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Abstract

A significant percentage of adults (10%) and children (20%) on renal replacement therapy have an inherited kidney disease
(IKD). The new genomic era, ushered in by the next generation sequencing techniques, has contributed to the identification
of new genes and facilitated the genetic diagnosis of the highly heterogeneous IKDs. Consequently, it has also allowed the
reclassification of diseases and has broadened the phenotypic spectrum of many classical IKDs. Various genetic, epigenetic
and environmental factors may explain ‘atypical’ phenotypes. In this article, we examine different mechanisms that may

contribute to phenotypic variability and also provide case examples that illustrate them. The aim of the article is to raise
awareness, among nephrologists and geneticists, of rare presentations that IKDs may show, to facilitate diagnosis.
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Introduction

Inherited kidney diseases (IKDs) are mostly rare diseases, which
means, according to the European definition, that <1 in 2000
people suffer the disease, or that it affects <200000 people in
the USA [1]. Rare diseases are often categorized as orphan dis-
eases to stress their severity, the insufficient resources devoted
to them, the lack of available knowledge and the specific condi-
tions for developing or producing drugs to treat them [2]. About
80% of rare diseases are genetic in origin and ~50% of those
affected are children [3]. Rare kidney diseases comprise at least
150 different disorders and have an overall prevalence of about

60-80 cases per 100000 in Europe and the USA [4]. A single-gene
mutation in any one of more than 200 different genes [3] can
nowadays be identified in ~20% of cases of chronic kidney dis-
ease (CKD) that manifest before the age of 25years as well as
10% in adulthood. Nevertheless, these percentages are underes-
timated since there are many non-identified genes for several
IKDs such as the congenital abnormalities of kidney and urinary
tract (CAKUT), in which the majority of genetic causes are still
unknown.

In a strict sense, some glomerular diseases also fall into the
category of rare diseases, but this editorial will focus on IKDs,
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which account for around 10% of adult patients requiring renal
replacement therapy. They constitute the fifth-most common
cause of end-stage renal disease (ESRD) in developed countries
after diabetes, hypertension, glomerulonephritis and pyelo-
nephritis [2]. Although these figures have remained the same
for decades, IKD has become a very active renal discipline only
in the past two decades, and especially in the last. The number
of manuscripts on IKDs has increased significantly during this
period. There are many reasons for this: (i) the possibility of per-
forming genetic testing with new genomic technologies; (ii) the
development of therapies for some of these diseases; (iii)
increasing awareness for IKDs triggered by educational pro-
grammes and professional societies; and (iv) improved interac-
tions among adult and paediatric nephrologists and several
healthcare professionals. As a result of this new trend, most
journals and meetings now include a section devoted to IKDs.
The new genomic era, ushered in by the next generation
sequencing (NGS) techniques, has facilitated the identification
of the genetic basis of several IKDs. Some of the newly discov-
ered genes are the cause of the disease in only a handful of fam-
ilies. This raises the question of how many more genes will be
identified as being responsible for an IKD in a few families, and,
consequently, what percentage of the current so-called nephro-
pathies of uncertain origin will eventually be recognized as an
IKD. Also, several IKDs are being reclassified or renamed based
on their genetic cause. This has resulted in the replacement of
classical nomenclature with new terminology that reflects the
causative gene, such as ‘UMOD-related disease’ instead of
‘medullary cystic disease’ [5], and ‘HNF1B nephropathy’ [6].
Also, focal segmental glomerulosclerosis (FSGS), which is a form
of kidney disease defined by histology that usually seems to
have an immunological basis, has in some patients been dem-
onstrated to have a genetic aetiology [7-13]. Besides the more
than 40 genes now described as causative of steroid-resistant
nephrotic syndrome (SRNS) and/or FSGS, COL4A3-COL4A5 genes
have also been demonstrated to be involved in several cases of
FSGS [14]. Consequently, genetics has the potential benefit of
discerning diagnosis in such a heterogeneous disorder, which
may help to avoid unnecessary immunosuppressive treatments.

