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Abstract

Volunteer computing is a type of distributed computing in which a part or all
the resources (processing power and storage) necessary to run the system are
donated by users. In other words, participants contribute their idle computing
resources to help running the system. Due to the fact that the nodes which com-
pose the system are provided by a large number of users instead of a single (or a
few) institution, a main drawback of volunteer computing is the unreliability of
these nodes. For this reason, the selection of nodes to be involved in each task
becomes a key issue. In this paper, we propose the Multi Criteria Biased Ran-
domized (MCBR) method, a novel selection method for large-scale systems that
use unreliable nodes. MCBR method is based on a multicriteria optimization
strategy. We evaluated the method in a microblogging social network formed
by a large number of microservices hosted in nodes voluntarily contributed by
their participants. Simulation results show that our proposal is able to select
nodes in a fast and efficient manner while requiring low computational power.
Keywords: Distributed Computing, Volunteer Systems, User assignment,

Allocation methods, Resource provisioning
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1. Introduction

Volunteer Computing (VC) [I] systems are large-scale heterogeneous dis-
tributed systems where resources (nodes) are donated by volunteers. Public
contributors share a part of their idle computational resources to execute com-
putationally expensive applications.

This kind of computation has become increasingly popular due to the fact
that it provides a scalable, elastic, practical, and low cost platform to increase
the computational and storage demands of many applications. However, the
nodes are provided by users in a voluntary way, which means that they may
suffer from a lack of reliability, since they are usually non-dedicated and dy-
namic. Therefore, the system must be able to tolerate both sudden connections
and disconnections of nodes. An efficient mechanism to select which nodes will
run a job or store some data is of high importance for two main reasons: (a)
it is necessary to guarantee the fulfillment of the task or the availability of the
data; and (b) it is recommended to minimize the quantity of nodes required for
it.

Regarding to this second aspect, it is important to minimize the number
of replicas involved to provide the service, specially from the storage point of
view: each time a node fails a new node must be selected and all data must
be replicated into it. In a VC environment with not enough highly available
nodes, the selection mechanism should be able to combine nodes with different
availability levels to guarantee that the system provides a good quality of service
(QoS). In addition, this mechanism should be fast in order to quickly react to
changes in the system.

In this paper we propose the Multi Criteria Biased Randomized (MCBR)
method, a novel selection strategy for large-scale systems composed of unreliable
nodes. MCBR allows to select the most suitable nodes in an efficient and fast
way, ensuring a minimum QoS to the users. The proposed method is based on
ideas of the Lexicographic Ordering (LO) multicriteria optimization strategy [2].

Thus, MCBR is a hierarchical method in which the intrinsic properties of the



nodes are categorized according to different priority levels. Then, a sequence
of decisions is made following the previous established priority order. Biased
randomization techniques [3] are used to distribute and balance the load of the
nodes. The proposed method provides high quality solutions in a very fast way,
since it does not require costly computations in runtime. Moreover, due to the
flexibility of this method to prioritize the properties of the nodes, it can be
applied to a wide range of large-scale distributed systems other than VC, as
could be P2P or Grid Systems.

We tested MCBR by simulating a real large-scale social network called Gar-
lanet [4], that stores all data in computers voluntarily contributed by its par-
ticipants. More precisely, for each user, Garlanet deploys a set of replicated
microservices (in the voluntarily contributed nodes) that are in charge of guar-
anteeing the availability of the data. The MCBR method is used to select which
node will allocate each replica of each microservice.

To validate and quantify the quality of MCBR, we have developed a meta-
heuristic [5]. Metaheuristic algorithms are widely recognized as efficient ap-
proaches for many optimization problems. They focus on exploring the search
space to obtain optimal or quasi-optimal solutions in a reasonably short time.
The metaheuristic developed in this work allows us to compare the evolution
experimented by the system when applying MCBR in real time, with the results
of a near optimal selection of nodes obtained with it. The experimental valida-
tion proves that the MCBR method provides high quality solutions, ensuring
the minimum QoS and avoiding the excess of data movement. This last point
is crucial when selecting a solving method for this kind of systems.

The remainder of this paper is structured as follows: Section 2 presents
a literature review on similar approaches. Section 3 is devoted to describe the
proposed MCBR method. Then, Section 4 presents the prediction quality model
needed by the MCBR method. In Section 5, the metaheuristic used to compare
our results is described. Section 6 presents a complete set of experiments and
analyses the results. Finally, Section 7 concludes this work and proposes possible

future research lines.



2. Related Work

Several recent works in the literature have focus their attention on the selec-
tion of resources in distributed large-scale systems based on heterogeneous and
non-dedicated components, due to the importance of making an efficient use of
the resources in them. Thus, next sections are devoted to go through the main
works about it. As mentioned in each section, none of these works solves the

particular problem at hand.

2.1. Resource allocation in VC systems

Since the efficient resource allocation is a key factor in VC systems, sev-
eral authors have worked on this research line. Estrada et. al [6] propose a
distributed evolutionary genetic algorithm to design scheduling policies in VC,
which maximize the throughput of the system. The proposed algorithm auto-
matically generates scheduling policies that increase throughput across a variety
of different VC projects, in contrast to the manually-designed policies, which are
limited to increasing throughput for single projects. The algorithm is based on
searching over a wide space of possible scheduling policies, using a small subset
of IF-THEN-ELSE rules, which are used to generate the most suitable policies.

Ghafarian et al [7] [§] focus on proposing a method to schedule scientific
and data intensive workflows, to enhance the utilization of VC systems. The
proposed method increases the percentage of workflows that meet the dead-
line, satisfying the QoS constraints in terms of the deadline, minimum CPU
speed, and minimum RAM or hard disk requirements. The proposed workflow
scheduling system partitions a workflow into sub-workflows, to minimize data
dependencies among the sub-workflows.

