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Abstract

A ZprZps -additive code, with r ≤ s, is a Zps -submodule of Zαpr × Zβps .
We introduce ZprZps -additive cyclic codes. These codes can be seen as

Zps [x]-submodules of Rα,βr,s =
Zpr [x]
〈xα−1〉 ×

Zps [x]
〈xβ−1〉 . We determine the gen-

erator polynomials of a code over Rα,βr,s and a minimal spanning set over

Zαpr × Zβps in terms of the generator polynomials. We also study the du-

ality in the module Rα,βr,s . Our results generalise those for Z2Z4-additive
cyclic codes.
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1 Introduction

Z2Z4-additive codes have been introduced in [4] and intensely studied during
last years. The set of coordinates of a Z2Z4-additive code can be partitioned
into two subsets, the set of coordinates over Z2 and the set of coordinates over
Z4. In recent times, Z2Z4-additive codes were generalized to Z2Z2s -additive
codes in [2], and later to ZprZps-additive codes, in [3]. In [2] and [3], the
authors determine, in particular, the standard forms of generator and parity-
check matrices and present some bounds on the minimum distance.

One of the most studied class of codes is the class of cyclic codes. For
example, the algebraic structure and the generators of cyclic codes over Zpm
have been studied in [7] and [10]. Newly, the concept of double cyclic codes
over rings appeared in the literature. A double cyclic code is a code such that
the set of coordinates can be partitioned into two subsets such that any cyclic
shift of the coordinates of both subsets leaves invariant the code. Notice that
if one of these sets of coordinates is empty then we obtain a cyclic code. We
can find examples of double cyclic codes over the rings Z2 and Z4 in [5] and [9],
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respectively. Also, Z2Z4-additive cyclic codes have been defined in [1]. These
codes have the property that a simultaneous cyclic shift of the coordinates over
Z2 and the coordinates over Z4 of a codeword is also a codeword. A Z2Z4-
additive cyclic code is identified as a Z4[x]-module of a certain ring. The duality
of Z2Z4-additive cyclic codes has been studied in [6].

After all these papers, it becomes natural the study of ZprZps -additive cyclic
codes. On the one hand, as the study of ZprZps -additive codes, presented in
[3], with the cyclic property. And, on the other hand, as a generalization of the
different types of cyclic codes studied in [1, 5, 6, 9, 7, 10].

The aim of this paper is the study of the algebraic structure of ZprZps-
additive cyclic codes. We will assume that r ≤ s. As ZprZps -additive cyclic

codes can be identified as Zps [x]-submodules of
Zpr [x]
〈xα−1〉 ×

Zps [x]
〈xβ−1〉 then, Section 2

reviews cyclic codes over Zpm and details a minimal generating set of a cyclic
code over Zpm as a Zpm-module. In Section 3, we recall definitions and basic
results of ZprZps -additive codes, defined in [3]. In Section 4, we give the def-
inition of a ZprZps-additive cyclic code, we discuss the algebraic structure of
these codes, we determine the generator polynomials of a ZprZps-additive cyclic
code, and we describe a minimal generating set for the code as a Zps -module in
terms of the generator polynomials. Finally, in Section 5, we study the duality

of these codes over the Zps [x]-module
Zpr [x]
〈xα−1〉 ×

Zps [x]
〈xβ−1〉 .

2 Cyclic codes over Zpm
Let p be a prime number and let Zpm be the ring of integers modulo pm. A
linear code of length n over Zpm is a submodule of Znpm , and a cyclic code of
length n over Zpm is a linear code with the property that if (c0, · · · , cn−2, cn−1)
is a codeword then (cn−1, c0, · · · , cn−2) is also a codeword.

Let g1, . . . , gr be polynomials in a Zpm [x]-module. We denote by 〈g1, . . . , gr〉
the Zpm [x]-submodule, resp. 〈g1, . . . , gr〉Zpm the Zpm -submodule, generated by
g1, . . . , gr.

Let C be a cyclic code of length n over Zpm . We can identify C as an ideal of
Zpm [x]/〈xn − 1〉. We assume that n is a positive integer such that it is coprime
with p. Therefore, the polynomial xn − 1 has a unique decomposition as a
product of basic irreducible polynomials that are pairwise coprime over Zpm [x].

