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SUMMARY 

RNA viruses have very compact genomes, so that they provide a unique 

opportunity to study how the evolution works to optimize the use of very limited 

genomic information. A widespread viral strategy to solve this issue concerning the 

coding space relies on the expression of proteins with multiple functions. Members 

of the family Potyviridae, the most abundant group of RNA viruses in plants, 

certainly offer several attractive examples of viral factors playing roles in diverse 

infection-related pathways. The Helper Component Proteinase (HCPro) is an 

essential and well-characterized multitasking protein for which three independent 

functions, at least, have been described: (i) viral plant-to-plant transmission, (ii) 

polyprotein maturation, (iii) RNA silencing suppression. Moreover, multitudes of 

host factors have been found to interact with HCPro. Intriguingly, most of these 

partners have not been ascribed to any of the HCPro roles during the infectious 

cycle, supporting the idea that this protein might play even more roles than those 

already established. In this comprehensive review, we attempt to summarise our 

current knowledge about HCPro and its already attributed and putative novel 

roles, to then finally discuss about similarities and differences regarding this factor 

in members of this important viral family. 

 

INTRODUCTION 

Members of the family Potyviridae are the most abundant and socio-economically 

relevant RNA viruses infecting plants (Scholthof et al., 2011; Valli et al., 2015) and, 

because of that, they have been subject of intense studies worldwide. This family is 

formed by eight genera (Brambyvirus, Bymovirus, Ipomovirus, Macluravirus, 

Poacevirus, Potyvirus, Rymovirus and Tritimovirus) that are differentiated by their 

genome composition and structure, RNA sequence and transmission vectors 

(Revers and García, 2015). Most potyvirids (i.e. viruses belonging to the 

Potyviridae family) have monopartite, single-stranded and positive-sense genomes 

of around 10000 nucleotides that are encapsidated by multiple units of a single 

coat protein (CP) in flexuous and filamentous virus particles of 680 to 900 nm in 

length and 11 to 14 nm in diameter (Kendall et al., 2008). Exceptionally, 

bymoviruses are peculiar in these regards, as they have a bipartite genome that is 
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encapsidated separately. Inside the infected cells, the viral RNA of potyvirids is 

uncoated and translated into polyproteins that are proteolytically processed by 

viral-encoded proteinases producing, in most of the cases, the following mature 

viral gene products: P1, the helper component proteinase (HCPro), P3, 6K1, CI, 

6K2, NIa (VPg + Pro), NIb and CP. As mentioned, bymoviruses have two genomic 

RNA segments that are independently translated. In addition to the large 

polyproteins, transframe products named P3N-PIPO and P3N-ALT, which share the 

N-terminal region of P3, are produced from RNA variants generated via 

transcriptional slippage during viral replication (Hagiwara-Komoda et al., 2016; 

Olspert et al., 2015; Rodamilans et al., 2015). Furthermore, the same mechanism is 

also used during the replication of some sweet potato potyviruses to produce an 

additional transframe product, termed P1N-PISPO, which overlaps with the P1 

cistron (Mingot et al., 2016; Untiveros et al., 2016). 

RNA viruses in general are known to have small and condensed genomes, 

which might be, at least in part, due (i) to intrinsic structural restrictions (e.g. 

topology and stability) of the RNA molecule (Gorbalenya et al., 2006), (ii) to the 

need of minimizing the negative impact of the error-prone viral replication 

(Holmes, 2003), or even (iii) to protect themselves from the action of antiviral host 

defence mechanisms (Eusebio-Cope and Suzuki, 2015). As a consequence, RNA 

viruses are under intense selective pressures to optimize the use of their genomic 

information. To cope with this restriction, they exploit diverse strategies in order 

to produce/recruit all the required components ensuring the infection success 

(Ahlquist et al., 2003; Atkins et al., 2016; Firth and Brierley, 2012; Sztuba-Solinska 

et al., 2011). One of these strategies relies on the expression of viral proteins with 

several functions. In particular, the well-characterized RNA viruses of the family 

Potyviridae provide fascinating examples of multitasking proteins (e.g. (Sorel et al., 

2014; Weber and Bujarski, 2015)). Here we present a comprehensive review 

concerning the potyvirid HCPro, with particular emphasis on members of the 

genus Potyvirus, in which at least three clearly independent functions have been 

described. 

 

TRANSMISSION – a historical overview of HCPro discovery 
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In the particular case of potyviruses, they are transmitted by aphids, by a mode of 

transmission that is described as non-persistent, since it occurs rapidly, with the 

duration of acquisition and inoculation phases in the range of seconds to minutes 

without retention periods (Bradley, 1952; Day and Irzykiewicz, 1954; Kassanis, 

1941). This fast, and usually efficient, mode of transmission was recognized as a 

serious caveat in the adoption of control measures against pathogenic virus 

dissemination, because it leaves virtually no time available for effective insecticide 

treatment aimed to target their vectors. Therefore, intense research efforts took 

place to better understand potyviral transmission. In this context, the role of 

HCPro in this process was found even before knowing that it was a viral protein. 

The name "Helper Component" was coined to describe the existence of a 

"component" of unknown source, but present in infected plants, which "helped" 

the transmission of potyviruses mediated by aphid vectors. How this function was 

identified is an extraordinary story that reveals the resources, skills and 

imagination of those researchers involved in the discovery (Pirone and Thornbury, 

1984). Chronologically, the finding of certain natural virus isolates with altered 

transmission properties was the first indication that this function was genetically 

regulated (Kamm, 1969; Simons, 1976). The use of aphid artificial feeding systems, 

based on stretched plastic paraffin films, was instrumental to verify that insects 

often failed to transmit the disease when purified virions were used for the 

transmission assay (Pirone and Megahed, 1966). Hence, this result indicated that 

the viral particle alone is not enough for efficient transmission. Taking advantage 

of UV-radiation treatments to inactivate viral RNAs, it was shown that a UV-

resistant component (likely a protein) should be acquired by aphids 

simultaneously (or prior) to virions in order to transmit the virus (Govier and 

Kassanis, 1974a, b; Kassanis and Govier, 1971a, b). Later on, equipped with very 

simple experimental tools, the purification of the active factor was achieved and 

allowed the generation of specific antisera (Govier et al., 1977; Thornbury et al., 

1985), which was certainly crucial to establish its origin as part of the viral 

polyprotein (Carrington et al., 1989a; Dougherty and Hiebert, 1980; Hiebert et al., 

1984). Indeed, antibodies against HCPro have been very useful to establish the 

presence of this viral factor in amorphous inclusions of cells infected with some 
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potyviruses (De Mejia et al., 1985), as well as to unravel other aspects of HCPro 

that will be described in diverse sections of this article. 

Based on results from the experiments described above, a molecular 

mechanism by which HCPro participates in the transmission process was 

suggested long ago by Govier and Kassanis (1974b). The so-called “bridge 

hypothesis” proposes that the helper component acts as a reversible link between 

the viral particle and the vector mouthparts (Fig. 1). Over the years, accumulative 

evidences have provided ample support to this hypothesis, while alternative 

models, such as that proposing a direct interaction between CP and aphid 

receptors with the HCPro acting to expose CP binding sites (Salomon and Bernardi, 

1995), failed to reach generalization. Among the most remarkable outcomes of 

these efforts were the identification and validation of conserved domains in CP and 

HCPro that are involved in vector transmission. In the CP, a highly conserved 

“DAG” motif had been earlier predicted to play a role in transmission (Harrison 

and Robinson, 1988; Laín et al., 1988), which was further confirmed by 

mutagenesis analyses (Atreya et al., 1990; Atreya et al., 1991; Atreya et al., 1995). 

Regarding the identification of relevant domains in HCPro, the characterization of 

transmission-defective isolates in different viruses (Huet et al., 1994; Peng et al., 

1998; Thornbury et al., 1990) lead to identify at least two separate motifs required 

for the bridge hypothesis to occur: a PTK amino acid triad that interacts with the 

CP (Huet et al., 1994; Peng et al., 1998) and a KITC motif that participates in 

retention to an unknown structure in the aphid mouthparts (Blanc et al., 1998; 

Huet et al., 1994) (Fig. 1). The presence of these amino acids might be not sufficient 

for the function, and indeed other regions in HCPro have been later proposed to 

affect transmissibility (Canto et al., 1995; Llave et al., 2002; Seo et al., 2010). 

Importantly, predictions based on the bridge hypothesis have been confirmed, and 

they include: (i) the identification of HCPro retention sites in aphid stylets (Moreno 

et al., 2012; Wang et al., 1998), (ii) the direct interaction between CP and HCPro 

(Blanc et al., 1997; Roudet-Tavert et al., 2002; Seo et al., 2010), and (iii) the 

location of HCPro in a protruding tip at one end of the viral particle (Torrance et 

al., 2006). 