The use of genomics in IKDs

The implementation of genomic medicine has been made pos-
sible by important advances in sequencing and bioinformatics
in the last decade. NGS enables assessment of the entire
genome or exome, allowing genomic medicine to take a
hypothesis-free approach to genetic testing [15]. This does not
mean that the nephrologist does not need to make precise clini-
cal diagnoses, but the genomic analysis gives the power to diag-
nose patients with phenotypes that differ drastically from that
described initially for the disease in question (Figure 1).
Targeted NGS of gene panels is improving diagnostic effi-
ciency for IKDs through simultaneous analysis of all relevant
genes for a given phenotype, at much reduced costs and faster
turnaround times compared with testing sequentially one gene
after another. This approach is becoming part of routine molec-
ular diagnostics [9, 16-18]. Whole-exome sequencing (WES) is a
most comprehensive approach and is often used when there
are more complex clinical presentations or when gene panel
testing has already proved negative [19-21]. WES has an average
diagnostic yield of 20-25% but is more likely to return results of
unknown significance than targeted NGS of gene panels.
Although these NGS approaches are technically feasible and
relatively cheap, the amount of information that they generate
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Fig. 1. Genetic testing options based on disease phenotype.

poses a new challenge due to the high number of DNA variants
that each individual presents in respect to the reference
sequence genome, many of which are not straightforward to
interpret. Specific pipelines are used for the bioinformatic anal-
ysis of the thousands of variants identified. Determining the
disease-causing mutation can be like looking for a needle in a
haystack. For this purpose, variants are classified into different
categories [pathogenic, likely pathogenic, variant of uncertain
clinical significance (VUS), likely benign and benign]. The most
widespread standards and guidelines for the classification and
interpretation of sequence variants are those proposed by the
American College of Medical Genetics and Genomics (ACMG)
[22]. Each variant is individually assessed in the context of the
variant, gene, associated disease, patient phenotype and family
segregation. However, interpretations for some non-truncating
variants may change over time as more information about the
genetic variants and their related phenotypes becomes available
in the public databases. A significant percentage of DNA variants
deposited in genetic databases have falsely been assigned as dis-
ease causing. Widespread use of the ACMG guidelines [22] may
result in a larger proportion of variants being classified as VUS,
reducing the number of variants reported as ‘causative’ without
having sufficient supporting evidence. Moreover, trying to inter-
pret DNA variants in terms of phenotypic differences among
patients affected by the same IKD (genetic modifiers, oligogenic
inheritance, etc.) is even more complicated.

Potential causes of phenotypic variability
in IKDs

Some potential explanations on why many phenotypes are so
different from what would be expected are as follows (Figure 2).

Genetic heterogeneity

More than one gene causes a particular disease and, depending
on the gene, the phenotype may differ. Several IKDs present
with genetic heterogeneity. Examples include tuberous sclerosis
complex (TSC), where patients with mutations in TSC2 have a
more severe phenotype than those with TSC1 mutations [23],
and autosomal dominant polycystic kidney disease (ADPKD),
where patients with PKD1 mutations reach ESRD about 20 years
before those with PKD2 mutations [24]. On the other hand,
mutations in UMOD, MUC1, REN and HNF1B may cause similar
autosomal dominant tubulointerstitial kidney disease (ADTKD)
phenotypes [5], and recessive mutations in COL4A3 and COL4A4
cause also the same phenotype as COL4A5 in Alport syndrome
(AS) males.
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Fig. 2. Possible explanations for phenotypic variability in IKDs.

Allelic heterogeneity

Different mutations in a particular gene give rise to different
phenotypes. In general, genotype-phenotype correlations are
weaker for autosomal dominant monogenic disorders than for
autosomal recessive diseases. For instance, carrying two trun-
cating mutations in the PKHD1 gene is associated with lethal
autosomal recessive polycystic kidney disease (ARPKD), while
the presence of at least one missense mutation is usually linked
to a better outcome [25]. Similarly, the type of PKDI mutation
influences renal outcome in ADPKD [26] since the extent of cyst
formation in ADPKD is inversely correlated with the level of
polycystin-1 function [27]. Mutations in the OCRL gene can
cause Dent disease 2, which accounts for ~15% of all cases of
Dent disease, or a more severe disease with extra-renal feature:
Lowe syndrome. Dent disease 2 is considered, by some authors,
to be a mild variant of Lowe syndrome [28]. It is unknown why
some OCRL gene mutations cause Lowe syndrome and others
cause Dent disease 2.

