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By being exquisitely sensitive to their light sur-
roundings, plants are able to continuously adjust their
growth to optimize fitness. Darkness is an important
cue for plants and a time when they actively grow and
develop through regulation of the appropriate gene
networks and biochemical changes. Although plants
might not possess “dark receptors,” inactive photore-
ceptors facilitate activation and inhibition of dark-
specific processes, and thus darkness itself might be
considered a signal triggering a myriad of responses. In
this Update, we review the effects of dark and light
signaling during seedling establishment. We describe
the features of seedlings germinated in the dark and
their switch in development upon emerging into the
light. We examine how aboveground growth is regu-
lated by the duration of dark/light cycles and how
circadian clock signaling is integrated. Finally, we dis-
cuss some of the challenges faced by young seedlings
during their establishment, such as variations in tem-
perature or in light quality and quantity. Although
mentioned briefly, we do not cover in detail the con-
tribution of sugars or temperature to seedling estab-
lishment in response to dark and light signals; we refer
readers to excellent recent reviews (Franklin et al., 2014;
Legris et al., 2017; Seluzicki et al., 2017). The emerging
view is that of seedling establishment regulated as a
dimmer-type switch where relative amounts of dark
and light signaling dynamically optimize plant devel-
opment to the surrounding light environment.

SEEDLING ESTABLISHMENT IS FIRST
HETEROTROPHIC AND FUELED BY SEED RESERVES

The process of seedling establishment starts with
seed germination, when the newly emerging seedling

grows heterotrophically on seed reserves, and it is
completed when the seedling has gained photosyn-
thetic competence and becomes autotrophic. It is one
of the most critical and vulnerable processes in the life
of a plant, and it often represents a challenge after
emerging from the protected environment of the seed.
Until the seedling reaches photoautotrophy, post-
germinative seedling development is fueled on seed
storage reserves. These nutrient reserves are deposited
in the seed during seed maturation in the mother
plant, and consist of oil, storage protein, and/or car-
bohydrates (usually starch), depending on the plant
species. Reserves can remain intact as insoluble com-
pounds in desiccated seeds for extended periods of
time. The predominant storage tissue in some plant
species, such as the oilseed castor bean (Ricinus com-
munis), is the endosperm, whereas in others with
a greatly reduced endosperm, it is the embryo
(Eastmond and Graham, 2001). Upon seed germina-
tion, reserves are mobilized into soluble metabolites to
fuel growth and achieve establishment before seed
nutrients are depleted. The efficiency of reserve mo-
bilization is associated with seedling vigor, a key de-
terminant of seedling establishment and crop yield in
the field (Finch-Savage and Bassel, 2016).
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Lipid in the form of triacylglycerol (TAG) is the
main seed reserve in many plant species, such as
Arabidopsis (Arabidopsis thaliana) or the oilcrops
soybean (Glycine max), sunflower (Helianthus annuus),
rapeseed (Brassica napus), safflower (Carthamus tinc-
torius), and maize (Zea mays; Graham, 2008). In Ara-
bidopsis, about 90% of the reserves (TAGs and
protein) are stored in the cotyledons and the rest in
the endosperm (Penfield et al., 2004). Through glu-
coneogenesis, plants make sugars from lipid and
protein stores to fuel seedling establishment. In fact,
Arabidopsis lipid reserve mobilization is critical for
seedling establishment (Kelly et al., 2011). Whereas
oils in the cotyledons fuel their transformation into
photosynthetic organs, oils in the endosperm fuel
hypocotyl growth in the dark. In several plant spe-
cies, such as Arabidopsis, rapeseed, cucumber
(Cucumis sativus), and sunflower, lipid reserve mo-
bilization is enhanced by light (Theimer and Rosnit-
schek, 1978; Davies et al., 1981; Sadeghipour and
Bhatla, 2003; Leivar et al., 2009). In others species, like
mustard (Sinapis alba) or tomato (Solanum lycopersi-
cum), light appears not to regulate oil mobilization
but the activity of two key enzymes of the glyoxylate
cycle (isocitrate lyase and malate synthase) involved
in the synthesis of Glc from the acetate generated in
fatty acid b-oxidation (Bajracharya and Schopfer,

1979; Eckstein et al., 2016). The lipases sugar depen-
dent 1 (SDP1) and SDP1-like (SDP1L) account for 95%
of postgerminative TAG degradation in Arabidopsis,
given that a double mutant sdp1sdp1l is unable to
break down any storage oil (Eastmond, 2006; Kelly
et al., 2011). However, it is still not clear whether the
light-enhanced oil mobilization during seedling es-
tablishment involves increased levels or activity of
these lipases.

