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Tuberculosis (TB) continues to be a devastating infectious disease and remerges as a 
global health emergency due to an alarming rise of antimicrobial resistance to its treat-
ment. Despite of the serious effort that has been applied to develop effective antitubercular 
chemotherapies, the potential of antimicrobial peptides (AMPs) remains underexploited. 
A large amount of literature is now accessible on the AMP mechanisms of action against 
a diversity of pathogens; nevertheless, research on their activity on mycobacteria is still 
scarce. In particular, there is an urgent need to integrate all available interdisciplinary 
strategies to eradicate extensively drug-resistant Mycobacterium tuberculosis strains. In 
this context, we should not underestimate our endogenous antimicrobial proteins and 
peptides as ancient players of the human host defense system. We are confident that 
novel antibiotics based on human AMPs displaying a rapid and multifaceted mechanism, 
with reduced toxicity, should significantly contribute to reverse the tide of antimycobac-
terial drug resistance. In this review, we have provided an up to date perspective of the 
current research on AMPs to be applied in the fight against TB. A better understanding 
on the mechanisms of action of human endogenous peptides should ensure the basis 
for the best guided design of novel antitubercular chemotherapeutics.

Keywords: antimicrobial peptides, innate immunity, tuberculosis, infectious diseases, mycobacteria, antimicrobial 
resistance, host defense

iNTRODUCTiON

Tuberculosis (TB) is currently one of the most devastating infectious diseases having caused 
around 1.8 million human deaths, with 10.4 million new cases reported in 2016 and approximately 
a third of the world’s population harboring its persistent form of the disease-causing pathogen, 
Mycobacterium tuberculosis (Mtb) (1). Statistical analysis of epidemiological data have been shown 
a steady increase of the disease incidences over the past decade and new drug-resistant forms of TB 
cases are currently more than 5% of the total. TB has represented a major challenge worldwide and 
is the first/top leading cause of death from a single infectious microorganism (1).

Although the TB causing pathogen was first identified at the end of the nineteenth century, 
effective drugs against Mtb were only introduced during the second half of the twentieth century 
XXs: streptomycin first, followed by isoniazid (INH), pyrazinamide (PZA), ethambutol (EMB), and 
rifampicin (RIF). Unfortunately, the misuse and overuse of antibiotics for human welfare and farm-
ing industry have facilitated the emergence of resistant strains (2–4). Multidrug-resistant TB strains 
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(MDR-TB) do not respond to INH and RIF and extensively 
drug-resistant strains (XDR-TB) display an added resistance to 
any fluoroquinolone and at-least one of the three second-line 
injectable drugs, i.e., amikacin, kanamycin, or capreomycin. 
Although the development of the first combined anti-TB drug-
therapy dramatically improved the disease prognosis outcome, 
the current alarming rise in multidrug resistance is jeopardizing 
our early attempt to control the disease (5, 6). Moreover, the 
current WHO approved treatments impair the patient life qual-
ity and have an enormous economic cost (2, 7). Mtb being an 
extremely successful intracellular pathogen, can remain within 
the host system by keeping the immune responses under control 
via a wide repertoire of escape pathways (8). To complicate 
matters further, latent tubercle bacilli infections have become a 
serious global threat because of the challenge in diagnosing them 
clinically and their regular conversion from dormancy to active 
infections in immunocompromised circumstances, due to HIV 
coinfection, immunosuppressive therapies (9, 10) or diabetes 
mellitus type 2 conditions (11). Although novel drug suscepti-
bility testing methodologies, such as the GeneXpert® MTB/RIF 
(12, 13) and HT-SPOTi (14), are enabling the early detection 
of antibiotic-resistant strains, a complete comprehension of the 
host immune capability and the mode by which Mtb handles/
endures/evades the host defenses will be needed to eradicate this 
infectious disease (15).

Despite the initial underestimation of the properties of 
antimicrobial peptides (AMPs) and the difficulties encountered 
in their attempt to reach the market, nowadays, it is widely 
accepted that AMPs are multifunctional molecules with key 
contributions in the mammalian host innate defense (2, 3, 16, 
17). In addition, due to the evolution of drug resistance among 
Mtb strains and their rapid spread across the globe, the use of 
both natural and synthetic AMPs and their combination with 
conventional drugs (18, 19) are enabling the creation of a new 
generation of truly promising antibiotics (20–23). As Mtb can 
survive and replicate within macrophages, novel anti-TB agents 
should be able to target the intracellularly dwelling mycobacte-
ria without causing any damage to the host. In this review, we 
will focus on AMPs, either exploited naturally by our immune 
system or artificially synthesized, as potential therapeutics to 
overcome and eradicate the pathogen infection. Special atten-
tion will be paid to the diverse mechanisms that can mediate 
the AMPs’ action against TB infection. Finally, we will discuss 
the advantages, limitations, and challenges of AMPs for its 
merchandising and clinical use.

A UNiQUe AND PATHOGeNiC BACTeRiA

Although most mycobacteria (more than 150 species reported 
to date) are environmental, only a few species can infect both 
humans and livestock alike. Mtb is an obligate human pathogen 
with a low mutation rate (24) and no horizontal gene transfer 
(25). The TB-causing bacilli have coevolved with our civilization 
over millennia and its indefinite latency periods probably evolved 
as an adaptation to the sparse geographic distribution of early 
human settlements. However, our modern one-world globaliza-
tion might be triggering a worryingly shorter latency in TB (4).

Tuberculosis is mainly an airborne respiratory disease that is 
conveyed through aerosolized particles. Once in contact with the 
lung tissues, Mtb can enter and dwell within the host macrophages 
and other phagocytic immune cells. Immediately after, the infec-
tion triggers a complex immune response, and as a result, the 
pathogens may manage to establish a long-term residence within 
the host (4, 12, 26). During the primary infection phase, the host 
defense response sequesters the bacilli in confined cages at the 
lung alveoli, known as granuloma (Figure 1). During this early 
period the infected alveolar macrophages, the favorite mycobac-
terial lodge, are actively releasing pro-inflammatory effectors 
and other signaling molecules to remove the resident pathogens  
(8, 27). Following, the tubercle bacilli manage to downregulate 
the host cell expression profile and enter into a dormant state 
(26, 28). Ultimately, granuloma will mature and endure a necrosis 
process. Dormancy responses will facilitate the pathogen’s long-
term intra-host survival, and enable it to withstand the necrotic 
granuloma environment. Upon reactivation of dormant cells, 
the bacilli will start growing extracellularly and cover the lung 
cavities with a biofilm layer enriched with the most drug-resistant 
cells (29). The spread of reinfection is then mediated by coughing 
induced granuloma mechanical shear (12, 28).