Incomplete penetrance

Some individuals with a given mutation do not develop the dis-
ease phenotype, which may mean that certain conditions with
dominant inheritance may skip a generation in a pedigree. This
is not a common situation in IKDs as most of these diseases are
considered to be fully penetrant. However, patients with a sin-
gle mutation in COL4A4 or COL4A3 can show only intermittent
haematuria or even hardly ever have haematuria [29], and
patients with a MUC1 mutation can present with normal renal
function in their 70s [5, 30]. The reason for incomplete pene-
trance may be related not only to the causative gene itself, but
also to modifier genes. Also, in some sporadic cases or small
families, some variants previously considered as pathogenic,
but with incomplete penetrance, have nowadays been reclassi-
fied as VUS.

Oligogenic inheritance and modifier genes

The disease phenotype is determined by mutations in more
than one gene. Oligogenic inheritance implies that these few
genes exert an effect of comparable magnitude on the pheno-
type. Such inheritance has been suggested in some IKDs such

Phenotypic
| variability

Environmental
factors
-

- Xinactivation

—

as Bardet-Biedl syndrome [31], nephronophthisis [32] and AS
[33]. Atypical haemolytic uraemic syndrome (aHUS) is also a
very good example of oligogenic inheritance. Several families
have been described with mutations in more than one gene
causing aHUS, such as DGKE, complement genes and THBD
among others [34-36].

In close relation to this, the concept of modifier genetic fac-
tor is used for a sequence variant that is supposed not to be a
causative mutation but that contributes to the disease pheno-
type. Modifier variants can be located either in the causative
gene, in addition to the causative mutation, or in other genes
involved in common pathways.

Modifier genes probably play a relevant role in intrafamilial
variability, especially in adult-onset diseases. In some cases of
ADPKD, ADTKD and AS, there may be more than 30 years differ-
ence in the age at onset of ESRD in different family members. It
has been reported that patients with mutations in genes known
to cause SRNS and/or FSGS in combination with a heterozygous
mutation in COL4A3 may show a more severe phenotype than
relatives with only mutations in SRNS genes, suggesting a
modifier effect of COL4A3 that might aggravate the phenotype
of SRNS and/or FSGS [9]. Also, in studies of ADPKD families, a
member presenting an early and severe disease has been found
to carry an incompletely penetrant (hypomorphic) PKD1 allele in
trans with the familial PKD1 mutation [37]. Hypomorphic alleles
are DNA variants that by themselves give no phenotype or only
a very mild one, but together with another hypomorphic allele
or a mutation in trans worsen the severity of the disease. The
role of genetic modifiers in ADPKD was particularly supported
by the study from Persu et al., where monozygotic twins showed
significantly less clinical heterogeneity than genetically non-
identical siblings [38].

Mosaicism

Mosaicism is a presence of two or more populations of cells
with different genotypes in one individual. Depending on the
expression of the mutated allele, in terms of both percentage
and organ-specific expression, different phenotypes arise. The
high-throughput nature of NGS technology allows for very high
depth of coverage, with detection of a low percentage of the
mutated variant in respect to the percentage of the wild-type


Deleted Text: : 
Deleted Text:  
Deleted Text: about 
Deleted Text:  percent
Deleted Text: : 
Deleted Text: intermitent
Deleted Text: seventies
Deleted Text: : 
Deleted Text: -
Deleted Text: ,
Deleted Text: Alport syndrome (
Deleted Text: )
Deleted Text: ,
Deleted Text: '
Deleted Text: : 
Deleted Text: P

CLiNICAL KIDNEY JOURNAL

allele. Mosaicism can explain mild clinical expression of the dis-
ease in a sporadic case. It also has to be taken into account dur-
ing reproductive genetic counselling of the healthy parents of a
de novo case of an autosomal dominant IKD. The parents could
be counselled that there is an almost zero risk of having another
affected child as the child is supposed to have a de novo muta-
tion. However, this couple may conceive another affected child,
and the reason is germinal mosaicism in one of the parents.