An intriguing observation linked to the discovery of HCPro is the unusual 

aphid-mediated transmission of the potexvirus Potato aucuba mosaic virus (PaMV), 
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which only takes place when PaMV infected plants are co-infected with a potyvirus 

(Kassanis, 1961). The further finding of an equivalent DAG motif at the N-terminus 

of the PaMV CP provided a putative explanation for the observed trans-

complementation. In the same study, an elegant demonstration of the relevance of 

the DAG amino acid triad was obtained by engineering this motif in the CP of 

Potato virus X, a non-DAG, non aphid-borne, potexvirus, as this modification 

rendered the aphid transmission of this virus HCPro-dependent (Baulcombe et al., 

1993). It is worth mentioning that compatibility of different HCPro to support 

transmission of other potyviruses has been also confirmed (Flasinski and Cassidy, 

1998; Lecoq and Pitrat, 1985; López-Moya et al., 1995; Sako and Ogata, 1981). 

Indeed, this trans-complementation property of HCPro is believed to play an 

important ecological role by driving the evolution of the helper strategy as a way to 

avoid the negative impact of genetic bottlenecks associated with nonpersistent 

virus transmission (Pirone and Blanc, 1996). 

The purification of an HCPro still active during transmission was useful for 

the study of diverse features of this protein. Even though the insertion of a 6xHis 

tag facilitated the HCPro purification in the context of a viral infection by using a 

Ni+2-charged resin (Blanc et al., 1999), the same purification protocol was 

successfully applied in other viruses without attaching the 6xHis tag to HCPro 

(Wang and Pirone, 1999). These results suggest that intrinsic biochemical 

properties of the protein require the interactions with metallic ions, an 

observation that agrees with previous studies mentioning the relevance of divalent 

cations in the buffer (in particular Mg+2) during transmission assays (Thornbury et 

al., 1985; Thornbury and Pirone, 1983). 

The expression of functional HCPro in heterologous systems has provided a 

useful methodology to speed up research on potyvirus transmission. Hence, the 

proper activity of HCPro was maintained when the protein was expressed in 

transgenic plants (Berger et al., 1989), in insect cells using a baculovirus-based 

system (Thornbury et al., 1993), or in yeast (Ruiz-Ferrer et al., 2004). In addition, 

transient expression systems in plants, using either viral vectors (Sasaya et al., 

2000) or agro-infiltration (Goytia et al., 2006), also succeeded in producing 

transmission-active HCPro. 
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Remarkably, it was also shown that HCPro plays a key role in the semi-

persistent dispersion of Wheat streak mosaic virus, a member of the Tritimovirus 

genus transmitted by eriophyid mites (Stenger et al., 2005b). Moreover, despite 

the low overall sequence similarity between the tritimovirus and the potyvirus 

HCPros, mutations in conserved Cys residues affected the transmission process in 

viruses belonging to these two genera (Atreya and Pirone, 1993; Llave et al., 1999; 

Young et al., 2007). As a detailed characterization of the HCPro role in transmission 

mediated by vectors others than aphids awaits to be addressed, it is not currently 

clear whether this function has been acquired independently in different 

Potyviridae genera (convergent evolution), or it has derived from a common 

ancestral virus that was transmitted by an ancestral arthropod (adaptation). 

Finally, other aspects that remain to be determined in order to better 

understand the role of HCPro in transmission include the stoichiometry and 

geometry of the reversible interactions virion//HCPro//vector, which seems to 

involve multimers of HCPro (Plisson et al., 2003; Ruiz-Ferrer et al., 2005) and the 

location of this factor at one end of the viral particles (Torrance et al., 2006). 

Curiously, the visualization of virions within insect stylets has only been attempted 

and achieved with potyviruses in a very reduced number of studies (Wang et al., 

1996), and just a few attempts to discover the vector receptors have been pursued 

and communicated (Dombrovsky et al., 2007; Fernández-Calvino et al., 2010). 

Thus, at this point, it is still uncertain if the potyvirus-specific aphid receptor co-

localizes or shares properties with the putative receptors of viruses from other 

families (Blanc et al., 2014; Uzest et al., 2007). 

 

RNA SILENCING SUPPRESSION – fight for survival 

RNA silencing is a highly conserved, sequence specific, regulatory mechanism that 

shuts the expression of target genes down at the transcriptional and post-

transcriptional level. The entire silencing machinery is formed by partially 

overlapping modules, which are accordingly activated in the presence of diverse 

double-stranded (ds) RNA molecules and have different roles during development 

(some nice reviews about RNA silencing were recently published: Bologna and 

Voinnet, 2014; Castel and Martienssen, 2013; Chang et al., 2012). As part of its 

many tasks, RNA silencing plays a key antiviral role in organisms from different 

This article is protected by copyright. All rights reserved.



 8 

kingdoms (Bronkhorst and van Rij, 2014; Chang et al., 2012; Ding, 2010; Huang et 

al., 2014; Li et al., 2002; Szittya and Burgyan, 2013; Zhang et al., 2015). In the case 

of plants, for instance, it is well established that viruses generate viral-derived 

dsRNAs as a consequence of (i) viral replication, (ii) RNA tendency to fold in 

hairpin-like structures, and/or (iii) transcription of bidirectional mRNAs. These 

dsRNAs are first recognized and processed by RNase III-like enzymes belonging to 

the Dicer family, which cut them in viral-derived short interfering (vsi)RNA 

duplexes 21-to-24 nucleotides in length. Analogously, another batch of these 

vsiRNAs derives from newly synthesised dsRNAs generated by the action of RNA-

dependent RNA polymerases (RDRs). After stabilization via HEN1-mediated 

methylation of their 3’ ends, vsiRNA duplexes are recruited by Argonaute (AGO)-

containing complexes, where only the so-called “guide strand” is retained to 

further direct the complex towards complementary RNA/DNA sequences in order 

to promote silencing (Zhang et al., 2015). A basic description of the antiviral 

silencing pathway against plant RNA viruses is illustrated in Figure 2. 

During their evolution, viruses had to develop ways to fight back against RNA 

silencing in order to survive. The most effective strategy appears to be that based 

on the expression of viral proteins, called RNA silencing suppressors (RSSs) with 

the capacity to block or interfere with the antiviral silencing. The HCPro protein 

from members of the genus Potyvirus was indeed the first ever-described RSS 

(Anandalakshmi et al., 1998; Kasschau and Carrington, 1998). Many studies since 

then have revealed that HCPro can counteract the silencing-based defensive 

barrier by targeting multiple steps of the cascade (Fig. 2 and Table 1). 

Interestingly, some of these studies have also shown that only HCPro from 

members of Potyvirus and Rymovirus genera appears to have RNA silencing 

suppression activity, whereas this function relies on another protein in members 

of the remaining genera (Giner et al., 2010; Mingot et al., 2016; Tatineni et al., 

2012; Untiveros et al., 2016; Young et al., 2012). 

The molecular mechanism by which HCPro interferes with the antiviral 

silencing remained elusive until 2006, when Lakatos and co-workers found that, 

similarly to the well-characterized tombusviral RSS P19, the Tobacco etch virus 

(TEV) HCPro prevents the loading of vsiRNAs into the silencing effector complexes 

by direct binding to these molecules in a size-specific manner (Lakatos et al., 
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2006). Although vsiRNA sequestration seems to be a quite common antisilencing 

mechanism for the HCPro of diverse potyviruses, other non-mutually exclusive 

alternatives were proposed (Table 1). For instances, HCPro was found to interfere 

with methylation of vsiRNA 3’ end either by inhibiting the production of methyl 

group through disturbing the methionine cycle (Ivanov et al., 2016; Soitamo et al., 

2011), or by direct interaction with and inhibition of HEN1 (Jamous et al., 2011). 

Interference with AGO-containing effector complexes was also described for the 

HCPro expressed by TEV and Potato virus A (PVA). In the first case, TEV HCPro 

takes advantage of the homeostatic self-regulation properties of the host RNA 

silencing pathway (Mallory and Vaucheret, 2010) and enhances the expression of 

miRNA168 with the consequent down-regulation of its endogenous targets, which 

include the mRNA of the antiviral AGO1 (Varallyay and Havelda, 2013). In the 

second case, PVA HCPro directly interacts with the AGO1 in ribosomal complexes, 

supporting the idea that this RSS is able to somehow alleviate the putative 

translational repression of the potyviral genome mediated by RNA silencing 

(Ivanov et al., 2016). Furthermore, HCPro can interfere with the RDR-mediated 

amplification step, as in the case of the Sugarcane mosaic virus (SCMV) HCPro, 

which down-regulates RDR6 by interfering with the transcription of RDR6 mRNA 

(Zhang et al., 2008). Finally, it has been also observed that HCPro blocks a long-

distance silencing signal that moves ahead of the viral infection (Delgadillo et al., 

2004; Hamilton et al., 2002; Pfeffer et al., 2002). Based on previous results (Lewsey 

et al., 2016an; Melnyk et al., 2011; Molnar et al., 2010), it is reasonable to 

hypothesise that vsiRNAs move through the whole plant via the vascular system, 

and that HCPro-mediated blockage of the long-distance silencing signal relies on 

direct vsiRNA interaction and sequestration at the infected tissues. 

Host factors are also relevant for the HCPro-mediated silencing suppression. 