THe POTeNTiAL OF ANTiMiCROBiAL 
PePTiDeS iN THe ANTi-TB 
CHeMOTHeRAPY: UNRAveLiNG THeiR 
MeCHANiSMS OF ACTiON

Emergence of extensively antimicrobial resistance toward current 
anti-TB drugs has drawn back our attention toward alternative 
once neglected therapeutic strategies, including a resurge in 
AMPs research (2, 30). Expression of endogenous AMPs rep-
resents one of the most ancient host defense strategy of living 
organisms. Their multifunctional mode of action, natural origin, 
and effectiveness at low concentration have positioned them 
as prospective candidates in future antitubercular therapeutics 
market (3, 7, 31, 32). Notwithstanding, to ensure a successful 
therapy prior to drug design, we must deepen in the knowledge of 
the underlying mechanism of action of our own innate immunity 
players.

Despite a low level of amino acid sequence identity, AMPs 
adopt similar structural folds, indicating the existence of parallel 
mechanisms of antimicrobial action among distant living organ-
isms (33). Among a significant variety of AMPs traits, we can 
outline the main common properties. We will review here the 
main known human AMPs secreted by innate immunity cells to 
counterbalance mycobacterial infections along with their mode 
of action.

Mycobacterial Cell-wall: A Complex 
Barrier Particularly Difficult to Overcome
The unusual high antimicrobial resistance in mycobacteria is pri-
marily due to the unique complexity of its cell wall. The complex 
network of macromolecules such as peptidoglycan, arabinoga-
lactan, and mycolic acids (MAgP complex), which are conglom-
erated by other proteins and polysaccharides, confirm the main 
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FiGURe 1 | Schematic illustration of AMP mode of action against mycobacteria. Following induction of the immune response by mycobacteria, AMPs are directed 
toward the area of infection where they can be recruited into the granuloma. At the cellular level, the destruction of the pathogens takes place inside the 
macrophage phagolysosomes. Composition of the mycobacteria cell wall and the main described mechanisms of action of AMPs against mycobacteria are shown: 
(1) cell wall and plasmatic membrane disruption, (2) membrane pore formation, (3) inhibition of ATPase, (4) AMP intracellular targets: (a) nucleic acids binding, 
inhibition of replication, and transcription; (b) inhibition of translation, and (5) protein degradation. Selected AMPs for each activity are highlighted. See Tables 1 and 
2 for a detailed description of each AMP mechanism of action. Abbreviation: LL-37, cathelicidin C-terminus; HBD, human β-defensin; GNLY, granulysin; Hepc, 
hepcidin; LF, lactoferrin; NE, neutrophil elastase; HNPs, human neutrophil proteins; CAMP, cationic antimicrobial peptides; SAMPs, synthetic antimicrobial peptides; 
MIAP, magainin-I derived antimicrobial peptide; LLAP, LL-37 derived antimicrobial peptide; d-LAK, d-enantiomeric antimicrobial peptides; CTS, cathepsins.
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mycobacterial cell-wall scaffold and constitute a highly difficult 
crossing-barrier for antimicrobial agents (34–37) (Figure  1). 
The unique covalently-linked MAgP complex of Mtb is a result 
of mycobacterial adaptation to secure the intracellular survival 
against continuous selective pressures exerted by the host immune 
system and other hostile environments. Furthermore, it has been 
found that the characteristics and composition of the cell wall 
can be modified during infection (38). The length and structure 
of the mycolic acids have been related to bacterial intracellular 
survival and are one of the favorite targets of successful antibiotics  
(12, 37). Unfortunately, the emergence of Mtb strains with acquired 
resistance to INH and EMB drugs that target the mycolic acids 
synthesis, demands novel strategies. Resistant strains have also 
emerged to PZA, a drug that targets the cell-envelope integrity 
(2). In this context, dermcidin, a human peptide secreted by sweat 
glands (39) has been predicted to inhibit the mycolyl transferase 

enzyme efficiently (40). Other re-emerged research lines target 
the cell-wall peptidoglycan metabolism (12). On the other hand, 
one of the main mechanisms by which the AMPs exert their effect 
is based on the ability to disrupt or permeate the cell membrane 
(Figure 1), either fully disrupting the lipid bilayer or by creating 
transient pores (41). Numerous AMPs have acquired amphipathic 
and cationic structures as short β-sheets and α-helices that allow 
them to establish interactions with bacterial membranes (42). 
The first step of AMPs interaction with the pathogen is generally 
mediated by their positive net charge and hydrophobicity. Unlike 
eukaryotic cells, in which the anionic lipids are predominantly 
in the inner leaflet of the lipid membrane providing a neutral 
cell surface, prokaryotic cells expose a negatively charged sur-
face. Many AMPs can exert a direct killing mechanism against 
mycobacteria through cell membrane disruption. The binding 
between the mycobacterial anionic surface compounds and 
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the cationic residues of the peptides promotes the membrane 
permeabilization (43). Contribution of the peptide cationicity 
has been corroborated in distinct AMPs by amino acid substitu-
tion. As an example, the replacement of lysines by arginines in 
lactoferrin (LF) variants enhanced their mycobactericidal effect 
(44). In addition, although the highly hydrophobic scaffold of 
the mycobacterial envelope offers resistance to AMPs action, 
the increase in the proportion of α-helical structure and peptide 
hydrophobicity has being engineered as an alternative strategy 
to enhance their mycobactericidal features (18). Moreover, some 
AMPs are directly targeting surface cell-wall proteins to interfere 
in the cell ion exchange and inhibit the mycobacterial growth. 
AMPs can interact with the mycobacterial membrane proteins 
such as ATPases and inhibit the cell pH homeostasis (45, 46). 
Interestingly, AMPs inducing the membrane permeation can be 
applied as adjuvants to conventional antibiotics (47).

intracellular Targets
Although most of the known AMPs exert their action at the 
bacterial membrane level, there is a growing number of identi-
fied peptides endowed with other previously overlooked targets. 
Many AMPs have the ability to translocate across the membrane 
and novel methodologies are bringing the opportunity to iden-
tify the peptide interactions with intracellular components (48). 
As an example, human neutrophil peptides can effectively cross 
the lipid bilayer without causing significant membrane damage 
and bind to nucleic acids (49, 50). Selective mycobactericidal 
action has been achieved by synthetic antimicrobial peptides 
(SAMPs) that can be internalized by mycobacterial cells and 
bind to DNA, inhibiting replication, and transcription processes 
(51). Interestingly, the intracellular action can be achieved at 
very low peptide concentrations, reducing the potential toxicity 
to host cells.

