

Check for updates

Update on Photomorphogenesis

Seedling Establishment: A Dimmer Switch-Regulated Process between Dark and Light Signaling^{1[OPEN]}

Charlotte M. M. Gommers and Elena Monte²

Plant Development and Signal Transduction Program, Center for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain

ORCID IDs: 0000-0002-0817-5134 (C.M.M.G.); 0000-0002-7340-9355 (E.M.).

By being exquisitely sensitive to their light surroundings, plants are able to continuously adjust their growth to optimize fitness. Darkness is an important cue for plants and a time when they actively grow and develop through regulation of the appropriate gene networks and biochemical changes. Although plants might not possess “dark receptors,” inactive photoreceptors facilitate activation and inhibition of dark-specific processes, and thus darkness itself might be considered a signal triggering a myriad of responses. In this *Update*, we review the effects of dark and light signaling during seedling establishment. We describe the features of seedlings germinated in the dark and their switch in development upon emerging into the light. We examine how aboveground growth is regulated by the duration of dark/light cycles and how circadian clock signaling is integrated. Finally, we discuss some of the challenges faced by young seedlings during their establishment, such as variations in temperature or in light quality and quantity. Although mentioned briefly, we do not cover in detail the contribution of sugars or temperature to seedling establishment in response to dark and light signals; we refer readers to excellent recent reviews (Franklin et al., 2014; Legris et al., 2017; Seluzicki et al., 2017). The emerging view is that of seedling establishment regulated as a dimmer-type switch where relative amounts of dark and light signaling dynamically optimize plant development to the surrounding light environment.

SEEDLING ESTABLISHMENT IS FIRST HETEROOTROPHIC AND FUELED BY SEED RESERVES

The process of seedling establishment starts with seed germination, when the newly emerging seedling

¹ The laboratory is supported by the Spanish Ministerio de Economía y Competitividad (BIO2015-68460-P to E.M.) and the Generalitat de Catalunya (2014-SGR-1406 to E.M.). We acknowledge financial support by the CERCA Programme/Generalitat de Catalunya and from Ministerio de Economía y Competitividad through the Severo Ochoa Programme for Centers of Excellence in R&D 2016-2019 (SEV-2015-0533).

² Address correspondence to elena.monte@cragenomica.es.

C.M.M.G. and E.M. wrote the manuscript; C.M.M.G. composed the figures. www.plantphysiol.org/cgi/doi/10.1104/pp.17.01460

[OPEN] Articles can be viewed without a subscription.

grows heterotrophically on seed reserves, and it is completed when the seedling has gained photosynthetic competence and becomes autotrophic. It is one of the most critical and vulnerable processes in the life of a plant, and it often represents a challenge after emerging from the protected environment of the seed. Until the seedling reaches photoautotrophy, post-germinative seedling development is fueled on seed storage reserves. These nutrient reserves are deposited in the seed during seed maturation in the mother plant, and consist of oil, storage protein, and/or carbohydrates (usually starch), depending on the plant species. Reserves can remain intact as insoluble compounds in desiccated seeds for extended periods of time. The predominant storage tissue in some plant species, such as the oilseed castor bean (*Ricinus communis*), is the endosperm, whereas in others with a greatly reduced endosperm, it is the embryo (Eastmond and Graham, 2001). Upon seed germination, reserves are mobilized into soluble metabolites to fuel growth and achieve establishment before seed nutrients are depleted. The efficiency of reserve mobilization is associated with seedling vigor, a key determinant of seedling establishment and crop yield in the field (Finch-Savage and Bassel, 2016).

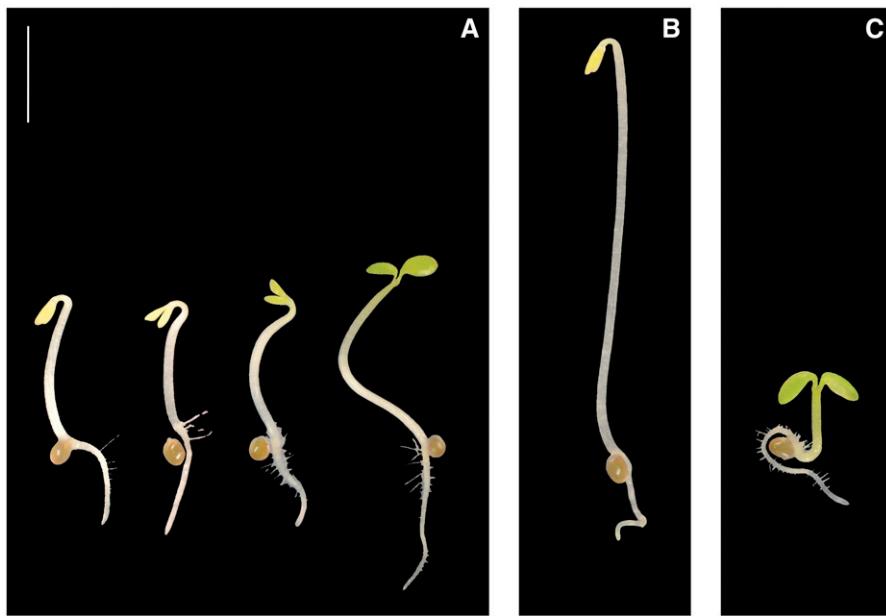
ADVANCES

- Dark and light signaling are interconnected and balanced during seedling emergence and day/night cycles.
- Photoreceptor-regulated transcription factors like PIFs and HY5 regulate seedling establishment through the regulation of 20% of the transcriptome in *Arabidopsis*.
- Cross-talk and integration between endogenous and light signaling pathways are necessary to optimize seedling establishment.
- Chloroplast-to-nucleus retrograde signaling impacts seedling establishment in high light conditions to protect from photo damage.
- Organ-specific and long-distance traveling signals are emerging as sophisticated regulatory mechanisms in the life of plants.

BOX 1. Perceiving and Signaling Dark and Light: Receptors and Primary Regulators

The relative amount of light and dark modulates the flow of information signaled through a variety of wavelength-specific photoreceptors to their downstream signaling partners. UVR8 perceives Ultra Violet B light (UVB; 280–315 nm), phototropins (PHOT), cryptochromes (CRYs) and zeitlupe (ZTL) account for UV-A, blue, and green light (\pm 315–550 nm) perception, and phytochromes (phyA–E) are sensitive for red (R) and far-red (FR) light (\pm 600–750 nm). These photoreceptors regulate similar and distinct developmental transitions or adaptations in response to changing light environments (Galvão and Fankhauser, 2015). Seedling photomorphogenesis and establishment are mainly under control of phyB and phyA, and blue-light-activated CRY1 and CRY2. Active phy form nuclear photobodies mediated by HEMERA (HMR) or tandem zinc knuckle/plus3 (TZP) to centralize destabilization and transcription of photomorphogenesis-inhibiting proteins (Chen et al., 2010; Kaiserli et al., 2015; Huang et al., 2016b). The bHLH PHYTOCHROME INTERACTING FACTORS (PIFs) are transcription factors inhibited by light-activated phys and CRYs that repress photomorphogenesis and regulate many phytohormone pathways (Leivar and Monte, 2014; Ni et al., 2014; Pedmale et al., 2016; Dong et al., 2017; Ni et al., 2017; reviewed in this focus issue by Pham et al., 2017). DELLA proteins create another inhibition level by preventing PIF

promotor binding in the light (de Lucas et al., 2008; Feng et al., 2008). Supporting the key-role of PIFs during seedling establishment, the *pif quadruple* mutant (*pifq, pif1pif3pif4pif5*) is photomorphogenic in darkness and shorter in photoperiodic growth conditions (Bae and Choi, 2008; Leivar et al., 2008; Fig. 4).


Partially synergistically with PIFs act the central inhibitors of light signaling CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) and DE-ETIOLATED1 (DET1; Dong et al., 2014; Xu et al., 2014). COP1 is a ubiquitin E3 ligase, which targets the photomorphogenesis-promoting transcription factors ELONGATED HYPOCOTYL 5 (HY5), HY5-HOMOLOGUE (HYH), and LONG HYPOCOTYL IN FAR RED (HFR1) in darkness (Osterlund et al., 2000; Yang et al., 2005). COP1 acts in a complex with SUPPRESSOR OF PHYA (SPA) proteins (Hoecker, 2017). Active phys and CRYs disassociate SPAs from COP1, releasing the suppressed proteins and causing export of COP1 from the nucleus (Pacin et al., 2014). DET1 is part of the CDD complex, together with COP10 and DAMAGED-DNA BINDING PROTEIN 1 (DDB1), which interacts with the CUL4 E3 ligase machinery. The CUL4-CDD complex suppresses photomorphogenesis by enhancing the COP1-SPA-mediated inhibition of HY5 and by stabilizing PIFs in the dark (Osterlund et al., 2000; Dong et al., 2014).

Lipid in the form of triacylglycerol (TAG) is the main seed reserve in many plant species, such as *Arabidopsis* (*Arabidopsis thaliana*) or the oilcrops soybean (*Glycine max*), sunflower (*Helianthus annuus*), rapeseed (*Brassica napus*), safflower (*Carthamus tinctorius*), and maize (*Zea mays*; Graham, 2008). In *Arabidopsis*, about 90% of the reserves (TAGs and protein) are stored in the cotyledons and the rest in the endosperm (Penfield et al., 2004). Through gluconeogenesis, plants make sugars from lipid and protein stores to fuel seedling establishment. In fact, *Arabidopsis* lipid reserve mobilization is critical for seedling establishment (Kelly et al., 2011). Whereas oils in the cotyledons fuel their transformation into photosynthetic organs, oils in the endosperm fuel hypocotyl growth in the dark. In several plant species, such as *Arabidopsis*, rapeseed, cucumber (*Cucumis sativus*), and sunflower, lipid reserve mobilization is enhanced by light (Theimer and Rosnitschek, 1978; Davies et al., 1981; Sadeghipour and Bhatla, 2003; Leivar et al., 2009). In other species, like mustard (*Sinapis alba*) or tomato (*Solanum lycopersicum*), light appears not to regulate oil mobilization but the activity of two key enzymes of the glyoxylate cycle (isocitrate lyase and malate synthase) involved in the synthesis of Glc from the acetate generated in fatty acid β -oxidation (Bajracharya and Schopfer,

1979; Eckstein et al., 2016). The lipases sugar dependent 1 (SDP1) and SDP1-like (SDP1L) account for 95% of postgerminative TAG degradation in *Arabidopsis*, given that a double mutant *sdp1sdp1l* is unable to break down any storage oil (Eastmond, 2006; Kelly et al., 2011). However, it is still not clear whether the light-enhanced oil mobilization during seedling establishment involves increased levels or activity of these lipases.