Epigenetic regulation

This is the dynamic alterations in the transcriptional potential
of a cell that switch genes on and off, thereby modifying the
phenotype. Examples of mechanisms that produce such
changes are DNA methylation and histone modification, each
of which alters how genes are expressed without altering the
underlying DNA sequence. This is an open field for research in
IKDs as very little is known. Most of the research on epigenetics
has to date focused on cancer, but it certainly has a role to play
in IKDs [39].

X inactivation

This is a process in which one of the copies of the X chromo-
some present in a female is inactivated. The inactive X chromo-
some is silenced and is transcriptionally inactive. The choice of
which X chromosome will be inactivated is random in humans,
but in certain cases the inactivation is skewed towards the
wild-type or the mutated allele. If there is a high percentage
(>90%) of cells with the wild-type allele inactivated, the disease
is much more severe than would be expected for a female [40-
42]. This phenomenon is organ specific; thus the findings in one
cell type, or organ, cannot be extrapolated to other organs.
Some examples of X-linked IKDs where this phenomenon may
explain the phenotypic variability are Fabry disease (FD) [42],
X-linked AS [43] and Dent’s disease [44].

Splicing mutations

Clinical variability among patients carrying the same splicing
mutation has been related to variable levels of aberrantly
spliced transcripts [45]. This phenomenon may occur especially
in splicing mutations that do not affect the intronic canonical
splice sites (GT/AG). This type of splicing mutation generates a
variable proportion of wild-type transcript, in addition to the
aberrantly spliced transcript. The higher the proportion of the
aberrantly spliced transcript, the more severe is the disease
phenotype expected to be [46].

Environmental factors

Phenotype is influenced during embryonic development and
throughout life by environmental factors. These factors are
many and varied, and include diet, climate, drugs, illness and
stress, among others. Although little is known specifically about
environmental factors and IKDs [39], it is universally accepted,
for example, that an inadequate diet may cause obesity, dia-
betes and hypertension, and that these conditions will worsen
the IKDs phenotype.

Examples of atypical phenotypes in IKDs

Below we examine some examples of IKDs that highlight how
atypical a rare renal disease can be, and especially how different
its phenotype may be from the classical description. We also
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explain or speculate which of the above-described potential
causes can contribute to the atypical phenotype.

AS

AS was first described by A.C. Alport in 1927 as an inherited
renal disease associated with sensorineural deafness and a ple-
thora of ocular abnormalities [47]. About 65% of patients have
the X-linked form of AS [48], resulting from mutations in the
COL4A5 gene and showing a much more severe disease presen-
tation in males than in females. In all, 15% of patients have
autosomal recessive AS due to mutations in either COL4A3 or
COL4A4, with males and females being equally affected and
showing similar disease severity. X-linked AS and autosomal
recessive AS are the best-known forms of AS, but it is the so-
called autosomal dominant AS, or familial haematuria or colla-
gen IV (23-24) nephropathy, that is being increasingly diagnosed
nowadays [29, 49]. This form is caused by heterozygous muta-
tions in either COL4A3 or COL4A4. Its prevalence is probably
underestimated as some studies have shown that a significant
percentage of patients with FSGS of uncertain aetiology carry a
mutation in one COL4 gene [14]. Its phenotype, which ranges
from isolated haematuria to proteinuria and ESRD, suggests
that a significant number of patients who reach dialysis with
the hallmark of ‘unknown nephropathy’ or ‘unspecific glomer-
ulonephritis’ may have a mutation in the COL4A3, COL4A4 and
COL4AS5 genes.

® A 50-year-old man presented with microhaematuria and protei-
nuria with a glomerular filtration rate (GFR) of 50mL/min and
without signs of hearing loss. His parents had normal urine sedi-
ment and preserved renal function. He had two daughters: a 20-
year-old with haematuria and another with bland urine sediment
at 25years. Genetic testing of the patient disclosed a COL4A5
mutation [c.3070G>A, p.(Glyl024Arg)] at an allele frequency of
30%, which revealed that he presented mosaicism. The daughter
with haematuria presented the mutation in heterozygous state
while the asymptomatic daughter did not carry the mutation.

After confirmation of paternity, the genetic results disclosed a
gonosomal mosaicism (germinal and somatic mosaicism) in the
father that explained the transmission of the X-linked AS to
only one daughter (by definition a male affected by an X-linked
disease will transmit it to all his daughters) as well as his mild
disease presentation (due to coexistence of wild-type and
mutated COL4AS5 in his kidney cells).