Phagosome-Lysosomal Pathway  
and Autophagy Modulation
Mycobacterium tuberculosis has evolved to dwell within one of 
the most inhospitable cell types, the macrophage. The tubercle 
bacillus is able to interfere with the phagosomal maturation 
pathway, blocking the transfer of the phagocytosed compounds 
to lysosomes (52). At this stage, several mechanisms take place 
toward the elimination of the pathogen, among them: produc-
tion of reactive oxygen and nitrogen species, vacuole acidifica-
tion, lytic enzymes activation, and changes in ion fluxes (53). 
Mycobacterium is able to interfere not only in the recruitment of 
vesicular ATPase proton pump but also in the acquisition of mark-
ers for the endocytic pathway. The TB causing bacilli promote 
the fusion with early endosomal vesicles but arrest the fusion to 
the lysosomal compartment, thereby protecting its phagosomal 
niche from acidification and avoiding the action of lytic enzymes. 
Moreover, the pathogen inhibits the phosphatidylinositol kinase, 
reducing the phosphatidyl inositol triphosphate (PIP3) levels and 
impairing the phagosome maturation (54). The modulation of the 
phagocytic maturation seems to be carried out by components of 
the mycobacterial cell wall, such as the mannosylated lipoarabi-
nomannan (7, 54). Altogether, mycobacteria ensure their survival 

within the host cell by intercepting the autophagic machinery 
at distinct levels (Figure 2) (8, 55). On their side, many AMPs 
promoting the phagolysosome formation also contribute to 
remove the pathogen intruder (56). Thereby, one of the strategy 
undertaken by the mycobacteria is the downregulation of AMP 
expression within the macrophage (57). Autophagy has other 
beneficial effects for the host, such as the restriction of inflam-
mation (58). Indeed, one of main currently used anti-TB drug 
is rapamycin, an autophagy activator, and the search of novel 
autophagy inducers is a priority (3, 23, 59).

immunomodulatory Activities
Undoubtedly, immunotherapy is at the frontline of TB eradication 
programs. Following the bacteria engulfment by alveolar mac-
rophages, the mycobacterial components are identified by several 
pattern recognition receptors resulting in the activation of signal-
ing pathways and the subsequent leukocyte activation (27, 58).  
In this scenario, participation of endogenous AMPs during the 
host immune response (Figure 2) is key for a successful eradica-
tion of infection (28, 60). We can differentiate two main phases 
that would mediate the infection process, in the early acute step 
the AMPs can directly kill the Mtb bacilli, whereas in the second-
ary late step, the AMPs immunomodulatory action takes the lead-
ership (26). Pro and anti-inflammatory effects can be induced by 
AMPs mediated by the release of a variety of cytokines (16, 23, 57). 
Interestingly, the same AMP can have a pro-inflammatory action 
at an early infection stage, while shifting to anti-inflammatory 
activity during late infection (3). Indeed, many immune factors 
play an essential role in the mediation of the infective process (8). 
For instance, the production of cytokines, which are important 
for the immune response, such as interferon gamma (IFNγ), are 
undermined by the mycobacterial infection (61).

HUMAN eNDOGeNOUS AMPs iNvOLveD 
iN THe FiGHT AGAiNST TB iNFeCTiON

Following mycobacterial infection, a large assortment of anti-
microbial peptides is released by our innate immune cells into 
the affected tissue (62). AMPs as key players of the non-specific 
immune response (2, 17) have attracted renewed attention as 
novel therapeutics and several comprehensive databases are 
now available open to the scientific community (2, 63–65). We 
describe, here, the main natural human AMPs involved in the 
fight against TB infection (Table 1).

Cathelicidins
Cathelicidins constitute a mammalian family of antimicrobial 
peptides mostly expressed in leukocytes and epithelial cells in 
response to different pathogens, contributing to their eradication 
(7, 37, 72). The human cationic antimicrobial peptide-18 (hCAP-
18) is the unique known human member and the leading AMP 
in TB therapeutics (7, 131). hCAP-18 is essentially conformed 
by two regions, a highly conserved N-terminal sequence, called 
cathelin and the bactericidal C-terminal region known as LL-37, 
released by proteolysis (132, 133). LL-37 contributes to the 
recruitment of T-cells to the site of infection (66) and displays 
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FiGURe 2 | Illustration of the distinct reported mechanism of action of AMPs expressed by the host innate immune cells. The main AMP antimicrobial and 
immunomodulatory activities are shown: (1) AMPs can trigger the cell lysis, target intracellular key processes (described in Figure 1), and/or agglutinate the bacterial 
cells. (2) Main AMPs’ immunomodulatory actions that promote the mycobacterial clearance are illustrated. Induction of pro and anti-inflammatory activities 
contributes to the host defense by regulation of cytokines and chemokines expression and induction of innate cell maturation. AMPs can also intervene in the 
autophagosome and phagolysosome formation during autophagy. Abbreviations: MØ, macrophages; Lym, lymphocytes; Neu, neutrophils; Mon, monocytes; Eos, 
eosinophils; DC, dendritic cells; Mtb, Mycobacterium tuberculosis; AMP, antimicrobial peptides; VD3, vitamin D3; VDR, vitamin D receptor; PRRs, pattern 
recognition receptors.
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diverse immunomodulatory and antimicrobial activities (57, 73), 
undertaking a prominent role during mycobacterial infection 
(57, 69). In particular, a significant overexpression of LL-37 on 
neutrophils, epithelial cells, and alveolar macrophages has been 
observed during Mtb infection (67). The infection of mononu-
clear cells promotes the upregulation synthesis of LL-37 via the 
vitamin D induction pathway (134). Interestingly, vitamin D defi-
ciency correlates with susceptibility to tuberculosis, while sup-
plementation with vitamin D derivatives improves the efficiency 
to overcome TB (75). Phagosomal pathway is known to be a key 
defensive procedure to eradicate Mtb and recent studies point 
to vitamin D3 as an inducer of autophagy in human monocytes 
as well as an inhibitor of intracellular mycobacterial growth, via 
upregulation of autophagy-related gene expression (3, 76, 134). 
The LL-37 peptide thereby decreases, directly or indirectly, the 
rate of intracellular bacteria proliferation. Recently, transcrip-
tome profiling confirmed the direct contribution of LL-37 at the 

lysosomal compartment (135). Jointly, all these experimental 
evidences highlight cathelicidin LL-37 not only as a forthright 
antimicrobial peptide but also as a prominent modulator of 
autophagy during mycobacterial infection (3, 77).