Such is the case of the tobacco rgs-CaM, a calmodulin-related protein that directly 

interacts with TEV HCPro and works as an endogenous (e)RSS (Anandalakshmi et 

al., 2000). On the other hand, Endres and co-workers found that the RAV2 

ethylene-induced transcription factor from Arabidopsis thaliana is required for the 

antisilencing activity of the Turnip mosaic virus (TuMV) HCPro. They observed that 

HCPro interacts with RAV2 and induces the transcription of some putative eRSSs, 

including the calmodulin-related protein CML38, which seems to be the A. thaliana 
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homolog of the above-mentioned tobacco rgs-CaM (Endres et al., 2010). 

Altogether, these results raise the possibility that HCPro recruits eRSSs, in a direct 

(protein-protein interaction) and/or indirect (by RAV2-mediated transcriptional 

activation) fashion in order to interfere with host defence mechanisms mediated 

by RNA silencing. Intriguingly, results from other experiments, which are 

discussed below, indicate that HCPro/rgs-CaM interaction certainly targets this 

viral protein for degradation (Nakahara et al., 2012). 

As the different RNA silencing modules in plants partially overlap, viral RSSs 

usually interfere not only with the antiviral part, but also with those modules 

controlling plant developmental programs. Indeed, the presence of pleiotropic 

developmental defects, associated to disturbances in miRNA function, in transgenic 

plants constitutively expressing HCPro supports this assumption (Chapman et al., 

2004; Kasschau et al., 2003; Mallory et al., 2002) and makes reasonable the idea 

that the silencing suppression activity of HCPro causes some of the observed 

potyviral-induced disease symptoms in infected plants. Mlotshwa et al. (2005) 

observed that overexpression of Dicer-like protein 1, the enzyme responsible for 

miRNA synthesis, rescued the developmental anomalies caused by HCPro but did 

not correct defects in miRNA pathways. This suggests that disturbance in one or a 

few miRNA-controlled factors, rather than general impairments in miRNA function, 

underlies the HCPro-associated developmental disorders.  In agreement with this 

suggestion, misregulation of AUXIN RESPONSE FACTOR 8 by miR167 was 

concluded to be the main cause of developmental abnormalities induced by HCPro 

and other viral silencing suppressors (Jay et al., 2011). However, more recent 

results challenge this conclusion (Mlotshwa et al., 2016).  

Whether HCPro interference with diverse RNA silencing modules is either a 

collateral effect of silencing suppression or a deliberated viral strategy to favour 

the infection process, is still a matter of debate. In this regard, synthetic evolution 

experiments offer an attractive opportunity to analyse these two options. Torres-

Barceló and collaborators, for instance, introduced several mutations on TEV 

HCPro and tested not only the effects of these changes on RNA silencing 

suppression activity (Torres-Barceló et al., 2008), but also on the infection of 

tobacco plants (Torres-Barceló et al., 2010), the natural TEV host. Hence, they 

found that HCPro hypersuppressor variants rapidly evolve toward variants with 
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moderate, wild type-like, antisilencing capacity, suggesting that this HCPro activity 

is indeed fine-tuned during TEV infection to minimize the unwanted side-effects of 

silencing blockage on normal plant development patterns (Torres-Barceló et al., 

2010). 

 

STRUCTURE VERSUS FUNCTION – HCPro is a multidomain viral protein 

After the discovery of its contribution to the aphid-mediated plant-to-plant 

transmission, another function was ascribed to HCPro: maturation of viral factors 

by releasing itself from the rest of the polyprotein. Bacterial and in vitro studies 

provided evidence that HCPro is a cis-acting proteinase that functions co-

translationally and independently of a plant factor, with the cleavage site between 

a glycine dipeptide at its C-terminus (Carrington et al., 1989a; Carrington et al., 

1989b). Genetic analyses by site-directed mutagenesis further characterized two 

residues, one cysteine and one histidine as the catalytic diad for proteolytic 

activity, categorizing HCPro in the cysteine-type proteinase family (Oh and 

Carrington, 1989). Further analyses defined the consensus cleavage sequence 

surrounding the glycine dipeptide at the HCPro C-terminus to be YXVGG (positions 

P4 to P1´) (Carrington and Herndon, 1992). HCPro is currently classified in the C6 

peptidase superfamily (Rawlings et al., 2016). 

Along with the characterization of the protease domain, amino acids and motifs 

relevant for aphid transmission, movement, RNA binding and RNA silencing 

suppression were also examined. Schematically, HCPro can be divided into three 

domains (indicated positions correspond to TEV HCPro): an N-terminal part 

(amino acids 1-100) required for aphid transmission; a central region (amino acids 

101-299) in charge of RNA silencing suppression and other functions; and a C-

terminal domain (amino acids 300-459) harboring the proteolytic activity of 

HCPro (Hasiów-Jaroszewska et al., 2014) (Fig. 3A). As mentioned above in this 

review, a zinc finger-like domain located at the N-terminus of HCPro, which 

includes the KITC motif, is associated with potyviral aphid-mediated transmission 

(Atreya et al., 1992; Atreya and Pirone, 1993) (Fig. 3A). The specific involvement in 

helping transmission of the N-terminal part was also supported by the emergence 

of spontaneous TEV, Lettuce mosaic virus (LMV) and Onion yellow dwarf virus 

deletion mutants, which even lacking the first 89, 108 or 92 amino acids of HCPro, 
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respectively, were able to complete the whole viral infection cycle, except 

propagation by aphids (Dolja et al., 1993; German-Retana et al., 2000; Takaki et al., 

2006). 

In 1995, Cronin et al. described two motifs in the central region of HCPro 

relevant for viral movement. Two years later, using a series of alanine-scanning 

mutants built in a TEV-GUS chimeric virus background, Kasschau et al. (1997) 

described several amino acids relevant for genome amplification and long-distance 

movement that were located mainly in the central region of HCPro. In 2001, and 

after HCPro was characterized as an RSS, the same group found a strong 

correlation between silencing suppression and the genome amplification and 

movement defects that they had observed in the alanine-scanning mutants 

(Kasschau and Carrington, 2001). They also showed that proteinase and anti-

silencing activities worked independently in most studied cases. This indicates that 

the proteinase function per se is not needed for RNA silencing suppression. 

However, there was a mutation located at the C-terminal part of the protein which 

disturbed both proteolytic activity and RNA silencing suppression, which 

demonstrate that the protease domain is also required for silencing suppression 

activity, for instance, to provide the protein with a proper folding. Furthermore, 

experiments of scanning mutagenesis via pentapeptide-insertions in the Plum pox 

virus (PPV) HCPro (Varrelmann et al., 2007) or point amino acid substitutions in 

TEV HCPro (Torres-Barceló et al., 2008) also support a key role of the protein 

central domain for RNA silencing suppression, and corroborated the idea of inter-

domain interactions. On the other hand, a study on Papaya ringspot virus (PRSV) 

showed that the amino terminal part of HCPro is involved in the systemic infection 

of zucchini (Yap et al., 2009) (Fig. 3A), which is in agreement with the results 

previously obtained by Atreya et al. (1993) in Tobacco vein mottling virus. All these 

findings suggest that HCPro from distinct viruses might have different inter-

domain interactions and such interplay between domains might be relevant from 

structural and functional points of view. 

Some early studies attributed to HCPro the ability to bind nucleic acids in a 

sequence non-specific manner (Maia and Bernardi, 1996; Merits et al., 1998). The 

involvement of the central region of HCPro in RNA binding was further described 

by using different deletion mutants (Urcuqui-Inchima et al., 2000). This study 
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divided the central region of the Potato virus Y (PVY) HCPro into domains A and B, 

which bind RNA in vitro independently (Fig. 3A). Remarkably, Lakatos et al.  

showed by 2006 that the RNA silencing suppression activity of TEV HCPro 

involved siRNA binding (see above), and later on the conserved FRNK motif, which 

overlaps with the RNA binding domain A, was shown to be relevant for 

HCPro/siRNA interaction (Shiboleth et al., 2007; Wu et al., 2010). On the other 

hand, a study based on the HCPro from PPV described that this protein also works 

as an enhancer of viral particle yield (see below). Mutational analyses located the 

relevant amino acids for this novel activity also in the central region of HCPro (Valli 

et al., 2014) (Fig. 3A). 

Even from early reports about HCPro, it was proposed that this viral protein 

normally adopts a complex quaternary structure (Thornbury et al., 1985). This 

idea was later supported by diverse works on the self-interaction of the HCPro 

from PVA, PVY and LMV, in which crucial motifs for oligomerization were found by 

yeast two-hybrid at both the N-terminal and the C-terminal parts of the protein 

(Guo et al., 1999; Urcuqui-Inchima et al., 1999a; Urcuqui-Inchima et al., 1999b). 