OUT OF THE DARK AND INTO THE LIGHT:
SWITCHING THE BALANCE FROM DARK TO LIGHT
SIGNALING INDUCES
AUTOTROPHIC PHOTOMORPHOGENESIS

When buried under the soil directly after germination,
a seedling’s mission is to grow toward the light as soon
as possible. This is facilitated by rapid elongation of the
embryonic stem, the hypocotyl, accompanied by a hook
in its most apical part to protect the shoot apical meri-
stem. During this so-called skotomorphogenic growth,
cotyledons and roots remain underdeveloped. Reaching
the soil surface and the light, the young seedling has
to establish a photoautotrophic lifestyle. The light is
perceived by several classes of photoreceptors, which
induce a signaling cascade toward photomorphogenic
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development (Box 1; Galvão and Fankhauser, 2015; Chen
et al., 2010; Kaiserli et al., 2015; Huang et al., 2016b; Leivar
andMonte, 2014; Ni et al., 2014; Pedmale et al., 2016; Dong
et al., 2017; Ni et al., 2017; Pham et al., 2017; Bae and Choi,
2008; Leivar et al., 2008; Hoecker, 2017; Osterlund et al.,
2000;Dong et al., 2014) that leads to extreme, organ-specific
developmental changes that require local promotion (cot-
yledons, roots) and inhibition (hypocotyl) of growth (Fig. 1).
Seedling photomorphogenesis is mostly studied in the
model species Arabidopsis but is common among a wide
variety of plant species. In thefield, successful crop seedling
establishment is essential for plant growth and yield (Finch-
Savage and Bassel, 2016). Most diploid species experience
photomorphogenic changes similar to Arabidopsis (see the
examples of tomato and quinoa [Chenopodium quinoa] in
Fig. 2), while dark-grown monocots typically elongate the
coleoptile to protect the first true leaf in the dark and then
stop elongation upon exposure to light (example of sor-
ghum [Sorghum bicolor] in Fig. 2). In the next section, we
highlight the plant organs that undergo the most striking
developmental switch when an Arabidopsis seedling
grows out of the dark and into the light: the apical hook, the
cotyledons, the hypocotyl, and the root.

THE APICAL HOOK

Soon after germination, darkness triggers asym-
metrical cell expansion and division at the apical part
of the hypocotyl, which results in bending. Expan-
sion of the inner (concave) cells is inhibited, while
division in the outer (convex) cells is promoted (Silk
and Erickson, 1978; Raz and Koornneef, 2001), which
forms an apical hook bending up to 180 degrees (Fig.
3A). This asymmetrical cell expansion is caused by an
auxin maximum in the concave part of the hook,
created by auxin influx and outflux carriers (AUXIN1
[AUX1] and LIKE-AUX1, and PIN-FORMED [PIN]
proteins, respectively) in the epidermal cells of the
young hypocotyl (Box 2; �Zádníková et al., 2010, 2016;
Farquharson, 2017). In darkness, PHYTOCHROME
INTERACTING FACTORs (PIFs; Box 1; reviewed in
this Focus Issue by Pham et al., 2018) enhance auxin
synthesis and signaling, and the synthesis of two
other important hormones in hook formation and
maintenance, ethylene (ET) and gibberellic acid (GA;
Box 2; for review, see Mazzella et al., 2014). ET signaling
via transcription factors ETHYLENE INSENSITIVE3

Figure 1. Arabidopsis seedling establish-
ment after the switch from dark to light.
Representative pictures of 2-d-old dark-
grown seedlings (A) exposed to, left to right,
0 h, 2 h, 6 h, or 24 h of low light (approxi-
mately 5 mmol m22 s21 photosynthetically
active radiation), and 3-d-old dark-grown
(B) and light-grown (C) seedlings. Scale
bar = 2 mm.

Figure 2. Photomorphogenesis among
crop species. Representative pictures of
tomato, quinoa, and sorghum seedlings
grown for 2 d in the dark exposed to, from
left to right, 0 h, 6 h, or 24 h of low light
(approximately 5 mmol m22 s21 photosyn-
thetically active radiation), and 3 d in the
dark. Scale bars = 1 cm.
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(EIN3) and EIN3-LIKE1 (EIL1) induces local PIN gene
expression in the epidermis and auxin transport
(�Zádníková et al., 2016). Accordingly, exogenous treat-
ment with ET causes exaggerated hooks in Arabidopsis
(Gallego-Bartolomé et al., 2011). GAappears essential for
hook formation as the inhibitor of DELLA proteins,
which, in the absence of GA, inhibit both PIFs and EIN3/
EIL1 (Box 2; de Lucas et al., 2008; Feng et al., 2008;
Gallego-Bartolomé et al., 2011; An et al., 2012). As a
consequence, the constitutive DELLA-expressing mu-
tant gai-1 is unable to form a hook in the dark, and della
loss-of-function mutants have exaggerated hooks
(Gallego-Bartolomé et al., 2011). Although continu-
ous dark periods will slowly cause opening of the
apical hook (Raz and Ecker, 1999), this process is
significantly enhanced by a light signal (Fig. 1). Light
activates phytochromes (phys) and cryptochromes
(CRYs), which directly target and degrade PIFs, as
well as EIN3 (Box 1; Shi et al., 2016). This causes a
rapid loss of GA, ET signaling, and the directional
auxin gradient, which enhances cell expansion in
the concave part of the hook, followed by opening
(Fig. 3A).