OUT OF THE DARK AND INTO THE LIGHT: SWITCHING THE BALANCE FROM DARK TO LIGHT SIGNALING INDUCES AUTOTROPHIC PHOTOMORPHOGENESIS

When buried under the soil directly after germination, a seedling's mission is to grow toward the light as soon as possible. This is facilitated by rapid elongation of the embryonic stem, the hypocotyl, accompanied by a hook in its most apical part to protect the shoot apical meristem. During this so-called skotomorphogenic growth, cotyledons and roots remain underdeveloped. Reaching the soil surface and the light, the young seedling has to establish a photoautotrophic lifestyle. The light is perceived by several classes of photoreceptors, which induce a signaling cascade toward photomorphogenic

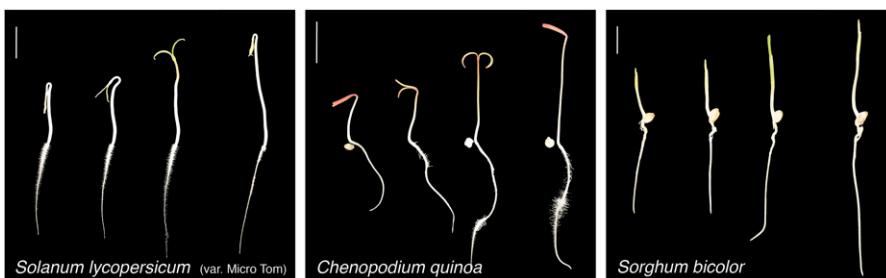
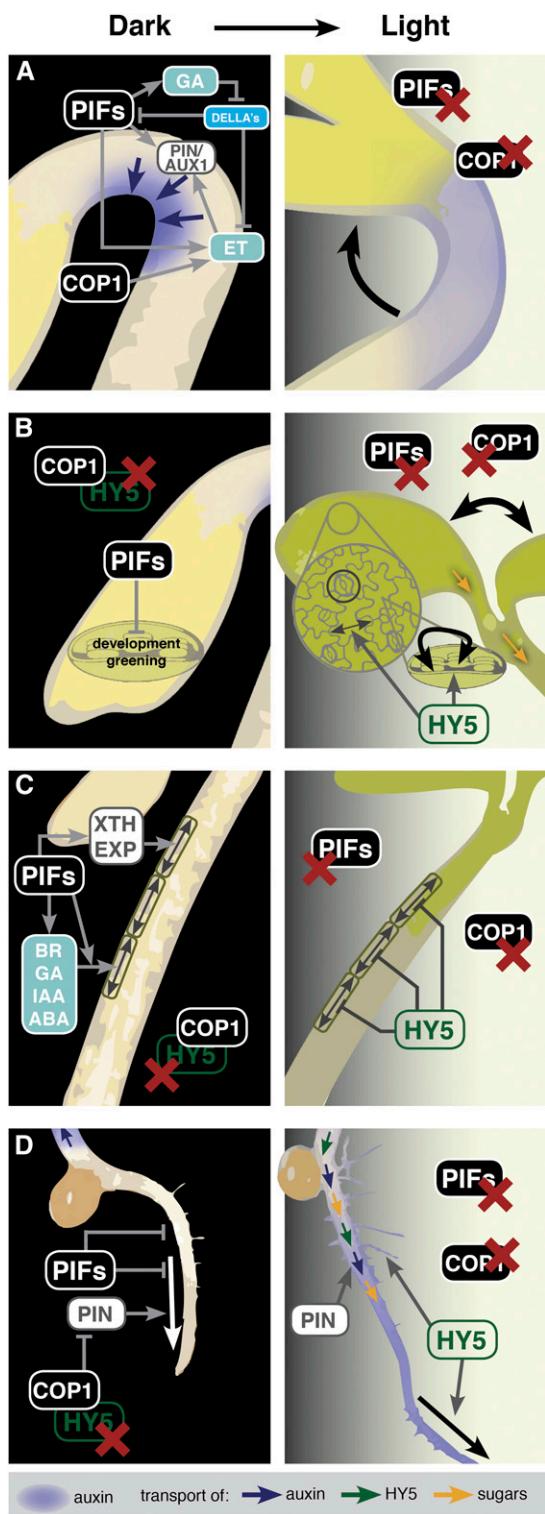


Figure 1. *Arabidopsis* seedling establishment after the switch from dark to light. Representative pictures of 2-d-old dark-grown seedlings (A) exposed to, left to right, 0 h, 2 h, 6 h, or 24 h of low light (approximately $5 \mu\text{mol m}^{-2} \text{s}^{-1}$ photosynthetically active radiation), and 3-d-old dark-grown (B) and light-grown (C) seedlings. Scale bar = 2 mm.


development (Box 1; Galvão and Fankhauser, 2015; Chen et al., 2010; Kaiserli et al., 2015; Huang et al., 2016b; Leivar and Monte, 2014; Ni et al., 2014; Pedmale et al., 2016; Dong et al., 2017; Ni et al., 2017; Pham et al., 2017; Bae and Choi, 2008; Leivar et al., 2008; Hoecker, 2017; Osterlund et al., 2000; Dong et al., 2014) that leads to extreme, organ-specific developmental changes that require local promotion (cotyledons, roots) and inhibition (hypocotyl) of growth (Fig. 1). Seedling photomorphogenesis is mostly studied in the model species *Arabidopsis* but is common among a wide variety of plant species. In the field, successful crop seedling establishment is essential for plant growth and yield (Finch-Savage and Bassel, 2016). Most diploid species experience photomorphogenic changes similar to *Arabidopsis* (see the examples of tomato and quinoa [*Chenopodium quinoa*] in Fig. 2), while dark-grown monocots typically elongate the coleoptile to protect the first true leaf in the dark and then stop elongation upon exposure to light (example of sorghum [*Sorghum bicolor*] in Fig. 2). In the next section, we highlight the plant organs that undergo the most striking developmental switch when an *Arabidopsis* seedling grows out of the dark and into the light: the apical hook, the cotyledons, the hypocotyl, and the root.

THE APICAL HOOK

Soon after germination, darkness triggers asymmetrical cell expansion and division at the apical part of the hypocotyl, which results in bending. Expansion of the inner (concave) cells is inhibited, while division in the outer (convex) cells is promoted (Silk and Erickson, 1978; Raz and Koornneef, 2001), which forms an apical hook bending up to 180 degrees (Fig. 3A). This asymmetrical cell expansion is caused by an auxin maximum in the concave part of the hook, created by auxin influx and outflux carriers (AUXIN1 [AUX1] and LIKE-AUX1, and PIN-FORMED [PIN] proteins, respectively) in the epidermal cells of the young hypocotyl (Box 2; Žádníková et al., 2010, 2016; Farquharson, 2017). In darkness, PHYTOCHROME INTERACTING FACTORs (PIFs; Box 1; reviewed in this Focus Issue by Pham et al., 2018) enhance auxin synthesis and signaling, and the synthesis of two other important hormones in hook formation and maintenance, ethylene (ET) and gibberellic acid (GA; Box 2; for review, see Mazzella et al., 2014). ET signaling via transcription factors ETHYLENE INSENSITIVE3

Figure 2. Photomorphogenesis among crop species. Representative pictures of tomato, quinoa, and sorghum seedlings grown for 2 d in the dark exposed to, from left to right, 0 h, 6 h, or 24 h of low light (approximately $5 \mu\text{mol m}^{-2} \text{s}^{-1}$ photosynthetically active radiation), and 3 d in the dark. Scale bars = 1 cm.

Figure 3. Dark and light signaling induce organ-specific developmental traits in *Arabidopsis* seedlings. Simplified representation of the traits that accompany development in the dark (left) and upon first light signaling (right). For each organ (apical hook, A; cotyledons, B; hypocotyl, C; and root, D), the most important regulatory factors are shown. Schematic seedling cartoons are modified from the pictures in Figure 1.

(*EIN3*) and *EIN3-LIKE1* (*EIL1*) induces local PIN gene expression in the epidermis and auxin transport (Žádníková et al., 2016). Accordingly, exogenous treatment with ET causes exaggerated hooks in *Arabidopsis* (Gallego-Bartolomé et al., 2011). GA appears essential for hook formation as the inhibitor of DELLA proteins, which, in the absence of GA, inhibit both PIFs and *EIN3*/*EIL1* (Box 2; de Lucas et al., 2008; Feng et al., 2008; Gallego-Bartolomé et al., 2011; An et al., 2012). As a consequence, the constitutive DELLA-expressing mutant *gai-1* is unable to form a hook in the dark, and *della* loss-of-function mutants have exaggerated hooks (Gallego-Bartolomé et al., 2011). Although continuous dark periods will slowly cause opening of the apical hook (Raz and Ecker, 1999), this process is significantly enhanced by a light signal (Fig. 1). Light activates phytochromes (phys) and cryptochromes (CRYs), which directly target and degrade PIFs, as well as *EIN3* (Box 1; Shi et al., 2016). This causes a rapid loss of GA, ET signaling, and the directional auxin gradient, which enhances cell expansion in the concave part of the hook, followed by opening (Fig. 3A).