Theorem 2.1 ([8, Theorem 3.5]). Let C be a cyclic code of length n over
Zpm . Then, there exist polynomials g0, g1, . . . , gm−1 in Zpm [x] such that C =
〈g0, pg1, . . . , pm−1gm−1〉 and gm−1 | gm−2 | · · · | g1 | g0 | (xn − 1).

Let C = 〈g0, pg1, . . . , pm−1gm−1〉 be a cyclic code of length n and let g =
g0 +pg1 + · · ·+pm−1gm−1. Since g0 is a factor of xn−1 and, for i = 1 . . .m−1,
the polynomial gi is a factor of gi−1, we may define the polynomials ĝ0 = xn−1

g0

and ĝi = gi−1

gi
for i = 1 . . .m − 1. Define G =

∏m−1
i=0 ĝi. It is clear that

Gg =
(∏m−1

i=0 ĝi

)
g = 0 over Zpm [x]/〈xn − 1〉.

Lemma 2.2. Let C be a cyclic code of length n over Zpm . Let g0, g1, . . . , gm−1
in Zpm [x] such that C = 〈g0, pg1, . . . , pm−1gm−1〉 and gm−1 | gm−2 | · · · | g1 |
g0 | (xn − 1), and let g = g0 + pg1 + · · ·+ pm−1gm−1. Then,

1. pm−1g = pm−1gm−1
G
ĝ0
,
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2. pm−1−i(
∏i−1
j=0 ĝj)g = pm−1gm−1

G
ĝi

, for i = 1, . . . ,m− 1.

Proof. We have that

pm−1g = pm−1g0
1
g1

g1
g2
. . . gm−3

gm−2

gm−2

gm−1
gm−1

= pm−1gm−1ĝ1ĝ2 . . . ĝm−2ĝm−1
= pm−1gm−1

G
ĝ0
,

and 1 holds. For i = 1, . . . ,m− 1 we have that

pm−1−i(
∏i−1
j=0 ĝj)g = pm−1−i(

∏i−1
j=0 ĝj)p

igi

= pm−1−i(
∏i−1
j=0 ĝj)p

igi
1

gi+1

gi+1

gi+2
. . . gm−2

gm−1
gm−1

= pm−1gm−1ĝ0ĝ1 . . . ĝi−1ĝi+1 . . . ĝm−1
= pm−1gm−1

G
ĝi
,

and statement 2 is proved.

From Theorem 2.1, we get the following result.

Corollary 2.3. Let C be a cyclic code of length n over Zpm such that C =
〈g0, pg1, . . . , pm−1gm−1〉 with gm−1 | gm−2 | · · · | g1 | g0 | (xn − 1). Then,

|C| = p
∑m−1
i=0 (m−i) deg(ĝi).

Proof. From the previous definition of ĝi, these polynomials are the same poly-
nomials described in [8, Theorem 3.4].

In [7], it is proved that Zpm [x]/〈xn−1〉 is a principal ideal ring. Furthermore,
they showed how are the generator polynomials of the ideals. Joining these
results we obtain the following.

Theorem 2.4 ([7]). Let C be a cyclic code of length n over Zpm . Let g0, g1, . . . , gm−1
polynomials in Zpm [x] such that C = 〈g0, pg1, . . . , pm−1gm−1〉 and gm−1 | gm−2 |
· · · | g1 | g0 | (xn − 1). Then, the polynomial g = g0 + pg1 + · · ·+ pm−1gm−1 is
a generator polynomial of C, i.e., C = 〈g〉.

Theorem 2.5. Let C = 〈g〉 = 〈g0 + pg1 + · · · + pm−2gm−2 + pm−1gm−1〉 be a
cyclic code of length n over Zpm with gm−1 | gm−2 | · · · | g1 | g0 | (xn − 1). We
define the following sets

S0 =
{
xig
}deg(ĝ0)
i=0

=
{
xi(g0 + pg1 + · · ·+ pm−2gm−2 + pm−1gm−1)

}deg(ĝ0)
i=0

,

S1 =
{
xiĝ0g

}deg(ĝ1)
i=0

=
{
xi(pg1ĝ0 + · · ·+ pm−2gm−2ĝ0 + pm−1gm−1ĝ0)

}deg(ĝ1)
i=0

,

...

Sj =

{
xi(

j−1∏
t=0

ĝt)g

}deg(ĝj)

i=0

,

...

