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Abstract 29 

Aim Stomata regulate CO2 uptake, water-vapor loss, and uptake of gaseous 30 

pollutants. Jarvis-type models that apply multiple-constraint functions are 31 

commonly used to estimate stomatal conductance (gs), but most parameters for 32 

plant functional types (PFTs) have been estimated using limited information. We 33 

refined the data set of key components of the gs response to environmental factors 34 

in global PFTs.  35 

Location Global. 36 

Time period Data published in 1973-2015 37 

Major taxa  Woody plants and major crops (rice, wheat, and maize) 38 

Methods We reviewed 235 publications of field-observed gs for the 39 

parameterization of Jarvis-type model in global PFTs.  The relationships between 40 

stomatal parameters and climatic factors (MAT, mean annual air temperature; 41 

MAP, mean annual precipitation) were assessed. 42 

Results We found that maximum stomatal conductance (gmax) in global woody 43 

plants correlated with MAP rather than MAT. gmax of woody plants on average 44 

increased from 0.18 to 0.26 mol m -2 s -1 with an increase in MAP from 0 to 2000 45 

mm. Models, however, can use a single gmax across major crops (0.44 mol m -2 s -46 

1). We propose similar stomatal responses to light for C3 crops and woody plants, 47 

but C4 crops should use a higher light saturation point of gs. Stomatal sensitivity 48 

to vapor-pressure deficit  (VPD) was similar across forest PFTs and crops, 49 

although desert shrubs had a relatively low sensitivity of stomata to VPD. The 50 

optimal temperature for gs increased by 1 °C for every 3.0 °C of MAT. Stomatal 51 

sensitivity to predawn water potential was reduced in h ot and dry climate. The 52 

fraction of nighttime conductance to gmax (0.14 for forest trees, 0.28 for desert 53 

shrubs, 0.13 for crops) should be incorporated into the models . 54 

Main conclusions  This analysis of global gs data provides a new summary of gs 55 
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responses and will contribute to modeling studies for plant-atmosphere gas 56 

exchange and land-surface energy partitioning. 57 

 58 

Key words: Stomatal conductance, Jarvis-type model, Global plant functional 59 

types, Forests, Crops, Nocturnal stomatal conductance  60 

 61 

1. Introduction 62 

Plants influence climate by the exchange of energy, water, carbon dioxide 63 

(CO2), and other chemical species with the atmosphere (Bonan 2008). Stomata, 64 

small pores on leaves,  regulate the exchange of gas and energy between plants 65 

and the atmosphere. Stomatal responses to environmental stimuli are therefore 66 

important for terrestrial carbon sinks and the hydrology of ecosystems 67 

(Hetherington & Woodward 2003), the partitioning of terrestrial surface energy 68 

affecting local and regional climate (Bonan, 2008), and the sensitivity of plants 69 

to air pollutants such as ozone (O3) (Sitch et al., 2007; Matyssek et al., 2013). 70 

The stomatal control of gas exchange at foliar level is quantified as stomatal 71 

conductance (gs). gs is often empirically modeled based on several environmental 72 

factors that affect stomatal aperture (Jarvis 1976; Ball et al. 1987; Leuning 1995), 73 

but an optimization theory of stomatal functioning (Cowan and Farquhar, 1977; 74 

Katul et al., 2009; Medlyn et al., 2011; Hoshika et al., 2013b; Lin et al., 2015) 75 

and a hydraulic theory of stomatal regulation (Buckley et al., 2003, 2012; Buckley, 76 

2017) are currently advancing. A common empirical approach is the multiple-77 

constraint functions model, which is a Jarvis-type gs model (Jarvis 1976; Körner 78 

et al. 1995; Emberson et al.  2007; Damour et al., 2010). Jarvis-type gs models can 79 

be incorporated into global or regional vegetation-climate models (Zhang et al., 80 

2003; Felzer et al. 2004; Galbraith et al., 2010; Huang et al., 2016). In particular, 81 

Jarvis-type gs models are widely used for the stomatal component of gas 82 
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deposition in global air-quality models (Zhang et al., 2003) and are recommended 83 

by UNECE-CLRTAP (United Nations Economic Commission for Europe 84 

Convention on Long-range Transboundary Air Pollution) for calculating stomatal 85 