THE COTYLEDONS

While in the dark, cotyledons have little to no function and remain closed. Once in the light, cotyledons have to undergo important developmental changes to allow for efficient photosynthesis to fuel autotrophic growth (Fig. 3B).

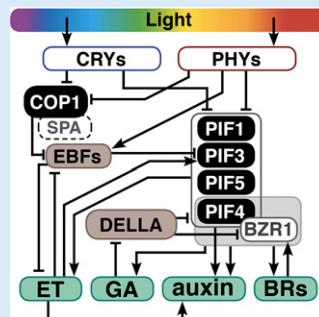
Separation and Expansion

Dark-grown seedlings have relatively small epidermal pavement cells, which results in small cotyledon areas (Wei et al., 1994). *ELONGATED HYPOCOTYL5* (*HY5*)-mediated cotyledon cell division and expansion are suppressed in darkness by PIFs and COP1 (Stoyanova-Bakalova et al., 2004; Xu et al., 2014). Light releases the suppression of *HY5* (Box 1) and, thus, allows cotyledon expansion (Josse et al., 2011).

Stomata Development

Light induces stomata development to allow for gas exchange between the plant and the environment. Stomata are epidermal pores, formed by two guard cells with thick elastic walls that resist the high turgor pressure generated during opening. In *Arabidopsis*, stomatal development is characterized by a series of epidermal cell divisions. In the cotyledons, a subset of protodermal cells can become a meristemoid mother cell committed to the stomatal pathway. The meristemoid mother cell divides asymmetrically to give rise to a small meristemoid (M) and a large sister cell. The M can undergo two further asymmetrical divisions to increase the number of total epidermal cells

BOX 2. Hormonal Regulation of Seedling Photomorphogenesis


Auxin, brassinosteroids (BRs), gibberellic acid (GA), and ethylene (ET) are key regulators of photomorphogenesis and are under tight control of dark/light signaling components like PIFs, COP1 and HY5 (Box 1; Lau and Deng, 2010; Leivar and Monte, 2014; de Lucas and Prat, 2014; Chaiwanon et al., 2016; de Wit et al., 2016a).

Auxin locally induces growth and can be transported from the shoot towards the hypocotyl and roots. PIFs induce auxin synthesis (Hornitschek et al., 2012; Pfeiffer et al., 2014) and downstream signaling factors (*AUXIN RESPONSE FACTORS* [ARFs], *INDOLEACETIC ACID-INDUCIBLE* [*AUX/IAA*] and *SMALL AUXIN UPREGULATED* [*SAUR*] genes), while auxin influx (*AUX1* [*AUX1*] and *LIKE-AUX1* [*LAX1*]) and efflux *PIN-FORMED* [*PIN*] proteins account for polar auxin transport. In dark-grown seedlings, *PIN4* and *PIN7* create the auxin gradient that causes the apical hook (Fig. 3; Žádníková et al., 2016). Dark-active COP1 suppresses *PIN7* transcription in the shoot and *PIN1/2* polar localization in roots, resulting in low auxin levels in the root system (Fig. 3; Sassi et al., 2012).

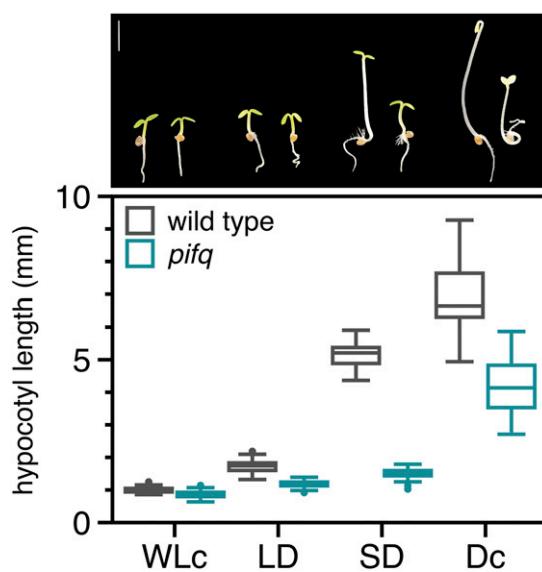
BRs are essential for skotomorphogenic growth, proven by the *cop*-like phenotype of *DE-ETIOLATED2* (*DET2*) deficient mutants impaired in BR synthesis (Li et al., 1996). BR does not accumulate in darkness (Symons et al., 2002), but PIF4 function greatly depends on dimerization with the BR-stabilized BRASSINAZOLE-RESISTANT 1 (BZR1). The PIF4-BZR1 module induces auxin signaling, and BR and GA synthesis (Oh et al., 2012; Oh et al., 2014; Shahnejat-Bushehri et al., 2016). In light, BZR1 interacts with HY5, which subsequently makes BRs regulators of photomorphogenesis (Li and He, 2016).

In darkness, PIF induction of **GA** synthesis activates the **GIBBERELLIN INSENSITIVE DWARF 1** (**GID1**) receptor, which subsequently targets DELLA proteins for degradation. DELLA proteins act, in the absence of GA, as repressors of PIFs and BZR1 (Feng et al., 2008; de Lucas et al., 2008; Shahnejat-Bushehri et al., 2016).

ET is induced by PIFs and accumulates when seedlings experience pressure by a soil column. ET and COP1 destabilize the F-BOX proteins **EIN3 BINDING FACTOR 1** and **2** (**EBF1** and **2**), suppressors of **ETHYLENE INSENSITIVE 3** (**EIN3**). In darkness, ET induces the triple response (thick hypocotyl, exaggerated hook, short root; Guzman and Ecker, 1990), which strengthens the seedling and protects the meristem during soil outgrowth. In return, EIN3 induces PIF3 expression (Zhong et al., 2012). In light, *phyB* stimulates *EBF1/2* mediated *EIN3* and *PIF3* degradation, and ET signaling is inhibited (Jeong et al., 2016; Shi et al., 2016; Dong et al., 2017).

Box 2 Figure. Simplified schematic representation of hormone functions downstream of dark/light signaling components.

or differentiate into a guard mother cell. The guard mother cell then gives rise to two guard cells that form the stoma. The larger sister cell can become a pavement cell or undergo additional asymmetric spacing divisions to generate satellite Ms away from the existing stoma (the “one-cell spacing rule”; Pillitteri and Torii, 2012; Wengier and Bergmann, 2012). Regardless of light conditions, Ms are generated during the first 2 d of seedling establishment. In darkness, their development is then arrested (Wei et al., 1994) by the active COP1-SPA complex (Kang et al., 2009). Guard cell differentiation is completed in both the hypocotyl and the expanding cotyledons (Wei et al., 1994), mediated by CRYs, phyA, and phyB, with phyB having a dominant role in white light. The COP1-SPA interaction is inhibited (Box 1), and PIF4 fine-tunes stomatal development in response to light quantity (Casson et al., 2009). The consecutive steps in stomata differentiation are regulated by three bHLH transcription factors (MUTE, SPEECHLESS, and FAMA)


downstream of a MAP kinase signaling cascade regulated by light quantity (for review, see Lau and Bergmann, 2012).

Chloroplast Development and Pigment Biosynthesis

In higher plants, all cells contain plastids derived from embryonic proplastids. In darkness, seedling proplastids develop into etioplasts, which contain a prolamellar body that incorporates lipids and NADPH-dependent protochlorophyllide oxidoreductase (POR). Upon exposure to light, the prolamellar body disperses, thylakoid membranes form coinciding with greening due to chlorophyll biosynthesis, and a fully functional chloroplast develops. In light, proplastids in subepidermal meristematic cells differentiate into green chloroplasts in the cotyledons (for review, see Jarvis and López-Juez, 2013). In linear monocot leaves, a gradient of chloroplast differentiation can be observed in detail from the base of the leaf near the meristem where

young cells contain proplastids to the older cells toward the tip that contain differentiated chloroplasts (Li et al., 2010; Majeran et al., 2010). Based on these observations, three different chloroplast developmental phases have been defined: a heterotrophic phase of cellular proliferation and growth; a transition phase of chloroplast biogenesis where proteins such as the plastid translation apparatus and plastid enzymes accumulate; and a maturation phase of photosynthetic protein accumulation and photosynthetic activity. Similar phases take place during dicot leaf development, although their spatial distribution is not as distinct (López-Juez et al., 2008; Charuvi et al., 2012; Dubreuil et al., 2018). During biogenesis, the photosynthetic pigments chlorophyll and carotenoid are synthesized through activation of the NADPH-dependent POR that converts protochlorophyllide into chlorophyll, and the PSY central carotenoid biosynthesis gene (Toledo-Ortiz et al., 2010). Excessive accumulation of the chlorophyll precursor protochlorophyllide in the dark can result in photooxidative damage (Reinbothe et al., 1996), which is minimized by the photoprotective role of carotenoids during photosynthetic apparatus assembly (Niyogi, 1999; Walter and Strack, 2011).