3



Sm−1 =

{
xi(

m−2∏
t=0

ĝt)g

}deg(ĝm−1)

i=0

=

{
xi(

m−2∏
t=0

ĝt)p
m−1gm−1

}deg(ĝm−1)

i=0

.

Then,

S =

m−1⋃
j=0

Sj

forms a minimal generating set for C as a Zpm-module.

Proof. Let c ∈ C. We have that c = dg with d ∈ Zpm [x]. If deg(d) < deg(ĝ0)
then dg ∈ 〈S0〉Zpm and c ∈ 〈S〉Zpm . Otherwise, compute d = d0ĝ0 + r0 with
deg(r0) < deg(ĝ0), so dg = d0ĝ0g + r0g and r0g ∈ 〈S0〉Zpm .

If deg(d0) < deg(ĝ1), then d0ĝ0g ∈ 〈S1〉Zpm and c ∈ 〈S〉Zpm . Otherwise,
compute d0 = d1ĝ1 +r1 with deg(r1) < deg(ĝ1), so d0ĝ0g = d1ĝ1ĝ0g+r1ĝ0g and
r1ĝ0g ∈ 〈S1〉Zpm .

In the worst case, and reasoning similarly, one obtains that c ∈ 〈S〉Zpm if

dm−2(
∏m−2
t=0 ĝt)g ∈ 〈S〉Zpm . It is obvious that if deg(dm−2) < deg(ĝm−1) then

dm−2(
∏m−2
t=0 ĝt)g ∈ 〈Sm−1〉Zpm . If not, dm−2 = dm−1ĝm−1 + rm−1. Therefore,

dm−2(

m−2∏
t=0

ĝt)g = dm−1(

m−1∏
t=0

ĝt)g+rm−1(

m−2∏
t=0

ĝt)g = rm−1(

m−2∏
t=0

ĝt)g ∈ 〈Sm−1〉Zpm .

Since rm−1(
∏m−2
t=0 ĝt)g ∈ 〈Sm−1〉Zpm , we have that c ∈ 〈S〉Zpm , and hence S

is a generating set. If one compute |S| clearly

|S| =
m−1∑
i=0

(m− i) deg(ĝi).

By Corollary 2.3, |C| = |〈S〉| and S is a minimal generating set.

3 ZprZps-additive codes

Let Zpr and Zps be the rings of integers modulo pr and ps, respectively, with p
prime and r ≤ s. Since the residue field of both Zpr and Zps is Zp, an element
b of Zpr could be written uniquely as b = b0 + pb1 + p2b2 + · · ·+ pr−1br−1, and
any element a ∈ Zps as a = a0 + pa1 + p2a2 + · · ·+ ps−1as−1, where bi, aj ∈ Zp.
Then we can consider the surjective ring homomorphism

π : Zps � Zpr
a 7→ a mod pr.

Note that π(pi) = 0 if i ≥ r. Let a be an element of Zps and b be an element
of Zpr . We define a multiplication ∗ as follows: a ∗ b = π(a)b. Then, Zpr
is a Zps -module with the external multiplication ∗ given by π. Since Zpr is
commutative, ∗ has the commutative property. Then, we can generalize this
multiplication over the ring Zαpr × Zβps as follows. Let a be an element of Zps
and u = (u | u′) = (u0, u1, . . . , uα−1 | u′0, u′1, . . . , u′β−1) ∈ Zαpr × Zβps . Then,

a ∗ u = (π(a)u0, π(a)u1, . . . , π(a)uα−1 | au′0, au′1, . . . , au′β−1).

With this external operation, the ring Zαpr × Zβps is also a Zps-module.
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Definition 3.1. A ZprZps-additive code C is a Zps-submodule of Zαpr × Zβps .

The structure of the generator matrix in standard form and the type of
ZprZps-additive codes are defined and determined in [3].

Let CX be the canonical projection of C on the first α coordinates and CY on
the last β coordinates. Then, CX and CY are Zpr and Zps linear codes of length
α and β, respectively. A code C is called separable if C is the direct product of
CX and CY , i.e., C = CX × CY .

Since r ≤ s, we consider the inclusion map

ι : Zpr ↪→ Zps
b 7→ b

.