Similar results were obtained years later for TuMV HCPro by using bimolecular 

fluorescence complementation assays (Zheng et al., 2011). Plisson et al. (2003) 

studied this matter more precisely via protein purification from infected plants 

and characterization of both wild type and an N-terminal deletion mutant of LMV 

HCPro, which lacks its first 100 amino acids. Since full-length protein and the 

shorter version were observed in size exclusion analysis to behave as dimer or 

trimer in solution, the authors concluded that the N-terminus of LMV HCPro is not 

involved in self-interaction. Furthermore, chemical crosslinking confirmed the 

presence of dimers, tetramers and higher order oligomers in solution, whereas the 

observation of 2D crystals by electron microscopy showed the appearance of 

dimers that bound to form tetramers. In agreement with earlier observations 

regarding the role of cations in HCPro stabilization, crystal formation occurred 

only in the presence of Mg2+. Additional structural studies, which were conducted 

with TEV HCPro purified from infected plants and observed by electron 

microscopy, confirmed the oligomerization states mentioned above. Although 

dimers, tetramers and hexamers of HCPro were indeed observed in solution, an 

adjusted model proposed that, at least in the particular case of TEV, the self-
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interaction between monomers occurs on a V-shape conformation with HCPro 

located in an antiparallel orientation (Ruiz-Ferrer et al., 2005).  

The most recent data regarding structural features of HCPro comes from a 3D 

crystal structure solved by Guo et al. (2011) corresponding to 158 amino acids, 

including the protease domain, from TuMV HCPro (Fig. 3B). This peptide was 

produced in bacteria, and formation of oligomers was actively avoided in order to 

facilitate crystal formation, so that structural questions regarding dimerization are 

still unanswered. In any case, the atomic structure of amino acids 336-458 showed 

several features of high interest. First, it confirmed the identity of the previously 

proposed protease catalytic diad and established the presence of the C-terminal 

glycine tightly bound to the enzymatic cleft. This observation might indeed explain 

the exclusive cis-acting mode of HCPro, since the terminal glycine would occupy 

the space needed for the catalytic site to remain active. Unfortunately, the attempts 

of Guo et al. to remove this amino acid in order to make the proteinase active in 

trans, as was later done for the CP serine proteinase of alphaviruses (Aggarwal et 

al., 2014), were unsuccessful. Second, the overall structure of this domain allowed 

for accurate comparisons with existing structures of other cysteine-like 

proteinases, such as papain, indicating that HCPro atomic arrangement differs 

significantly from the distinctive papain-like folding. It presents a highly reduced 

4-helical domain that harbors the catalytic cysteine and in which helices 1-3 

roughly covers the L domain of papain (Fig. 3B, in green), and it has a small ß-

barrel that carries the catalytic histidine in which strands ß1-ß2 would match the 

R domain of papain (Fig. 3B, in orange). Intriguingly, comparison with other 

cysteine proteinases revealed clear similarities between HCPro and the alphavirus 

nsP2 protein, as both have a compact fold with similar secondary structure 

topology. All in all, the atomic model of this domain represents the perfect 

opportunity to get more fully acquainted with its proteinase activity. Previous 

studies using high doses of human cystatin C (García et al., 1993) and 

phytocystatins and human stefin A (Wen et al., 2004) showed inhibition of the 

HCPro proteolytic activity in vitro, and genetically modified plants expressing 

oryzacystatin I proved to be resistant to TEV and PVY infection (Gutierrez-Campos 

et al., 1999). Now, with a molecular structure of the protease domain available, it 
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should be possible to design novel chemicals aiming to disturb HCPro self-cleavage 

as an effective antiviral strategy. 

Bacterially expressed HCPro was also useful to raise antisera allowing the 

study of protein subcellular localization. For instance, antiserum to PPV HCPro 

recognized not only this protein, but also the HCPro from ten other potyviral 

species, and was able to (i) label amorphous inclusions in the cytoplasm of plant 

cells infected with PPV, PRSV, Pepper mottle virus and Tobacco vein mottling virus, 

(ii) label pinwheels in cells infected with Bean yellow mosaic virus and Clover 

yellow vein virus (ClYVV), (iii) gave scattered signals in the cytoplasm of cells 

infected with Bidens mottle virus, and (iv) highlight nuclear inclusions in cells 

infected with TEV and Beet mosaic virus (Riedel et al., 1998). Similarly, HCPro from 

Cowpea aphid-borne mosaic virus was used to prepare antiserum for 

immunofluorescence assays, which showed diffuse distribution of the protein in 

the cytoplasm of naturally infected cells (Mlotshwa et al., 2002). Bimolecular 

fluorescence complementation assays located transiently expressed TuMV HCPro 

oligomers diffused in the cytoplasm of plant cells and/or associated in granules 

along the endoplasmic reticulum (Zheng et al., 2011; Zilian and Maiss, 2011). The 

most recent and thorough examination of subcellular localization comes from a 

study performed by del Toro et al. (2014) with the PVY HCPro fused to diverse 

fluorophores. In addition to a diffuse presence of this viral protein in the 

cytoplasm, they also observed distinct protein distributions (e.g. amorphous 

cytoplasm inclusions containing α-tubulin, dot-like inclusions distributing 

regularly throughout the cytoplasm and associated to the endoplasmic reticulum 

and the microtubule cytoskeleton, all over the microtubules) that are influenced by 

the environmental conditions. Altogether, these results suggest that HCPro might 

be not attached to one single place inside infected cells; instead its location may 

change during the infection cycle in order to cope with its multiple functions 

and/or as a response to external changes. The spatial/temporal distribution of 

HCPro, as well as the putative link between this potentially dynamic subcellular 

localization and diverse HCPro functions, indeed deserves further studies. 

 

ADDITIONAL ROLES OF HCPro - the advantage of being promiscuous 
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HCPro interacts with several host and viral proteins, and because most of these 

interactions appear to be unrelated to the three well-known roles of this viral 

factor - namely aphid transmission, viral polyprotein processing (see below) and 

suppression of host antiviral RNA silencing - it has been proposed that such 

interactions are part of additional, much less characterized, functions of HCPro 

during potyvirid infections (Table 2 summarizes these interactions and the 

hypothetical role that they play during the infection cycle). For instance, it has 

been shown that HCPro from several potyviruses interacts and modulates the 

activity of the host proteasome. Ballut et al., who proposed this role for the first 

time by 2005, found that LMV HCPro binds to and inhibits the activity of the 20S 

proteasome. Surprisingly, the presence of HCPro just inhibited the RNase activity 

of this multi-catalytic complex, which targets in vitro the viral RNA genome for 

degradation, whereas the proteolytic activity of the 20S proteasome was either 

unchanged or even slightly stimulated (Ballut et al., 2005). Further on, it was 

described that PVY HCPro interacts with the PAA, PBB and PBE subunits of the A. 

thaliana 20S proteasome, but not with the PAE subunit, which certainly carries the 

ribonuclease activity (Jin et al., 2007a). However, Dielen et al. (2011) were later 

able to detect the interaction between LMV HCPro and PAE in diverse systems, 

even in the context of a LMV infection in lettuce. Similar studies with PRSV proved 

that the proteasome inhibitor MG132 has a positive effect on PRSV accumulation in 

papaya, and that PRSV HCPro, similarly to PVY HCPro, interacts with the PAA, but 

not with the PAE subunit of the papaya 20S proteasome (Sahana et al., 2012). 

Moreover, additional experiments of Sahana et al. indicated that PAA and PAE 

subunits interact with each other. Thus, these authors mitigated discrepancies 

with the HCPro-PAE interaction and its consequences by proposing that (i) binding 

between HCPro and PAA may either be sufficient to disturb the RNase activity of 

PAE or prevent the interaction of the PAA and PAE subunits, and (ii) HCPro from 

different potyviruses might interact with different components of the 20S 

proteasome, depending on the specific plant/virus combination (Sahana et al., 

2012). All in all, results from the above-mentioned studies suggest that the 20S 

proteasome works as another defence layer against members of the Potyviridae 

family, and that HCPro interferes with the proteasome activity as a viral 

counteractive measure. 
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Potyvirid infections frequently alter the chloroplast number and morphology, 

leading to decreased level of photosynthesis in the infected tissue (Pompe-Novak 

et al., 2001). Indeed, HCPro was earlier found to accumulate in chloroplasts of PVY-

infected tobacco cells (Gunasinghe and Berger, 1991), and further analyses 

reported an interaction between a chloroplast protein, NtMinD, and PVY HCPro 

(Jin et al., 2007b). Given that homodimers of NtMinD participate in chloroplast 

division, PVY HCPro might prevent the NtMinD self-interaction with the 

consequent alteration in the chloroplast number (Jin et al., 2007b). Moreover, a 

recent work not only confirmed the presence of PVY HCPro in the chloroplast, but 

also showed that the ATPase activity of NtMinD is reduced in the presence of this 

viral protein (Tu et al., 2015b). Such observations allowed these authors to provide 

an explanation for the commonly observed abnormal morphology of chloroplasts 

in the presence of PVY. In a parallel study, Tu et al. (2015a) also found that PVY 

HCPro interacts in tobacco with the CF1β–subunit of the chloroplast ATP synthase. 