Dark/light signaling pathways are tightly associated with chloroplast biogenesis. During the heterotrophic phase in darkness, PIF1 and PIF3 are negative regulators of chloroplast development, particularly of tetrapyrrole biosynthesis genes (Huq et al., 2004; Stephenson et al., 2009), and transcriptionally suppress together with EIN3 (which is stabilized by soil pressure-enhanced ET production; see Box 2; Lau and Deng, 2010; Leivar and Monte, 2014; de Lucas and Prat, 2014; Chaiwanon et al., 2016; de Wit et al., 2016a; Hornitschek et al., 2012; Pfeiffer et al., 2014; Žádníková et al., 2016; Li et al., 1996; Symons et al., 2002; Oh et al., 2012; Oh et al., 2014; Shahnejat-Bushehri et al., 2016; Li and He, 2016; Feng et al., 2008; de Lucas et al., 2008; Guzman and Ecker, 1990; Zhong et al., 2012; Jeong et al., 2016; Shi et al., 2016; Dong et al., 2017) chloroplast development genes (Liu et al., 2017). Among these are the transcription factors *GOLDEN2-LIKE1* (*GLK1*) and *GLK2*, which are necessary for chloroplast development (Fitter et al., 2002; Oh and Montgomery, 2014), and target genes involved in chlorophyll biosynthesis, light harvesting, and electron transport (Waters et al., 2009). HY5, in contrast, promotes chloroplast development during the light transition and early maturation phases (Lee et al., 2007). The PIF-HY5 regulatory module is essential to tightly regulate chloroplast development and involves antagonistic activities of PIFs and HY5 as negative and positive regulators, respectively, through direct binding to G-boxes of common targets (Chen et al., 2013; Toledo-Ortiz et al., 2014). Its relative activity is dynamically sensitive to dark, low light, or higher light through modulation of PIF and HY5 abundance (Chen et al., 2013; Toledo-Ortiz et al., 2014). Molecular evidence indicates that PIF and HY5 coexist and can form bHLH/bZIP heterodimers. In the

Figure 4. Night length strongly affects photomorphogenesis in *Arabidopsis* seedlings. Hypocotyl length (mm) of 3-d-old *Arabidopsis* wild-type (Columbia-0) and *pifq* (*pif1-1 pif3-3 pif4-2 pif5-3*; Leivar et al., 2008) seedlings, grown in continuous white light (WLC), long days (LD; 16 h light/8 h dark), SDs (8 h light/16 h dark), or continuous dark (Dc). Above the graph are pictures of representative seedlings in the same order. All were grown in continuous temperature (22°C) and a light intensity of approximately $5 \mu\text{mol m}^{-2} \text{s}^{-1}$ photosynthetically active radiation. Scale bar = 2 mm.

dark, PIF1/PIF3 are abundant, whereas HY5 and its homolog HYH are unstable (Box 1), and thus the module activity is essentially repressive. In low light, HY5/HYH are stabilized (Box 1) and form heterodimers with PIF1/PIF3, which might function as inactive forms. Under higher light conditions, PIF1/PIF3 are almost completely degraded and HY5/HYH become more prevalent, activating transcription of common PIF-HY5 module targets (Chen et al., 2013). PIF-HY5 prevent protochlorophyllide over-accumulation, control ROS signaling pathway, and regulate pigment accumulation through directly binding to G-box motifs in the promoters of POR genes, ROS-responsive genes, and PSY and other central carotenoid and chlorophyll pathway genes (Toledo-Ortiz et al., 2010; Chen et al., 2013; Toledo-Ortiz et al., 2014).

Fully developed chloroplasts are essential for the fixation of energy from sunlight, and in turn function as light signaling structures with great impact on photomorphogenesis through close coordination between the nucleus and chloroplast genomes. In *Arabidopsis*, chloroplast retrograde signals from the chloroplast to the nucleus are able to optimize photosynthetic capacity and growth, prevent photo-damage in high light environments, and fine-tune circadian-regulated processes by releasing light-specific signals (Strand and Hernandez-Verdeja, 2018; Waters et al., 2009; Martín et al., 2016a; Dubreuil et al., 2018; Box 3).

THE HYPOCOTYL

To quickly reach for the light, the elongated hypocotyl of dark-germinated seedlings is the most remarkable phenotype. The *Arabidopsis* hypocotyl is an intensively studied model in seedling etiolation and de-etiolation. The hypocotyl consists of a set number of 20 cells, and thus elongation mainly depends on cell expansion rather than divisions (Wei et al., 1994; Gendreau et al., 1997) and requires the uptake of water to maintain turgor pressure (Ishikawa et al., 2013; Chaumont and Tyerman, 2014). To facilitate cell expansion, the cell wall of the epidermal cells gains flexibility, which appears to be independent of cell wall synthesis, and is regulated by specialized proteins such as expansins and XYLOGLUCAN ENDOTRANSGLUCOSYLASE /HYDROLASEs (XTHs; Ivakov et al., 2017). In dark conditions, PIFs directly induce the expression of the genes encoding for these proteins (Leivar et al., 2009), and integrate the strong influence of several hormones such as auxin, brassinosteroids (BRs), GA, and ET in hypocotyl elongation (Box 2; for review, see Leivar and Monte, 2014; de Wit et al., 2016a; Fig. 3C). Auxin accumulates in the cotyledons and is actively transported toward the hypocotyl, where PIN proteins locate it to the epidermal cells (Box 2). Auxin acidifies the cell wall, which favors expansin and XTH-mediated elongation, and enhances expression of the genes encoding for these proteins (Rayle and Cleland, 1992; Paque et al., 2014). The dwarf phenotype of dark-grown BR-deficient mutants (e.g. *de-etiolated2*) pointed out the important role of these steroid hormones in hypocotyl elongation during skotomorphogenesis (Chory et al., 1991; Li et al., 1996). Recently, it became clear that the main function of BRs during elongation (in response to darkness, shade, and high temperatures) is indirect via the binding of BR-stabilized protein BZR1 to PIF4 (Box 2; Oh et al., 2012). PIFs and BZR1 induce GA synthesis, which indirectly enhances hypocotyl growth by inhibition of the repressing DELLA proteins (Box 2). In darkness, under mechanical pressure created by soil, ET accumulates and inhibits hypocotyl growth, to strengthen the hypocotyl (Box 2; Yu and Huang, 2017). As an additional level of signaling, elongating cell walls release fragments that trigger a forward loop and enhance skotomorphogenesis in the hypocotyl and cotyledons (Sinclair et al., 2017).

Upon light exposure, hypocotyl elongation is quickly inhibited. Light-activated photoreceptors cause PIF degradation and COP1 inactivation, which brings down hormone levels and releases growth-suppressing proteins such as HY5 (Boxes 1 and 2). PIFs are found plant-wide in different organs and tissues, but can play different roles in different cell layers. A recent study shows how epidermal phyB is completely responsible for light-induced germination and hypocotyl growth arrest in red (R) light (Kim et al., 2016). Not much is known about the role of other hypocotyl cell layers in growth (arrest)

during seedling establishment. Nevertheless, another recent study supports the cell type-specific functions in *Arabidopsis* hypocotyls. Trichoblasts form hair-like structures and acquire nutrients from the external environment, while the neighboring atrichoblasts provide shortcut routes for these nutrients to be unloaded and moved up the stem (Jackson et al., 2017).

THE ROOTS

When a seed germinates underground, reaching the light seems top priority, and this goes at the cost of root development. To regulate this shoot-over-root trade-off, root development in dark-grown seedlings is actively repressed. Auxin availability in the roots is strongly limited. The suppression of PIN gene expression in the hypocotyl and the localization of PIN proteins into the vacuole, both COP1-dependent, inhibit polar auxin transport and, thus, root growth (Box 2; Sassi et al., 2012; Fig. 3D). Even though the roots will remain in close-to-dark conditions throughout the plant life cycle, light perception by the shoot dramatically affects root development (Lee et al., 2017; van Gelderen et al., 2018). When the shoot experiences light, COP1 is mobilized out of the nucleus, and this releases the suppression of the PIN proteins and activates polar auxin transport. Like many other aspects of seedling establishment in the light, root development greatly depends on HY5. The role for HY5 in *Arabidopsis* root development has been known for a long time, as HY5-deficient mutants show defects in root hair development, gravitropism, lateral root outgrowth, and elongation (Oyama et al., 1997; Sibout et al., 2006). The HY5 protein is, as was discovered recently, translocated via the phloem toward the root, with root-specific *HY5* and *HYH* transcription, and promoted root development as a consequence (Chen et al., 2016; Zhang et al., 2017; Fig. 3D). In addition to HY5 being a traveling molecule, another recent study showed that its stability and transcription are induced by stem-piped light that locally activates PHYB molecules in the *Arabidopsis* roots (Lee et al., 2016). Besides auxin and HY5, sugar molecules travel from the light-exposed cotyledons, which started photosynthesis, to the roots and enhance root elongation (Kircher and Schopfer, 2012; Fig. 3D). By quickly enhancing root elongation and lateral root outgrowth upon seedling establishment, the young photoautotrophic plant can start the uptake of water and nutrients such as nitrate to fuel growth (Chen et al., 2016).

SEEDLING ESTABLISHMENT IN ALTERNATING LIGHT/DARK CYCLES

Upon seedling exposure to sunlight after germination, establishment proceeds under light/dark

BOX 3. Chloroplast-to-Nucleus Retrograde Signaling

The chloroplast genome, or plastome, carries fewer than 100 protein-coding genes. The majority of chloroplast proteins (~2000–3000) are encoded by the nucleus and are imported into the chloroplast following synthesis in the cytosol. This nucleus-to-chloroplast signaling is termed anterograde signaling. Chloroplasts are well known as the organelles where photosynthesis is performed, but they are also dynamic signaling compartments that function as intracellular and environmental sensors. They can communicate with the nucleus through a process termed retrograde signaling (RS) to regulate expression according to chloroplast status. In developing chloroplasts, RS coordinates photosystem assembly and maintenance with the other processes required for chloroplasts biogenesis (biogenic RS). Once mature, chloroplasts communicate with the nucleus to maintain homeostasis in the prevailing environment (operational RS; Chi et al., 2013; Jarvis and Lopez-Juez, 2013; Norén et al., 2016).

During chloroplast development, use of lincomycin or norflurazon to inhibit plastid translation or carotenoid biosynthesis,

respectively, leads to photobleaching and repression of photosynthesis-associated nuclear genes (*PhANGs*), such as those from the chlorophyll-binding LHCb gene family. *genomes uncoupled* (*gun*) mutants exhibit *PhANG* derepression in response to norflurazon and have helped elucidate components of biogenic signaling, such as heme, tetrapyrroles, and GUN1 (Koussevitzky et al., 2007). Other key components include chloroplast-localized PLASTID REDOX INSENSITIVE2 (PRIN2) and plastid-encoded RNA polymerase (PEP; Kindgren et al., 2012), and nucleus-localized ABI4 and GLKs (Koussevitzky et al., 2007; Kakizaki et al., 2009; Waters et al., 2009).