O3 fluxes and assessing O3 risks to forest trees and crops in Europe (CLRTAP, 86 

2015). These models adjust the maximum gs (gmax, the maximum value of stomatal 87 

conductance, which is achieved under environmental conditions that are favorable 88 

for stomatal opening) to changes in plant phenology and environmental variables, 89 

e.g. light intensity, air temperature, vapor-pressure deficit (VPD), and soil 90 

moisture. A review by Körner (1995) summarized the gmax data in globally 91 

important biomes and reported that: i. gmax does not differ between types of woody 92 

plants, and ii. crops have a higher gmax than woody plants. Data of gs summarized 93 

by Körner (1995), however, were scarce for some plant types (e.g.  tropical trees 94 

and desert shrubs). Korner ’s review (1995) was published more than 20 years ago. 95 

An update of the analysis is  needed.  96 

Physiological parameters may differ with climatic conditions for growth 97 

(Larcher, 2003). Lin et al. (2015) suggested that stomatal behavior may differ 98 

with water-use strategy among plant functional types (PFTs), according to the 99 

optimal photosynthesis-stomatal theory. The well-known Miami model (Lieth, 100 

1975) indicates that terrestrial carbon assimilation, so -called net primary 101 

production (NPP), is associated with precipitation and temperature. Del Grosso 102 

et al. (2008), Chapin et al. (2012), and Gillman et al. (2015) provided a support 103 

for this relationship globally. gs is typically correlated with photosynthesis 104 

(Larcher, 2003). Therefore, we hypothesized that gmax may depend on both 105 

precipitation and temperature. 106 

In addition to gmax, the parameters of stomatal response to environmental 107 

factors in each type of biome are still based on limited information. Current 108 

Jarvis-type models, in particular, have ignored the ratio of nighttime conductance 109 
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to gmax (fnight) (Emberson et al., 2007; Damour et al., 2010) , even though stomatal 110 

opening at night shows an important influence on water use and the effects of air 111 

pollutants such as O3 (Grulke et al., 2004; Zeppel et al., 2014). 112 

Our purpose in this literature review was to refine the key components of the 113 

response of gs to environmental factors using Jarvis-type gs models of global 114 

woody plants, defined as PFTs, commonly used in global vegetation-climatic 115 

models (Poulter et al., 2011), and of the major food crops, i.e. rice, wheat, and 116 

maize (FAO, 2013). Specifically, we aimed to: 1) quantify the parameters of 117 

Jarvis-type multiplicative gs models, i.e. gmax, and stomatal responses to light, 118 

temperature, vapor-pressure deficit (VPD), and predawn leaf-water potential (ψpd) 119 

as a proxy of soil-water potential  (SWP), for estimating gs in different plant types, 120 

geographic regions, and environmental conditions; 2) investigate relationships 121 

between stomatal and climat ic parameters; and 3) summarize current information 122 

for fnight  for possible inclusion into Jarvis-type gs models.  123 

 124 

2. Methodology 125 

2.1 Jarvis-type model 126 

We modified the Jarvis-type multiplicative algorithm (Körner et al., 1995; 127 

Büker et al., 2015; CLRTAP, 2015) to include various environmental factors that 128 

affect gs for woody plants and crops: 129 

 130 

   SWPVPDtempminlightphennightmaxs ,max ,max fffffffgg    (1)  131 

 132 

where gmax is the maximum stomatal conductance (mmol H 2O m-2  projected leaf 133 

area s -1), i.e. the seasonal maximum gs in fully developed but not senescent leaves 134 

in their natural environment (Körner, 1995). The other functions are limiting 135 

factors of gmax and are scaled from 0 to 1: fmin is the fraction of minimum daytime 136 



 6 

stomatal conductance to gmax (e.g. Emberson et al., 2000), fnight is the fraction of 137 

stomatal conductance at night to gmax. fphen is the variation in stomatal 138 

conductance with leaf age, and f ligh t, f t emp, fVPD, and fSWP are the fractions that 139 

depend on photosynthetic photon flux density at the foliar surface (PPFD, μmol 140 

photons m -2 s -1), air temperature (°C), VPD (kPa), and SWP (MPa), respectively. 141 

We did not collect data for fphen . Phenological change of gs cannot be simply 142 

defined from the literature, because fphen varies with several factors such as ageing 143 