Let u,v ∈ Zαpr × Zβps , then the inner product is defined in [3] as

u · v = ps−r
α−1∑
i=0

ι(uivi) +

β−1∑
j=0

u′jv
′
j ∈ Zps ,

and the dual code of a ZprZps-additive code C is defined in a natural way as

C⊥ = {v ∈ Zαpr × Zβps | u · v = 0, ∀u ∈ C}.

Let C be a separable code in Zαpr × Zβps , then C⊥ is also separable and C⊥ =

C⊥X × C⊥Y .

4 ZprZps-additive cyclic codes

Definition 4.1. Let C ⊆ Zαpr × Zβps be a ZprZps-additive code. The code C is
called cyclic if

(u0, u1, . . . , uα−2, uα−1 | u′0, u′1, . . . , u′β−2, u′β−1) ∈ C

implies
(uα−1, u0, u1, . . . , uα−2 | u′β−1, u′0, u′1, . . . , u′β−2) ∈ C.

Let u = (u0, u1, . . . , uα−1 | u′0, . . . , u′β−1) be a codeword in C and i be an

integer. We then denote by u(i) = (u0−i, u1−i, . . . , uα−1−i | u′0−i, . . . , u′β−1−i)
the ith shift of u, where the subscripts are read modulo α and β, respectively.
Note that if C ⊆ Zαpr × Zβps is cyclic, then CX (resp. CY ) is a cyclic code over

Zαpr (resp. Zβps).
We remark that in this paper the definition of a ZprZps -additive cyclic code

is well defined as long as Zpr and Zps are different rings, since the elements on
the first α coordinates and the ones in the last β coordinates belong to different
rings, Zpr and Zps , respectively. In the particular case that r = s, the cyclic

code in ⊆ Zαpr × Zβpr is known in the literature as double cyclic code, see [5],
[9]. The term double cyclic is given in order to distinguish the cyclic code in

Zαpr × Zβpr from the cyclic code in Zα+βpr .

Denote byRα,βr,s the ring Zps [x]/〈xα−1〉×Zps [x]/〈xβ−1〉. There is a bijective

map between Zαpr × Zβps and Rα,βr,s given by:

(u0, u1, . . . , uα−1 | u′0, . . . , u′β−1) 7→ (u0 +u1x+ · · ·+uα−1x
α−1 | u′0 + · · ·+u′β−1x

β−1).
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We denote the image of the vector u by u(x). Note that we can extend the
maps ι and π to the polynomial rings Zpr [x] and Zps [x] applying these maps to
each of the coefficients of a given polynomial.

Definition 4.2. Define the operation ∗ : Zps [x]×Rα,βr,s → Rα,βr,s as

λ(x) ∗ (t(x) | q(x)) = (π(λ(x))t(x) | λ(x)q(x)),

where λ(x) ∈ Zps [x] and (t(x) | q(x)) ∈ Rα,βr,s .

The ring Rα,βr,s with the external operation ∗ is a Zps [x]-module. Let u(x) =

(u(x) | u′(x)) be an element of Rα,βr,s . Note that if we operate u(x) by x we get

x ∗ u(x) = x ∗ (u(x) | u′(x))

= (u0x+ · · ·+ uα−2x
α−1 + uα−1x

α | u′0x+ · · ·+ u′β−2x
β−1 + u′β−1x

β)

= (uα−1 + u0x+ · · ·+ uα−2x
α−1 | u′β−1 + u′0x+ · · ·+ u′β−2x

β−1).

Hence, x ∗ u(x) is the image of the vector u(1). Thus, the operation of u(x) by
x in Rα,β corresponds to a shift of u. In general, xi ∗ u(x) = u(i)(x) for all i.

4.1 Algebraic structure and generators of cyclic codes

In this section, we study submodules of Rα,βr,s . We describe the generators of
such submodules and state some properties. From now on, 〈S〉 will denote the
Zps [x]-submodule generated by a subset S of Rα,βr,s .

For the rest of the discussion we will consider that α and β are coprime
integers with p. From this assumption, we know that Zpr [x]/(xα − 1) and
Zps [x]/(xβ − 1) are principal ideal rings, see [7], [8].

Theorem 4.3. Every submodule C of the Zps [x]-module Rα,βr,s can be written as

C = 〈(b(x) | 0), (`(x) | a(x))〉,

where b(x), a(x) are generator polynomials in Zpr [x]/(xα−1) and Zps [x]/(xβ−1)
resp., and `(x) ∈ Zpr [x]/(xα − 1).