Defensins
Defensins were the first AMPs related to TB by pioneer researchers 
(49, 50, 81, 136). Defensins are a set of cationic and cysteine-rich 
peptides with immunomodulatory and microbicidal properties 
that constitute one of the major and most diverse group of AMPs 
in the mammalian pulmonary host defense system (3, 16, 137). 
They are classified according to their structure into alpha, beta, 
and theta. They show substantial variation in terms of amino 
acid sequences, and show a diversity of mechanism of action at 
membrane and intracellular levels. In addition, defensins can be 
induced and activated by proteolysis pathways to acquire their 
antibacterial activity (138). Interestingly, high-throughput gene 
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TABLe 1 | Human AMPs involved in immune host defense against mycobacteria.

AMP Cell type sourceb Reported activitiesa

Cathelicidin (hCAP18/LL-37) Neutrophils (66, 67b)
Monocytes (66, 67b)
Epithelial cells (66, 67b)
Mast cells (68)
Macrophages (67b, 69)
Dendritic cells (70)
Natural killer cells (71)

Mycobacterial cell wall lysis (72, 73)
Immunomodulation (57, 69)
Pro-inflammatory action (74)a

Autophagy activation (58, 75–78)
Chemotaxis (58)
Neutrophil extracellular traps (NETs) promotion (73)

Defensins Eosinophils (HAD) (79)b

Macrophages (HBD1) (80)
Epithelial cells (HBD1, HBD2, HBD3, HBD4) (7, 81b, 82)
Dendritic cells (HBD1, HBD2) (80)
Neutrophils (HNPs) (7, 30)

Mycobacterial cell membrane lysis (HBD) (23)a (2, 62)
Membrane pore formation (HNPs) (7)
Mycobacterial growth inhibition (HBD2,3,4) (79, 81, 83a, 84)
Dendritic and macrophage cells chemotaxis (HBD/HNPs) (82, 85a) (23)a

Inflammation regulation (HBD) (62, 82)
(HNP1) (7, 82)
Intracellular DNA target (HNPs) (49, 50)

Hepcidin Hepatocytes (86)
Macrophages (87)b

Dendritic cells (88, 89)
Lung epithelial cells (89)
Lymphocytes (90)

Mycobacterial cell wall lysis (37, 62)
Inhibition of mycobacterial infection (91)
Iron homeostasis regulation (92, 93)
Pro-inflammatory activity (94)

Lactoferrin Epithelial cells (95)
Neutrophils (96)
Polymorphonuclear (PMN) leukocytes (97)

Bacterial cell permeation (98)
Iron kidnapping (99)
Anti-inflammatory activity (100)a(101)a(102)a

Azurocidin PMN leukocytes (103)
Neutrophils (104)

Mycobacterial cell wall lysis (104)
Promotion of phagolysosomal fusion (104)

Elastases Neutrophil azurophilic granules, bone marrow cells (105)
Macrophages (106)

Bacterial cell membrane lysis (107)
Serine protease activity (108)
Cell chemotaxis induction (108)
Immunomodulation (109)a

NETs formation (110)
Macrophage extracellular traps (METs) formation (106, 111)

Antimicrobial RNases Eosinophils (RNase3/ECP) (79b, 112, 113)
Neutrophils and monocytes (RNase6) (114)
Epithelial cells and leukocytes (RNase7) (115, 116)

Mycobacteria cell wall and membrane lysis (117)
Mycobacterial cell agglutination (117)

Eosinophil peroxidase Eosinophils (118)b Bacterial cell wall lysis (119)

Cathepsins Neutrophils
Monocytes (120)b

Mediation of apoptosis pathway (120, 121)
Immunomodulation (122)a (109)a

Granulysin Lymphocytes (37) Mycobacterial cell lysis (37, 123)

Calgranulin/calprotectin Neutrophils (124, 125)
Monocytes (124, 126b)
Keratinocytes (124, 127)
Leukocytes (128)

Phagolysosomal fusion (30, 126)
Pro-inflammatory action (125)

Ubiquitinated peptides Macrophages (37, 129b) Mycobacterial cell lysis (37)

Lipocalin2 Neutrophils (130)b Mycobacterial growth inhibition (37, 130)
Immunoregulation (37, 130)

aReported activities tested in vivo using murine infection models.
bReported regulation of AMP expression upon mycobacterial infection.
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expression of peripheral blood mononuclear cells profile analysis 
from patients with tuberculosis and Mtb-infected healthy donors 
revealed the existence of an overexpression of defensins levels in 
TB patients (139). The peptides were observed to bind to Mtb 
cells within the macrophage phagosome (140). The essential 
participation of defensins in the host fight against TB infection 
has also been corroborated in a murine model (23, 85).

Within the defensin family, we find a variety of cellular source 
types (Table 1) (82). Noteworthy, the β-defensin2 (HBD2) and 

the α-defensin (HAD) expression are inducible by mycobacteria 
wall components in epithelial cells and eosinophils, respectively 
(79, 81), and could have a preservative role in  vivo against TB 
infection. Upregulation of HDB3 and 4 were also reported effec-
tive in Mtb MDR-infected mice (83).

Human Neutrophil Peptides (HNPs)
Human neutrophil peptides are α-defensin type AMPs mainly 
secreted by neutrophils (50), although low levels of expression 
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have also been detected in monocytes, eosinophils, and epithe-
lial cells (79). HNP-1–4 expression is induced by TB infection 
(7, 37, 82). On the other hand, although macrophages express 
only small amounts of HNPs, high intracellular levels can be 
reached via neutrophil-phagocytosis. Interestingly, HNPs have 
been observed to colocalize with tuberculosis bacilli in early 
endosomes (84). Moreover, the administration of HNPs maxi-
mizes the antimicrobial capacity of macrophages against Mtb 
(50) and HNP1 was proven effective in a Mtb-infected mouse 
model (50). HNP-1 can permeabilize the Mtb cell membrane 
by forming transmembrane pore and then bind to intracellular  
DNA (7, 50). Interaction with nucleic acids could subsequently 
inhibit the main cell functions, as transcription and translation 
(48). On the other hand, combination studies using HNPs and 
β-defensins with conventional antitubercular drugs have shown 
a synergistic effect. Therefore, the AMP adjuvant role can reduce 
the required drug dose and also significantly diminish the bacte-
rial load in vital organs (141). Overall, these findings together 
with recent experimental work with tuberculosis animal models 
entrench the therapeutic application in favor of the whole defen-
sin family (7, 37, 83).