Sebastio et. al [9] propose a distributed framework to allocate tasks in
large-scale Volunteer Clouds platforms, according to different scheduling poli-
cies. The framework takes into account five different policies, which attempt
to maximize the number of executed tasks and minimizing the time at which

the execution ends, both for the entire task set and for each task in the set.



Each policy is formalized as a mathematical optimization problem with con-
straints, which is solved in a distributed fashion. In order to solve the problem
in a distributed way, the framework uses the Alternating Direction Method of
Multipliers (ADMM) [I0] to decompose the optimization problem. Then, it
is distributed and independently solved by the volunteer nodes. Besides the
throughput, another important point to consider by users of Volunteer Clouds
platforms is the money budget. Guler et al [I1] propose various heuristics to
distribute jobs, while maximizing the throughput done by the users, without
violating established money budget constraints. The heuristics are based on the
price of electricity consumed by the peers, considering its temporal variation
during the time, and the CPU time used.

These previous approaches are focused on maximizing the throughput of the
VC system under some constraints, taking into account the types of jobs/tasks
to execute in the system previously. Unlike these works, our method is focus on
the resources selection in dynamical real time environments, trying to quickly
react to changes in the system, e.g., sudden disconnections or the arrival of new

users to the system.

2.2. Resource allocation in Distributed Social Networks and Applications

Due to the increasing popularity of social networks, other works have fo-
cused on the assignment of resources in Online Distributed Social Networks,
which run over large-scale distributed systems. Thuan et al [I2] propose three
heuristic algorithms for solving the client-server assignment problem in online
social network applications. The algorithms are based on the user communi-
cation patterns. The authors objective is to find an approximately optimal
client-server assignment that results in small total communication load, while
maintaining a certain level of load balance.

Zhang et al [I3] propose three heuristics to assign clients to servers in contin-
uous Distributed Interactive Applications (DIA) [14]. The heuristics are focused
on reducing the network latency for maximizing the interactivity under consis-

tency and fairness requirements. They are based on analyzing the minimum



achievable interaction time for DIA’s to preserve consistency and provide fair-
ness among clients. Zheng et al [I5] add a complementary study to the previous
work. Authors present two efficient server placement algorithms for hosting
continuous DIA’s. These algorithms are addressed to find optimum locations
of servers in the network, with the goal of optimizing the interactivity perfor-
mance, while maintaining the consistency and fairness of DIA’s. The proposed
algorithms take into account the interaction between clients, considering their
path in the network and the latency, to produce near-optimal server placements.

Hiroshi et al [I6] present a heuristic algorithm via relaxed convex optimiza-
tion, that takes a given communication pattern among the clients, providing
an approximately optimal client-server assignment for a pre-specified trade-off
between load balance and communication. This heuristic can be used in dis-
tributed applications such as Instant Messaging Systems (IMS).

The proposed methods in these works are based on profiling the user behav-
iors (i.e. obtaining information about the user communication patterns), to find
optimal client-server assignments in large-scale distributed systems. However,
the MCBR method does not need to gather user behavior to make optimal as-
signments. All the information needed is obtained from the nodes that compose

the distributed system.

2.3. Resource allocation in Cloud Computing Systems

In a more general context, with the advent of the cloud and federated clouds
[17], Coutinho et al [I8] proposed the Cloud Resource Management Problem
(CRMP). The CRMP is a multi-criteria optimization problem which consists of
assigning resources to users, taking into account both cost and performance
preferences of consumers for supporting purchasing. To solve the problem,
an Integer Programming (IP) formulation, and a GRASP heuristic [19], called
GraspCC, are presented by the authors. Both methods consider time and bud-
gets limits of consumers, and different application requirements in terms of
resource demands. Authors claim the need for both approached, since exact

procedures have often proved incapable of finding optimal solutions in real-



world problems, as they are extremely time-consuming. Conversely, heuristics
and metaheuristics provide sub-optimal solutions in a reasonable short time.

More recently, the same authors have published a new work [20] addressing
the CRMP in multi-cloud environments. They propose GraspCC-fed, a GRASP
heuristic approach for dimensioning the amount of virtual machines to allocate
for a parallel workflow in federated cloud environments, before its execution.
GraspCC-fed takes into account both costs and execution times in a weighted
sum objective function. Same problem has also been resolved by Heilig et al
[21] using a Biased Random-Key Genetic Algorithm (BRKGA) [22]. They pro-
pose the BRKGA-MC, which is based on a cloud brokerage mechanism. The
BRKGA-MC is a deterministic algorithm that takes as input a vector of n ran-
dom keys and it returns a feasible solution of the optimization problem at hand
along with its objective value. The algorithm is able to determine a feasible
solution in the millisecond range with an excellent quality, and it is suitable
for being included as a real-time decision support tool in related deployment
processes.

As explained in the next section, due to the flexibility of the MCBR method
to adapt the parameters and the use of priority levels, it could be applied to a
wide range of large-scale distributed systems. Although it is not the purpose
of the present work, it could be used to solve this multi-objective problem,

maintaining the fast and efficient node selection process.

3. Multi Criteria Biased Randomized Method

This section presents the MCBR method, which focuses on selecting the
most suitable nodes to allocate resources, in an efficient and fast way.

In a previous work [23], we proposed a multicriteria optimization approach
based on a node-quality function. This method consists of parameters and
weights associated to these parameters (weighted-sum optimization method), in
which multiple objective functions are combined to form a single function.

This method is effective when using a reduced number of parameters to op-



timize. However, it becomes more challenging when the numbers of parameters
increases. This is because the best values of the weight factors cannot be easily
determined, since: (a) the numerical quantities are typically not based on a
uniform scale; (b) the number of objective functions can be large; and (c) the
consequences of a given trade-off cannot be quantitatively known prior to the
optimization.