Proof. Let ψX : Rα,βr,s → Zpr [x]/〈xα−1〉 and ψY : Rα,βr,s → Zps [x]/〈xβ−1〉 be the

canonical projections, let C be a submodule of Rα,βr,s . Define C′ = {(p(x)|q(x)) ∈
C | q(x) = 0}. It is easy to check that C′ ∼= ψX(C′) by (p(x) | 0) 7→ p(x).
Hence, by Theorem 2.4, ψX(C′) is finitely generated and so is C′. Let b(x) be a
generator of ψX(C′), then (b(x) | 0) is a generator of C′.
As Zps [x]/〈xβ − 1〉 is also a principal ideal ring, then CY = ψY (C) is generated
by one element. Let a(x) ∈ CY such that CY = 〈a(x)〉, then there exists `(x) ∈
Zpr [x]/〈xα − 1〉 such that (`(x) | a(x)) ∈ C.
We claim that

C = 〈(b(x) | 0), (`(x) | a(x))〉.

Let (p(x) | q(x)) ∈ C, then q(x) = ψY (p(x) | q(x)) ∈ CY . So, there exists
λ(x) ∈ Zps [x] such that q(x) = λ(x)a(x). Now,

(p(x) | q(x))− λ(x) ∗ (`(x) | a(x)) = (p(x)− π(λ(x))`(x) | 0) ∈ C′.
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Then, there exists µ(x) ∈ Zps [x] such that (p(x)−π(λ(x))`(x) | 0) = µ(x)∗(b(x) |
0). Thus,

(p(x) | q(x)) = µ(x) ∗ (b(x) | 0) + λ(x) ∗ (`(x) | a(x)).

So, C is finitely generated by 〈(b(x) | 0), (`(x) | a(x))〉.

From the previous results, it is clear that we can identify codes in Zαpr × Zβps
that are cyclic as submodules of Rα,βr,s . So, any submodule of Rα,βr,s is a cyclic
code. From now on, we will denote by C indistinctly both the code and the
corresponding submodule.

In the following, a polynomial f(x) ∈ Zpr [x] or Zps [x] will be denoted simply
by f .

Proposition 4.4. Let C ⊆ Zαpr × Zβps be a ZprZps-additive cyclic code. Then,
there exist polynomials ` and b0|b1| . . . |br−1|(xα−1) over Zpr [x], and polynomials
a0|a1| · · · |as−1|(xβ − 1) over Zps [x] such that

C = 〈(b0 + pb1 + · · ·+ pr−1br−1 | 0), (` | a0 + pa1 + · · ·+ ps−1as−1)〉.

Proof. Let C be a ZprZps -additive cyclic code. By Theorem 4.3, there exist
polynomials b, ` ∈ Zps [x]/〈xα − 1〉 and a ∈ Zps [x]/〈xβ − 1〉 such that C = 〈(b |
0), (` | a)〉. By Theorem 2.4, one can consider b = b0 + pb1 + · · · + pr−1br−1
and a = a0 + pa1 + · · · + ps−1as−1 such that br−1|br−2| . . . |b1|b0|(xα − 1) and
as−1|as−2| . . . |a1|a0|(xβ − 1).

For the rest of the discussion any cyclic code C over Zαpr × Zβps is of the
form C = 〈(b | 0), (` | a)〉, where b = b0 + pb1 + · · · + pr−1br−1 and a(x) =
a0 +pa1 + · · ·+ps−1as−1, for polynomials bi and aj as in Proposition 4.4. Since
b0 is a factor of xα − 1 and for i = 1 . . . r − 1 the polynomial bi is a factor of
bi−1, we will denote b̂0 = xα−1

b0
, b̂i = bi−1

bi
for i = 1 . . . r − 1, and b̂r = br−1. In

the same way, we define â0 = xβ−1
a0

, âj =
aj−1

aj
for j = 1 . . . s−1, and âs = as−1.

Proposition 4.5. Let C ⊆ Zαpr × Zβps be a ZprZps-additive cyclic code. Then,

s−1∏
t=0

ât ∗ (` | a) ∈ 〈(b | 0)〉.

Proof.
∏s−1
t=0 ât ∗ (` | a) = xβ−1

as−1
∗ (` | a) = (π(x

β−1
as−1

)` | x
β−1
as−1

a) = (π(x
β−1
as−1

)` |
0).