Hepcidin
Hepcidin (Hepc) is a short and highly cationic antimicrobial 
peptide that was originally detected in serum and urine (142). It 
adopts a hairpin loop that encompasses two short beta-strands. 
Hepcidin is predominantly synthesized in hepatocytes and is 
released from a precursor by proteolysis. Its expression is induced 
by infectious or inflammatory processes and plays a prominent role 
in the iron homeostasis, regulating uptake, and mobilization  
(92, 143). Specifically, hepcidin can downregulate the transmem-
brane transport of iron through its union with ferroportin, a 
transmembrane protein that exports iron to the extracellular space 
(93). The reduction in extracellular iron concentrations makes 
pathogen invasion conditions more hostile (91). Interestingly, 
during infection, hepcidin is released into the bloodstream and is 
considered to be responsible of the anemia associated with inflam-
mation (94). Indeed, anemia is a common difficulty encountered 
in TB (144). Moreover, Lafuse and coworkers demonstrated that 
mycobacterial infection induced the emergence of high levels 
of hepcidin in macrophages phagosomes and confirmed the 
peptide inhibition of Mtb growth in vitro (87). Further research 
also reported the presence of hepcidin in other innate cell types 
such as dendritic cells. The peptide expression in non-phagocyte 
cells suggests an extracellular mycobactericidal activity mediated 
by iron reduction in both alveolar and interstitial spaces (88). 
Particularly, due to the hepcidin effect on iron levels, differences 
in the expression of the peptide could be related to different 
phenotypes of iron homeostasis in TB patients. A significant 
correlation was observed between serum hepcidin levels and the 
promoter polymorphism in TB patients and was suggested to be 
considered in the diagnosis and prognosis of tuberculosis (145).

Lactoferrin
Lactoferrin is another AMP related to iron homeostasis regula-
tion. It is a multifunctional iron binding glycoprotein present in 
several tissues and most human body fluids. It has a molecular 

weight of 80 kDa and belongs to the transferrin family (99). LF and 
its natural N-terminal fragment released by proteolytic cleavage 
(Lactoferricin, LFcin) participate in host defense and have wide 
spectra antimicrobial effects (37, 44, 98). Noteworthy, LF is the 
only AMP given by systemic administration that is currently in 
clinical trials (146). Diverse studies have demonstrated the pres-
ence of LF in macrophages and blood cells and its activity against 
Mycobacterium. Moreover, LF immunomodulatory capacity can 
also contribute to the eradication of TB. Particularly, it has been 
observed that mice treated with LF manifest an increase in the 
proportion of IL-12/IL-10, which results in increased Th1 cells, 
with a protective role against Mtb (100, 101). The anti-inflamma-
tory properties of human and mouse LF were also corroborated 
in another Mtb mouse infected model (102). In addition, other 
studies clearly demonstrated the immunomodulatory role of 
LF, improving BCG-vaccine efficacy when used as adjuvant  
(147, 148). Recently, it has been reported that LF expressed in 
azurophilic granules of neutrophils is capable of killing M. smeg-
matis (104).

Lipocalins
Lipocalins are a family of peptides involved in cellular traffic and 
inflammation which are also related to the iron homeostasis (149). 
Lipocalin2, also called neutrophil gelatinase associated lipocalin, 
is expressed in neutrophils and displays anti-TB activity (130).

Azurocidin
Azurocidin, a leukocyte polymorphonuclear (PMN) granule 
protein, is a cationic antimicrobial protein of 37 kDa, also called 
CAP37 or heparin-binding protein, due to its high affinity 
for heparin (103). Shortly after its discovery it was found that 
azurocidin, like other antimicrobial proteins, not only displayed 
an antimicrobial activity but was also capable of exerting a 
mediating role in the modulation of the host defense system 
(150). Azurocidin is stored in secretory granules and is released 
into the endothelial area by PMN cells, rapidly reaching the 
infected or inflammation area (151). Azurocidin, at the front line 
of infection, activates monocytes, macrophages, and epithelial 
cells (152). Moreover, azurocidin has a wide range antimicrobial 
activity, working efficiently at acidic pH, a condition promoted 
in mature phagolysosomes (153). Interestingly, it has recently 
been reported that azurophilic granule proteins are implicated 
in mycobacterial killing, facilitating the fusion of mycobacteria-
containing phagosomes with lysosomes (104).

elastases
Elastases are serine proteases secreted by neutrophils and 
macrophages involved in the fight against pulmonary infections 
(107). One of the best studied elastase is the neutrophil elastase 
(NE), also known as elastase2, a 29-kDa protein expressed during 
myeloid development and secreted by neutrophils during epi-
sodes of infection and inflammation (107, 108). NE was reported 
to confer a protective effect against M. bovis in mice pulmonary 
tract (109). Many studies emphasize NE multi-functionality; the 
protein can break the tight junctions to facilitate the migration 
of PMN cells to the inflammation/infection area and induce 
cell chemotaxis (108). The neutrophil granule protein can work 
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within the macrophage phagosomes (154). Complementarily, NE 
is also reported to kill mycobacteria extracellularly in a rather 
peculiar way. Neutrophil granules can release their protein cargo 
together with chromatin, resulting in the formation of extracel-
lular fibrillar structures that facilitate bacteria arrest. NE colocal-
izes with the neutrophil extracellular traps and can facilitate the 
degradation of virulence factors (110, 155). Interestingly, heavily 
infected macrophages can also explode and form extracellular 
traps, a process which is also regulated by elastases (106, 111).

Cathepsin (CTS)
Cathepsin is another serine protease involved in the host defense 
against TB infection that is mainly expressed in neutrophils and 
macrophages (130, 156). Procathepsins are converted to the 
mature enzyme in acidic conditions and are active within the 
lysosomal compartment (30). The Mtb bacilli can downregulate 
CTSs expression in macrophages to ensure its intracellular sur-
vival (120, 156). The antimicrobial protease is proposed to protect 
the host mostly by an immunoregulatory role rather than a direct 
bacteria killing activity, as observed in an infection mouse model 
(122). Recent work using the zebrafish/M. marinum model indi-
cates the involvement of macrophage lysosomal CTSs to control 
the TB infection at the granuloma level (121, 157).