On the basis of the phenotypes of plants with disrupted plastid functionality, RS has been shown to impact normal light-regulated development. Whereas light at moderate levels acts through the phy sensory-photoreceptor system to induce photomorphogenic development, light at excessive levels is sensed by the plastid and represses photomorphogenesis through a GUN1-mediated RS mechanism independent of PIF mediation (Ruckle and Larkin, 2009; Martín et al., 2016a).

cycles of variable duration and light intensity depending on the latitude and time of the year. This section reviews our current knowledge on how seedling growth in these conditions integrates light and dark signals with the circadian clock, which is synchronized and oscillates strongly after light exposure (Salomé et al., 2008).

In photoperiodic conditions, growth is dark-dependent and promoted by accumulation of the PIFs, similar to etiolated growth. Noteworthy, acceleration of hypocotyl elongation in photoperiodic conditions is not linear as a function of the duration of the dark period but instead is a short day (SD)-specific event. Up to approximately 12 h of darkness, *Arabidopsis* hypocotyls are as short as if they were in constant light, and then elongation increases with longer nights (Niwa et al., 2009; Fig. 4). Mutants in the central clock component *CCA1ox* or *ppr5ppr7ppr9* exhibit a nearly linear growth pattern in increasing night lengths (Niwa et al., 2009), indicating that the circadian clock inhibits growth in photoperiodic conditions. Whereas hypocotyl growth in the dark can be considered clock independent, seedling establishment in light/dark cycles requires the integration of clock and dark/light signaling to regulate elongation, cotyledon development and greening.

Regulation of hypocotyl elongation in light/dark cycles offers an example of the intricate combined action of dark, light, and clock signaling. In SDs, PIF

proteins control rhythmic growth by collectively promoting increased elongation rates in the predawn hours when they are most abundant. As a consequence, *pifq* seedlings are shorter than the wild type in SDs, a difference that is less apparent in long days, when nights are too short to allow for strong PIF accumulation (Fig. 4). PIF accumulation and activity are regulated at several levels. First, *PIF4* and *PIF5* transcripts in SDs rise at midday through the night, with a peak at dawn (Nozue et al., 2007). This oscillation is imposed by the evening complex (EC) formed by ELF3, ELF4, and LUX (Nusinow et al., 2011), and by TOC1, PRR5, and PRR7 (Yamashino et al., 2003; Niwa et al., 2009) that repress *PIF4* and *PIF5* expression during the day and early night. *PIF7* transcript levels oscillate as well, suggesting clock regulation (Kidokoro et al., 2009; Lee and Thomashow, 2012). In contrast, *PIF1* and *PIF3* transcription is maintained at a low and constant level during the diurnal cycle (Soy et al., 2012, 2014). Second, as a consequence of phy activity, PIF protein abundance in SDs oscillates diurnally with low PIF levels during the light hours and progressive accumulation during the dark to peak at dawn (Nozue et al., 2007; Soy et al., 2012; Yamashino et al., 2013). During the first night hours, phyB Pfr persists and inhibits PIF accumulation while slowly dark reverting to inactive Pr (Sweere et al., 2001; Rausenberger et al., 2010; Medzihradzky et al., 2013). The photoactivated phyB Pfr forms dynamic nuclear photobodies together with Hemera (HMR) to induce

rapid phosphorylation of PIFs, leading to their degradation (Kircher et al., 2002; Chen et al., 2010; Van Buskirk et al., 2014). phyB also is found in tandem zinc knuckle/plus3-dependent photobodies that also contain members of the EC (Kaiserli et al., 2015; Huang et al., 2016a, 2016b) but apparently not in HMR, which could indicate the existence of specialized phyB-containing photobodies that might regulate PIF accumulation or transcription separately. As a result of phy-imposed action, PIF1, PIF3, PIF4, and PIF5 abundance oscillates in SDs to peak at dawn and induce growth-related genes (Nozue et al., 2007, 2011; Nomoto et al., 2012; Soy et al., 2012, 2014; Yamashino et al., 2013). Last, the growth-promoting activity of PIFs, as they progressively accumulate during postdusk darkness, is directly inhibited by PIF-interacting clock components to prevent detrimental early growth. The transcriptional activator activity of PIFs is directly repressed by TOC1 during postdusk, when TOC1 is most abundant in the circadian cycle (Soy et al., 2016; Zhu et al., 2016). In addition, DNA binding of at least PIF4 is inhibited by ELF3 in an EC-independent manner (Nieto et al., 2015). Thus, whereas the dark promotes accumulation of the PIFs, the integration and convergence with the circadian clock limit the timing of maximum responsiveness to dawn (Allen et al., 2006). This permissive gating involves phasing of downstream effector transcript abundance (Covington et al., 2008; Michael et al., 2008; Martín et al., 2016b) and calculation of the rate of starch breakdown to ensure lasting energy to fuel growth at dawn (Graf et al., 2010).

ABOVEGROUND CHALLENGES DELAY SEEDLING ESTABLISHMENT

Even though germination is in a lot of plant species properly timed by external (humidity, temperature, light) and internal (circadian rhythmic) cues, the aboveground environment often appears suboptimal for a young, establishing seedling. A combination of stresses will inhibit or postpone photomorphogenic development during the dark-to-light transition or in diurnal conditions. In this section, we will review the most studied external factors (excessive light levels, light quality, neighbor detection, and high temperatures) that, to more or less extent, inhibit the photomorphogenic phenotype to protect the seedling and escape harmful situations.

Light Intensity

Coming from a (close to) dark environment underground, the first light seen by the de-etiolating seedling can cause problems. Excessive light levels are detrimental for plants and cause damage to the photosystem, resulting in ROS accumulation. Phys, CRYs, PHOTs, and UVR8 selectively monitor for changes in light quality and small changes in fluence rate.

OUTSTANDING QUESTIONS

- Is cell-specificity of key factors like PIFs, HY5, or hormones a regulatory mechanism in photomorphogenesis? Can they move to and / or accumulate in different cell types to coordinate rapid and local cellular responses to light?
- How does below-optimal seedling establishment affect growth and (crop) yield in later stages of plant development?
- How do environmental factors perceived underground before light exposure, such as temperature, soil minerals and water availability, affect seedling establishment?
- What are the composition and dynamics of dark and light-sensitive regulatory protein complexes?
- How are the relative amounts of dark and light signaling translated into transcriptional and biochemical responses?
- How is chloroplast retrograde signaling integrated with dark, light, and circadian clock signals to regulate development?

Nevertheless, photoreceptor activation saturates, and is insensitive for extremely high, possibly damaging light intensity. As mentioned above, the chloroplasts can sense and process information about the light intensity (see also Box 3; Chi et al., 2013; Jarvis and Lopez-Juez, 2013; Noren et al., 2016; Koussevitzky et al., 2007; Kindgren et al., 2012; Kakizaki et al., 2009; Waters et al., 2009; Ruckle and Larkin, 2009; Martín et al., 2016a). In high light levels, RS inhibits the transcription of photomorphogenic genes involved in photosynthesis and development. As a consequence, young seedlings that are shifted from darkness to a high light environment have long hypocotyls and keep their cotyledons closed, to protect them and the shoot apical meristem from the damaging light levels. Major players in the high light-mediated RS are the plastid-localized PRR protein GENOMES UNCOUPLED1 and ABI4 (Koussevitzky et al., 2007; Martín et al., 2016a; Xu et al., 2016).

Light Quality and Neighbor-Induced Competition

Above the ground, seedlings often are not alone. The presence of neighboring plants can threaten light availability and, thus, photosynthesis rates. To prevent being completely shaded, most seedlings of sun-loving plants will partly inhibit photomorphogenesis. The shade avoidance syndrome (SAS) triggers hypocotyl elongation, despite the availability of light, and helps the plant reach the top of the canopy. This response is

triggered by the low ratio between R and far-red (FR) light, caused by the preferential absorption of R and reflection of FR light by green tissues, and is enhanced when additional blue (B) light depletion occurs during more severe shading (Filiault and Maloof, 2012; Kohnen et al., 2016; de Wit et al., 2016b). The low R:FR light signal inactivates PhyB, and thus will keep the main PIFs acting in SAS (PIF4, PIF5, and PIF7) active (Lorrain et al., 2008; Li et al., 2012) and the production of growth-promoting hormones such as auxin, BR, GA, and ET high (Li et al., 2012; Bou-Torrent et al., 2014). In young seedlings, the SAS consists of a delay of some aspects of photomorphogenesis (hypocotyl growth arrest, cotyledon expansion, root development, pigment accumulation), and promotes cotyledon petiole elongation and upward cotyledon positioning (for review, see Ballaré and Pierik, 2017; Fiorucci and Fankhauser, 2017). In dense canopies, the emission of all kinds of volatile compounds increases, and they accumulate due to reduced airflow (Kegge et al., 2013). The most important signaling volatile is ET, which in the light enhances elongation growth enabling seedlings to reach the top of the canopy. ET enhances PIF3 expression, and via similar regulatory pathways as shade perception, synthesis and signaling of the growth-promoting hormones auxin, GA, and BR (Zhong et al., 2012; Das et al., 2016). Interestingly, although some aspects of photomorphogenesis are clearly suppressed by ET (hook unfolding and cotyledon expansion; see above), others strongly depend on the light availability (hypocotyl elongation: suppressed in darkness but induced in light; Pierik et al., 2006). Another stress-full light signal is UV-B radiation, which can cause DNA damage. Interestingly, in low quantities, UV-B radiation perceived by the UVR8 receptor strongly enhances photomorphogenesis. It is, most probably, used by plants as a signal for reaching the sunlight and suppresses the elongated response of seedlings grown in shade (Hayes et al., 2014), via inhibition of COP1-mediated HY5 and HYH suppression (Favery et al., 2009; Rizzini et al., 2011; Christie et al., 2012).