(Kitajima et al., 2002), soil temperature (Stone et al., 1999), and nighttime 144 

temperature (Koike and Sakagami, 1985). In fact, the parameterization of fphen  145 

developed for a few species was very complex (e.g.  Quercus ilex , Alonso et al., 146 

2008). In addition, we assumed fmin  to zero because fmin is not easily defined in 147 

the model as gs dynamically decreases with decreasing light intensity before 148 

sunset (de Dios et al., 2013; Hoshika et al., 2013b) . 149 

The response of gs to PPFD, f light , is calculated as (Emberson et al., 2000): 150 

 151 

 PPFDexp1light  af      (2) 152 

 153 

where a is a constant (a = Ln[2]/PPFD50) and PPFD50  is the PPFD when  gs reaches 154 

50% of gmax. 155 

The response of gs to air temperature is expressed as (Emberson et al., 2007): 156 

 157 
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 159 

where Topt , Tmin , and Tmax denote the optimal, minimum, and maximum 160 

temperatures (°C) for gs, respectively. We focused on Topt only, because Tmax and 161 
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Tmin are rarely measured under field conditions (Larcher, 2003, generally 40 to 162 

50 °C and -5 to 5 °C, respectively) and thus cannot be appropriately defined from 163 

the literature. 164 

Oren et al. (1999) suggested a logarithmic function of the response of gs to 165 

VPD: 166 

 167 

 VPDln1VPD  mf       (4) 168 

 169 

where m denotes the sensitivity of gs to VPD (ln(kPa) -1). A hydraulic model, 170 

which assumes stomatal regulation of leaf-water potential,  suggests that m is ~0.6 171 

(e.g. Oren et al., 1999). 172 

Soil-moisture deficit is also a major limiting factor of gs in dry and semi-dry 173 

climates (Chaves et al. , 2002; Alonso et al., 2008), because stomatal closure is 174 

the primary physiological response to  water limitation (Hinckley et al., 1978). 175 

Data for parameterizing the effects of soil water on gs, however, are limited. 176 

Misson et al. (2004) suggested that gs was affected by, and decreased with, ψpd. 177 

For parameterizing fSWP, we thus assumed that ψpd was a proxy of SWP, which is 178 

a common assumption for calculations of soil-plant water balance (e.g. Hinckley 179 

et al., 1978). Following Misson et al. (2004), the function of fψpd  can be described 180 

as: 181 

 182 

 maxpdψpdSWP ψψ1  bff    (5) 183 

 184 

where b is the slope of the regression line between gs and ψpd  (mol m -2  s -1  MPa -1) 185 

and ψmax (MPa) is the predawn leaf-water potential  under well-watered conditions 186 

and is assumed to be zero .  187 
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 188 

2.2 Database and quantitative research synthesis  189 

Quantitative research synthesis, including a meta-analysis, can integrate 190 

findings from many studies in a formal statistical analysis to create one large 191 

overview (Ainsworth et al., 2002; Feng et al., 2008; Haworth et al., 2016). Using 192 

Scopus and Google scholar, a survey of all peer-reviewed literature published 193 

between 1970 and 2015 was made on the basis of the keywords “[ stomatal 194 

conductance]+[a target PFT]”, including researches under natural environmental 195 

conditions. The literature was also cross-checked through the list of references 196 

included in review papers.  197 

To include an article in this research synthesis, we examined if it met the 198 

following criteria: (1) the experimental period was specified and longer than 1 199 

month; (2) the species name was specified; (3) only the papers which measured 200 

stomatal conductance by a diffusion porometer or an infra-red gas analyzer using 201 

a leaf cuvette or a branch bag were included, i.e. data derived by sap flow 202 

measurements were not included; (4) data were obtained from field measurements 203 

to represent actual field conditions, i.e. we excluded data from experiments using 204 

potted plants and environmental control chambers; (5) data were derived from 205 

upper canopy leaves exposed to the sun, because they are the most representative 206 

for canopy photosynthesis and the uptake of gaseous pollutants (Emberson et al., 207 