In order to overcome this issue, this paper proposes the MCBR method,
which is a hierarchical allocation method based on Lezicographic Ordering (LO),
traditionally used in multi-objective combinatorial optimization problems. The
MCBR method categorizes the parameters to optimize into different priority
levels, providing good quality solutions in a fast and efficient way. Using this
approach, we avoid to categorize the parameters of the objective function quan-
titatively. With the aim of making possible its use in a wide range of systems,
the MCBR method allows an easy-to-use adaption of the parameters and their

priority levels.

3.1. Hierarchical allocation method

As mentioned before, the MCBR, method is based on the concept of a multi-
criteria optimization strategy called Lexicographic Ordering (LO). This method
potentially avoids the use of weight factors by incorporating priorities of the
individual planning criteria (objective functions) explicitly in the optimization
process.

The LO method assumes that the objectives can be ranked in order of im-
portance (from best to worst). The optimal value is then obtained by mini-
mizing/maximizing the objective functions sequentially, starting with the most
important one and proceeding according to the order of importance of the ob-
jectives. Thus, this multi-objective optimization technique can be represented
as an objective function F(x) = [f1(x), f2(x), ..., fn(2)], which contains a collec-
tion (i.e., a vector) of N individualized functions (f;(x)) ordered by importance,
so that fi(z) is the most important and fy(x) the least important. Addition-

ally, the optimal value found for each objective is added as a constraint for



subsequent optimizations. This way, the optimal value of the most important
objectives is preserved.
Mathematically, this method can be modeled as an ordered sequence of real

objective functions with a set of constraints as follows:

Min/Max f;(z) (1)

subject to:

fil@) < £5() (2)
where i = {1,2,...,N} and j = {1,2,...,s — 1}.

As the method progresses down from level 1 to level N (the last level), the
preceding objective functions are converted to new constraints with boundary
values f7, set by the a priori attained solutions min/max f;(x), subject to the
constraints from the upper level. Accordingly, the number of constraints in-
creases with each level up to N — 1, reducing the feasible search space gradually

in each new level.

3.2. MCBR components

Figure [1] shows an overview of the MCBR method, which is composed of
two main steps. During the first step, given the complete list of active nodes
and a set of criteria parameters, ranked by their order of importance, an iter-
ative procedure based on the LO method is applied to obtain a reduced set of
best nodes according to each criteria. For each iteration of the procedure, the
list of nodes is sorted by a criteria parameter. Afterward, we apply a Biased
Randomization (BR) [3] mechanism to select a set of best nodes for this criteria
parameter, discarding the remaining nodes. This subset of nodes is provided
as input to the next iteration of the procedure, and the procedure is repeated
for each criteria parameter. Finally, we obtain a reduced sublist of best nodes.
Subsequently, during the second method stage, a Biased Randomization (BR)

mechanism is applied to the final list to select the nodes to be used.
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Figure 1: Overview of MCBR method

More specifically, during the first stage, the initial list of active nodes is
filtering by the criteria parameters. The set of criteria parameters used by the

MCBR method are represented as a vector of tuples as follows:

C = [{1,thresholdy, %elitey, type1 }, ..., { N, threshold, %oeliten , typen }]
(3)

The first parameter of the tuple represents the importance of the parameter,
with 1 representing the most important. The second parameter represents the
threshold value, i.e., the minimum or maximum value that can be accepted
to meet the requirement of a criteria parameter. The third value represents
the maximum percentage of nodes to be selected to obtain the next list of
high quality nodes according to a criterion, i.e., the nodes with high values
- maximizer parameter - or low values - minimizer parameter - for a criteria
parameter, hereinafter ‘elite nodes’. Finally, the last parameter indicates if it is
a maximizer parameter (type = 1) or a minimizer parameter (type = 0).

Using this filtering procedure at the beginning of the first stage, the nodes
that do not meet the minimum quality requirement imposed by the threshold
value of each the criteria parameter are removed, reducing the list of active
nodes. Therefore, we are trying to carry out an efficient sorting procedure,
avoiding to sort nodes without possibility of being selected as candidate nodes.
In case all nodes meet the requirement of this parameter, the size of the list will
be the same that the size of the initial list.

Once this initial filtering procedure is done, we obtain a non-sorted list of

10
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viable nodes, where all nodes included fulfill the requirements to be used to
allocate resources. Subsequently, the MCBR method chooses the nodes to be
used from this list, applying an iterative procedure which takes into account the
priority of the criteria parameters.

Firstly, the list of viable nodes is sorted by the first parameter, which is
the most important. Depending on whether it is a maximizer parameter or a
minimizer parameter, the list will be sorted in an ascendant or descendant way.
When the list is sorted, a percentage of nodes is selected until the maximum elite
percentage value of the criteria parameter (%elite,) is reached. The selection of
the elite nodes is carried out by means of a Biased Randomized (BR) method
[3]. This method consists of using a non-uniform and non-symmetric (biased)
distribution, such as the geometric distribution or the decreasing triangular
distribution, instead of using the uniform distribution. In this work we have
used a geometric distribution. The used of the geometric distribution associated
to BR has been proven to be a good combination in the literature [24]. Figure
shows the probabilities of being selected in a list with 25 elements using a
parameter 0.2. The geometric distribution depends on that 8 parameter. Figure

shows how the 8 parameter influences the geometric distribution. As can be
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seen, the higher S values leads to increase the times the first values are chosen.
We set this parameter to 0.3 as this value is best suited for the experimentation
system used, but it can be modified as input parameter of the MCBR, method.

Using a BR procedure, we ensure that nodes on the top positions of the
list will be selected, i.e., the highest quality nodes for a criterion, diversifying
the node selection. If we would apply a uniform selection finishing when the
maximum percentage value of nodes to be selected is reached, there could be
nodes on the top of the list that never would be chosen although they were
quality nodes. Therefore, the BR procedure allows diversification and load
balancing, keeping the logic behind the sort.