Such interaction leads to a decreased number of active enzymatic complexes, with 

the consequent overall reduction of the ATP synthesis in the chloroplast of both 

HCPro transgenic and PVY-infected tobacco plants, which in the end reduces the 

net photosynthetic rate. The interaction between HCPro and the tobacco 

chloroplast protein 1-deoxy-D-xylulose-5-phosphate synthase (NtDXS) has been 

recently described (Li et al., 2015). Since NtDXS is a limiting enzyme for plastidic 

isoprenoid biosynthesis in plants (Estévez et al., 2001), an effect of this interaction 

in the production of diverse isoprenoids, such as chlorophylls, tocopherols, 

carotenoids or abscisic acid (ABA), is expected. Certainly, PVY HCPro enhances the 

activity of NtDXS, thereby boosting the isoprenoid biosynthesis pathway with the 

consequent increase in the level of certain pigments, ABA and ABA-responsive 

genes (Li et al., 2015). On the other hand, Cheng et al (2008). showed that SCMV 

HCPro interacts with the maize chloroplast precursor, but not the mature form, of 

ferrodoxin-5. Therefore, this interaction might disturb the post-translational 

import of ferrodoxin-5 into maize chloroplasts, which would then lead to the 

perturbation of chloroplast structure and function. However, even though 

evidences for the implication of HCPro in chloroplast distortion, photosynthesis 

reduction and alteration of isoprenoid metabolism in infected plants are very 
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strong, the meanings of these HCPro-mediated effects for the virus infection 

remain unclear. 

PRSV HCPro binds to the papaya calreticulin (PaCRT) protein, in particular 

with its calcium-binding domain located at the protein C-terminus, whereas PRSV 

infection enhances PaCRT transcription at the early days post-infection (Shen et al., 

2010). Given that Ca+2 is considered an essential second messenger that 

participates in many plant signal pathways, including defence signalling (Zhang et 

al., 2014), HCPro might be disturbing the calcium-binding capacity of PaCRT and 

thereby mitigating the activation of downstream pathways (Shen et al., 2010).  

PVA HCPro was found to interact with the HCPro interacting protein 2 (HIP2) 

from Solanum tuberosum and Nicotiana tabacum, two natural hosts of PVA 

(Haikonen et al., 2013b). Moreover, as a positive interaction was also observed for 

HCPro from PVY and TEV, which have a similar host range than PVA, but not for 

HCPro from Pea seed-borne mosaic virus PSbMV, which infect just a few species in 

the Solanaceae family, a role of this interaction in virus/host specificity was 

proposed (Haikonen et al., 2013a). HIP2 is a microtubule-associated protein 

similar to A. thaliana SPR2 and, as evidence of the HCPro/HIP2 importance for 

viral infection, depletion of this host factor or mutations in HCPro abolishing HIP2 

binding reduced PVA titre in different hosts. Although the precise functional role of 

this interaction is currently unknown, SPR2 interacts with (i) many receptor-like 

kinases associated with plant innate immunity and (ii) two transcription factors 

related to immune responses (Mukhtar et al., 2011). This led Haikonen et al.   

(2013a; 2013b) to hypothesize that HIP2 controls some signalling networks of 

defence responses, and that HCPro might subvert this controller, via 

protein/protein interaction, to the benefit of the virus. 

PVA induces the formation of small aggregates containing the acidic 

ribosomal protein P0 in the cytoplasm of infected cells referred to as PVA-induced 

granules (PGs) (Hafrén et al., 2015). The formation of PGs was specifically 

triggered by HCPro and, besides P0, they contain HCPro, the RNA silencing effector 

AGO1, the oligouridylate-binding protein 1, varicose, an isoform of translation 

initiation factor 4E [eIF(iso)4E], and even the viral RNA genome (Hafrén et al., 

2015). Notably, only anti-silencing proficient HCPro variants were shown to 

promote the formation of PGs, as observed by direct mutagenesis. Based on these 
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results, and the known link between host proteins located in PGs and the viral VPg, 

the authors proposed that the formation of these granules are required to 

overcome RNA silencing-based defences via relocation of AGO1 towards PGs, and 

to achieve optimal viral expression mediated by VPg (Hafrén et al., 2015). 

Ala-Poikela and co-workers found clear evidences of direct interaction 

between the HCPro from three different potyviruses (PVA, PVY and TEV) and the 

translation initiation factors eIF(iso)4E and eIF4E from potato and tobacco (Ala-

Poikela et al., 2011). Moreover, a putative eIF4E-binding motif was identified at the 

C-terminal part of PVA HCPro, which showed a high degree of conservation among 

other potyviruses. Certainly, the disruption of this motif by direct mutagenesis had 

a negative impact on HCPro/eIF4E binding and was detrimental to the virulence of 

PVA, supporting the idea that such interaction plays an important, yet unknown, 

role during viral infection (Ala-Poikela et al., 2011). However, this inference should 

be taken with some caution, as a further study showed that this mutation strongly 

reduced the RNA silencing suppression activity of PVA HCPro (Hafrén et al., 2015).  

HCPro interacts with itself (discussed above) and with some of the other viral 

proteins. Physical interaction between HCPro and VPg has been described for 

different potyviruses (Ivanov et al., 2016; Roudet-Tavert et al., 2007; Yambao et al., 

2003), suggesting that joint action of these two proteins might play a general role 

during potyviral infections. Intriguingly, as already mentioned, Torrance et al. 

(2006) showed the presence of a protruding tip at one end in a fraction of potyviral 

virions, which was suggested to be formed by HCPro in association with VPg. The 

authors discussed that this interaction might play a role in aphid-mediated plant-

to-plant transmission or even in cell-to-cell movement. On the other hand, 

different lines of evidence showed that interaction of HCPro with VPg involves the 

same central domain of the latter protein that interacts with eIF4E (Roudet-Tavert 

et al., 2007; Yambao et al., 2003) Indeed, HCPro and eIF4E from LMV and lettuce, 

respectively, compete for VPg binding (Roudet-Tavert et al., 2007). The 

outstanding relevance of the VPg/eIF4E (in its two isoforms) interaction for 

potyvirid infections has been extensively studied as a model of plant recessive 

resistant (Robaglia and Caranta, 2006; Truniger and Aranda, 2009; Wang and 

Krishnaswamy, 2012). The most accepted, but not yet demonstrated, model 

proposes that VPg works as a pseudo cap structure that recruits translation 
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complexes for the viral use. As already mentioned, HCPro and eIF4E also interact 

with each other (Ala-Poikela et al., 2011), so that deducing the actual role of HCPro 

in this protein trio seems complicated. HCPro might be part of the translational 

complex that is recruited by VPg at the 5’ end of the viral genome to either carry 

out an unknown function or, in line with the silencing suppression activities of 

both viral proteins (Rajamäki and Valkonen, 2009), interfere with the hypothetical 

inhibition of virus translation mediated by host-deployed RNA silencing defences, 

as recently proposed (Ivanov et al., 2016). 

 Interaction of HCPro with the CI protein of a quite large number of potyvirids 

has also been detected using different experimental systems (Choi et al., 2000; Guo 

et al., 2001; Ivanov et al., 2016; Zilian and Maiss, 2011). CI is a multifunctional RNA 

helicase that participates in viral replication and cell-to-cell movement (Sorel et al., 

2014) and, as for HCPro, it is attached to the tip at one end of a fraction of viral 

particles, at least in the case of PVA (Gabrenaite-Verkhovskaya et al., 2008). It is 

possible to envisage a scenario in which HCPro somehow collaborates with CI in 

virus cell-to-cell movement or even that HCPro moves between adjacent cells, as 

part of a ribonucleic complex, to exert any of its multiple functions in a newly 

infected neighbour cell, as previously suggested (Rojas et al., 1997). 

Given the well-established role of HCPro in viral plant-to-plant transmission, 

at least for members of Potyvirus and Tritimovirus genera, the interaction between 

HCPro and CP is the most evident among potyvirid proteins. As expected, such 

binding has been detected in diverse viruses by different methods (Blanc et al., 

1997; Guo et al., 2001; Kang et al., 2004; Lin et al., 2009; Peng et al., 1998; Roudet-

Tavert et al., 2002; Seo et al., 2010). Intriguingly, the HCPro/CP interaction has 

been also detected in aphid non-transmissible potyviruses (Manoussopoulos et al., 

2000; Roudet-Tavert et al., 2002), suggesting the existence of a functional role for 

this protein/protein complex different from aphid-mediated transmission. In 

agreement with this hypothesis, Valli et al. (2014) found that HCPro plays a key 

role in PPV infection by enhancing the yield of full-length viral particles. This novel 

function of HCPro is not linked to its other main activities, as observed by direct 

mutagenesis. Furthermore, this activity appears to be highly specific, meaning that 

HCPro would act only upon its cognate CP. Even though the exact molecular 

mechanism by which HCPro enhances the yield of intact virions is currently 
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unknown, authors proposed two non-mutually exclusive possibilities, both 

agreeing with known localization of HCPro at the end of the viral particles: (i) 

HCPro is involved in initial steps of the assembly of CP subunits, and/or (ii) HCPro 

stabilizes viral particles once they are fully assembled. They also speculated about 

how the spatiotemporal availability of HCPro might function as a device that 

coordinates different stages of the viral cycle, namely translation, replication and 

encapsidation, in the infected cell (Valli et al., 2014). As a matter of fact, a recent 

report has located HCPro in 6K2-induced replication vesicles in PVA infected 

plants (Lõhmus et al., 2016).   