THE COTYLEDONS

While in the dark, cotyledons have little to no func-
tion and remain closed. Once in the light, cotyledons
have to undergo important developmental changes to
allow for efficient photosynthesis to fuel autotrophic
growth (Fig. 3B).

Separation and Expansion

Dark-grown seedlings have relatively small epider-
mal pavement cells, which results in small cotyledon
areas (Wei et al., 1994). ELONGATED HYPOCOTYL5
(HY5)-mediated cotyledon cell division and expansion
are suppressed in darkness by PIFs and COP1
(Stoynova-Bakalova et al., 2004; Xu et al., 2014). Light
releases the suppression of HY5 (Box 1) and, thus, al-
lows cotyledon expansion (Josse et al., 2011).

Stomata Development

Light induces stomata development to allow for
gas exchange between the plant and the environment.
Stomata are epidermal pores, formed by two guard
cells with thick elastic walls that resist the high turgor
pressure generated during opening. In Arabidopsis,
stomatal development is characterized by a series of
epidermal cell divisions. In the cotyledons, a subset of
protodermal cells can become a meristemoid mother
cell committed to the stomatal pathway. The mer-
istemoid mother cell divides asymmetrically to give
rise to a small meristemoid (M) and a large sister cell.
The M can undergo two further asymmetrical divi-
sions to increase the number of total epidermal cells

Figure 3. Dark and light signaling induce organ-specific develop-
mental traits in Arabidopsis seedlings. Simplified representation of the
traits that accompany development in the dark (left) and upon first
light signaling (right). For each organ (apical hook, A; cotyledons, B;
hypocotyl, C; and root, D), the most important regulatory factors are
shown. Schematic seedling cartoons are modified from the pictures in
Figure 1.
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or differentiate into a guard mother cell. The guard
mother cell then gives rise to two guard cells that
form the stoma. The larger sister cell can become a
pavement cell or undergo additional asymmetric
spacing divisions to generate satellite Ms away from
the existing stoma (the “one-cell spacing rule”;
Pillitteri and Torii, 2012; Wengier and Bergmann,
2012). Regardless of light conditions, Ms are gener-
ated during the first 2 d of seedling establishment. In
darkness, their development is then arrested (Wei
et al., 1994) by the active COP1-SPA complex (Kang
et al., 2009). Guard cell differentiation is completed
in both the hypocotyl and the expanding cotyledons
(Wei et al., 1994), mediated by CRYs, phyA, and
phyB, with phyB having a dominant role in white
light. The COP1-SPA interaction is inhibited (Box 1),
and PIF4 fine-tunes stomatal development in re-
sponse to light quantity (Casson et al., 2009).
The consecutive steps in stomata differentia-
tion are regulated by three bHLH transcrip-
tion factors (MUTE, SPEECHLESS, and FAMA)

downstream of a MAP kinase signaling cascade
regulated by light quantity (for review, see Lau and
Bergmann, 2012).