Once the elite nodes have been selected considering the first parameter, we

12



obtain a new reduced sublist, which keeps only a set of elite nodes for the next
specific parameter. By default, we keep the 10% of the total nodes of the original
list for each criteria parameter, although this value is an input parameter which
can be modified. The obtained sublist will be sorted again by the next criteria
parameter in the next iteration, and the elite nodes will be selected taking into
consideration that criteria parameter. This procedure (sort/BR) is repeated
iteratively for all the criteria parameters, until the final list of elite nodes to be
used is obtained.

The algorithm used to sort the list is the QuickSort [25]. We have selected
this algorithm since its average complexity is O(n*log(n)). Thus, the asymptotic
complexity of our algorithm (lower bound) will be O(n * log(n) = t), where ¢ is
the number of sorts, which depends on the number of criteria parameters used
in the algorithm. Concerning to the worst case of our algorithm, it is closely
related to the QuickSort algorithm, whose complexity is O(n?) in the worst case.
Hence, the worst asymptotic complexity (upper bound) of our method will be
O(n?xt). Note that in each iteration of the algorithm, the n variable decreases,
since we select a subset of nodes (10% of the overall).

Once the final list of elite nodes is obtained, it is used in the second stage
of the method. Thus, when a node is required, it is selected from this final
list. The selection of a new node is also carried out by means of using the BR
method.

The objective to use BR is to assure that good quality nodes are chosen
and, at the same time, preventing that the best ones to be completely saturated
too fast. As in the first stage, we have used a geometric distribution, with a
parameter set to 0.4.

It is important to notice that depending on the system, the final list could be
not static, and the quality of the nodes can change over time. For this reason,
depending on the variability and dynamism of the system, the list should be
periodically updated.

The proposed method can be used in a wide range of distributed systems

such as the mentioned in the related work section. In order to validate the
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method, we have used a real case scenario of a large-scale distributed social
network (Garlanet) based on VC nodes. The following section provides more

details about it.

3.3. Garlanet Stmulation environment

Garlanet [4] is a Twitter-like decentralized alternative implementation of a
microblogging social network, that stores all its data in computers voluntarily
contributed by its participants. In more detail, messages and data information
of a user are handled by a microservice. Each user has her /his microservice that
is replicated across different nodes to guarantee its availability. Replicas of a
microservice follow the eventual consistency model. Additionally, Garlanet has
a Centralized Control System (CCS) responsible for detecting available nodes at
any moment and assigning the most suitable nodes to each microservice instance.
Moreover, the CCS guarantees that all users have the minimum number of nodes
assigned and the minimum quality of service (QoS). The quality of each user is
defined as the sum of the quality of the nodes that host its data.

Garlanet imposes these two user constraints to deal with the unreliability
of the nodes. The main purpose of these constraints is to try of guaranteeing
all the time the availability of the user data, avoiding critical situations, where
users access to the system and they have not access to their data. This way, if
the available nodes do not have highly enough quality in an instant of time, and
the user do not reach the minimum QoS with the minimum number of nodes,
new nodes are assigned until fulfill this constraint. Using these two metrics,
Garlanet tries to guarantee the data availability, reflecting in a better QoE.

Figure [] provides a brief scheme of the actions that occur after a node
disconnects. Figure [4] (a) shows the initial state: connected nodes and User
Microservices (UM) hosted in the nodes. Some time afterward, in Figure [4] (b),
node 6 disconnects and the UMs kept in this node are no more available. Since
nodes send heartbeat signals to the CCS, this, after some time without receiving
them, will consider that node 6 is disconnected. Next, the CCS will select new

nodes to replicate the UMs kept in node 6 (from users 1 and 2). In this example,
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the CSS decides that UM from user 1 will go to node 3, and UM from user 2
will go to node 1. Once nodes 1 and 3 are aware that they should host the UMs
from users 1 and 2 (respectively), they ask for the node list in charge of hosting
currently these UMs (1) to the CCS. Then, the CCS sends the node list that
hosts the UMs to replicate them (2). After that, the nodes (both node 1 and
node 3) select randomly a candidate node of the node list to replicate the UMs,
and they start a replication session with the selected nodes (3) and (4). Finally,
Figure 4| (c) shows the final situation of the system. As can be seen, the UMs
of users 1 and 2 have been replicated into node 3 and node 1 respectively.

We have developed a simulator using Java Standard Edition 7.0, which tries
to reproduce the behavior of the above-mentioned environment in the most
realistic way. As is shown in Figure |5 the simulator is composed of three main
modules: Initialization, Activity and Control.

The first module (Initialization) is responsible for initializing the environ-
ment. It creates both the users and nodes with their properties. We have
considered as properties of a node: the maximum number of UM that it can
host, the download speed, the probability of disconnection, the probability of
reconnection and its quality. The first four are provided as input parameters
and the last is predicted using the simulator. We have assumed that all nodes
can host the same number of maximum UMs. The download speed of each
node is randomly established between 1 MB/sec and 20 MB/sec. Regarding the
users, they have as properties their minimum quality and the minimum number
of replicas of their UMs (nodes to use per user).

The second module (Activity) is made up of two submodules: the Activity
Generator submodule and the Prediction Quality Model submodule. The Activ-
ity Generator submodule is in charge of modifying the state of the nodes. They
are turned on and off following a probability. We have defined three kinds of
nodes in function of their quality: low, middle and high. Low nodes have a high
probability of disconnection and a low probability of reconnection, while High
nodes have a low probability of disconnection and high probability of connec-

tion. Each of these kinds of nodes behaves differently, and allows us to simulate
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different scenarios. On the other, the Prediction Quality Model submodule is
responsible of predicting the quality of each node.