Granulysin (GNLY)
Granulysin is a small cationic human antimicrobial protein 
expressed by lymphocytes that is upregulated by HIV/TB coinfec-
tion (37, 158). GNLY can enter the macrophages and is able to 
disrupt the bacillus envelope (7).

Calgranulin
Calgranulin, also called calprotectin, is another AMP that is 
used as a TB infection marker in blood samples (30, 124, 127). 
Calgranulin is a calcium-binding protein that also interacts 
avidly with Zn2+ cations. Binding to Zn2+ activates the peptide 
antimicrobial activity. Recently, calgranulin overexpression has 
been associated to anti-TB activity at the macrophage intracel-
lular level by promotion of the phagolysosomal fusion (30, 126).

Ubiquitin-Derived Peptides
Ubiquitin-derived peptides are ubiquitinated proteolytic peptides 
which can also be classified as AMPs (7, 37, 159). In particular, 
ubiquitin-conjugated peptides as products of the proteosome 
degradation activity accumulate in the lysosome and can inhibit 
Mtb growth within the autophagolysosome (129). Ubiquitin by 
itself is innocuous while ubiquitinated peptides, such as Ub2, can 
permeate the mycobacteria membrane (160).

Human Antimicrobial RNases
Human antimicrobial RNases are small secretory proteins 
(~15 kDa) belonging to the RNaseA superfamily. They are highly 
cationic and possess a wide range of biological properties, repre-
senting an excellent example of multitasking proteins (112, 161). 
The family comprises eight human members, expressed in diverse 
epithelial and blood cell types.

RNase3, also known as the eosinophil cationic protein (ECP), 
is mainly expressed during infection and inflammation in the 

secondary granules of eosinophils (162) and secondarily in neu-
trophils (163). Complementarily, the signal peptide of the ECP 
(ECPsp) was found to promote the migration of macrophages 
via pro-inflammatory molecules to sites of infection and inflam-
mation (164). Interestingly, ECP is secreted, together with 
α-defensin, in response to M. bovis BCG infection (79). Although 
the recruitment of eosinophils in the respiratory tract during Mtb 
infection was first regarded as a mere response to inflammation 
(165), further work has shown that this cell type together with 
neutrophils can directly participate in the removal of the infec-
tion focus (166). Eosinophils are activated via TLR2 induction 
by the specific mycobacterial wall component, the lipomannan 
(79). Eosinophils, together with neutrophils, would then release 
the content of their granules into the granuloma macrophages 
(84, 159). To note, the eosinophil peroxidase, another eosinophil 
protein stored in the secondary granules, is also endowed with 
antimycobacterial activity (119). On the other hand, macrophages 
express upon bacterial infection two additional RNases, RNase6 
and RNase7 (114). In addition, human RNase7, also called the 
skin derived RNase, is also secreted by keratinocytes and exerts 
a protective role against a variety of pathogens at the skin bar-
rier (39, 115). Interestingly, RNase7, together with RNase3, can 
eradicate mycobacteria in  vitro (117). Moreover, very recent 
results indicate that human RNases 3, 6, and 7 can also inhibit 
the growth of mycobacteria in a macrophage infection model 
(167). Considering that RNase6 and RNase 7 expression is 
induced in macrophages upon bacterial infection (114), one 
might hypothesize that these antimicrobial proteins can also play 
a physiological role against intracellular dwelling mycobacteria. 
Eventually, we cannot disregard a complementary contribution of 
the RNases reported immunomodulatory properties, such as the 
induction of pro-inflammatory cytokines and the dendritic cell 
chemoattraction (168, 169).

SYNTHeTiC ANTiMiCROBiAL PePTiDeS

In the race against TB, novel synthetic AMPs with potent 
mycobactericidal activities have been developed (2, 19, 22, 37, 
170). AMP synthetic analogs are often considered to be the next 
generation of antibiotics and have attracted the attention of many 
companies aiming to develop new anti-TB therapies against 
drug-resistant strains (35). Following, we summarize the main 
SAMPs successfully designed (Table 2).

One of the favorite applied strategies for the design of potent 
AMPs is the engineering of stabilized amphipathic α-helix that 
are enriched with selected antimicrobial prone amino acids. 
Complementarily, peptide modifications are devised to endow 
them with enhanced resistance to proteolysis; thereby improving 
their in vivo stability and efficacy. The d-LAK peptides are a fam-
ily of serial peptides consisting of 25 d-enantiomer amino acid 
residues in a primary sequence designed to adopt a left-handed 
α-helix conformation and containing eight lysine residues (175). 
The peptides were designed to enhance their antimicrobial 
activity and decrease their hemolytic effect (188), providing 
efficient antimycobacterial activity at non-toxic concentrations. 
Furthermore, d-LAK peptides can be administered as inhal-
able dry powder (176). Another synthetic α-helical peptide, the 
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TABLe 2 | Synthetic peptides effective against mycobacteria.

Peptide Modifications Source Mechanism/antimicrobial activity Reference

1-C134mer Tetrameric form; oligo-
N-substituted glycines 
(peptoid) and alkylation

Design de novo Pore formation
MIC (Mtb H37Rv): 6.6 µM

(171)

A18G5, 
A24C1ac, 
A29C5FA, and 
A38A1guan

d-enantiomer, alkylation, 
tetramethylguanidinilation, 
and polyethylene glycol 
conjugation

Derived from the insect 
proline-rich peptide 
Apidaecin

Bacterial membrane permeation/inhibition of protein synthesis Hoffmann R, 
Czihal P Patent 

WO2009013262 
A1. 2009 (172)

CAMP/PL-D – Short cationic peptides (10 
AA) rich in W and R selected 
from peptide libraries

Pore formation
MIC (Mtb H37Rv): 1.1–141 µM

(173)

CP26 – Derived from cecropin A: 
mellitin

Bacterial cell wall disruption
MIC (Mtb H37Rv): 2 µg/mL

(174)

d-LAK 120 d-enantiomer Synthetic α-helical peptides Pore-formation/Inhibition of protein synthesis
MIC (Mtb H37Rv): 35.2–200 µg/mL

(175, 176)

d-LL37 d-enantiomer Derived from LL-37 Pore-formation/Immunomodulatory activity
MIC (H37Rv): 100 µg/mL

(170)

E2 and E6 – Derived from bactenecin 
(bovine cathelicidin) Bac8c 
(8 AA)

Bacterial cell wall disruption
MIC (Mtb H37Rv): 2–3 µg/mL

(174, 177)

HHC-10 – Derived from bactenecin Bacteria membrane lysis
MIC (M. bovis BCG): 100 µg/mL