Chloroplast Development and Pigment Biosynthesis

In higher plants, all cells contain plastids derived
from embryonic proplastids. In darkness, seedling
proplastids develop into etioplasts, which contain a
prolamellar body that incorporates lipids andNADPH-
dependent protochlorophyllide oxidoreductase (POR).
Upon exposure to light, the prolamellar body disperses,
thylakoid membranes form coinciding with greening
due to chlorophyll biosynthesis, and a fully functional
chloroplast develops. In light, proplastids in subepidermal
meristematic cells differentiate into green chloroplasts
in the cotyledons (for review, see Jarvis and López-
Juez, 2013). In linear monocot leaves, a gradient of
chloroplast differentiation can be observed in detail
from the base of the leaf near the meristem where
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young cells contain proplastids to the older cells to-
ward the tip that contain differentiated chloroplasts
(Li et al., 2010; Majeran et al., 2010). Based on
these observations, three different chloroplast devel-
opmental phases have been defined: a heterotrophic
phase of cellular proliferation and growth; a transition
phase of chloroplast biogenesis where proteins such as
the plastid translation apparatus and plastid enzymes
accumulate; and a maturation phase of photosynthetic
protein accumulation and photosynthetic activity.
Similar phases take place during dicot leaf develop-
ment, although their spatial distribution is not as dis-
tinct (López-Juez et al., 2008; Charuvi et al., 2012;
Dubreuil et al., 2018). During biogenesis, the pho-
tosynthetic pigments chlorophyll and carotenoid
are synthesized through activation of the NADPH-
dependent POR that converts protochlorophyllide
into chlorophyll, and the PSY central carotenoid bio-
synthesis gene (Toledo-Ortiz et al., 2010). Excessive
accumulation of the chlorophyll precursor proto-
chlorophyllide in the dark can result in photooxidative
damage (Reinbothe et al., 1996), which is minimized
by the photoprotective role of carotenoids during
photosynthetic apparatus assembly (Niyogi, 1999;
Walter and Strack, 2011).

Dark/light signaling pathways are tightly associ-
ated with chloroplast biogenesis. During the hetero-
trophic phase in darkness, PIF1 and PIF3 are negative
regulators of chloroplast development, particularly of
tetrapyrrole biosynthesis genes (Huq et al., 2004;
Stephenson et al., 2009), and transcriptionally sup-
press together with EIN3 (which is stabilized by soil
pressure-enhanced ET production; see Box 2; Lau and
Deng, 2010; Leivar and Monte, 2014; de Lucas and
Prat, 2014; Chaiwanon et al., 2016; de Wit et al., 2016a;
Hornitschek et al., 2012; Pfeiffer et al., 2014; �Zádníková
et al., 2016; Li et al., 1996; Symons et al., 2002; Oh et al.,
2012; Oh et al., 2014; Shahnejat-Bushehri et al., 2016; Li
and He, 2016; Feng et al., 2008; de Lucas et al., 2008;
Guzman and Ecker, 1990; Zhong et al., 2012; Jeong et
al., 2016; Shi et al., 2016; Dong et al., 2017) chloroplast
development genes (Liu et al., 2017). Among these are
the transcription factors GOLDEN2-LIKE1 (GLK1) and
GLK2, which are necessary for chloroplast develop-
ment (Fitter et al., 2002; Oh and Montgomery, 2014),
and target genes involved in chlorophyll biosynthesis,
light harvesting, and electron transport (Waters et al.,
2009). HY5, in contrast, promotes chloroplast devel-
opment during the light transition and early matura-
tion phases (Lee et al., 2007). The PIF-HY5 regulatory
module is essential to tightly regulate chloroplast de-
velopment and involves antagonistic activities of PIFs
and HY5 as negative and positive regulators, respec-
tively, through direct binding to G-boxes of common
targets (Chen et al., 2013; Toledo-Ortiz et al., 2014). Its
relative activity is dynamically sensitive to dark, low
light, or higher light through modulation of PIF and
HY5 abundance (Chen et al., 2013; Toledo-Ortiz et al.,
2014). Molecular evidence indicates that PIF and HY5
coexist and can form bHLH/bZIP heterodimers. In the

dark, PIF1/PIF3 are abundant, whereas HY5 and its
homolog HYH are unstable (Box 1), and thus the
module activity is essentially repressive. In low light,
HY5/HYH are stabilized (Box 1) and form hetero-
dimers with PIF1/PIF3, which might function as in-
active forms. Under higher light conditions, PIF1/PIF3
are almost completely degraded and HY5/HYH
become more prevalent, activating transcription
of common PIF-HY5 module targets (Chen et al.,
2013). PIF-HY5 prevent protochlorophyllide over-
accumulation, control ROS signaling pathway, and
regulate pigment accumulation through directly
binding to G-box motifs in the promoters of POR
genes, ROS-responsive genes, and PSY and other
central carotenoid and chlorophyll pathway genes
(Toledo-Ortiz et al., 2010; Chen et al., 2013; Toledo-
Ortiz et al., 2014).

Fully developed chloroplasts are essential for the
fixation of energy from sunlight, and in turn function
as light signaling structures with great impact on
photomorphogenesis through close coordination be-
tween the nucleus and chloroplast genomes. In Ara-
bidopsis, chloroplast retrograde signals from the
chloroplast to the nucleus are able to optimize pho-
tosynthetic capacity and growth, prevent photo-
damage in high light environments, and fine-tune
circadian-regulated processes by releasing light-
specific signals (Strand and Hernandez-Verdeja,
2018; Waters et al., 2009; Martín et al., 2016a;
Dubreuil et al., 2018; Box 3).