Theorem 4.6. Let C ⊆ Zαpr × Zβps be a ZprZps-additive cyclic code. Define

Bj =

{
xi(

j−1∏
t=0

b̂t) ∗ (b | 0)

}deg(b̂j)−1

i=0

,

for 0 ≤ j ≤ r − 1, and

Ak =

{
xi(

k−1∏
t=0

ât) ∗ (` | a)

}deg(âk)−1

i=0

,
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for 0 ≤ k ≤ s− 1. Then,

S =

r−1⋃
j=0

Bj

⋃(
s−1⋃
t=0

At

)

forms a minimal generating set for C as a Zps-module. Moreover,

|C| = p
∑r−1
i=0 (r−i) deg(b̂i)+

∑s−1
j=0(s−j) deg(âj).

Proof. By Theorem 2.5, it is clear that the elements in S are Zps-linear inde-

pendent since
(⋃r−1

j=0 Bj

)
X

and
(⋃s−1

t=0 At

)
Y

are minimal generating sets for

the codes CX and CY , respectively. Let c be a codeword of C, then c = q ∗ (b |
0)+d∗ (` | a). Reasoning similarly as in Theorem 2.5, q ∗ (b | 0) ∈ 〈

⋃r−1
j=0 Bj〉Zps .

So we have to prove that d ∗ (` | a) ∈ 〈S〉Zps .
If deg(d) < deg(â0) then d ∗ (` | a) ∈ 〈A0〉Zps and c ∈ 〈S〉Zps . Otherwise,

compute d = d0â0 + r0 with deg(r0) < deg(â0). Then, d ∗ (` | a) = d0â0 ∗ (` |
a) + r0 ∗ (` | a) and r0 ∗ (` | a) ∈ 〈A0〉Zps .

In the worst case and reasoning similarly, one obtain that c ∈ 〈S〉Zps if

ds−2(
∏s−2
t=0 ât) ∗ (` | a) ∈ 〈S〉Zps . It is obvious that if deg(ds−2) < deg(âs−1)

then ds−2(
∏s−2
t=0 ât) ∗ (` | a) ∈ 〈As−1〉Zps , if not, ds−2 = ds−1âs−1 + rs−1.

Therefore,

ds−2

(
s−2∏
t=0

ât

)
∗ (` | a) = ds−1

(
s−1∏
t=0

ât

)
∗ (` | a) + rs−1

(
s−2∏
t=0

ât

)
∗ (` | a)

On the one hand, rs−1(
∏s−2
t=0 ât) ∗ (` | a) ∈ 〈As−1〉Zps . On the other hand,

ds−1(
∏s−1
t=0 ât) ∗ (` | a) = ds−1(

∏s−1
t=0 ât) ∗ (` | 0) and then ds−1(

∏s−1
t=0 ât) ∗ (` |

a) = f ∗ (b | 0) ∈ 〈
⋃r−1
j=0 Bj〉Zps . Thus, c ∈ 〈S〉Zps and S is a minimal generating

set for C.

The order of an element v of an abelian group, ord(v), is the smallest
positive integer m such that m ·v = 0. Let C be a ZprZps -additive code. Define

Cpi = {v = (v | v′) ∈ C | ord(v) = pi and ord(v′) = pi}.

Let k0 be the dimension of Cpr restricted in the first α coordinates, i.e., k0 =

dim((Cpr )X). Define ki = dim((Cpr−i)X) −
∑i−1
j=0 kj , for i = 1, . . . , r − 1. The

code C is of type (α, β; k0, k1, . . . , kr−1; l0, . . . , ls−1) if it is group isomorphic to

Zk0pr × Zk1pr−1 × · · · × Zkr−1
p × Zl0ps × · · · × Zls−1

p . With this definition, it is clear

that |C| = p
∑r−1
i=0 (r−i)ki+

∑s−1
j=0(s−j)lj . The type and the generator matrices of

ZprZps-additive codes were given in [3].

Example 1. In this example, we show the standard form of the generator ma-
trix, according to [3], of a Z4Z8-additive code of type (α, β; k0, k1; l0, l1, l2).