The third module (Control) is composed of two submodules: the CCS sub-
module and the Monitoring submodule. The CCS submodule simulates the
CCS of Garlanet. It detects the state of the nodes, selects the most suitable
nodes to allocate UMs and guarantees that the users have the minimum QoS
and the minimum number of nodes. As in the Garlanet real environment, these
minimum QoS and number of nodes are input parameters, and their values have
been assigned based on the user experience. Other systems with more dynamic
behavior in function of the state could be monitored by another module, and
the parameters values would be periodically updated. Notice that each time a
node is assigned to a user, we consider a time lapse to simulate the data transfer
time (replication session). Currently, this time is constant. After this time, the
node is assigned to this user. As we can see in Figure 5] we have integrated the

MCBR method with this submodule, with the objective of using this mechanism
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to select the most suitable nodes. The second submodule, Monitoring submod-
ule, is in charge of monitoring the system during the simulation process, and
providing the output files of the simulation.

Regarding the simulation process, we simulate three months of the real sys-
tem, which corresponds to 30 minutes of simulation. The total time of the real
system to simulate is an input parameter, which can be set up by the user. We
have defined three main periods of simulation: Initialization, Stabilization, and
Monitoring. The first one is carried out when the simulation starts and it calls
to the Initialization module to create users and nodes. The second period (Sta-
bilization) consists in giving some time to the system to generate the prediction
quality model of each node. In this period the Activity Generator and the CCS
submodules respectively start turning on and off nodes, and reallocating UM.
These two modules are run as events, which are triggered regularly until the
simulation finished. This period corresponds to one month in real time. After
this period, the Monitoring submodule is called to start monitoring the system.
This monitoring time corresponds to a time period of two months.

At the end of the simulation, the simulator provides as output the nodes
assigned to each user, the QoS of each user, the re-connections of each user
(number of times that the information has been replicated), and the average
time of MCBR to select a new node to allocate the information. The simulator
also allows to take snapshots of different simulations times.

With the objective of applying the MCBR method in Garlanet, we have used

three parameters of the system:

e Node Quality: Tt is ranked as the most important parameter. It indicates
the node quality, and it is represented as the predicted probability of a
node to be connected in a certain period of time. Its value is normalized
between 0 and 1, being 1 the highest node quality. To obtain this value, we

have generated a prediction model, which is based on the next parameters:

— Percentage of connected time: This parameter indicates the percent-

age of time the node has been connected (serving) since its first con-
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nection. Its value is a normalized percentage between 0 and 1. A
node with a high percentage of connected time is desirable, as the

stored information is less likely to be reallocated.

— Number of disconnections: This parameter complements the previous
one and represents the number of times the node has disconnected.
Its value is normalized between 0 and 1, taking as upper bound the

highest value obtained from a node so far.

Although for the MCBR method the node quality is just a parameter to
select the most suitable nodes, with the aim of clarifying how this value
is obtained, in next section the highlights of the prediction model are

described.

Percentage of occupation: It is ranked as the second most important pa-
rameter. This parameter indicates the degree of occupation of a node. It
is used to prevent the saturation of nodes. Each node can only host a
maximum number of UMs. Its value can be an absolute number between

0 and the maximum number of UMs to host.

Download Speed: Tt is ranked as the least important parameter. This
parameter indicates the download speed of each node. Its value is an

absolute number expressed in MB/s.

4. The prediction quality model

This section presents the prediction model used to obtain the quality of a

The quality of a node is represented by the likelihood of it keeping connected

for a certain period of time. To predict this quality we take into account its

behavior during the last month, by obtaining the probability of it being con-

nected for every day of the week. This allows a prediction whether a node will

be connected (or not) in the following days.
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Sun  Mon Tue Wed  Thu Fri Sat

R] PrRISun PrRJMon PrRlTue Prleed PrRlThu PrRlFri PrRISat

R2 PrRZSun PrRZMon PrRZTue PrRZwed PrRZThu PrRZFri PrRZSat

RN PrRNSun PrRNMon PrRNTue PrRNwed PrRNThu PrRNFri PrRNSat

Figure 6: Representation of the data structure for the disconnection probabilities, being n the

number of nodes

In order to do so, a data structure is kept for every node which contains the
probabilities of disconnection calculated by the prediction model. This struc-
ture has the form of an array of seven positions, each of them corresponding to a
day of the week. For each day, we store the probability of the pertinent node to
disconnect that day, taking into account its disconnection pattern throughout
the last four weeks. This data structure is represented in Figure [6] where R,
stands for the node n € {1,2,..., N}, and Prg, ; is the probability of disconnec-
tion of the node n the day of the week, j € {1,2,...,7}. The intuition behind
this procedure represents an effort to learn the habits of the owner of the node,
which are relatively consistent from one week to the other.

To record the nodes behavior, that is, the disconnection pattern of each of
them over the last four weeks the following procedure is followed.

The data structure of a single node is a four-position matrix, corresponding
to each of the four weeks. Each of these indexes contains an array of seven

positions, one for each day of the week. This matrix represents the last 28 days
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Sun  Mon Tue Wed Thu Fri Sat

Weeky, ;

DW—3,Sun DW—j’,Man DW—3,Tue DW-3, Wed| DW-j’,Thu DW—3,Fri DW—3,Sat

Week w-2 D W-2,Sun D W-2,Mon| D W-2,Tue D W-2,Wed D W-2,Thu D W-2,Fri D W-2,Sat

Weeky, ,

DWfI,Sun DWfI,Mon DW—I,Tue DW—I,We DW—I,Thu DW—I,Fri DWfI,Sat

Week,,

DW,Sun DW,Mon DW,Tue DW,Wed DW,Thu DW,Fri DWSat

>
X |ooo| K |oo0| X

Ry

Figure 7: Representation of the data structure used to store the disconnection pattern of the

last four weeks of execution for every node

of execution, in which each position will store the number of times the node has
moved from a connected to a disconnected state that particular day. In order
to update this matrix, every new week an update procedure is performed. This
one simply takes all the disconnections from the past seven days of the node,
and sums them up for each day of the week in a new seven-position array; then,
it removes the oldest recorded week of the node from the matrix, and replaces it
with the new one. It then recalculates the probabilities array taking into account
all four weeks currently in the matrix. This last step consists, for every day of
the week, in getting the average number of disconnections of the past four weeks,
and normalizing this value to get a probability of disconnection between 0 and
1. This data structure is represented in Figure [7] where M; is the four-position
matrix corresponding to the node i, W is the number of the last week, and D; ;
represents the number of disconnections experienced by the corresponding node
of weekday j € {1,2,...,7} from week : € {W -3, W —2, W — 1, W}. Given this
notation, we can define the probability of disconnection of a node n any given

weekday j as

w
Zw:W73 Dwaj

r— (4)