Figure 4. Night length strongly affects photomorphogenesis in Arabi-
dopsis seedlings. Hypocotyl length (mm) of 3-d-old Arabidopsis wild-
type (Columbia-0) and pifq (pif1-1 pif3-3 pif4-2 pif5-3; Leivar et al.,
2008) seedlings, grown in continuous white light (WLc), long days (LD;
16 h light/8 h dark), SDs (8 h light/16 h dark), or continuous dark (Dc).
Above the graph are pictures of representative seedlings in the same
order. All were grown in continuous temperature (22°C) and a light
intensity of approximately 5 mmol m22 s21 photosynthetically active
radiation. Scale bar = 2 mm.
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THE HYPOCOTYL

To quickly reach for the light, the elongated hypo-
cotyl of dark-germinated seedlings is the most re-
markable phenotype. The Arabidopsis hypocotyl is an
intensively studied model in seedling etiolation and
de-etiolation. The hypocotyl consists of a set number
of 20 cells, and thus elongation mainly depends on cell
expansion rather than divisions (Wei et al., 1994;
Gendreau et al., 1997) and requires the uptake of water
to maintain turgor pressure (Ishikawa et al., 2013;
Chaumont and Tyerman, 2014). To facilitate cell ex-
pansion, the cell wall of the epidermal cells gains
flexibility, which appears to be independent of cell
wall synthesis, and is regulated by specialized pro-
teins such as expansins and XYLOGLUCAN ENDO-
TRANSGLUCOSYLASE/HYDROLASEs (XTHs; Ivakov
et al., 2017). In dark conditions, PIFs directly induce the
expression of the genes encoding for these proteins
(Leivar et al., 2009), and integrate the strong influence of
several hormones such as auxin, brassinosteroids (BRs),
GA, and ET in hypocotyl elongation (Box 2; for review,
see Leivar and Monte, 2014; de Wit et al., 2016a; Fig. 3C).
Auxin accumulates in the cotyledons and is actively
transported toward the hypocotyl, where PIN proteins
locate it to the epidermal cells (Box 2). Auxin acidifies
the cell wall, which favors expansin and XTH-
mediated elongation, and enhances expression of the
genes encoding for these proteins (Rayle and Cleland,
1992; Paque et al., 2014). The dwarf phenotype of
dark-grown BR-deficient mutants (e.g. de-etiolated2)
pointed out the important role of these steroid hormones
in hypocotyl elongation during skotomorphogenesis
(Chory et al., 1991; Li et al., 1996). Recently, it became
clear that the main function of BRs during elongation (in
response to darkness, shade, and high temperatures) is
indirect via the binding of BR-stabilized protein BZR1 to
PIF4 (Box 2; Oh et al., 2012). PIFs and BZR1 induce
GA synthesis, which indirectly enhances hypocotyl
growth by inhibition of the repressing DELLA pro-
teins (Box 2). In darkness, under mechanical pres-
sure created by soil, ET accumulates and inhibits
hypocotyl growth, to strengthen the hypocotyl (Box
2; Yu and Huang, 2017). As an additional level of
signaling, elongating cell walls release fragments
that trigger a forward loop and enhance skotomor-
phogenesis in the hypocotyl and cotyledons (Sinclair
et al., 2017).
Upon light exposure, hypocotyl elongation is

quickly inhibited. Light-activated photoreceptors
cause PIF degradation and COP1 inactivation, which
brings down hormone levels and releases growth-
suppressing proteins such as HY5 (Boxes 1 and 2).
Phys are found plant-wide in different organs and
tissues, but can play different roles in different cell
layers. A recent study shows how epidermal phyB is
completely responsible for light-induced germina-
tion and hypocotyl growth arrest in red (R) light
(Kim et al., 2016). Not much is known about the role
of other hypocotyl cell layers in growth (arrest)

during seedling establishment. Nevertheless, an-
other recent study supports the cell type-specific
functions in Arabidopsis hypocotyls. Trichoblasts
form hair-like structures and acquire nutrients from
the external environment, while the neighboring
atrichoblasts provide shortcut routes for these nu-
trients to be unloaded and moved up the stem
(Jackson et al., 2017).