® A 56-year-old man was diagnosed with AS at 23 years of age after
presenting with haematuria, proteinuria and hearing loss. He
reached ESRD at 26 years of age and his brother reached ESRD at
28 years. Two of his daughters, with features of AS, reached ESRD
at 24 and 25 years, respectively. They all have a splicing mutation
COL4A5 [c.2395+2T>A, p.(Gly749Valfs*20)] found to produce
skipping of exon 29. It may be speculated that a skewed X inacti-
vation of the wild-type COL4AS allele in the females kidneys
accounted for such a severe disease presentation in these
women.

A 32-year-old woman presented with SRNS and microhaematu-
ria at 32 years of age, and her renal biopsy showed mesangiopro-
liferative lesions with FSGS. Her renal function rapidly
deteriorated, reaching ESRD at 33 years. Genetic testing identified
a pathogenic splicing COL4A3 mutation (c.4028-3C>A;
r.4028_4153del) and a missense INF2 variant [c.2065C>T,
p-(Arg689Trp)] [9]. Segregation analysis in her family showed
that the COL4A3 mutation was inherited from her affected
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father. He was diagnosed with non-nephrotic range proteinuria
and haematuria at 39years of age, with a renal biopsy showing
FSGS; he reached ESRD at 51years. The INF2 variant was inher-
ited from her asymptomatic mother. Two of the proband’s
uncles carried the COL4A3 mutation, but they only presented
microhaematuria at 61 and 56 years of age.

Heterozygous carriers of mutations in COL4A3 or COL4A4 show
a very wide spectrum of disease severity, even within a family.
In this family, all affected members carried a heterozygous
splicing mutation in COL4A3, demonstrated to produce exon 46
skipping by RNA analysis and predicted to result in a protein
lacking 42 amino acids [9]. Additionally, the proband also car-
ried a missense variant in the INF2 gene. This INF2 non-
conservative substitution, p.R689W, is located at a highly con-
servative domain (FH2) in the INF2 protein and scored as highly
likely pathogenic, using mutation prediction tools (SIFT,
Polyphen, Mutation Taster), and because it is absent (1000
Genomes Project) or in an extremely low frequency [1 heterozy-
gote of 118744 alleles in Exome Aggregation Consortium (EXAC)]
in population databases. The arginine in the position 689 is
totally conserved in mammals and a basic amino acid in all the
species. In this case, we speculate that this INF2 variant is an
incomplete penetrant or hypomorphic allele, which contributes
to a more severe presentation of the disease in the proband [9].
However, as no functional studies have been performed to test
this hypothesis and the proband inherited it from her asympto-
matic mother, this INF2 variant has to be considered a VUS.

FD

Fabry disease (FD) is an X-linked, progressive and life-
threatening genetic disease caused by deficient o-galactosidase
A (x-Gal A) activity, which results in progressive accumulation
of globotriaosylceramide within lysosomes in a variety of cell
types [50]. This deposit causes organ damage clinically revealed
as pain, angiokeratoma, cornea verticillata, proteinuria, kidney
failure, cardiomyopathy, arrhythmia, transient ischaemic
attacks, strokes, hypohidrosis, diarrhoea, etc. The disease, like
X-linked AS, is usually more severe in males than in females.
When Anderson and Fabry described FD they would never have
thought that some decades later we would be able to diagnose
FD patients without a single angiokeratoma, without burning
pain and without cornea verticillata.

® A 45-year-old man was diagnosed with FD due to a renal biopsy
done because of proteinuria. He did not show any signs or symp-
toms of FD, but renal biopsy disclosed the typical foam cells in
the glomeruli and genetic testing showed a frameshift mutation
in the GLA gene [c.1102delinsTTATAC, p.(Ala368Leufs*25)]. His
17-year-old daughter was an obligate carrier and was studied.
Her only feature of FD was a proteinuria of 500 mg/day.

® A 52-year-old man fainted. His electrocardiogram (EKG) showed
an atrioventricular (AV) block and an echocardiogram disclosed
severe left ventricular hypertrophy. He was screened for o-Gal A
deficiency and showed low plasma levels. Genetic testing
showed a missense mutation in the GLA gene [c.644A>G,
p-(Asn215Ser)]. He had none of the typical clinical features of FD.