Ik0 B0,1 B0,2 0 0 2T0,1 2T0,2
0 2Ik1 2B1,2 0 0 0 4T1,2
0 S0,1 S0,2 Il0 A0,1 A0,2 A0,3

0 0 2S1,2 0 2Il1 2A1,2 2A1,3

0 0 0 0 0 4Il2 4A2,3

 .
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In this example, C22 is generated by Ik0 B0,1 B0,2 0 0 2T0,1 2T0,2
0 2S0,1 2S0,2 2Il0 2A0,1 2A0,2 2A0,3

0 0 2S1,2 0 2Il1 2A1,2 2A1,3

 ,

and C2 is generated by
2Ik0 2B0,1 2B0,2 0 0 4T0,1 4T0,2

0 2Ik1 2B1,2 0 0 0 4T1,2
0 0 0 4Il0 4A0,1 4A0,2 4A0,3

0 0 0 0 4Il1 4A1,2 4A1,3

0 0 0 0 0 4Il2 4A2,3

 .

The following result relates the type and the generator polynomials of a
ZprZps-additive code when r = 1.

Proposition 4.7. Let C ⊆ Zαp × Zβps be a ZpZps-additive cyclic code of type
(α, β; k0; l0, . . . , ls−1). Then

• k0 = α− deg(gcd(b, x
β−1
as−2

l)),

• lj = deg(âj) for j ∈ {0, . . . , s− 2},

• ls−1 = deg(âs−1) + deg(gcd(b, x
β−1
as−2

l))− deg(b).

Proof. By Theorem 4.6, it follows from the sets A0, . . . , As−2 that lj = deg(âj)
for j ∈ {0, . . . , s − 2}. By the definition, k0 is the dimension of the space
generated by the firsts α coordinates of B0 and As−1 that it is generated by the

greatest common divisor of b and xβ−1
as−2

l. Therefore, k0 = α−deg(gcd(b, x
β−1
as−2

l)).

Finally, by Theorem 4.6, since |C| = pdeg(b̂)+
∑s−1
j=0(s−j) deg(âj) = pk0+

∑s−1
j=0(s−j)lj

and deg(b̂) = α− deg(b), it is straightforward that

ls−1 = deg(âs−1) + deg(gcd(b,
xβ − 1

as−2
l))− deg(b).

For the general case, it is easy to prove that, for i ∈ {0, . . . , s − r − 1},
li = deg(âi). But the computation of the remaining parameters become a really
meticulous and tedious work. This is because one has to obtain the generator
matrix in standard form, described in [3], as the proper linear combination of
the sets Bj and Ak from Theorem 4.6.

5 Duality for cyclic codes

Let C be a ZpZps -additive cyclic code and let C⊥ be the dual code of C. Taking
a vector v of C⊥, u · v = 0 for all u in C. Since u belongs to C, we know that
u(−1) is also a codeword. So, u(−1) · v = u · v(1) = 0 for all u from C, therefore
v(1) is in C⊥ and C⊥ is also a cyclic code. Consequently, we obtain the following
proposition.
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Proposition 5.1. Let C ⊆ Zαpr × Zβps be a ZprZps-additive cyclic code. Then,
the dual code of C is also a ZprZps-additive cyclic code.

Proposition 5.2. Let C ⊆ Zαpr × Zβps be a ZprZps-additive cyclic code. Then,

|C⊥| = p
∑r
i=1 i deg(b̂i)+

∑s
j=1 j deg(âj),

Proof. It is well known that |Zαpr × Zβps | = |C||C⊥| = pαr+βs and that |C⊥| = pl,

for some l. By Theorem 4.6, |C| = p
∑r−1
i=0 (r−i) deg(b̂i)+

∑s−1
j=0(s−j) deg (âj). There-

fore,

l = αr + βs−
∑r−1
i=0 (r − i) deg(b̂i) +

∑s−1
j=0(s− j) deg (âj)

=
∑r
i=1 i deg(b̂i) +

∑s
j=1 j deg (âj).

Finally, we exhibit a polynomial operation equivalent to the inner product
of vectors, as in [6].

The reciprocal polynomial of a polynomial p(x) is xdeg(p(x))p(x−1) and is

denoted by p∗(x). We denote the polynomial
∑m−1
i=0 xi by θm(x), and the least

common multiple of α and β by m.