2007); (6) data for tree gmax were selected for trees either >10 years old or >10 m 208 

in height, because gmax can vary with tree size or age (Steppe et al. , 2011); (7) 209 

data for mean annual air temperature (MAT, °C), mean annual p recipitation (MAP, 210 

mm), and measurement year were obtained from original sources, which are 211 

needed to assess their effect on the stomatal parameters. An article was excluded 212 

because its outlier value of MAP = 4000 mm strongly influenced the results of 213 

our analysis (Oberbauer et al., 1987). Articles were excluded when the description 214 
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of experimental design was insufficient to allow an objective assignment, or the 215 

data were reported in another article. After excluding articles based on these 216 

criteria, a total of 235 publications for woody plants, two major C3 crops (rice 217 

and wheat), and one C4 crop (maize) were used for the analysis (Appendix S1). 218 

A list of the data sources is available in Appendix 1. 219 

The selected crops are the three most important crops globally, providing 220 

60% of the world's food energy (FAO, 2013). PFTs classify species into ~10-20 221 

groups defined by their growth forms and climatic characteristics and are 222 

commonly used in global vegetation-climatic models (Poulter et al. , 2011). We 223 

used the PFTs for forest  trees, although the current classification does not include 224 

seasonally dry climates (Zhang et al. , 2003; Poulter et al. , 2011). For example, 225 

temperate deciduous and evergreen trees are distributed in both humid and 226 

seasonally dry climates. In temperate humid Asia, soil-water content generally 227 

does not affect gs of tree species (Sirisampan et al. , 2003; Hoshika et al. , 2012), 228 

but trees grown under seasonal drought such as in Mediterranean climates suffer 229 

frequent water stress (Alonso et al., 2008). We therefore also compared the 230 

parameters of stomatal models between trees in temperate humid and 231 

Mediterranean climates, and between evergreen and deciduous taxa. 232 

The gs parameters for the analysis were obtained: 1) directly from those 233 

reported in the literature of Jarvis -type modelling studies (e.g., Alonso et al.,  234 

2008; Fares et al., 2013) or 2) from fitting gs data in the literature. In the latter 235 

case, gmax was derived as the seasonal maximum gs in fully developed leaves 236 

(Körner, 1995). Stomatal conductance at night was  obtained from data measured 237 

in relatively dry days (relative humidity<70%), at least 3 h after sunset (Uddling 238 

et al., 2005; Hoshika et al., 2013b) , and then fnight  was calculated as the fraction 239 

of stomatal conductance at night to gmax. The f l ight parameters were achieved by 240 

fitting the gs data that were measured with VPD < 1.5 kPa in each paper. Topt in 241 
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f t emp was determined as the temperature at which gmax was obtained. fVPD was 242 

estimated by fitting the functional form (1-m∙ln[VPD])) to presumably non light-243 

limiting data (PPFD > 500 μmol m−2 s−1). We fitted the fψpd  function to mean 244 

midday gs data in each paper (e.g., Bréda et al., 1993).  245 

We used linear mixed models (LMM) to investigate the relationships between 246 

stomatal and climatic parameters. Our analysis considered estimate errors of gmax 247 

reported by original articles, which allowed us to quantatively integrate the 248 

finding of original articles. All parameters were checked for normality to meet 249 

the assumption of statistical model, and thus gmax and f light  were log-transformed. 250 

We fitted LMM to woody plant and crop data separately, and used MAT, MAP, 251 

measurement year, and (measurement year) 2 as fixed effects, and article, species, 252 

measurement instrument, Mediterranean / temperate humid climate type (only 253 

woody plant data), evergreen / deciduous tree (only woody plant data), C3 / C4 254 

crop (only crop data), irrigation (only crop data), as random  effects. MAT and 255 

MAP were scaled to mean 0 and variance 1, and measurement year were scaled to 256 

minimum 0 and maximum 1. The crop data of f t emp , fVPD, fSWP, and fnight were not 257 

analyzed because these data had few sample size (n = 10, 12, 0, and 4, 258 

respectively). All statistical analyses were conducted in R 3.4.0 (R Core Team, 259 