 

HCPro AS TRIGGER AND TARGET OF PLANT DEFENCE RESPONSES – defence, 

counter-defence, counter-counter-defence 

 Given the outstanding importance of HCPro in multiple steps of the viral infection, 

it is not surprising that its recognition by the host might induce mechanisms to 

counteract its action and trigger other defence responses. And, as the proviral 

activities of HCPro do, the antiviral reactions elicited by HCPro can also contribute 

to the development of disease symptoms (García and Pallás, 2015). 

Defence responses triggered by HCPro can be non-specific. For instance, 

Pruss et al. (2004) showed that, whereas TEV HCPro suppresses RNA silencing-

related antiviral defences, it confers enhanced broad-spectrum resistance against 

multiple pathogens, including heterologous viruses, via both salicylic acid (SA)-

dependent and SA-independent mechanisms. Evidence for alteration of SA-

mediated defences as a consequence of TEV HCPro expression in transgenic lines 

was also provided by Alamillo et al. (2006). Enhancement of host defence 

responses induced by potyviral HCPro appears to be temperature dependent 

(Shams-Bakhsh et al., 2007). More recent results suggested that HCPro might 

enhance the expression of defence-related genes in the SA pathway by reducing 

the DNA methylation at their promoter regions, which is associated with a drastic 

reduction of siRNAs deriving from these sequences (Yang et al., 2016). 

HCPro also induces more specific defence responses. Namely, this viral 

protein can act as elicitor of R gene-driven effector-triggered immunity. This is the 

case of some strains of PVY, which induce a hypersensitive response (HR) that 

restricts the virus in necrotic local lesions in potato cultivars harboring the 
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dominant resistance genes Nctbr and Nytbr (Moury et al., 2011; Tian and Valkonen, 

2015). These resistance genes appear to recognize similar structural determinants 

in the central region of HCPro of PVYO (Nytbr) and PVYC (Nctbr) strains (Tian and 

Valkonen, 2013, 2015). PVY isolates overcoming Nytbr often cause veinal necrosis 

in tobacco, and some determinants of this phenotype have been identified in 

HCPro (Faurez et al., 2012; Tribodet et al., 2005). However, avirulence 

determinants of Nytbr are different from those responsible for veinal necrosis 

induction (Tian and Valkonen, 2015).  

Some PVY isolates induce necrotic symptoms in potato tubers and a mutation 

in HCPro linked to the ability to induce tuber necrosis is also involved in induction 

of veinal necrosis in tobacco (Glais et al., 2015; Tribodet et al., 2005). There is no 

evidence that veinal necrosis in tobacco and potato tuber necrosis are HR-like 

responses to specific interactions between avirulence factors. The fitness decrease 

caused by point mutations associated with the acquisition of necrosis properties in 

tobacco may suggest that the necrotic reaction was connected with a defensive 

response (Rolland et al., 2009). However, the fact that these mutations also had a 

fitness cost in a host that does not show necrotic symptoms questions this 

conclusion. 

Necrotic symptoms were also observed in tobacco plants infected with PVA 

modified by mutations in a highly variable region of the central part of the HCPro 

protein (Haikonen et al., 2013a). These mutations, which affect interactions with a 

microtubule-associated protein (see above for HCPro/HIP2 interaction) and were 

suggested to cause conformational changes in adjacent regions of the protein, were 

associated with reduction of viral accumulation and induction of many defence-

related genes including ethylene- and jasmonic acid-inducible genes, at necrosis 

onset (Haikonen et al., 2013a). Taking together all these data, a scenario has been 

proposed in which alterations of HCPro conformation by mutations that overcome 

R gene-mediated specific resistance affect functional interactions with other host 

factors and induce alternative defence responses (Tian and Valkonen, 2015). 

Another example of a resistance gene elicited by the HCPro of a potyvirus is a 

gene located at the complex Rsv1 locus of soybean, likely belonging to the NB-LRR 

class, which recognizes the HCPro of Soybean mosaic virus (SMV) (Eggenberger et 

al., 2008; Hajimorad et al., 2008; Wen et al., 2013). The precise mechanism 
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involved in induction of resistance by SMV HCPro is still unclear. The HCPro-

responsive resistance gene alone allows limited replication at the inoculation site. 

However, the complete Rsv1 cluster, which includes at least one additional, P3-

responsive, SMV resistance gene, confers extreme resistance against avirulent SMV 

variants (Wen et al., 2013). The first identified SMV isolate able to overcome the 

resistance conferred by the Rsv1 locus caused a lethal systemic HR phenotype 

probably due to a weak interaction of the viral avirulence factors and the host 

resistance genes (Hajimorad et al., 2005). HCPro is likely contributing to this 

phenotype, since some SMV isolates carrying mutations at HCPro also provoked 

systemic HR in soybean plants only containing the HCPro-responsive gene of the 

Rsv1 cluster (Wen et al., 2013), and a single amino acid substitution in this viral 

protein allowed virulent SMV to cause severe rugosity and local necrotic lesions, 

instead of lethal systemic HR, in soybean expressing the complete Rsv1 cluster (Seo 

et al., 2011). Interestingly, gain of virulence of SMV on the Rsv1 soybean genotype 

had a fitness penalty in susceptible rsv1 plants, and this trade-off was a 

consequence of the mutations introduced in HCPro, during the adaptation to the 

resistance selective pressure (Khatabi et al., 2013). This observation emphasizes 

the convenience for the host of triggering antiviral defences against important 

multifunctional proteins, as this strategy might cause a high global fitness cost, 

even extinction, for the escaping viruses. 

Some of the HCPro contributions in the induction of host defence responses 

may be indirect. It is reported that ClYVV activates SA signaling and HR-related 

pathways causing systemic necrosis and plant death in pea containing Cyn1, a gene 

mapped in a genomic region that corresponds to an R-gene-analog gene cluster in 

the genome of Medicago truncatula (Ravelo et al., 2007). Point mutations in ClYVV 

HCPro that attenuate RNA silencing suppression activity and symptom expression 

in broad bean (Yambao et al., 2008), indeed, reduced the ability of ClYVV to 

activate the SA signaling pathway and to induce cell death in the Cyn1-containing 

plants (Atsumi et al., 2009). Although these results might suggest that ClYVV HCPro 

itself is the elicitor of the Cyn1-controlled response, the authors consider it is more 

likely that the reduced activity of the mutated HCPro limits viral amplification and, 

subsequently, the accumulation of the host factor(s) triggering the defence 

response (Atsumi et al., 2009). A similar scenario, in which reduced HCPro activity 
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maintains viral amplification below levels inducing host detrimental effects, has 

been proposed to explain why a PPV mutant with unrestricted P1/HCPro 

processing causes more severe symptoms with lower accumulation levels than the 

wild type virus (Pasin et al., 2014). 

Destroying HCPro is another defence response that the plant deploys to 

counteract RNA silencing suppression and other activities of this important 

virulence factor. As mentioned above, the calmodulin-related protein rgs-CaM from 

tobacco was identified as a host factor that interacts with TEV HCPro and 

contributes by itself to suppress RNA silencing (Anandalakshmi et al., 2000). More 

recently, it was observed that binding of rgs-CaM to the dsRNA binding domains of 

different viral RSSs, including HCPro from ClYVV, directs them to the autophagy-

like pathway for degradation (Nakahara et al., 2012). Therefore, whereas 

HCPro/rgs-CaM interaction is soundly supported by all experimental evidence 

available, the integration of both positive and negative effects of this interaction on 

suppression of RNA silencing in a comprehensive model is still missing. 

 

THE DIVERSITY OF HCPro AND HCPro-LIKE PROTEINS – Similar but different 

The Potyviridae family comprises viruses from eight different genera. Most of the 

studies presented here have been carried out with the HCPro from species of the 

Potyvirus genus, which is by far the most abundant one. In members of this genus, 

the N-terminal part of viral polyproteins follows the same pattern: a P1 leader 

serine proteinase that processes itself to separate from HCPro, which in turn 

cleaves at its C-terminus to be released from the rest of the polyprotein (Fig. 4). In 

potyviruses, as well as in members of the genus Rymovirus, HCPro has a molecular 

weight of around 50KDa, and those motifs described in this review are 

predominantly conserved. As described above, the most outstanding feature of the 

HCPro from poty- and rymoviruses is its ability to suppress RNA silencing. To date, 

the only discovered exceptions to this rule are the sweet potato-infecting 

potyviruses, which express an apparently normal HCPro variant that has no 

evident anti-silencing activity. Even more surprising is the fact that all of these 

viruses express an atypically long P1 with a viral polymerase slippage site that 

generates an extra ORF, termed PISPO. This new ORF gives rise to a transframe 
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protein, named P1N-PISPO, with RNA silencing suppression activity (Clark et al., 

2012; Li et al., 2012; Mingot et al., 2016; Untiveros et al., 2016).  