THE ROOTS

When a seed germinates underground, reaching
the light seems top priority, and this goes at the cost
of root development. To regulate this shoot-over-
root trade-off, root development in dark-grown
seedlings is actively repressed. Auxin availability
in the roots is strongly limited. The suppression of
PIN gene expression in the hypocotyl and the lo-
calization of PIN proteins into the vacuole, both
COP1-dependent, inhibit polar auxin transport and,
thus, root growth (Box 2; Sassi et al., 2012; Fig. 3D).
Even though the roots will remain in close-to-dark
conditions throughout the plant life cycle, light
perception by the shoot dramatically affects root
development (Lee et al., 2017; van Gelderen et al.,
2018). When the shoot experiences light, COP1 is
mobilized out of the nucleus, and this releases the
suppression of the PIN proteins and activates polar
auxin transport. Like many other aspects of seedling
establishment in the light, root development greatly
depends on HY5. The role for HY5 in Arabidopsis
root development has been known for a long time,
as HY5-deficient mutants show defects in root hair
development, gravitropism, lateral root outgrowth,
and elongation (Oyama et al., 1997; Sibout et al.,
2006). The HY5 protein is, as was discovered re-
cently, translocated via the phloem toward the root,
with root-specific HY5 and HYH transcription, and
promoted root development as a consequence (Chen
et al., 2016; Zhang et al., 2017; Fig. 3D). In addition to
HY5 being a traveling molecule, another recent study
showed that its stability and transcription are induced by
stem-piped light that locally activates PHYB molecules
in the Arabidopsis roots (Lee et al., 2016). Besides auxin
and HY5, sugar molecules travel from the light-exposed
cotyledons, which started photosynthesis, to the roots
and enhance root elongation (Kircher and Schopfer,
2012; Fig. 3D). By quickly enhancing root elongation
and lateral root outgrowth upon seedling establish-
ment, the young photoautotrophic plant can start the
uptake of water and nutrients such as nitrate to fuel
growth (Chen et al., 2016).

SEEDLING ESTABLISHMENT IN ALTERNATING
LIGHT/DARK CYCLES

Upon seedling exposure to sunlight after germi-
nation, establishment proceeds under light/dark
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cycles of variable duration and light intensity
depending on the latitude and time of the year. This
section reviews our current knowledge on how
seedling growth in these conditions integrates light
and dark signals with the circadian clock, which is
synchronized and oscillates strongly after light ex-
posure (Salomé et al., 2008).

In photoperiodic conditions, growth is dark-
dependent and promoted by accumulation of the
PIFs, similar to etiolated growth. Noteworthy, ac-
celeration of hypocotyl elongation in photoperiodic
conditions is not linear as a function of the duration
of the dark period but instead is a short day (SD)-
specific event. Up to approximately 12 h of dark-
ness, Arabidopsis hypocotyls are as short as if they
were in constant light, and then elongation increases
with longer nights (Niwa et al., 2009; Fig. 4). Mu-
tants in the central clock component CCA1ox or
prr5prr7prr9 exhibit a nearly linear growth pat-
tern in increasing night lengths (Niwa et al., 2009),
indicating that the circadian clock inhibits growth
in photoperiodic conditions. Whereas hypocotyl
growth in the dark can be considered clock inde-
pendent, seedling establishment in light/dark cycles
requires the integration of clock and dark/light sig-
naling to regulate elongation, cotyledon development
and greening.

Regulation of hypocotyl elongation in light/dark
cycles offers an example of the intricate combined ac-
tion of dark, light, and clock signaling. In SDs, PIF