2017) and Stan 2.15.1 (Stan Development Team, 2017) to calculate posterior 260 

probability obtained by Bayesian inference. We ran three independent chains and 261 

retained 5,000 iterations after an initial burn-in of 5,000 iterations. We then 262 

thinned the samples every 5 intervals. The convergence of samples was confirmed 263 

by monitoring traceplots and checking Gelman-Rubin diagnostic R̂ < 1.1  for 264 

each estimate. All Stan codes for our analysis are provided in Appendix S3. 265 

 266 

3. Results 267 

3.1 Maximum stomatal conductance (gmax)   268 
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gmax showed a range from 0.07 to 0.36 mol m -2 s -1 in woody plants, and from 269 

0.34 to 0.61 mol m -2 s-1 in major crops (Table 1). gmax significantly varied with 270 

the species, and was 37% lower for evergreen trees than for deciduous trees (Table 271 

1; 0.18±0.02 and 0.28±0.02 mol m -2 s-1, respectively), although such taxa did not 272 

statistically affect gmax (Table 2). gmax of woody PFTs was significantly correlated 273 

with MAP (Table 2, Fig. 1), although gmax did not differ between trees in 274 

Mediterranean and temperate humid climates (Table 2). The slope of the 275 

regression line of log(gmax) was 0.090 for MAP, i.e. log(gmax) increased by 0.1 276 

with an increase in MAP of 640 mm. MAT, however, was not significantly 277 

correlated with the gmax of woody PFTs (Table 2). gmax was affected by 278 

measurement year for woody plants (Table 2), and was lower before 1980s (Fig. 279 

1). However, this may be due to insufficient gmax measurements before 1980s. In 280 

fact, gmax did not change or rather decreased after 1990s, when gs was widely 281 

measured in various PFTs including tropical trees. 282 

 283 

3.2 Other parameters 284 

Woody plants and C3 crops reached 50% of gmax at a similar PPFD, 100-250 285 

μmol m -2 s -1  (Table 1), corresponding to approximately 5-10% of maximum daily 286 

PPFD. The C4 crop (maize) had a much higher PPFD50  (~500 μmol m -2  s -1), 287 

although this classification of C3 and C4 plants did not statistically affect PPFD 50. 288 

Topt  was 17-30 °C for woody plants and 27-30 °C for crops (Table 1). A 289 

significant relationship between Topt and MAT was found in woody plants (Table 290 

2, Fig. S2 in Appendix S2). For example, needleleaved summergreen trees, which 291 

are mainly boreal species, had a lower Topt (16.8±3.5 °C) than tropical evergreen 292 

trees (29.4±1.8 °C). The slope of the regression line was 2.38, i.e. Topt increased 293 

by 1 °C with an increase in MAT of 3.0 °C (Fig. S1).  294 

Stomatal sensitivity to vapor pressure deficit in woody plants was affected 295 
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by species and MAP (Table 2). In regions with low rainfall, desert shrubs had the 296 

lowest m (= 0.37 ln(kPa -1)). All the other PFTs had similar m values (average m  297 

of ~0.56 ln(kPa -1)), independent of functional type and geographic origin  (Table 298 

1).  299 

The stomatal sensitivity to ψpd  (represented as the parameter b) was 300 

correlated positively with MAP and negatively with MAT in global woody PFTs 301 

(Table 2), indicating that  relatively low values of b can be found in hot and dry 302 

climate. In fact, b was relatively higher in temperate humid climate 303 

evergreen/deciduous trees than in  Mediterranean climate evergreen/deciduous 304 

trees (Table 1).  305 

MAT or MAP did not affect fnight  (Table 2). fnight  depended on the species. On 306 

average, fnight was 0.14 for forest trees, 0.28 for desert shrubs  and 0.13 for crops. 307 

 308 

4. Discussion 309 

4.1 Maximum stomatal conductance (gmax)   310 

gmax plays an important role in determining the uncertainty of Jarvis-type gs 311 

models (Tuovinen et al., 2007). gmax was higher for crops than for woody plants 312 

(Table 1; 0.44±0.03 and 0.21±0.02 mol m-2  s -1, respectively), consistent with 313 

Körner (1995), who suggested 0.45 and 0.22 mol m -2 s-1 , respectively. Crops have 314 

been anthropogenically selected and bred for productivity, and opening stomata 315 

can increase productivity (Fischer et al., 1998). Assessing the effects of crop 316 

varieties on gmax was not possible (data not shown), because data in each variety 317 

were not sufficient. Further studies using a larger number of data per variety are 318 

needed to assess whether different varieties could affect gmax. 319 

Körner (1995) reported that gmax did not differ among the major woody types. 320 

Our analysis, however, found that gmax differed among the woody PFTs, relative 321 

to leaf longevity and climatic conditions. Short-lived leaves may have a higher 322 