High Temperatures

With temperatures rising due to global climate change, heat is a more and more relevant stress for plants. Small changes in temperature, sensed by PhyB and phototropins (Jung et al., 2016; Legris et al., 2016; Fujii et al., 2017), partly inhibit photomorphogenesis in young seedlings. This so-called thermomorphogenic response includes elongated hypocotyls and epinastic cotyledons, and serves to enhance cooling of the young leaves and thus warmth adaptation (for review, see van Zanten et al., 2014; Quint et al., 2016). The key factor in this warmth-mediated arrest on de-etiolation is PIF4. The inactivation of phyB by high temperatures stabilizes the protein (Jung et al., 2016; Legris et al., 2016), but also triggers COP1-mediated degradation of HY5, which releases the

suppression of PIF4 expression (Delker et al., 2014). High temperature-stabilized PIF4 will continue to keep auxin synthesis high and hypocotyl elongation going, despite the light availability (Franklin et al., 2011). The direct effect of other climate-related stresses such as drought and humidity on seedling photomorphogenesis are less well understood. Nevertheless, it is well-known that these contrasting stresses strongly affect the synthesis of the phytohormone abscisic acid (Christmann et al., 2007; Okamoto et al., 2009; Bauer et al., 2013), which in turn interferes with light-induced development (Pierik and Testerink, 2014).

CONCLUSION

Plants have evolved sophisticated photoperception mechanisms to interpret their environmental conditions and optimally coordinate and adjust their growth to thrive as sessile organisms. Here, we have reviewed how the relative dark and light signaling flux impacts several processes during seedling establishment, with a focus on the growth programs in the dark, upon first exposure to light, and in diurnal conditions where dark and light alternate. Because seedlings are exquisitely sensitive to and actively respond to darkness and different light intensities, we propose that seedling establishment is a dimmer-type switch-regulated process between dark and light signals. This allows plants to dynamically respond to the relative amounts of dark and light signaling to optimize development. Research efforts over the last decades have contributed to impressive progress in our understanding of seedling establishment, especially in *Arabidopsis*. As the scientific community in the field makes new discoveries, new exciting questions will arise and challenges still will be many. We have summarized a few important questions for future research in the Outstanding Questions box. We believe novel emerging and enhanced technologies for high-throughput organ, tissue, and single-cell -omics, cell-cell, macromolecule-, and organelle-level research (Nito et al., 2015), together with cross-disciplinary approaches, will inspire and advance our tasks ahead.

ACKNOWLEDGMENTS

We thank Gloria Villalba and David Blasco for their help with growing the crop plant species, and Gabriela Toledo-Ortiz for valuable comments on the manuscript.

Received October 6, 2017; accepted December 3, 2017; published December 7, 2017.

LITERATURE CITED

Allen T, Koustenis A, Theodorou G, Somers DE, Kay SA, Whitelam GC, Devlin PF (2006) *Arabidopsis* FHY3 specifically gates phytochrome signaling to the circadian clock. *Plant Cell* **18**: 2506–2516

An F, Zhang X, Zhu Z, Ji Y, He W, Jiang Z, Li M, Guo H (2012) Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated *Arabidopsis* seedlings. *Cell Res* **22**: 915–927

Bae G, Choi G (2008) Decoding of light signals by plant phytochromes and their interacting proteins. *Annu Rev Plant Biol* **59**: 281–311

Bajracharya D, Schopfer P (1979) Effect of light on the development of glyoxysomal functions in the cotyledons of mustard (*Sinapis alba* L.) seedlings. *Planta* **145**: 181–186

Ballaré CL, Pierik R (2017) The shade-avoidance syndrome: multiple signals and ecological consequences. *Plant Cell Environ* **40**: 2530–2543

Bauer H, Ache P, Lautner S, Fromm J, Hartung W, Al-Rasheid KAS, Sonnewald S, Sonnewald U, Kneitz S, Lachmann N, et al (2013) The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. *Curr Biol* **23**: 53–57

Bou-Torrent J, Galstyan A, Gallemi M, Cifuentes-Esquivel N, Molina-Contreras MJ, Salla-Martret M, Jikumaru Y, Yamaguchi S, Kamiya Y, Martínez-García JF (2014) Plant proximity perception dynamically modulates hormone levels and sensitivity in *Arabidopsis*. *J Exp Bot* **65**: 2937–2947

Casson SA, Franklin KA, Gray JE, Grierson CS, Whitelam GC, Hetherington AM (2009) phytochrome B and PIF4 regulate stomatal development in response to light quantity. *Curr Biol* **19**: 229–234

Chaiwanon J, Wang W, Zhu J-Y, Oh E, Wang Z-Y (2016) Information integration and communication in plant growth regulation. *Cell* **164**: 1257–1268

Charuvi D, Kiss V, Nevo R, Shimonov E, Adam Z, Reich Z (2012) Gain and loss of photosynthetic membranes during plastid differentiation in the shoot apex of *Arabidopsis*. *Plant Cell* **24**: 1143–1157

Chaumont F, Tyerman SD (2014) Aquaporins: highly regulated channels controlling plant water relations. *Plant Physiol* **164**: 1600–1618

Chen D, Xu G, Tang W, Jing Y, Ji Q, Fei Z, Lin R (2013) Antagonistic basic helix-loop-helix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in *Arabidopsis*. *Plant Cell* **25**: 1657–1673

Chen M, Galvão RM, Li M, Burger B, Bugea J, Bolado J, Chory J (2010) *Arabidopsis* HEMERA/pTAC12 initiates photomorphogenesis by phytochromes. *Cell* **141**: 1230–1240

Chen X, Yao Q, Gao X, Jiang C, Harberd NP, Fu X (2016) Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. *Curr Biol* **26**: 640–646

Chi W, Sun X, Zhang L (2013) Intracellular signaling from plastid to nucleus. *Annu Rev Plant Biol* **64**: 559–582

Chory J, Nagpal P, Peto CA (1991) Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in *Arabidopsis*. *Plant Cell* **3**: 445–459

Christie JM, Arvai AS, Baxter KJ, Heilmann M, Pratt AJ, Hara AO, Kelly SM, Hothorn M, Smith BO, Hitomi K, et al (2012) Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. *Science* **335**: 1492–1497

Christmann A, Weiler EW, Steudle E, Grill E (2007) A hydraulic signal in root-to-shoot signalling of water shortage. *Plant J* **52**: 167–174

Covington MF, Maloof JN, Straume M, Kay SA, Harmer SL (2008) Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. *Genome Biol* **9**: R130

Das D, St Onge KR, Voesenek LACJ, Pierik R, Sasidharan R (2016) Ethylene- and shade-induced hypocotyl elongation share transcriptome patterns and functional regulators. *Plant Physiol* **172**: 718–733

Davies HV, Gaba V, Black M, Chapman JM (1981) The control of food mobilisation in seeds of *Cucumis sativus* L.: V. The effect of light on lipid degradation. *Planta* **152**: 70–73

de Lucas M, Davière J-M, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blázquez MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellin control of cell elongation. *Nature* **451**: 480–484

de Lucas M, Prat S (2014) PIFs get BRright: PHYTOCHROME INTERACTING FACTORS as integrators of light and hormonal signals. *New Phytol* **202**: 1126–1141

de Wit M, Galvão VC, Fankhauser C (2016a) Light-mediated hormonal regulation of plant growth and development. *Annu Rev Plant Biol* **67**: 513–537

de Wit M, Keuskamp DH, Bongers FJ, Hornitschek P, Gommers CMM, Reinen E, Martínez-Cerón C, Fankhauser C, Pierik R (2016b) Integration of phytochrome and cryptochrome signals determines plant growth during competition for light. *Curr Biol* **26**: 3320–3326

Delker C, Sonntag L, James GV, Janitzka P, Ibañez C, Ziermann H, Peterson T, Denk K, Mull S, Ziegler J, et al (2014) The DET1-COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis. *Cell Reports* **9**: 1983–1989

Dong J, Ni W, Yu R, Deng XW, Chen H, Wei N (2017) Light-dependent degradation of PIF3 by SCF^{EBF1/2} promotes a photomorphogenic response in *Arabidopsis*. *Curr Biol* **27**: 2420–2430.e6

Dong J, Tang D, Gao Z, Yu R, Li K, He H, Terzaghi W, Deng XW, Chen H (2014) *Arabidopsis* DE-ETIOLATED1 represses photomorphogenesis by positively regulating phytochrome-interacting factors in the dark. *Plant Cell* **26**: 3630–3645

Dubreuil C, Jin X, Barajas-López JdD, Hewitt TC, Tanz SK, Dobrenel T, Schröder WP, Hanson J, Pesquet E, Grönlund A, et al (2018) Establishment of photosynthesis through chloroplast development is controlled by two distinct regulatory phases. *Plant Physiol* **176**: 1199–1214

Eastmond PJ (2006) SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating *Arabidopsis* seeds. *Plant Cell* **18**: 665–675

Eastmond PJ, Graham IA (2001) Re-examining the role of the glyoxylate cycle in oilseeds. *Trends Plant Sci* **6**: 72–78

Eckstein A, Jagiełło-Flasińska D, Lewandowska A, Hermanowicz P, Appenroth K-J, Gabryś H (2016) Mobilization of storage materials during light-induced germination of tomato (*Solanum lycopersicum*) seeds. *Plant Physiol Biochem* **105**: 271–281

Farquharson KL (2017) Division of labor during apical hook formation. *Plant Cell* **29**: 917–918

Favory J-J, Stec A, Gruber H, Rizzini L, Oravecz A, Funk M, Albert A, Cloix C, Jenkins GI, Oakeley EJ, et al (2009) Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in *Arabidopsis*. *EMBO J* **28**: 591–601

Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias-Pedraz JM, Kircher S, et al (2008) Coordinated regulation of *Arabidopsis* thaliana development by light and gibberellins. *Nature* **451**: 475–479

Filiault DL, Maloof JN (2012) A genome-wide association study identifies variants underlying the *Arabidopsis* thaliana shade avoidance response. *PLoS Genet* **8**: e1002589