proteins control rhythmic growth by collectively pro-
moting increased elongation rates in the predawn
hours when they are most abundant. As a conse-
quence, pifq seedlings are shorter than the wild type in
SDs, a difference that is less apparent in long days,
when nights are too short to allow for strong PIF ac-
cumulation (Fig. 4). PIF accumulation and activity are
regulated at several levels. First, PIF4 and PIF5 tran-
scripts in SDs rise at midday through the night, with a
peak at dawn (Nozue et al., 2007). This oscillation is
imposed by the evening complex (EC) formed by
ELF3, ELF4, and LUX (Nusinow et al., 2011), and by
TOC1, PRR5, and PRR7 (Yamashino et al., 2003; Niwa
et al., 2009) that repress PIF4 and PIF5 expres-
sion during the day and early night. PIF7 transcript
levels oscillate as well, suggesting clock regulation
(Kidokoro et al., 2009; Lee and Thomashow, 2012). In
contrast, PIF1 and PIF3 transcription is maintained at a
low and constant level during the diurnal cycle (Soy
et al., 2012, 2014). Second, as a consequence of phy
activity, PIF protein abundance in SDs oscillates di-
urnally with low PIF levels during the light hours and
progressive accumulation during the dark to peak at
dawn (Nozue et al., 2007; Soy et al., 2012; Yamashino
et al., 2013). During the first night hours, phyB Pfr
persists and inhibits PIF accumulation while slowly
dark reverting to inactive Pr (Sweere et al., 2001;
Rausenberger et al., 2010; Medzihradszky et al., 2013).
The photoactivated phyB Pfr forms dynamic nuclear
photobodies together with Hemera (HMR) to induce
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rapid phosphorylation of PIFs, leading to their degra-
dation (Kircher et al., 2002; Chen et al., 2010; Van Buskirk
et al., 2014). phyB also is found in tandem zinc knuckle/
plus3-dependent photobodies that also contain mem-
bers of the EC (Kaiserli et al., 2015; Huang et al., 2016a,
2016b) but apparently not in HMR, which could indicate
the existence of specialized phyB-containing photo-
bodies that might regulate PIF accumulation or tran-
scription separately. As a result of phy-imposed action,
PIF1, PIF3, PIF4, and PIF5 abundance oscillates in SDs to
peak at dawn and induce growth-related genes (Nozue
et al., 2007, 2011; Nomoto et al., 2012; Soy et al., 2012,
2014; Yamashino et al., 2013). Last, the growth-
promoting activity of PIFs, as they progressively accu-
mulate during postdusk darkness, is directly inhibited
by PIF-interacting clock components to prevent detri-
mental early growth. The transcriptional activator ac-
tivity of PIFs is directly repressed by TOC1 during
postdusk, when TOC1 is most abundant in the circadian
cycle (Soy et al., 2016; Zhu et al., 2016). In addition,
DNA binding of at least PIF4 is inhibited by ELF3 in
an EC-independent manner (Nieto et al., 2015). Thus,
whereas the dark promotes accumulation of the
PIFs, the integration and convergence with the cir-
cadian clock limit the timing of maximum respon-
siveness to dawn (Allen et al., 2006). This permissive
gating involves phasing of downstream effec-
tor transcript abundance (Covington et al., 2008;
Michael et al., 2008; Martín et al., 2016b) and calcu-
lation of the rate of starch breakdown to ensure
lasting energy to fuel growth at dawn (Graf et al.,
2010).

ABOVEGROUND CHALLENGES DELAY
SEEDLING ESTABLISHMENT

Even though germination is in a lot of plant species
properly timed by external (humidity, temperature,
light) and internal (circadian rhythmic) cues, the
aboveground environment often appears suboptimal
for a young, establishing seedling. A combination of
stresses will inhibit or postpone photomorphogenic
development during the dark-to-light transition or in
diurnal conditions. In this section, we will review the
most studied external factors (excessive light levels,
light quality, neighbor detection, and high temper-
atures) that, to more or less extent, inhibit the pho-
tomorphogenic phenotype to protect the seedling
and escape harmful situations.

Light Intensity

Coming from a (close to) dark environment under-
ground, the first light seen by the de-etiolating seed-
ling can cause problems. Excessive light levels are
detrimental for plants and cause damage to the pho-
tosystem, resulting in ROS accumulation. Phys, CRYs,
PHOTs, and UVR8 selectively monitor for changes
in light quality and small changes in fluence rate.

Nevertheless, photoreceptor activation saturates, and
is insensitive for extremely high, possibly damaging
light intensity. As mentioned above, the chloroplasts
can sense and process information about the light in-
tensity (see also Box 3; Chi et al., 2013; Jarvis and
Lopez-Juez, 2013; Noren et al., 2016; Koussevitzky et
al., 2007; Kindgren et al., 2012; Kakizaki et al., 2009;
Waters et al., 2009; Ruckle and Larkin, 2009; Martín et
al., 2016a). In high light levels, RS inhibits the tran-
scription of photomorphogenic genes involved in
photosynthesis and development. As a consequence,
young seedlings that are shifted from darkness to a
high light environment have long hypocotyls and keep
their cotyledons closed, to protect them and the shoot
apical meristem from the damaging light levels. Major
players in the high light-mediated RS are the plastid-
localized PRR protein GENOMESUNCOUPLED1 and
ABI4 (Koussevitzky et al., 2007; Martín et al., 2016a;
Xu et al., 2016).