 13 

gmax and photosynthetic capacity relative to long-lived leaves of forest tree 323 

species (Koike, 1988; Reich et al., 1999; Kikuzawa & Lechowicz, 2011). gmax for 324 

woody PFTs was dependent on MAP (Fig. 1). Del Grosso et al. (2008) 325 

interestingly reported that NPP of global native vegetation correlated better with 326 

precipitation than with temperature. Stomatal adjustments may maximize carbon 327 

gain while minimizing water loss under a given water availability to plants 328 

(Cowan & Farquhar, 1977; Manzoni et al., 2011). Stomatal behavior in dry 329 

environments is likely to be more hydraulically constrained than that in wet 330 

environments (Lin et al. , 2015). The reduction of gmax, especially under severely 331 

water-limited conditions, may help to reduce water loss in hot and dry 332 

environments, suggesting a limitation of carbon assimilation by water availability.  333 

Although this may promote carbon starvation due to continued carbohydrate 334 

demand for maintenance of metabolism and defense against stressors, plants tend 335 

to maintain xylem water tension below its cavitation threshold to avoid embolism 336 

(McDowell & Sevanto, 2010).  337 

In recent years, plant response to global change including rising CO 2 338 

concentration and nitrogen deposition has become an important issue (Pe ñuelas 339 

et al., 2011; Keenan et al., 2013). For example, rising CO2 concentrations might 340 

reduce water use in plants  due to stomatal closure (Ellsworth et al., 2012). Our 341 

results indicated that gmax of woody plants slightly decreased since gs was widely 342 

measured in the 1990s. This is supported by Keenan et al. (2013), suggesting that 343 

latent heat, a surrogate for transpiration , in boreal and temperate forests tended 344 

to decrease from 1990 to 2010 because of increasing CO2  concentration in the 345 

atmosphere.  346 

 347 

4.2 Light limitation (f l ight) 348 

C4 plants potentially have a significant advantage over C3 plants in hot, arid, 349 
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and bright habitats (Pearcy & Ehleringer, 1984; Yamori et al., 2014). The 350 

relatively higher PPFD50 of gs in the C4 crop (maize) indicated a different 351 

photosynthetic light response between C3 and C4 species. Maize does not light-352 

saturate even in full sunlight, while C3 photosynthesis saturates at intermediate 353 

light intensities (Larcher, 2003).  354 

 355 

4.3 Temperature limitation (f temp) 356 

The observed range of Topt of gs corresponded to the optimal range for 357 

photosynthesis, generally 20-30 °C globally (Larcher, 2003). The optimal 358 

temperature for photosynthesis generally increased with the growth temperature 359 

MAT (Table 2), because such an acclimation contributes to higher productivity 360 

(Hikosaka et al., 2006, 2007). T opt  was slightly lower for trees in the 361 

Mediterranean than in temperate humid climates, although the difference was not 362 

statistically significant (Table 2). gmax in Mediterranean climates often occurs 363 

earlier in the season (May-June) when water availability is higher than in summer 364 

(July-August) (Rhizopoulou & Mitrakos, 1990; Manes et al.,  1997).  365 

 366 

4.4 Vapor pressure deficit limitation ( fVPD) 367 

Except for desert shrubs, our finding was consistent with the theory by Oren 368 

et al. (1999) that assumes stomatal regulation of leaf  water potential and suggests 369 

an m of ~0.6 based on a hydraulic model . The parameter m did not differ 370 

significantly between the C4 crop (maize) and the C3 crops, consistent with the 371 

report for two C3 and two C4 grass species by Morison & Gifford (1983). 372 

Stomatal sensitivity to VPD (m=0.37) was slightly lower for desert shrubs (Table 373 

2). Desert shrubs generally show very deep roots, enabling them to tap water in 374 

deep soil layers (Canadell et al., 1996). Kropp & Ogle (2015), however, suggested 375 

that this lower sensitivity of gs to VPD for desert shrubs might be associated with 376 
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reduced access to water, which is restricted by the neighboring plants. The 377 

neighboring plants might influence the root distribution of desert shrubs, which 378 

determines water availability and affects stomatal response  (Kropp & Ogle, 2015).   379 