These two cases are paradigmatic of what we know nowadays
as renal and cardiac variants of FD. These variants are difficult
to diagnose and the clinical features of these patients, once
more, differ radically from those originally described by
Anderson and Fabry. The missense mutation of the second
patient has typically been associated with the cardiac variant

of FD [51]; therefore, there is a straightforward genotype-
phenotype correlation. In contrast, the frameshift mutation of
the first patient has not previously been described. Although
many mutation databases are in progress, most mutations do
not have a clear related phenotype since they have not previ-
ously been described or have been found in patients with very
different phenotypes, indicating that modifier genes or other
unknown factors may also play a role.

SRNS

SRNS is clinically characterized by massive proteinuria, hypoal-
buminaemia, oedema and dyslipidaemia and shows no
response to steroid therapy. The underlying histological abnor-
mality is usually FSGS. An unknown percentage of cases of
SRNS are of genetic origin. To date, ~40 genes causing SRNS
have already been discovered.

® A9-year-old female presented at the age of 7 years with oedema,
>100mg/m?%h proteinuria and microscopic haematuria. No
response to corticosteroids was observed while partial remission
was obtained with cyclosporine. The renal biopsy showed FSGS.
She had not developed ESRD. No members of the family (parents
and two twin brothers) were clinically affected. Genetic testing
identified a missense variant [c.2339T>C; p.(L780P)] in the TRPC6
gene. The father (40years of age) and the two brothers (5years
old) had the same missense variant but had no clinical symp-
toms [52].

The p.L780P variant was classified as likely pathogenic because
it accomplishes several criteria of pathogenicity [evolutionary
conservation of the L780 residue among species, degree of
physico-chemical difference between leucine and proline,
pathogenic prediction by bioinformatic tools (SIFT, Polyphen,
Mutation Taster), absence (1000 Genomes Project) or extremely
low frequency (two heterozygotes of 121352 alleles in ExAC) in
population databases]. However, since the proband has a full-
blown nephrotic syndrome but her relatives show no signs or
symptoms of the disease despite carrying the same mutation,
the usual mentioned prediction tools are not applicable here
and functional studies would be needed to ensure
pathogenicity.

® A 19-year-old man had congenital-onset SRNS but his renal func-
tion remained normal. He carried a homozygous splicing muta-
tion [c.1930 4+ 5G>A; r.1900_1930del31] in the NPHS1 gene found
to produce the deletion of the 31 last nucleotides of exon 14 in
the messenger RNA (mRNA), which is predicted to result in a
truncated protein [p.(Val634Thrfs*13)].

The mild phenotype of this patient could be explained because
his splicing NPHS1 mutation (c.1930+5G>A) does not affect
the canonical GT/AG splice sites. In these cases the splicing
machinery could allow the coexistence of a certain proportion
of wild-type mRNA with the altered mRNA [46]. However, this is
all speculation, as mRNA studies are needed to demonstrate
this.

ADPKD

ADPKD is the most common IKD; it usually manifests in adult-
hood. Progressive cyst expansion leads to massive enlargement
and distortion of the kidney architecture and, ultimately, to
ESRD in most patients [53]. In ~90% of the ADPKD families,
genetic testing identifies the causative mutation in either the
PKD1 gene (85% of cases) or the PKD2 gene (15% of cases) [54-56].
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In all, 10% of cases with no identified mutation have a PKD2-like
phenotype with the median age of onset of ESRD being 70 years
or beyond. Recently, a third gene accounting for a very low per-
centage of cases has been identified [57]. Approximately 2-5% of
patients with ADPKD present a severe form of the disease with
early onset that is clinically indistinguishable from ARPKD [58].

* A 27-week-old foetus was diagnosed by ultrasound with enlarged,
echogenic kidneys. At birth (36 weeks), he presented with respira-
tory distress and required ventilatory assistance. He had hyper-
tension and renal insufficiency, which recovered with good
control of hypertension. Eight years later the patient has enlarged
kidneys containing multiple small cysts, no liver cysts and a nor-
mal estimated GFR. His sister showed a very similar phenotype.
Renal ultrasounds of the parents (father, 41years old; mother,
34years old) showed no renal abnormalities, consistent with
ARPKD. However, no mutations were found in the PKHDI gene
while biallelic hypomorphic alleles, p.[(Arg222Trp)];[(Arg3277Cys)],
were identified in the PKD1 gene [37].