Definition 5.3. Let u(x) = (u(x) | u′(x)) and v(x) = (v(x) | v′(x)) be elements
in Rα,βr,s . We define the map

◦ : Rα,βr,s ×Rα,βr,s −→ Zps [x]/〈xm − 1〉,

such that

◦(u(x),v(x)) =ps−rι(u(x)v∗(x))θm
r

(xr)xm−1−deg(v(x))+

+ u′(x)v′
∗
(x)θm

s
(xs)xm−1−deg(v

′(x)) mod (xm − 1).

The map ◦ is linear in each of its arguments; i.e., if we fix the first entry
of the map invariant, while letting the second entry vary, then the result is a
linear map. Similarly, when fixing the second entry invariant. Then, the map ◦
is a bilinear map between Zps [x]-modules.

From now on, we denote ◦(u(x),v(x)) by u(x) ◦v(x). Note that u(x) ◦v(x)
belongs to Zps [x]/〈xm − 1〉.

Theorem 5.4. Let u and v be vectors in Zαpr × Zβps with associated polynomials
u(x) = (u(x) | u′(x)) and v(x) = (v(x) | v′(x)), respectively. Then, v is
orthogonal to u and all its shifts if and only if

u(x) ◦ v(x) = 0.

Proof. Let u(i) = (u0+iu1+i . . . uα−1+i | u′0+i . . . u′β−1+i) be the ith shift of u.
Then,

u(i) · v = 0 if and only if ps−r
α−1∑
j=0

ι(ujvj+i) +

β−1∑
k=0

u′kv
′
k+i = 0 mod ps.
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Let Si = ps−r
∑α−1
j=0 ι(ujvj+i) +

∑β−1
k=0 u

′
kv
′
k+i. One can check that

u(x) ◦ v(x) = ps−r
α−1∑
n=0

θm
α

(xα)

α−1∑
j=0

ι(ujvj+n)xm−1−n


+

β−1∑
t=0

(
θm
β

(xβ)

β−1∑
k=0

u′kv
′
k+tx

m−1−t

)
mod (xm − 1)

= θm
α

(xα)

α−1∑
n=0

α−1∑
j=0

ps−rι(ujvj+n)xm−1−n


+ θm

β
(xβ)

(
β−1∑
t=0

β−1∑
k=0

u′kv
′
k+tx

m−1−t

)
mod (xm − 1).

Then, arranging the terms one obtains that

u(x) ◦ v(x) =

m−1∑
i=0

Six
m−1−i mod (xm − 1).

Thus, u(x) ◦ v(x) = 0 if and only if Si = 0 for 0 ≤ i ≤ m− 1.

Theorem 5.4 shows that ◦ is the corresponding polynomial operation to
the inner product of vectors. Finally, the following example illustrates this
correspondence.

Example 2. Let R4,5
3,9 = Z4

3 × Z5
9, then the inner product is

u · v = 32−1
4−1∑
i=0

ι(uivi) +

5−1∑
j=0

u′jv
′
j ∈ Z9.

Let u = (1, 1, 1, 1 | 1, 1, 1, 1, 1) and v = (1, 0, 1, 0 | 2, 0, 1, 0, 0). Clearly, all the
shifts of v are orthogonal to u. Then,

u(x) ◦ v(x) = (x3 + x2 + x+ 1 | x4 + x3 + x2 + x+ 1) ◦ (x2 + 1 | x3 + 2)

= 32−1ι
(
(x3 + x2 + x+ 1)(x2 + 1)∗

)
θ 20

4
(x4)x20−1−2

+ (x4 + x3 + x2 + x+ 1)(x3 + 2)
∗
θ 20

5
(x5)x20−1−3 mod (x20 − 1)

= 3(x3 + x2 + x+ 1)(x2 + 1)θ5(x4)x17

+ (x4 + x3 + x2 + x+ 1)(2x3 + 1)θ4(x5)x16 mod (x20 − 1)

= 5x38 + 5x37 + 8x36 + 4x18 + 4x17 + x16 mod (x20 − 1)

= 0.
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[8] H.Q. Dinh, S.R. López-Permouth Cyclic and negacyclic codes over finite chain rings.
Lecture Notes in Computer Science, n. 5228, pp. 46-55, 2008.

[9] J. Gao, M. Shi, T. Wu and F. Fu. On double cyclic codes over Z4. Finite Fields and Their
Applications, vol. 39, pp. 233-250, 2016.
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