 380 

4.5 Leaf water potential limitation ( fψpd) 381 

Stomatal closure associated with soil moisture deficits reduces water vapor 382 

loss and photosynthetic carbon gain (Chaves et al., 2002). This stomatal closure 383 

also provides some protections to plants from the negative effects  of O3  exposure 384 

(Tingey & Hogsett, 1985; CLRTAP, 2015). The fψpd  function is therefore critical 385 

under water-limited conditions. Although dewfall and fog might affect predawn 386 

water relations (e.g., Limm et al. 2009), the relationship between gs and ψpd 387 

generally indicates stomatal response to soil-moisture deficits (Misson et al., 388 

2004). The slope (b) of the relationship, representing the sensitivity of stomata to 389 

ψpd, was correlated with MAP and MAT in global PFTs (Table 2). Higher b 390 

indicates an avoidance of drought stress by early stomatal closure (Castel & 391 

Terradas, 1995; Picon et al., 1996; Teixeira Filho et al., 1998). Conifers, beeches, 392 

and birches (representative of the boreal/temperate summergreen  type) generally 393 

have shallow root systems (Peterken & Mountford, 1996; Mauer & Palatova, 394 

2003; Anderson, 2005) and may need to drastically reduce water loss by stomatal 395 

closure during drought (Castel & Terradas, 1995). The lower sensitivity of 396 

stomata to ψpd implies that trees in Mediterranean climates have developed 397 

mechanisms for drought tolerance and are able to maintain a higher gs during 398 

water-stressed conditions (Tenhunen et al., 1987) . These tolerance mechanisms 399 

may be associated with morphological/anatomical adjustments, leading to an 400 

increase in the apoplastic water fraction (Serrano & Peñuelas, 2005; Serrano et 401 

al., 2005). Increased cell wall elasticity of sclerophyllous leaves contributes to 402 

drought resistance by an increased range of positive pressure potential  of twigs 403 
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(Serrano & Peñuelas, 2005). Interestingly,  stomata of trees in tropical savanna 404 

had a similar sensitivity to ψpd (b=~0.40 MPa -1: Eamus, 1999; Thomas & Eamus, 405 

1999) compared to those of trees in Mediterranean climate. 406 

 407 

4.6 Nighttime stomatal conductance ( fnight) 408 

Current Jarvis-type models assume that fnight is zero (Emberson et al., 2007; 409 

Damour et al., 2010), but several studies detected 5-30% of gmax rates at night 410 

relative to daytime (Caird et al., 2007; Zeppel et al., 2014). The value of fnight (a 411 

ratio of nighttime stomatal conductance to gmax) was larger in desert shrubs (Table 412 

1). However, absolute values of nighttime stomatal conductance and gmax are 413 

relatively low in this PFT (Fig. 1; Table S1). Although Ogle et al. (2012) 414 

suggested a potential for significant nocturnal transpiration in desert plants, 415 

underlying mechanisms or biological significance of the nocturnal transpiration 416 

in those plants are still unknown. To our knowledge, information is not available 417 

for fnight  in tropical trees at  foliar level. Measurements of nocturnal sap flow 418 

suggest that fnight might be higher in tropical evergreen/raingreen trees than in 419 

temperate evergreen/summergreen trees (Zeppel et al., 2014), although we should 420 

note that nocturnal sap flow consists of not only nocturnal transpiration but also 421 

hydraulic recharge of trees (Caird e t al., 2007) and may also be affected by 422 

guttation (Fisher et al., 1997). de Dios et al. (2015) suggested that the actual 423 

magnitude of nocturnal transpiration may be higher than the nocturnal  424 

evapotranspiration currently predicted by vegetation-climatic models (typically 425 