(178a, 179)

hLFcin1-11/
hLFcin17-30

d-enantiomer Derived from lactoferricin 
(All-R and All-K substitutions)

Bacterial cell wall and membrane lysis
IC90 (M. avium): 15–30 μM

(44)

Innate defense 
regulators 
[innate defense 
regulator (IDR)-
1002, -HH2, 
IDR-1018]

– Derived from macrophage 
chemotactic protein-1 
(MCP-1)

Immunomodulatory activity/anti-inflammatory
MIC (Mtb H37Rv): 15–30 µg/mL; in vivo [Mtb H37Rv and multidrug 
resistant TB strain (MDR-TB) infected mice]: 10–71% killing at 32 μg/
mouse (3 × week intra-tracheal administration, 30 days)

(180)a(181)a(182)

LLAP Derived from LL-37 Inhibition of ATPase
MIC (M. smegmatis mc2155): 600 µg/mL

(183)

LLKKK18 Hyaluronic acid nanogel 
conjugation

Derived from LL-37 Pore formation/Immunomodulatory activity
In vivo (Mtb H37Rv-infected mice): 1.2-log reduction at 100 µM (10 
intra-tracheal administrations)

(184)a

MU1140 Derived from Streptococcus 
mutans lantibiotics

Inhibition of cell wall synthesis/On preclinical stage.
Effective on active and dormant Mtb MDR

Oragenics 
Inc Patent 

WO2013130349A 
(185)a

MIAP – Derived from Magainin-I Inhibition of ATPase
MIC (H37Ra): 300 µg/mL

(46)

Pin2 variants Derived from pandinin2 
(short helical peptides)

Membrane disruption
Mtb H37Rv and Mtb MDR: 6–14 µg/mL

(186)

RN3(1-45) 
RN6(1-45) 
RN7(1-45)

– Derived from human RNases 
N-terminus

Bacterial cell wall disruption/cell agglutination and intracellular 
macrophage killing
MIC (M. vacae; M. aurum; M. smegmatis mc2155; M bovis BCG) 
in vitro: 10–20 µM and ex vivo (M. aurum): 5–10 µM

(117, 167)

Synthetic AMPs 
(SAMPs-Dma)

Dimethylamination and 
imidazolation

Design de novo Cell penetration and DNA binding/
synthetic antimicrobial peptide-Dma10: MIC (M. smegmatis mc2155): 
<20 µM

(51)

X(LLKK) 2X:
II-D, II-Orn, 
IIDab, and IIDap

Peptide d-enantiomer, 
ornithination, 
2,4-diaminobutyric 
acidation, and 
2,3-diaminopropionic 
acidation

Short stabilized α-helix 
amphipatic peptides

Pore formation
M(LLKK)2M: MIC (Mtb H37Rv): 125 µg/mL; I(LLKK)2I: effective 
against MDR-TB

(22, 187)

aReported activities tested in vivo using murine infection models.
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TABLe 3 | AMPs based strategies to develop novel anti-TB drugs.

Pro-autophagy AMPsa Cathelicidins (56, 58, 78); azurocidin (104); calgranulin (126)

Anti-inflammatory AMPs Defensins (23, 82); AMP binders to antigenic molecules (23); LL-37 inhibition of TNF-α and other pro-inflammatory cytokines (57); 
synthetic innate defense regulator (IDR) peptides (181); synthetic LLKKK18 (LL-37 analog) (184); lactoferrin (100)

Pro-inflammatory AMPs LL-37 (57, 74); defensins (82); hepcidin (94)

Chemotaxis induction by AMPs Defensins (23); IDR synthetic peptides (23); LL-37 (2, 58, 181); elastases (108)

AMP synergy with current antibiotics: HNP1 + isoniazid/rifamicin (141); HBD1 + isoniazid (217); synthetic α-helix AMP + rifampicin (18)

with immunomodulators: HNP1 and HBD2 + l-isoleucine (206)

with nanoparticles (19)

Induction of host AMP expression Search for novel LL-37 inducers (218); vit D3 and phenylbutirate (PBA) for LL-37 (16, 28, 77, 204); l-isoleucine for β-defensins (83); 
aroylated phenylenediamine inducers (205)

AMP-based gene therapy Adenovirus encoding LL-37 or HBD3 (219)

AMP nanodelivery Nanovehiculation systems: nanoparticle size, surface chemistry, and mechanical properties to enhance macrophage uptake (2); 
liposomes (2, 196); nanogels (184, 196); aerosolization (176, 196)

aRepresentative examples are provided for each indicated strategy.
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M(LLKK)2M, was proven successful against MDR strains when 
combined with RIF (187). On the other hand, a short synthetic 
cathelicidin variant (the HHC-10) is able to inhibit the growth of 
M. bovis BCG both in vitro and in a mouse model (178).

Interestingly, the N-terminus derived peptides of human 
antimicrobial RNases can reproduce the parental protein activ-
ity against several tested Mycobacterium species (117, 167).  
The RN(1-45) peptides encompass a highly cationic and 
amphipathic region that adopts an extended α-helix in a 
membrane-like environment (189). In addition, the RN3(1-45) 
and RN6(1-45) peptides include an aggregation prone sequence 
which promotes bacterial cell agglutination (117, 167, 190), a 
property that can facilitate the microbial clearance at the infec-
tious focus (190).

Recently, particular interest has been drawn by a collection 
of short synthetic peptides with immunomodulatory activities, 
the innate defense regulators (IDRs). The peptides are effective 
at very low concentration and thereby can elude any toxicity 
to the host (181). They do not display a direct bactericidal 
activity but can promote the proper endogenous expression 
of antimicrobial agents by the host cells. Among others, the 
peptides enhance the release of chemokines and downregulate 
the inflammation pathway (181, 182). The IDR peptides, such 
as the IDR-1018 (Table 2), have been tested successfully in a 
MDR-TB infected mouse model by intra-tracheal administra-
tion (180). Likely, immunoregulatory peptides will take a lead-
ing role in the treatment of immunocompromised patients in 
a near future (16).