Poace- and tritimoviruses are two related genera bearing HCPro of similar or 

slightly reduced size compared to poty- and rymoviruses. Although these four 

genera share the same genome organization, the RNA silencing suppression 

activity is exerted by P1, instead of HCPro, in poace- and tritimoviruses, and the 

HCPro of the tritimovirus Wheat streak mosaic virus is not needed for virus 

viability (Stenger et al., 2005a; Stenger et al., 2007; Tatineni et al., 2012; Young et 

al., 2012). These observations are in perfect agreement with sequence comparison 

data showing that strong similarities among HCPro variants from viruses of these 

four genera are just displayed at the protease domain (C-terminal region) (Guo et 

al., 2011). In contrast, the central region of poace- and tritimoviral HCPros, where 

the anti-silencing activity mainly maps in potyviruses, is highly different and does 

not have the typical FRNK motif. 

The most diverse potyvirids regarding genome organization at the 5’ end are 

those belonging to the Ipomovirus genus, which can be even divided into two 

groups based on the presence or absence of HCPro. The first ipomovirus species to 

be described was Sweet potato mild mottle virus (SPMMV) (Colinet et al., 1998), a 

virus that encodes an unusually large P1 protein that works as a RSS (Giner et al., 

2010). Interestingly, this virus codes for an HCPro that is similar in size to that of 

potyviruses, but contains no RNA silencing suppression activity. Phylogenetic 

analyses aligned SPMMV closer to tritimoviruses than to other potyvirids (Stenger 

et al., 1998) and, as expected, SPMMV HCPro lacks sequence similarity with 

potyviral HCPros outside the protease domain. Ipomoviruses without HCPro have 

one P1 copy (Mbanzibwa et al., 2009) or two divergent P1 copies in tandem 

(Desbiez et al., 2016; Janssen et al., 2005; Li et al., 2008; Valli et al., 2006) at the N-

terminal part of the viral polyprotein. Remarkably, like in the case of SPMMV, all 

ipomoviruses lacking HCPro use P1 as an RSS.  

In 2008, Susaimuthu et al. identified and fully sequenced Blackberry virus Y, 

which was classified as the founder member of a new potyvirid genus, named 

Brambyvirus. Downstream of an unusual P1, the Blackberry virus Y genome codes 

for an also atypical HCPro, reduced in size (36 KDa) and bearing in common with 

HCPro from other potyvirids only the cysteine protease domain. It is still unknown 
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what protein from this virus, if any, blocks the RNA silencing-based defences 

deployed by the host. 

Bymovirus is the only bipartite genus of the Potyviridae family. Bymovirus 

RNA1 codes for a polyprotein that starts at a protein homologous to the potyviral 

P3 and follows the Potyviridae genomic pattern until the 3’ UTR (Kashiwazaki et al., 

1990). The bymovirus RNA2 codes for two proteins, the second one is not related 

to any of the potyvirid proteins, but the first one is described as HCPro-like 

because of its cysteine proteinase domain (Kashiwazaki et al., 1991). This protein 

(P2-1) is very small (28 kDa) and has no other motifs that relate it to other 

potyvirid HCPro. 

The first member of the genus Macluravirus to be fully sequenced was 

Chinese yam necrotic mosaic virus (Kondo and Fujita, 2012). This virus presents the 

smallest monopartite genome in the family Potyviridae. It lacks a P1 leader 

proteinase and it codes for an HCPro of just 29KDa. Whether this protein has RSS 

activity or not is still unknown. Macluraviral HCPro appears to be more similar to 

the bymoviral P2-1 than to other potyvirid HCPro.  

The closest relative of HCPro outside the Potyviridae family can be found in 

the picorna-like, fungal-infecting, hypoviruses. Sequence similarity, putative active 

site and cleavage site composition relate HCPro to p29 and p48 cysteine 

proteinases of Cryphonectria hypoviruses (Choi et al., 1991a; Choi et al., 1991b; 

Shapira and Nuss, 1991). A study performed by Suzuki et al. in 1999 mapped the 

p29 symptom determinants outside the protease domain, in a region within the N-

terminus of the protein. This domain contains four cysteine residues, similar to the 

conserved residues in the zinc finger domain of HCPro, which are essential for 

virus viability. Moreover, both p29 and HCPro proteins alter host developmental 

processes when expressed in the absence of virus infection (Suzuki et al., 2003). 

Even more important is the fact that p29 has synergistic effects over other fungal 

viruses (Sun et al., 2006) likely linked, as in the case of HCPro, to the RNA silencing 

suppression activity that p29 displays in the natural fungal host and in plants 

(Segers et al., 2006). 

Unrelated plant viruses encoding proteins similar to HCPro can be found in 

the Closteroviridae family. They belong to the Sindbis virus-like supergroup and 

share in common with potyvirids the presence of leader proteinases with C-
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terminal papain-like domains, which are also multifunctional factors with apparent 

crucial domain interplay. Unlike poty- and rymoviral HCPro, these leader 

proteinases seem to lack RNA silencing suppression activity, but are certainly 

involved in genome amplification and participate in cell-to-cell movement (Peng et 

al., 2001). Proteins related to HCPro are also found in animal viruses. Such is the 

case of alphaviruses, which, as closteroviruses, also belong to the Sindbis virus-like 

supergroup, and encode leader proteinases sharing remarkable structural 

homology with HCPro at the level of its cysteine protease domain (Guo et al., 

2011). 

 

FUTURE PERSPECTIVES – Looking forward 

The genome organization of viruses belonging to the family Potyviridae is highly 

conserved in a large core region that starts at the P3 cistron. Coincidentally, 

mature proteins encoded at this viral segment are all released from polyprotein 

precursors by proteolytic processing conducted by the NIapro protease (Valli et al., 

2015). In contrast, the upstream genomic region is highly variable even among 

members of the same genus, and encodes proteins that are liberated from the 

polyprotein precursors by self-cleavage. Thus, it is tempting to speculate that an 

ancient potyvirid precursor had a simplified genome that only coded for the 

NIapro-processed module. Although a sound and confident prediction of the 

Potyviridae evolutionary history is out of the scope of this review, we dare to 

continue speculating that the first step toward contemporary potyvirids was the 

acquisition of a second genome element in a bymovirus, which includes what 

would be the first HCPro-related protein: the P2-1 cysteine proteinase. Either as a 

subsequent step from a bymovirus, or as a parallel event from the proposed 

potyvirid ancestor, an HCPro-like gene would be incorporated in the viral genome 

to give rise to the simplest modern monopartite potyvirid: a macluravirus. Then, 

further evolution would have boosted HCPro size, diversity and functional 

complexity. 

 But, what was the primordial function of the proto-HCPro? We do not know, 

but it is unlikely that such a small protein was able to suppress silencing or help 

transmission by aphids or other vectors. We do not even know whether or not this 

function is still conserved by the currently large HCPros from different potyvirid 
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genera. Research in the barely studied HCPro from macluraviruses and 

brambyviruses, as well as in P2-1 from bymoviruses, could certainly shed some 

light on the evolutionary path not only of these multifunctional viral proteins, but 

also of the entire viral family. 

HCPro is a quite well conserved protein in members of the genus Potyvirus 

for which the nucleotide sequences of this factor have been determined so far; it is 

then surprising the large diversity of this factor within the entire Potyviridae 

family. This could be justified by the assumption that the primordial HCPro was a 

recently acquired accessory factor, then having some flexibility to evolve and 

incorporate new functions. In this scenario, HCPro could adopt diverse activities in 

the different evolutionary lineages that have originated each potyvirid genus. 

Moreover, several new activities could pyramid in a single protein, as occurred 

with the HCPro of potyviruses, although the coupling among different protein 

functions might restrict its ability to evolve (Hasiów-Jaroszewska et al., 2014). On 

the other hand, HCPro has been shown to be elicitor and target of different plant 

defence responses; thereby the escape from these responses should also limit its 

potential to evolve. 

The fact that engineered members of the Potyvirus genus depleted of HCPro 

are unable to infect wild type plants, but infect RNA silencing-deficient plants, and 

that unrelated RNA silencing suppressors are able to functionally replace HCPro, 

indicates that the main function of the present potyviral HCPro is suppressing the 

RNA silencing-mediated antiviral defences (Carbonell et al., 2012; Garcia-Ruiz et 

al., 2010; Maliogka et al., 2012). However, further studies using systems biology 

approaches will be required to decipher the contribution to the overall silencing 

suppression of those HCPro activities somehow related to this function (Table 1). 

Although silencing suppression-unrelated activities of HCPro are not 

absolutely essential, they have been shown to be relevant for the viral infection. 

Further characterization of these activities to understand how they are integrated 

in the infection process also needs to be the target of future studies. Indeed, the 

development of appropriate real-time imaging techniques that allow unveiling the 

HCPro localization dynamics in the infected cell would be especially helpful for this 

aim. 
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In spite of being the first HCPro function identified, very little is known about 

how HCPro plays its role as bridge during aphid transmission. Identifying the 

HCPro receptor in the aphid stylet and characterizing the dynamic of 

virion/HCPro/aphid interactions that governs both acquisition and release of viral 

particles by insects are among the most interesting future challenges of HCPro 

research. 