Since ADPKD is an autosomal dominant disease, one muta-
tion is sufficient to cause disease. However, this case shows
how two hypomorphic PKD1 alleles in trans resembling an auto-
somal recessive pattern of inheritance, result in a severe ADPKD
phenotype mimicking ARPKD, with asymptomatic parents
being heterozygous for a hypomorphic PKD1 allele [37].

ARPKD

ARPKD is mostly diagnosed in the perinatal period, when
enlarged echogenic kidneys are observed. Histological findings
consist of dilation of collecting ducts and developmental ductal
plate abnormalities. Approximately 30% of ARPKD patients die
in the neonatal period or within the first year of life and >50%
of survivors progress to ESRD within the first decades of life [59].
ARPKD is caused by mutations in the PKHD1 gene [60]. Almost
all patients carrying two truncating mutations present a severe
phenotype with peri- or neonatal death. In comparison, patients
surviving the neonatal period usually bear at least one missense
mutation [61, 62].

® A 50-year-old man was diagnosed with renal failure and hyper-
tension. Ultrasound revealed some cysts in his normal-sized kid-
neys and also images defined as ‘hepatic cysts’. In the following
years, he developed portal hypertension and at 60 years of age he
underwent a double liver and kidney transplant. His ‘hepatic cys-
ts’ were, in fact, intrahepatic biliary dilations compatible with
Caroli’s disease. When his 10-years younger sister complained of
the same symptoms, NGS of a cystic kidney gene panel was per-
formed and a truncating mutation in PKHD1 gene [c.5895dupA;
p.(Leu1966Thrfs*4)] in trans with a missense PKHD1 variant
[c.664A>G; p.(Ile222Val)], which is likely a hypomorphic allele,
was identified in both of them.

The very late onset of ESRD in this ARPKD family is probably
related to the fact of carrying a likely hypomorphic PKHD1 allele
in trans with a truncating PKHD1 mutation. This late presenta-
tion should encourage nephrologists to include the diagnosis of
ARPKD when evaluating an adult patient with atypical features
of ADPKD.

‘Novel’ hereditary kidney disorders

Kidney disorders that cannot be classified as purely cystic or
glomerular or interstitial have been described recently. The
TTC21B gene was initially described as causative of
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nephronophthisis and it has also been considered responsible
for a ‘new’ kidney disease with FSGS and tubulointerstitial
lesions [63].

® A 4-year-old girl presented with nephrotic proteinuria and myo-
pia. She did not respond to corticosteroid and immunosuppres-
sive therapy and reached ESRD at the age of 6 years. Her brother
was diagnosed at the age of 6years, due to his sister’s disease,
and presented with nephrotic proteinuria, CKD and high myopia.
He reached ESRD at the age of 8years. Both siblings received a
kidney transplant with no recurrence of the disease after 8 years
of follow-up. They carried compound heterozygous TTC21B
mutations: ¢.626C>T (p.P209L) and c.1276C>G (p.H426D). Kidney
biopsy in both siblings showed features of FSGS and tubulointer-
stitial lesions [64].

Conclusion

IKDs may show a phenotype that differs strikingly from that ini-
tially attributed to a particular gene. There are several potential
genetic and non-genetic explanations for these unexpected
phenotypes.

NGS is having a great impact on ontology, allowing the
reclassification of various IKDs on the basis of knowledge of
their genetic cause. This process of reclassification has various
implications in terms of diagnosis, prognosis and even
treatment.

NGS has also led to the identification of new genes causing
rare IKDs and has broadened the phenotype of known IKDs. It is
important to raise awareness among nephrologists of these
atypical phenotypes, since, thanks to NGS, a diagnosis is now
feasible. This opportunity should improve the diagnostic odys-
sey in puzzling cases, avoid unnecessary invasive diagnostic
procedures such as renal biopsy, bring peace of mind to families
and enable genetic counselling.
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