dynamic
state space where “the set of probable events and contingencies”
(Zucker and Ranganath, 2015, p. 700) linked to a particular
situation could be managed. As Lisman and Redish indicate,
“The hippocampus is not involved in the generation of simple
expectancies, as used in typical instrumental learning tasks
(. . .), but it is involved in accommodating complex changes in
contingencies (as in contingency degradation tasks; . . .). This
ability to deal with complexity might allow the hippocampus to
combine information to produce a prediction of events that never
happened. From a cognitive perspective, it seems clear that both
simple recall of memories and constructive processes take place”
(Lisman and Redish, 2009, p. 1199). Moreover, they consider
that such activity is used by the animal to guide behavior. In
short, if we understand a “situation” as a particular temporal,
spatial and meaningful context in which an animal is involved
that is set in dynamic framework where past, present and future
events are integrated, then the “content” of place-cell neural
activity would correspond to the integration of environmental,
motivational and cognitive dimensions into an informational
density that anticipates events and guides the animal in that very
situation.

Accordingly, instead of computing “representational”
processes, the hippocampus would be better described as
computing “situational” processes. The term “situational” has
already been used in the sense of a cognitive construction
meaningful to the animal only in the situation in which it
is involved and probably related to helping the animal to

address it (Lisman and Redish, 2009; Schiller et al., 2015).
Hence, “situational” may be an appropriate means of labeling
this approach, although its use does not intend to exclude all
situational processing from the classical notion of representation.

It is important to note, however, that the hypothesis suggesting
that the hippocampus processes situations instead of elements of
the environment is not exclusive. It could very well be that the
hippocampus has overlapping modes of processing and that one
mode could represent objective coordinates of the spatial layout
of the animal. This is obviously an empirical question. Moreover,
the situational approach might not have any relevance outside
the hippocampus; thus, it might not affect MVPA research.
The point is that place-cell research evidence so far might be
better understood within the situational approach. In any event,
the suggestion of a situational model obviously requires further
investigation and development.

CONCLUSION

As presented above, neural representation is a central and non-
trivial notion in extant neuroscience. Authors extensively use the
notion, putting important explanatory weight on it. However,
no agreed benchmark against which to assess specific theoretical
and empirical claims exists. Based on the survey and previous
literature, I have outlined a set of properties with which an
operational account of neural representation should comply. The
idea is that one could use such properties as a way of assessing
a particular claim of representation. However, the evaluation
of place-cell research under such criteria raises the intriguing
possibility that the neural activity of place cells might be better
understood at present within a non-representational framework.
The representational scheme based on the idea that neural
activity encodes, maps or refers to self-subsistent, meaningful and
measurable features of the environment might not be the best
way to construe the role of place cells in hippocampal function.
Instead, a situational approach, based on the integration of spatial
and non-spatial information with the aim of creating a state space
where the contingencies of a situation are processed, seems to be
more useful for understanding place-cell activity. The challenge
now is to explore and develop this situational approach.
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