Finally, whereas the crystal structure of the protease domain of a potyviral 

HCPro has been solved at 2.0 Å resolution (Guo et al., 2011), no high-resolution 

structure of the complete HCPro is currently available. Solving the structure of 

HCPro alone and bound to viral and host co-factors, or even bound to nucleic acids 

(e.g. siRNAs, miRNAs), would be of great value to understand the multiple 

functions of this amazing protein. 
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FIGURE LEGENDS 

Figure 1. “Bridge hypothesis” for aphid transmission of potyviruses. (left) An 

aphid is feeding from an infected plant. (centre) Longitudinal section of the 

mandibular stylet (the external flanking maxillae have been omitted to simplify the 

figure), including the two parallel channels (the food canal that connects to the 

digestive system, and the salivary canal that allows secretions during feeding) 

joining at the common duct. (right) An HCPro complex (depicted in a dimeric form) 

is bound at one end of the viral particle and allows a reversible interaction with 

potential receptors located over the cuticle lining (internal side of the stylet tip). 

Note that this figure is just a predictive representation of the viral transmission 

process based on very limited available experimental data about interactions and 

the consequent role of HCPro during this process (see text for details). Hence, it 

cannot be ruled out, for instance, that HCPro/CP interaction might occur all along 

the viral particle and non-dimeric forms of HCPro play a role in viral transmission. 

  

Figure 2. Potential targets of HCPro in the antiviral RNA silencing pathway. 

Simplified schematic representation of the RNA silencing-mediated defences in 

plants that are deployed against RNA viruses. Steps of the cascade at which HCPro 

from different potyvids may be acting in order to block this defensive response are 

indicated. DCL: Dicer-like protein; DRB: Double-stranded RNA Binding Protein; 

HEN1: HUA Enhancer 1; RISC: RNA-Induced Silencing Complex; AGO: Argonaute 

protein; RDR: RNA-Dependent RNA-polymerase; SGS3: Supressor of Gene Silencing 

3. 

 

Figure 3. HCPro structural and functional features. (A) Schematic 

representation of a representative potyviral HCPro (from Tobacco etch virus, TEV) 

divided into three main regions. Best characterized motifs are shown in squares. 

Amino acids relevant for a given function, which are conserved at least among the 

Potyvirus genus, are marked with triangles at their corresponding positions. Amino 

acids relevant for viral movement (marked in light blue) were described before the 

characterization of HCPro RNA silencing suppression activity, thereby their real 

role might be miss assigned. Pentapeptide insertions that rendered PPV HCPro 

poorly functional or non-functional as an RNA silencing suppressor are depicted as 
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grey circles at the equivalent TEV HCPro positions. A 2D representation of the 

Turnip mosaic virus HCPro structure solved by Guo et al. (2011) is encompassing 

the equivalent C-terminal region of TEV HCPro. Superscript numbers indicate the 

following references: 1(Carrington et al., 1989a), 2(Oh and Carrington, 1989), 

3(Carrington and Herndon, 1992), 4(Atreya et al., 1992), 5(Atreya and Pirone, 

1993), 6(Huet et al., 1994), 7(Dolja et al., 1993), 8(Blanc et al., 1998), 9(Kasschau 

and Carrington, 2001), 10(González-Jara et al., 2005), 11(Shiboleth et al., 2007), 

12(Torres-Barceló et al., 2008), 13(Cronin et al., 1995), 14(Valli et al., 2014), 

15(Varrelmann et al., 2007). (B) Crystal structure of the cysteine protease domain 

of Turnip mosaic virus HCPro (Guo et al., 2011; PDB code 3RNV). The 

corresponding L and R domains of papain-like proteases would be represented by 

the α-helices shown in green and the ß-sheets shown in orange, respectively. 

Those amino acids highlighted in (A) are also indicated in (B).  

  

Figure 4. Schematic representation of genomic organization in viruses from 

different genera of the family Potyviridae. The long open reading frame is 

shown as a box divided in mature viral products. PIPO open reading frame is 

indicated as box below P3. The terminal protein VPg is depicted as a black ellipse. 

P1a and P1a-like proteins are represented by grey boxes, whereas P1b and P1b-

like proteins are represented by black boxes. Features that are not shared by all 

potyvirids are highlighted in different colours. (A) Potyvirus and Rymovirus genera. 

The PISPO open reading frame in sweet potato-infecting potyviruses is indicated as 

a pale green box below P1. The extra protein HAM between NIb and CP in 

Euphorbia ringspot virus (Knierim et al., 2017) is highlighted in pink. (B) 

Tritimovirus and Poacevirus. (C) Ipomovirus. The diversity among members of this 

genus has been reviewed (Dombrovsky et al., 2014). A HAM extra protein (in pink) 

was also present in a subset of ipomoviruses (D) Brambyvirus. The AlkB domain in 

the P1 from Blackberry virus Y is highlighted in pale orange. (E) Macluravirus. (F) 

Bymovirus. The RNA2, unique in the Potyviridae family, is highlighted in yellow.  
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Table 1: HCPro-targeted steps of the antiviral RNA silencing pathway. 
 

Targeted Step Molecular Mechanism Potyvirus References 

vsiRNA uploading 
Sequestration of 

vsiRNAs 

TEV, PPV, 
PRSV, ZYMV, 

TuMV 

(Garcia-Ruiz et al., 2015; 
Lakatos et al., 2006; Sahana 
et al., 2014; Shiboleth et al., 
2007; Valli et al., 2011) 

vsiRNA 
methylation 

Inhibition of the CH3- 
production 

PVY, PVA 
(Cañizares et al., 2013; 
Ivanov et al., 2016 ; Soitamo 
et al., 2011) 

Binding and inactivation 
of HEN1 

ZYMV 
(Jamous et al., 2011) 

Effector 
Down-regulation of 

AGO1 
TEV 

(Varallyay and Havelda, 
2013) 

Interaction with AGO1 PVA (Ivanov et al., 2016) 

Amplification 
Down-regulation of 

RDR6 
SCMV 

(Zhang et al., 2008) 

Movement of 
silencing signal 

Sequestration of 
siRNAs? 

PVY, TEV 
(Delgadillo et al., 2004; 
Hamilton et al., 2002; 
Pfeffer et al., 2002) 

Induction of 
endogenous 

silencing 
suppressors? 

Interaction with rgs-
CaM and RAV2 

TEV, TuMV 

(Anandalakshmi et al., 
2000; Endres et al., 2010) 
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Table 2: Diverse activities of HCPro whose roles in viral infection have not been 
fully characterized. 
 
Activity Function Hypothetical aims Virus Reference 

Interaction with PAA, 
PBB, PBE or PAE 

proteasome subunits 

Inhibition of the 20S 
proteasome 

Counteracting a 
proteasome-based 

plant defence 
mechanism 

LMV 
PVY 

PRSV 

(Ballut et al., 2005; Dielen 
et al., 2011; Jin et al., 
2007b; Sahana et al., 2012) 

Interaction with 
NtMinD, NtDXS, 
CF1β–subunit of 
chloroplast ATP 

synthase, 
Ferrodoxin-5 

Reduction of the 
photosynthesis rate 

General weakening of 
the host 

PVY 
SCMV 

(Cheng et al., 2008; 
Gunasinghe and Berger, 
1991; Jin et al., 2007a; Li et 
al., 2015; Tu et al., 2015a; 
Tu et al., 2015b) 

Interaction with 
PaCRT 

Disturbance of Ca+2 

binding to PaCRT 

Blocking the Ca+2-
mediated activation of 

host defences 
PRSV (Shen et al., 2010) 

Interaction with HIP2 
Blocking of HIP2 

activity 

Disturbing some 
signalling networks of 

defence responses 

PVA 
PVY 
TEV 

(Haikonen et al., 2013a; 
Haikonen et al., 2013b) 

Formation of 
cytoplasmic granules 

Recruitment of both 
host and viral 

factors 

Overcoming RNA 
silencing-based 

defences. 
Reaching optimal viral 

translation. 

PVA 
TuMV 

(Hafrén et al., 2015) 

Interaction with 
eIF4E/eIF(iso)4E 

Recruitment of 
translation initiation 

factors 

Reaching optimal viral 
translation 

PVA, 
PVY, 
TEV 

(Ala-Poikela et al., 2011) 

Interaction with VPg 
and CI 

Protein allocation at 
the tip of virions. 

 

Transmission or 
movement. 

Reaching optimal viral 
translation 

ClYVV 
WSMV 
PSbMV 

LMV 
PVA 
PPV 

(Choi et al., 2000; Guo et 
al., 2001; Ivanov et al., 
2016; Roudet-Tavert et al., 
2007; Yambao et al., 2003; 
Zilian and Maiss, 2011) 

Interaction with CP? 
Proper formation of 

viral particles 

Coordination of 
different stages of the 

viral infection cycle 
PPV (Valli et al., 2014) 
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Figure 1. “Bridge hypothesis” for aphid transmission of potyviruses.  
Bridge hypothesis  

244x108mm (300 x 300 DPI)  

 

 

Page 51 of 54

This article is protected by copyright. All rights reserved.



  

 

 

Figure 2. Potential targets of HCPro in the antiviral RNA silencing pathway.  
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Figure 3. HCPro structural and functional features.  
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Figure 4. Schematic representation of genomic organization in viruses from different genera of the family 
Potyviridae.  

genome, genomic  

120x190mm (300 x 300 DPI)  

 

 

Page 54 of 54

This article is protected by copyright. All rights reserved.