Prg, ; = normalize(

assuming that D,, ; is an integer from the corresponding node matrix. The

normalize function returns a real number between 0 and 1 representing the
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Algorithm 1 Disconnection Probability

1: procedure DISCPROB(N,X)

2: nDays < numbDays(z) > Number of days within x
3: sum <0

4: if x > 0 then

5: for i <~ 1 to i = nDays do

6: W D; <+ weekDay(today() + )
7 sum < sum + Prr, wp,

8: else

9: for i <~ 1 to i = nDays do
10: WD; < weekDay(today() — )
11: sum < sum + Prr, wp,

12: return sum/nDays

likelihood of disconnection.

Once a new prediction model has been generated, and we have a probability
array for every node, we can obtain the probability of a node to be connected
in a certain period of time. If we name this requested time ¢, this is done by
calculating two different probabilities and taking the product between them:
the disconnection probability of the node for the next ¢ units of time, and the
disconnection probability of the node for the past ¢ units of time, where ¢ stands
for the time the node has been connected. Using information about the current
connection allows for more precise predictions, as the longer a node has been
connected, the more likely it is to disconnect in the near future. The obtained
result represents a disconnection probability, and therefore has to be subtracted
to one in order to get the probability of connection. If we name this probability

Pry, +.c, we can formulate it as

Pry e =1— (discProb(n,t) x discProb(n, —c)) (5)

where discProb(n,x) stands for the function that, given a node n and a lapse of
time z, returns the disconnection probability of n in that period. If z is positive,
it takes into account, the next x units of time starting with the current day. On

the other hand, if = is negative, it considers the previous z units of time. The
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Algorithm 2 ILS framework
1: procedure ILS

2: s < Generatelnitial Solution
bestS < s
while Stopping condition not met do
s« Perturb(s)
§* LocalSearch(s/)
if ValueObjectiveFuntion(s*) better than ValueObjective Function(bestS) then

bestS + s*

© % I > gRw

s + AcceptanceCriterion(s, s*)

10: return bestS

pseudo-code for this function is shown in Algorithm [I] The function takes the
average of their disconnection probabilities stored in the probabilities array for

every day of the week found in the specified lapse of time.

5. Metaheuristic algorithm

In order to evaluate the quality of the results provided by the MCBR method,
we have developed a metaheuristic algorithm that provides optimal or pseudo-
optimal solutions in a reasonably short time. The proposed algorithm is based
on the well-known Iterated Local Search (ILS) metaheuristic framework [20].
Algorithm [2] depicts the main components of the ILS framework. First, an
initial solution is generated. Then, an iterative process is carried out combining
a perturbation stage and a local search stage to improve the initial solution.

The perturbation diversifies the search to be able to escape from local op-
tima. In order to do this, it applies random movements big enough so that
the local search cannot undo it in one step. The local search stage aims at
searching the best solution inside the neighborhood of the current search space.
This procedure consist of exploring the current space performing little changes
in the previous solution. Every time a solution which improves the best current
solution if found, the best solution is updated. This is done until a predefined

stopping condition is met. Then, the best found solution is returned.
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Therefore, it is necessary to define each of these stages for the particular
problem dealt in this work. The Garlanet scenario and its particularities have
been taken into account to propose the algorithm.

For this purpose, first, we depict each node in the network with the attributes
explained in section 3: a maximum capacity for hosting UMs, a quality level,
and the download speed. All users have a minimum number of replicas of its
UMs, and a minimum quality (the sum of the qualities of the nodes assigned to
it). Second, we define the goal of the algorithm as the minimization of the total
number of replicas of each UM, while ensuring the user restrictions (minimum
number of replicas and quality). The reason to consider this objective function is
that the lower the number of replicas, the better assignation of nodes have been
done, since it involve less movement of data in the system (and therefore better
quality of service of the system) while keeping the requirements. Finally, each
stage of the ILS framework need to be established for the particular problem:
how to generate the initial solution, how to perform the perturbation, and how
to perform the local search. Next sections are devoted to explain our proposals

in detail.

5.1. Initial solution generation

As mentioned before, the ILS metaheuristic requires an initial solution to
start. Therefore, we have defined a method to obtain it. We propose a Multi-
Start procedure [27] which executes several instances of the heuristic depicted in
Algorithm [3] and chooses the best one as initial solution. This heuristic works
as follows. Given the list of nodes decreasingly sorted by their quality, the al-
gorithm assigns UMs to the nodes in the list. Each node is selected randomly
by applying BR, using a geometric distribution over the whole list, until the
user has reached its minimum demanded quality and the minimum number of
required replicas. As stated above, we use a BR selection process to diversify
the search space from the beginning. This procedure is applied iteratively for
all users. When a node has reached the maximum number of UMs it can hold,

it is removed from the sorted list.
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Algorithm 3 Heuristic to generate the initial solution

Require:
nodes < Nodes list

users < User list

procedure CONSTRUCTSOLUTION
sortNodes < nodes.sort Decr ByQuality()
users.shuf fle()

pointer +— users. first()

1:

2

3

4

5: while users.notEmpty() do
6 u < users.get(pointer)

7 microservice <— u.get Microservice()
8 n < randomGeom/(sortNodes)

9

assign(n, microservice)

10: if n.isFull() then

11: sortNodes.remove(n)

12: if u.minNodes() A u.minQuality() then
13: users.remove(u)

14: pointer < pointer.next()

5.2. Solution perturbation

We propose a perturbation stage where the goal is to change a percentage
0 of the total assignations UMs-nodes. Experimentally, after some tests, we
have set this parameter to 15%. The algorithm consists of uniformly choosing
two random nodes, and trying to move a UM from the first node to the second
one. If this is not possible, all potential UMs swaps between both nodes are
computed, and a random one is chosen to be performed. This process gives us
a modified version of the current solution that we can then be refined to find a

local optima.