AMPs TO COMBAT ANTiMiCROBiAL 
ReSiSTANCe iN TB: A TiMe FOR HOPe

In recent years, thousands of antimicrobial peptides have been 
identified from natural sources, mostly classified as key players 
of the non-specific host defense response (30, 33, 191). On the 
other hand, despite the existence of a wide range of successful 
antibiotics since their entry into the worldwide trade, nowadays 

there is an increasing demand of novel drugs to tackle multidrug-
resistance mycobacteria strains (2, 20, 192). The antimicrobial 
proteins and peptides (AMPPs), given their direct bacilli kill-
ing mechanism and immunomodulatory properties provide 
an attractive pharmacological potential against mycobacterial 
infections (see Table 3 for a summary of main AMP-based thera-
pies). However, despite their appealing properties, AMPs are 
still facing major challenges to join the pharmaceutical industry 
(30–32). The main advantages and disadvantages associated with 
AMPs are listed in Table 4. Although the high cost of synthesis 
is one of the main drawbacks that the manufacturing of peptides 
faces, some companies are already managing commercial-scale 
peptide production platforms. For example, recombinant AMPs 
can be prepared in fungi and plants at high yield and low cost 
(2). Another drawback of AMPs therapy is their susceptibility 
to proteolytic cleavage, in particular when delivered by systemic 
administration (2, 31). In addition, the antimicrobial activ-
ity of some peptides appears to be decimated in physiological 
saline and serum conditions (32, 193). Novel design strategies 
are focusing on the production of cheaper and reduced-size 
analogs (2, 194) with improved selectivity toward prokaryotic 
targets and broaden therapeutic indexes (195). To improve the 
peptide bioavailability and stability in vivo several strategies have 
been developed such as incorporation of non-natural amino 
acids, backbone mimetics, conjugation with fatty acids, N and 
C- terminus modifications (196). The peptide performance 
can also be improved by intra-tracheal administration (184). 
In addition, encapsulation within biodegradable particles or 
liposomes improves the distribution of the drug toward the site 
of action (31, 196). Fortunately, macrophage nature by itself 
should promote the engulfment of such nanovehicles (19) and 
extensive research has been applied to define the parameters 
that determine the nanoparticles uptake by the phagocytic cells 
and intracellular traffic (2, 197). Very recently, a novel delivery 
system has been achieved by a LL-37 analog embedded within 
a hyaluronic nanogel. The self-assembled polymer stabilizes 
the peptide inside its hydrophobic core, allows a higher dose 
cargo and promotes the macrophage uptake, with increased 
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TABLe 4 | Human anti-TB AMP therapy: advantages and disadvantages.

Application strategy Advantages Disadvantages

Exogenous AMP 
administration

Broad-spectrum activity
Multi-functionality
Low immunogenicity
Rapid direct killing mechanism
High affinity toward mycobacterial surface
Enhanced uptake by macrophages
Very low/none toxicity of natural human AMP
Rapid clearance in host tissues
Beneficial effects to the host (anti-inflammatory, pro-autophagy, anti-tumoral, etc.)
Low rate of bacterial resistance emergence
High stability and efficacy of modified peptide derivatives
Reduced manufacturing cost by new recombinant methodologies
Gene therapy can restore endogenous AMPs levels in immunocompromised patients
Synergy with current antibiotics
Potential use as antibiotic adjuvants

Rapid degradation following oral/systemic 
administration
Low stability in human biological fluids
Potential undesirable side-effects at high concentration 
(tumorigenesis, angiogenesis, etc)
Potential toxicity via oral/systemic administration
High cost of chemical synthesis

Endogenous AMP 
induction

Efficient at very low concentrations
Reinforcement of the immune response in immunocompromised patients
Prevention of latent mycobacterial reactivation

No current information on the long-term effects of 
endogenous AMP induction.
Potential induction of AMP resistance
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antimicrobial efficiency and reduced toxicity to host cells. 
Besides, AMPs are also prone to aggregate and show occasionally 
poor solubility (198, 199). Luckily, there are currently different 
strategies and predictive software available to prevent aggrega-
tion and improve physicochemical properties (42, 200, 201). 
Complementarily, cleavage protection can be enhanced through 
secondary structure stabilization (37, 202). Alternatively, AMPs, 
as effector players of the host immune system (203) can also be 
upregulated by immunostimulation therapies (23, 204–206), 
overcoming the drawbacks inherent to the peptide administra-
tion via. Furthermore, recent studies on mycobacterial infection 
reveal how some species such as Mtb are capable of inhibiting the 
expression and release of endogenous AMPs (30, 77). Thus, the 
administration of supplementary AMPs, the use of gene therapy 
(136) or an immunomodulatory hormonal induction would be 
necessary to achieve an effective dose (207). This approach would 
be mostly recommended for immunocompromised patients 
(60, 204, 205). However, researchers should not disregard the 
unpredictable long-term consequences of exposing the bacteria 
to an overdose of AMPs. Mycobacteria pathogens exposed to 
either externally administered or endogenous overexpressed 
AMPs might develop novel resistance strategies to face back 
this new affront (2, 146, 208). In fact, the co-evolution of the 
pathogens with natural AMPs has already induced some bacte-
rial resistance mechanisms (209–212). First, bacteria can alter 
their cell envelope composition to reduce their affinity toward 
cationic peptides (82, 209, 212, 213). Pathogenic mycobacteria 
can also ensure their intracellular survival by the control of the 
macrophage efflux pump (210, 211). Other observed strategies 
are the release of extracellular proteases (212, 214, 215) or the 
downregulation of host AMPs (74). Therefore, resistance to 
AMPs should be anticipated and might be overcome by innova-
tive peptide variants (216), host-directed therapies or the use of 
combined synergies (47, 215). Eventually, recent collaborative 
initiatives have been launched to join efforts in the fight against 
mycobacterial resistance (TBNET, FightTB, TB-Platform, and 
TB-PACTS) (2), opening a window of hope.

CONCLUDiNG ReMARKS

Peptide-based therapy to treat infectious diseases is recently 
experiencing resurgence. AMPs, as mere components of the 
immune system, promote the direct killing of mycobacteria 
and often have immunomodulatory effects. Their non-specific 
pleiotropic mechanisms of action and unique immunomodula-
tory properties over conventional antibiotics have awakened the 
pharmaceutical market interest. Moreover, the efficacy of BCG 
vaccine is highly variable and the alarming increase of extensively 
drug-resistant strains of Mtb is a major global health emergency 
to address. In this context and considering the limitations in the 
current antituberculosis drug treatment, AMPs represent an 
immediate alternative approach in tackling antimicrobial resist-
ance. Scientific evidences provide a solid basis to ensure that the 
future development of peptide-based therapy will continue to 
address the unsolved drawbacks that the pharmaceutical industry 
is currently facing. Novel research methodologies and integrated 
interdisciplinary strategies should provide the opportunity to 
boast current antimicrobial peptide research efforts in the fight 
against tuberculosis.
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