Light Quality and Neighbor-Induced Competition

Above the ground, seedlings often are not alone.
The presence of neighboring plants can threaten
light availability and, thus, photosynthesis rates. To
prevent being completely shaded,most seedlings of sun-
loving plants will partly inhibit photomorphogenesis.
The shade avoidance syndrome (SAS) triggers hypocotyl
elongation, despite the availability of light, and helps the
plant reach the top of the canopy. This response is
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triggered by the low ratio between R and far-red (FR)
light, caused by the preferential absorption of R and re-
flection of FR light by green tissues, and is enhanced
when additional blue (B) light depletion occurs during
more severe shading (Filiault and Maloof, 2012; Kohnen
et al., 2016; deWit et al., 2016b). The lowR:FR light signal
inactivates PhyB, and thuswill keep themain PIFs acting
in SAS (PIF4, PIF5, and PIF7) active (Lorrain et al., 2008;
Li et al., 2012) and the production of growth-promoting
hormones such as auxin, BR, GA, and ET high (Li et al.,
2012; Bou-Torrent et al., 2014). In young seedlings, the
SAS consists of a delay of some aspects of photomor-
phogenesis (hypocotyl growth arrest, cotyledon expan-
sion, root development, pigment accumulation), and
promotes cotyledon petiole elongation and upward
cotyledon positioning (for review, see Ballaré and Pierik,
2017; Fiorucci and Fankhauser, 2017). In dense canopies,
the emission of all kinds of volatile compounds in-
creases, and they accumulate due to reduced airflow
(Kegge et al., 2013). The most important signaling vola-
tile is ET, which in the light enhances elongation growth
enabling seedlings to reach the top of the canopy. ET
enhances PIF3 expression, and via similar regulatory
pathways as shade perception, synthesis and signaling
of the growth-promoting hormones auxin, GA, and BR
(Zhong et al., 2012; Das et al., 2016). Interestingly, al-
though some aspects of photomorphogenesis are
clearly suppressed by ET (hook unfolding and coty-
ledon expansion; see above), others strongly depend
on the light availability (hypocotyl elongation: sup-
pressed in darkness but induced in light; Pierik et al.,
2006). Another stress-full light signal is UV-B radia-
tion, which can cause DNA damage. Interestingly, in
low quantities, UV-B radiation perceived by the UVR8
receptor strongly enhances photomorphogenesis. It is,
most probably, used by plants as a signal for reaching
the sunlight and suppresses the elongated response of
seedlings grown in shade (Hayes et al., 2014), via in-
hibition of COP1-mediated HY5 and HYH suppres-
sion (Favory et al., 2009; Rizzini et al., 2011; Christie
et al., 2012).

High Temperatures

With temperatures rising due to global climate
change, heat is a more and more relevant stress for
plants. Small changes in temperature, sensed by
PhyB and phototropins (Jung et al., 2016; Legris
et al., 2016; Fujii et al., 2017), partly inhibit photo-
morphogenesis in young seedlings. This so-called
thermomorphogenic response includes elongated
hypocotyls and epinastic cotyledons, and serves to
enhance cooling of the young leaves and thus warmth
adaptation (for review, see van Zanten et al., 2014;
Quint et al., 2016). The key factor in this warmth-
mediated arrest on de-etiolation is PIF4. The inactiva-
tion of phys by high temperatures stabilizes the protein
(Jung et al., 2016; Legris et al., 2016), but also triggers
COP1-mediated degradation of HY5, which releases the

suppression of PIF4 expression (Delker et al., 2014).
High temperature-stabilized PIF4 will continue to
keep auxin synthesis high and hypocotyl elonga-
tion going, despite the light availability (Franklin
et al., 2011). The direct effect of other climate-related
stresses such as drought and humidity on seedling
photomorphogenesis are less well understood. Nev-
ertheless, it is well-known that these contrasting
stresses strongly affect the synthesis of the phyto-
hormone abscisic acid (Christmann et al., 2007;
Okamoto et al., 2009; Bauer et al., 2013), which in turn
interferes with light-induced development (Pierik
and Testerink, 2014).

CONCLUSION

Plants have evolved sophisticated photoperception
mechanisms to interpret their environmental con-
ditions and optimally coordinate and adjust their
growth to thrive as sessile organisms. Here, we have
reviewed how the relative dark and light signaling
flux impacts several processes during seedling estab-
lishment, with a focus on the growth programs in the
dark, upon first exposure to light, and in diurnal
conditions where dark and light alternate. Because
seedlings are exquisitely sensitive to and actively re-
spond to darkness and different light intensities, we
propose that seedling establishment is a dimmer-type
switch-regulated process between dark and light
signals. This allows plants to dynamically respond to
the relative amounts of dark and light signaling to
optimize development. Research efforts over the last
decades have contributed to impressive progress in
our understanding of seedling establishment, espe-
cially in Arabidopsis. As the scientific community in
the field makes new discoveries, new exciting ques-
tions will arise and challenges still will be many.
We have summarized a few important questions
for future research in the Outstanding Questions
box. We believe novel emerging and enhanced
technologies for high-throughput organ, tissue, and
single-cell -omics, cell-cell, macromolecule-, and
organelle-level research (Nito et al., 2015), together
with cross-disciplinary approaches, will inspire and
advance our tasks ahead.
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