5.8. Local search

Algorithm 4| describes the implemented local search. Firstly, the users are
sorted decreasingly by the total number of replicas of their UMs, and secondly,
by their assigned quality. Then, nodes are filtered by all their parameters to
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Algorithm 4 LocalSearch

Require:

nodes < Nodes list.

users < Users list.

1: procedure LOCALSEARCH
2: users.sortDecr ByMicroservices AndQuality()
3 for all param in a Node do > Filter Nodes by their parameters
4 nodes.sort By(param)
5: nodes.cutList()
6 nodes.sortDecr ByQuality()
7 for all u in users do
8 uNodes < u.assignedNodes()
9 uNodes.sort Ascend ByQuality()
10: N <« SelectNodesWith HighQuality Available( N odes)
11: nodesQuality < 0
12: IndexToExchange < 0
13: for all ni in uNodes do
14: IndexToExchange < IndexToExchange + 1
15: user Node <+ ni
16: nodesQuality < nodesQuality + user Node.getQuality()
17: if nodesQuality >= N.getQuality() then
18: break
19: N <« assingMicroservice(u.get Microservice)
20: uNodes < ExchangeRespos(N,uNodes[l..IndexToExchange — 1])

avoid the worst ones, excluding their quality. Lets & be the number of parame-
ters for every node. Then, we perform k sorting (one for each of the parameters).
After this filtering process is done, the nodes are finally sorted by their quality
in decreasing order. This leads to a sublist of the best nodes to be used during
the assignment.

Afterward, iteratively for each user, we get the first node (n) of the list
to be exchanged by the largest subset of nodes assigned to the user. If it is
not possible to select the first node due to occupancy restrictions, we look for

the following node with the highest possible quality. The idea behind it is to
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reduce the number of replicas of UMs of each user, while ensuring the minimum
demanded quality and nodes.

To do this, we sort the list of nodes already assigned to the user by their
quality in an increasing way and iterate over it. During each iteration, we check
if we can exchange n by the subset of nodes in the list formed from current
iteration node until the one with the lowest quality (first element of the list).
When the constraints are violated, node n is exchanged by the subset node list
of the previous iteration. Then, the UM of that user is replicated in the node n,
the node list and the level of occupancy of the nodes are updated, and finally,
the list is sorted for the next user.

An example of this procedure is provided in the following. Consider a user;
which has 4 nodes with the following qualities: 1, 0.8, 0.6, and 0.4, making a
total quality of 2.8. On the other hand, we have a node n obtained from the node
list with a quality of 1. Supposing that the minimum demanded quality by the
users is 2.5, and the minimum number of nodes per user is 3, we can exchange
the nodes with qualities 0.6 and 0.4 by n, without violating the mentioned
constraints. The algorithm first tries to exchange the node with quality 0.4 by
n, which is possible since we would fulfill the constraints of quality and number
of nodes. The same holds when it tries to exchange 0.6, 0.4 by n. Then, during
the next iteration, it tries to exchange 0.8, 0.6, 0.4 by n, as we we would fulfill
the constraints of quality, since the minimum quality allowed is 2.5, we select
the sublist of nodes of the previous iteration (0.6, 0.4) to be exchanged by n.
Finally, the best solution will be updated if the algorithm value is decreased.

We have set up a maximum time of 150 seconds to find the final solution,
since the metaheuristic is able to obtain large improvements at the beginning,

but later very small improvements are achieved.

6. Experimental validation

This section is dedicated to assess the performance of MCBR method inside

the simulation environment proposed in this paper.
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Table 1: Percentages of each kind of nodes in each scenario

High | Medium | Low

Scenario 1 5% 20% 75%
Scenario 2 5% 40% 55%
Scenario 3 | 5% 55% 40%

Scenario 4 | 10% 45% 45%
Scenario 5 | 10% 50% 40%
Scenario 6 | 20% 20% 60%
Scenario 7 | 20% 40% 40%
Scenario 8 | 70% 15% 15%

As mentioned, the simulator has been implemented using the programming
language Java Standard Edition 7.0. All the computational experiments have
been carried out on a workstation with an AMD quad-core processor of 2.3Ghz
with 4GB of RAM memory. As operating system we have used CentOS 6.6.

In order to test the behavior of the MCBR method working inside the sys-
tem, it has been compared with the proposed metaheuristic algorithm. As stated
before, this metaheuristic is used to evaluate what would be the near optimal
assignment of nodes to users in a idealistic scenario where it can be done from
scratch. To allow it, we have taken some snapshots of the simulator when it
is working using the MCBR method. With all the information of these snap-
shots we compare the solution provided by the MCBR method and the solution
provided by that metaheuristic in this situation.