~1-2% of global evapotranspiration, e.g. Greve et al. 2014). Nocturnal water loss 426 

may thus contribute a substantial fraction of total daily water use and thereby 427 

affect the water balance of ecosystems (Zeppel et al., 2014).  428 

Also, nocturnal stomatal opening may enhance the deleterious effects of 429 

gaseous air pollutants such as O3 . Matyssek et al. (1995) showed that a 24-h 430 
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exposure to O3, including exposure at night, caused a stronger decrease in growth 431 

relative to daytime exposure only, for European birch (Betula pendula), and 432 

concluded that nighttime O3 exposure should be included in the calculation of 433 

daily O3 flux. Ozone concentration can remain elevated at night, particularly in 434 

mountainous areas (Musselmann & Minnick, 2000), and plants can be more 435 

susceptible to O3 at night than during daytime, because plant defenses are lower 436 

at night (Musselmann & Minnick, 2000). fnight is affected by several 437 

environmental factors (de Dios et al., 2013), but a parameterizati on is not yet 438 

available. 439 

 440 

5. Conclusions  441 

Our review synthesized a wide range of published data for gs and examined 442 

the patterns of stomatal response among PFTs. The empirical evidence will 443 

contribute to the further development of modeling studies for plant-atmosphere 444 

gas exchange and land-surface energy partitioning. 445 

Our review provided a new summary of gmax and the stomatal responses to 446 

environmental factors across global woody plants and major crops based on 447 

Jarvis-type models. The results confirmed the concluding remarks about gmax by 448 

Körner ’s review (1995), suggesting that crops have a higher gmax than woody 449 

plants. However, contrary to Körner ’s summary (1995), gmax differed between 450 

types of woody plants, likely because of the influence of MAP. We recommend 451 

that gmax for global woody PFTs should be estimated as a function of precipitation 452 

(approximately 0.18 to 0.26 mol m -2 s -1  within the range of 0-2000 mm MAP). A 453 

higher gmax (0.44 mol m -2 s -1) can be used for crops than for woody plants. Topt  454 

and the stomatal response to ψpd (i.e. the slope parameter b) also varied with the 455 

growth environment for global woody plants. Topt of crops ranged from 27 to 456 

30 °C. A parameterization of fψpd is not yet available for global major crops. In 457 
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contrast, we recommend a single parameter for the stomatal responses to light 458 

(average PPFD50 of 140 μmol m -2 s -1 for C3 plants and ~500 μmol m -2 s -1 for C4 459 

crop (maize)) and VPD (average m of 0.56 ln(kPa -1)) for all forest PFTs and crops, 460 

in agreement with many land-surface models that do not differentiate between gs 461 

model parameters for these stomatal responses among PFTs (De Kauwe et al., 462 

2015). However, we should note that m of desert shrubs may be lower (0.37 463 

ln(kPa -1)). fnight  was 0.14 across forest tree types, i.e. 14% of gmax. fnight  of desert 464 

shrubs was higher (28% of gmax). fnight  was ~0.13 across the crops. 465 

Our analysis identified major gaps in our understanding of stomatal 466 

responses to soil moisture and phenological changes in both woody and crop 467 

species and of the responses to light and temperature in tropical raingreen trees, 468 

tundra shrubland, and desert shrubland. More research is also recommended for 469 

gmax of tropical raingreen and boreal needleleaved summergreen trees  and tundra 470 

shrubland, because only less than 10 values were available for these PFTs. 471 

Information for fnight  is still limited, particularly for tropical evergreen/raingreen, 472 

needleleaved summergreen, Mediterranean trees , tundra shrubs, and crops. 473 

Interest in the role of fnight in the optimization of g s (Cirelli et al., 2016) and in 474 

the uptake of O3 (Grulke et al., 2007; Hoshika et al., 2013a) is increasing. If 475 

increasing water loss at night leads to higher total daily water use, then soil water 476 

content may decrease, leading to drier soils and lower rates of transpiration during 477 

the resultant dry periods (Zeppel et al., 2014). We therefore propose to 478 

incorporate fnight into Jarvis-type models (see Eq. 1). 479 

The empirical responses in the models may also be altered in plants grown 480 

at elevated levels of CO2 (Heath & Kerstiens 1997; Heath 1998; Bobich et al., 481 

2010) and O3  (Pearson & Mansfield, 1993; Paoletti & Grulke, 2005; Wilkinson & 482 

Davies, 2010; Hoshika et al., 2013b). Further experimental evidence at elevated 483 

CO2  and/or O3 levels will improve the empirical models of gs under such future 484 
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changing environments, which are incorporated into global climatic models to 485 

assess land-atmosphere carbon and water exchanges.  486 

  487 
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