Due to the different environments that can appear in these kind of systems,
we have simulated different scenarios composed of different percentages of high,
medium, and low quality nodes in terms of connection patterns. Table [I] depicts
the different tested combinations. We have assumed the most representative
scenarios of a real situation. Thus, we have scenarios where low and medium
quality nodes (Scenario 1 to 7) prevail. Moreover, we have consider an “ideal”

case (scenario 8), which is more unlikely to appear.
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For each scenario the number of nodes has been fixed to 300 and the number
of users to 2100. We have considered a realistic scenario where only a 15%
of total users of the system contribute by donating free resources. Although
other ratios have been tested, e.g., 10% and 5%, the only difference noticed
in the results is that the system activity, i.e., connections and re-connections,
increases as the ratio decreases. Obviously, if the system is not interesting and
the number of users providing resources voluntarily is too low, then the system
will fail due to lack of resources. However, this would happen considering any
approach.

We have obtained results with 2, 2.5, and 2.75 minimum qualities required for
users. We have performed other tests with lower and higher minimum qualities:
(a) with a minimum quality lower than 2 users might be at risk of non being
able to access the service; (b) a minimum quality higher than 2.75 may produce
the situation where there are not enough available nodes to be assigned in order
to guarantee that minimum quality.

With the described scenarios and parameters, we have considered different
performance indicators for the algorithms. The choice of these indicators has
been made considering the possible failures or weaknesses in the system.

One of the most important features regarding the algorithm to use in the
system is the computational time it requires. Since the system works in real
time, the sooner it provides the output, the better it works. While the algorithm
is running, system changes occur (e.g. new connections and disconnections)
and the algorithm result may not be appropriate. Figure |8 shows a comparison
between the proposed algorithm working inside the simulator (MCBR) and the
proposed metaheuristic (MET) for each different minimum quality tested (MQ).
The box-plots depict the distribution of the computational times obtained for
the different considered scenarios. As can be checked, the times required by the
metaheuristic are too large (around 150 seconds) to be considered in a real time
system. On the contrary, the proposed MCBR method only needs an average
of 2 seconds to provide a result, which seems more appropriate for the system.

Regarding the quality offered to each user of Garlanet once the minimum

29



160 |

|
|
i
140 |
i
I
120 ° 129,223

100

Time (s.)

I

I

I

I

I

I

I

}

80 |
I

}

60 |
I

I

I

I

40

20|

pX 2805
MCBR MET MCBR MET MCBR MET
MQ 2 MQ 2.5 MQ 2.75
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Figure 9: Quality assigned to each node in the network

quality is fixed (i.e., 2, 2.5, 2.75), we have noticed that the metaheuristic is able
to better fit it, since it takes into account the whole system at once and can
manage qualities better. The MCBR method tends to provide more quality than
the minimum required because it has to work with the remaining free nodes, as
highlighted in Figure [0

Due to the way the MCBR method works, when a node disconnects the
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Figure 10: Number of connections between nodes and nodes

CSS needs to find new available nodes that, together with the ones assigned
to each user, allows to reach the minimum quality for each of them. Thus,
the connections between the users and their nodes are kept and new ones are
added to reach the minimum quality, while the metaheuristic tries to find the
best group of nodes to be assigned to each user without taking into account
the currently assigned ones. For this reason, in Figure we can see that the
metaheuristic is able to obtain a best combination of connections between users
and nodes to reach the minimum quality, while the MCBR method needs more
connections (with an increase of 30%).

However, the MCBR method is able to avoid the movement of a large quan-
tity of information to be copied between nodes within the network, so that
time and network overload are saved. This kind of network is devoted to serve
the users of the application, and information flows as copies could slow down
and reduce the quality of service provided to users. In this regard, Figure
shows the number of copies or re-connections needed if a node disconnects for
the MCBR method and the metaheuristic algorithm. As can be checked, the
number of copies when applying the metaheuristic is so high (more than 6 times

the number of copies with the MCBR, method) that it is impossible to think
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Figure 11: Number of re-connections needed when a node disconnect

about using it inside a real system.

Therefore, we have verified that the MCBR method is a fast method and
is working properly, providing the quality required to each user of the applica-
tion through a set of assignments of users to nodes that guarantees a correct
functionality of the system, i.e., avoiding excess of data movement around the
network and servicing all users.

Regarding the minimum quality to offer, it seems that a quality of 2.5 pro-
vides results with a trade-off among the different dimensions considered: aver-
age time, average connections, average re-connections, and average final quality.
Figure [I2] is a visual representation of the solutions obtained when using the
different minimum qualities (MQ). For each dimension, it shows averages. On
the one hand, when the minimum quality is 2, we can guarantee the smallest
number of connections and short computational times. However, this involves
the highest number of re-connection and, therefore, movement and copy of data.
On the other hand, when the minimum quality is 2.75 the situation is the op-
posite, i.e., the algorithm needs more computational time and, although we can
guarantee a low level of re-connections, the number of nodes servicing each user

is high. In this case, the system needs to keep many nodes updated and leads to
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a high flow of data through the network. For these reasons, a minimum quality

2.5 is chosen, which presents a balance among the different dimensions.

7. CONCLUSIONS

In this work we have presented and validated the MCBR method, which is
a generic selection method based on a multi criteria optimization strategy to
select the most suitable nodes in VC distributed systems. MCBR strives to
provide high quality solutions in a fast way, using very low computing times.
Due to its flexibility, the MCBR can be applied in a wide range of distributed
systems.

As we have shown in the experimental validation section, MCBR, provides
good quality solutions in a fast way, under the consideration of different user
constraints, such as the minimum number of nodes and QoS. Moreover, MCBR,

avoids the excessive data movement within the network. A metaheuristic has
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been used to check the quality of our results. Although this metaheuristic is able
to improve the results obtained with our MCBR method, due to the inherit time
constraints of a real-time system and the volume of data that this metaheuristic
involves, it is not possible to apply it inside the system.

As future work, we plan to extend the current method taking into account the
data location to select the most suitable nodes. Data location has a significant
impact on several network performance criteria. For example, placing data
near users may reduce the network congestion and improve the load balancing.
Therefore, through this extension, we planing to consider a trade-off between

the node quality and its location within the network.
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