Finch-Savage WE, Bassel GW (2016) Seed vigour and crop establishment: extending performance beyond adaptation. *J Exp Bot* **67**: 567–591

Fiorucci A-S, Fankhauser C (2017) Plant strategies for enhancing access to sunlight. *Curr Biol* **27**: R931–R940

Fitter DW, Martin DJ, Copley MJ, Scotland RW, Langdale JA (2002) GLK gene pairs regulate chloroplast development in diverse plant species. *Plant J* **31**: 713–727

Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, et al (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. *Proc Natl Acad Sci USA* **108**: 20231–20235

Franklin KA, Toledo-Ortiz G, Pyott DE, Halliday KJ (2014) Interaction of light and temperature signalling. *J Exp Bot* **65**: 2859–2871

Fujii Y, Tanaka H, Konno N, Ogasawara Y, Hamashima N, Tamura S, Hasegawa S, Hayasaki Y, Okajima K, Kodama Y (2017) Phototropin perceives temperature based on the lifetime of its photoactivated state. *Proc Natl Acad Sci USA* **114**: 9206–9211

Gallego-Bartolomé J, Arana MV, Vandebussche F, Zádníková P, Minguez EG, Guardiola V, Van Der Straeten D, Benkova E, Alabadí D, Blázquez MA (2011) Hierarchy of hormone action controlling apical hook development in *Arabidopsis*. *Plant J* **67**: 622–634

Galvão VC, Fankhauser C (2015) Sensing the light environment in plants: photoreceptors and early signaling steps. *Curr Opin Neurobiol* **34**: 46–53

Gendreau E, Traas J, Desnos T, Grandjean O, Caboche M, Höfte H (1997) Cellular basis of hypocotyl growth in *Arabidopsis thaliana*. *Plant Physiol* **114**: 295–305

Graf A, Schlereth A, Stitt M, Smith AM (2010) Circadian control of carbohydrate availability for growth in *Arabidopsis* plants at night. *Proc Natl Acad Sci USA* **107**: 9458–9463

Graham IA (2008) Seed storage oil mobilization. *Annu Rev Plant Biol* **59**: 115–142

Guzmán P, Ecker JR (1990) Exploiting the triple response of *Arabidopsis* to identify ethylene-related mutants. *Plant Cell* **2**: 513–523

Hayes S, Velanis CN, Jenkins GI, Franklin KA (2014) UV-B detected by the UVR8 photoreceptor antagonizes auxin signaling and plant shade avoidance. *Proc Natl Acad Sci USA* **111**: 11894–11899

Hoecker U (2017) The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling. *Curr Opin Plant Biol* 37: 63–69

Hornitschek P, Kohnen MV, Lorrain S, Rougemont J, Ljung K, López-Vidriero I, Franco-Zorrilla JM, Solano R, Trevisan M, Pradervand S, et al (2012) Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. *Plant J* 71: 699–711

Huang H, Alvarez S, Bindbeutel R, Shen Z, Naldrett MJ, Evans BS, Briggs SP, Hicks LM, Kay SA, Nusinow DA (2016a) Identification of evening complex associated proteins in Arabidopsis by affinity purification and mass spectrometry. *Mol Cell Proteomics* 15: 201–217

Huang H, Yoo CY, Bindbeutel R, Goldsworthy J, Tielking A, Alvarez S, Naldrett MJ, Evans BS, Chen M, Nusinow DA (2016b) PCH1 integrates circadian and light-signaling pathways to control photoperiod-responsive growth in Arabidopsis. *eLife* 5: e13292

Huq E, Al-Sady B, Hudson M, Kim C, Apel K, Quail PH (2004) Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis. *Science* 305: 1937–1941

Ishikawa H, Sato-Nara K, Takase T, Suzuki H (2013) Diurnal changes in shoot water dynamics are synchronized with hypocotyl elongation in Arabidopsis thaliana. *Plant Signal Behav* 8: e23250

Ivakov A, Flis A, Apelt F, Fünfgeld M, Scherer U, Stitt M, Kragler F, Vissenberg K, Persson S, Suslov D (2017) Cellulose synthesis and cell expansion are regulated by different mechanisms in growing Arabidopsis hypocotyls. *Plant Cell* 29: 1305–1315

Jackson MDB, Xu H, Duran-Nebreda S, Stamm P, Bassel GW (2017) Topological analysis of multicellular complexity in the plant hypocotyl. *eLife* 6: 1–24

Jarvis P, López-Juez E (2013) Biogenesis and homeostasis of chloroplasts and other plastids. *Nat Rev Mol Cell Biol* 14: 787–802

Jeong J, Kim K, Kim ME, Kim HG, Heo GS, Park OK, Park YI, Choi G, Oh E (2016) Phytochrome and ethylene signaling integration in Arabidopsis occurs via the transcriptional regulation of genes co-targeted by PIFs and EIN3. *Front Plant Sci* 7: 1055

Josse EM, Gan Y, Bou-Torrent J, Stewart KL, Gilday AD, Jeffree CE, Vaistij FE, Martínez-García JF, Nagy F, Graham IA, et al (2011) A DELLA in disguise: SPATULA restrains the growth of the developing Arabidopsis seedling. *Plant Cell* 23: 1337–1351

Jung J-H, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak AK, Box MS, Charoensawan V, Cortijo S, et al (2016) Phytochromes function as thermosensors in Arabidopsis. *Science* 354: 886–889

Kaiserli E, Pálki K, O'Donnell L, Batalov O, Pedmale UV, Nusinow DA, Kay SA, Chory J (2015) Integration of light and photoperiodic signaling in transcriptional nuclear foci. *Dev Cell* 35: 311–321

Kakizaki T, Matsumura H, Nakayama K, Che F-S, Terauchi R, Inaba T (2009) Coordination of plastid protein import and nuclear gene expression by plastid-to-nucleus retrograde signaling. *Plant Physiol* 151: 1339–1353

Kang CY, Lian HL, Wang FF, Huang JR, Yang HQ (2009) Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. *Plant Cell* 21: 2624–2641

Kege W, Weldegergis BT, Soler R, Verger-Van Eijk M, Dicke M, Voesenek LA, Pierik R (2013) Canopy light cues affect emission of constitutive and methyl jasmonate-induced volatile organic compounds in Arabidopsis thaliana. *New Phytol* 200: 861–874

Kelly AA, Quettier A-L, Shaw E, Eastmond PJ (2011) Seed storage oil mobilization is important but not essential for germination or seedling establishment in Arabidopsis. *Plant Physiol* 157: 866–875

Kidokoro S, Maruyama K, Nakashima K, Imura Y, Narusaka Y, Shinwari ZK, Osakabe Y, Fujita Y, Mizoi J, Shinozaki K, et al (2009) The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. *Plant Physiol* 151: 2046–2057

Kim J, Song K, Park E, Kim K, Bae G, Choi G (2016) Epidermal phytochrome B inhibits hypocotyl negative gravitropism non-cell-autonomously. *Plant Cell* 28: 2770–2785

Kindgren P, Kremnev D, Blanco NE, de Dios Barajas López J, Fernández AP, Tellgren-Roth C, Kleine T, Small I, Strand A (2012) The plastid redox insensitive 2 mutant of Arabidopsis is impaired in PEP activity and high light-dependent plastid redox signalling to the nucleus. *Plant J* 70: 279–291; erratum Kindgren P, Kremnev D, Blanco NE, de Dios Barajas López J, Fernández AP, Tellgren-Roth C, Kleine T, Small I, Strand A (2012) *Plant J* 70: 366

Kircher S, Gil P, Kozma-Bognár L, Fejes E, Speth V, Husselstein-Muller T, Bauer D, Ádám É, Schäfer E, Nagy F (2002) Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. *Plant Cell* 14: 1541–1555

Kircher S, Schopfer P (2012) Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. *Proc Natl Acad Sci USA* 109: 11217–11221

Kohnen MV, Schmid-Siebert E, Trevisan M, Petrolati LA, Sénéchal F, Müller-Moulé P, Maloof J, Xenarios I, Fankhauser C (2016) Neighbor detection induces organ-specific transcriptomes, revealing patterns underlying hypocotyl-specific growth. *Plant Cell* 28: 2889–2904

Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J (2007) Signals from chloroplasts converge to regulate nuclear gene expression. *Science* 316: 715–719

Lau OS, Bergmann DC (2012) Stomatal development: a plant's perspective on cell polarity, cell fate transitions and intercellular communication. *Development* 139: 3683–3692

Lau OS, Deng XW (2010) Plant hormone signaling lightens up: integrators of light and hormones. *Curr Opin Plant Biol* 13: 571–577

Lee C-M, Thomashow MF (2012) Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. *Proc Natl Acad Sci USA* 109: 15054–15059

Lee H-J, Park Y-J, Ha J-H, Baldwin IT, Park C-M (2017) Multiple routes of light signaling during root photomorphogenesis. *Trends Plant Sci* 22: 803–812

Lee HJ, Ha JH, Kim SG, Choi HK, Kim ZH, Han YJ, Kim JI, Oh Y, Fragoso V, Shin K, et al (2016) Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. *Sci Signal* 9: ra106

Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng XW (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. *Plant Cell* 19: 731–749

Legris M, Klose C, Burgie ES, Rojas CCR, Neme M, Hiltbrunner A, Wigge PA, Schäfer E, Vierstra RD, Casal JJ (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. *Science* 354: 897–900

Legris M, Nieto C, Sellaro R, Prat S, Casal JJ (2017) Perception and signalling of light and temperature cues in plants. *Plant J* 90: 683–697

Leivar P, Monte E (2014) PIFs: systems integrators in plant development. *Plant Cell* 26: 56–78

Leivar P, Monte E, Oka Y, Liu T, Carle C, Castillon A, Huq E, Quail PH (2008) Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. *Curr Biol* 18: 1815–1823

Leivar P, Tepperman JM, Monte E, Calderon RH, Liu TL, Quail PH (2009) Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings. *Plant Cell* 21: 3535–3553

Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. *Science* 272: 398–401

Li L, Ljung K, Breton G, Schmitz RJ, Pruneda-Paz J, Cowing-Zitron C, Cole BJ, Ivans LJ, Pedmale UV, Jung H-S, et al (2012) Linking photoreceptor excitation to changes in plant architecture. *Genes Dev* 26: 785–790

Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR, et al (2010) The developmental dynamics of the maize leaf transcriptome. *Nat Genet* 42: 1060–1067

Li QF, He JX (2016) BZR1 interacts with HY5 to mediate brassinosteroid- and light-regulated cotyledon opening in Arabidopsis in darkness. *Mol Plant* 9: 113–125

Liu X, Liu R, Li Y, Shen X, Zhong S, Shi H (2017) EIN3 and PIF3 form an interdependent module that represses chloroplast development in buried seedlings. *Plant Cell* 29: 3051–3067

López-Juez E, Dillon E, Magyar Z, Khan S, Hazeldine S, de Jager SM, Murray JA, Beemster GT, Bögri L, Shanahan H (2008) Distinct light-initiated gene expression and cell cycle programs in the shoot apex and cotyledons of Arabidopsis. *Plant Cell* 20: 947–968

Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C (2008) Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. *Plant J* 53: 312–323

Majeran W, Friso G, Ponnala L, Connolly B, Huang M, Reidel E, Zhang C, Asakura Y, Bhuiyan NH, Sun Q, et al (2010) Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. *Plant Cell* **22**: 3509–3542

Martín G, Leivar P, Ludevid D, Tepperman JM, Quail PH, Monte E (2016a) Phytochrome and retrograde signalling pathways converge to antagonistically regulate a light-induced transcriptional network. *Nat Commun* **7**: 11431

Martín G, Soy J, Monte E (2016b) Genomic analysis reveals contrasting PIFq contribution to diurnal rhythmic gene expression in PIF-induced and -repressed genes. *Front Plant Sci* **7**: 962

Mazzella MA, Casal JJ, Muschietti JP, Fox AR (2014) Hormonal networks involved in apical hook development in darkness and their response to light. *Front Plant Sci* **5**: 52

Medzihradzky M, Bindics J, Ádám É, Viczián A, Klement É, Lorrain S, Gyula P, Mérail Z, Fankhauser C, Medzihradzky KF, et al (2013) Phosphorylation of phytochrome B inhibits light-induced signaling via accelerated dark reversion in *Arabidopsis*. *Plant Cell* **25**: 535–544

Michael TP, Breton G, Hazen SP, Priest H, Mockler TC, Kay SA, Chory J (2008) A morning-specific phytohormone gene expression program underlying rhythmic plant growth. *PLoS Biol* **6**: e225

Ni W, Xu S-L, González-Grandío E, Chalkley RJ, Huhmer AFR, Burlingame AL, Wang Z-Y, Quail PH (2017) PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3. *Nat Commun* **8**: 15236

Ni W, Xu S-L, Tepperman JM, Stanley DJ, Maltby DA, Gross JD, Burlingame AL, Wang Z-Y, Quail PH (2014) A mutually assured destruction mechanism attenuates light signaling in *Arabidopsis*. *Science* **344**: 1160–1164

Nieto C, López-Salmerón V, Davière J-M, Prat S (2015) ELF3-PIF4 interaction regulates plant growth independently of the Evening Complex. *Curr Biol* **25**: 187–193

Nito K, Kajiyama T, Unten-Kobayashi J, Fujii A, Mochizuki N, Kambara H, Nagatani A (2015) Spatial regulation of the gene expression response to shade in *Arabidopsis* seedlings. *Plant Cell Physiol* **56**: 1306–1319

Niwa Y, Yamashino T, Mizuno T (2009) The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in *Arabidopsis thaliana*. *Plant Cell Physiol* **50**: 838–854

Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. *Annu Rev Plant Physiol Plant Mol Biol* **50**: 333–359

Nomoto Y, Kubozono S, Yamashino T, Nakamichi N, Mizuno T (2012) Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in *Arabidopsis thaliana*. *Plant Cell Physiol* **53**: 1950–1964; erratum **53**: 2012

Nomoto Y, Kubozono S, Yamashino T, Nakamichi N, Mizuno T (2013) Plant Cell Physiol **54**: 643

Norén L, Kindgren P, Stachula P, Rühl M, Eriksson ME, Hurry V, Strand Å (2016) Circadian and plastid signaling pathways are integrated to ensure correct expression of the CBF and COR genes during photoperiodic growth. *Plant Physiol* **171**: 1392–1406

Nozue K, Covington MF, Duek PD, Lorrain S, Fankhauser C, Harmer SL, Maloof JN (2007) Rhythmic growth explained by coincidence between internal and external cues. *Nature* **448**: 358–361

Nozue K, Harmer SL, Maloof JN (2011) Genomic analysis of circadian clock-, light-, and growth-correlated genes reveals PHYTOCHROME-INTERACTING FACTOR5 as a modulator of auxin signaling in *Arabidopsis*. *Plant Physiol* **156**: 357–372

Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farré EM, Kay SA (2011) The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. *Nature* **475**: 398–402

Oh E, Zhu J-Y, Bai M-Y, Arenhart RA, Sun Y, Wang Z-Y (2014) Cell elongation is regulated through a central circuit of interacting transcription factors in the *Arabidopsis* hypocotyl. *eLife* **3**: 1–19

Oh E, Zhu J-Y, Wang Z-Y (2012) Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. *Nat Cell Biol* **14**: 802–809

Oh S, Montgomery BL (2014) Phytochrome-dependent coordinate control of distinct aspects of nuclear and plastid gene expression during anterograde signaling and photomorphogenesis. *Front Plant Sci* **5**: 171

Okamoto M, Tanaka Y, Abrams SR, Kamiya Y, Seki M, Nambara E (2009) High humidity induces abscisic acid 8'-hydroxylase in stomata and vasculature to regulate local and systemic abscisic acid responses in *Arabidopsis*. *Plant Physiol* **149**: 825–834

Osterlund MT, Hardtke CS, Wei N, Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of *Arabidopsis*. *Nature* **405**: 462–466

Oyama T, Shimura Y, Okada K (1997) The *Arabidopsis* HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. *Genes Dev* **11**: 2983–2995

Pacín M, Legris M, Casal JJ (2014) Rapid decline in nuclear constitutive photomorphogenesis1 abundance anticipates the stabilization of its target elongated hypocotyl5 in the light. *Plant Physiol* **164**: 1134–1138

Paque S, Mouille G, Grandont L, Alabadi D, Gaertner C, Goyallon A, Muller P, Primard-Brisset C, Sormani R, Blázquez MA, et al (2014) AUXIN BINDING PROTEIN1 links cell wall remodeling, auxin signaling, and cell expansion in *Arabidopsis*. *Plant Cell* **26**: 280–295

Pedmale UV, Huang SC, Zander M, Cole BJ, Hetzel J, Ljung K, Reis PAB, Sridhara P, Nito K, Nery JR, et al (2016) Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. *Cell* **164**: 233–245

Penfield S, Rylott EL, Gilday AD, Graham S, Larson TR, Graham IA (2004) Reserve mobilization in the *Arabidopsis* endosperm fuels hypocotyl elongation in the dark, is independent of abscisic acid, and requires PHOSPHOENOLPYRUVATE CARBOXYKINASE1. *Plant Cell* **16**: 2705–2718

Pfeiffer A, Shi H, Tepperman JM, Zhang Y, Quail PH (2014) Combinatorial complexity in a transcriptionally centered signaling hub in *Arabidopsis*. *Mol Plant* **7**: 1598–1618

Pham VN, Kathare PK, Huq E (2018) Phytochromes and phytochrome interacting factors. *Plant Physiol* **176**: 1025–1038

Pierik R, Testerink C (2014) The art of being flexible: how to escape from shade, salt, and drought. *Plant Physiol* **166**: 5–22

Pierik R, Tholen D, Poorter H, Visser EJW, Voesenek LACJ (2006) The Janus face of ethylene: growth inhibition and stimulation. *Trends Plant Sci* **11**: 176–183

Pillitteri LJ, Torii KU (2012) Mechanisms of stomatal development. *Annu Rev Plant Biol* **63**: 591–614

Quint M, Delker C, Franklin KA, Wigge PA, Halliday KJ, van Zanten M (2016) Molecular and genetic control of plant thermomorphogenesis. *Nat Plants* **2**: 15190

Rausenberger J, Hussong A, Kircher S, Kirchenbauer D, Timmer J, Nagy F, Schäfer E, Fleck C (2010) An integrative model for phytochrome B mediated photomorphogenesis: from protein dynamics to physiology. *PLoS One* **5**: e10721

Rayle DL, Cleland RE (1992) The Acid Growth Theory of auxin-induced cell elongation is alive and well. *Plant Physiol* **99**: 1271–1274

Raz V, Ecker JR (1999) Regulation of differential growth in the apical hook of *Arabidopsis*. *Development* **126**: 3661–3668

Raz V, Koornneef M (2001) Cell division activity during apical hook development. *Plant Physiol* **125**: 219–226

Reinbothe S, Reinbothe C, Apel K, Lebedev N (1996) Evolution of chlorophyll biosynthesis—the challenge to survive photooxidation. *Cell* **86**: 703–705

Rizzini L, Favory J, Cloix C, Faggionato D, Hara AO, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, et al (2011) Perception of UV-B by the *Arabidopsis* UVR8 protein. *Science* **332**: 103–106

Ruckle ME, Larkin RM (2009) Plastid signals that affect photomorphogenesis in *Arabidopsis thaliana* are dependent on GENOMES UNCOUPLED 1 and cryptochrome 1. *New Phytol* **182**: 367–379

Sadeghipour HR, Bhatia SC (2003) Light-enhanced oil body mobilization in sunflower seedlings accompanies faster protease action on oleosins. *Plant Physiol Biochem* **41**: 309–316

Salomé PA, Xie Q, McClung CR (2008) Circadian timekeeping during early *Arabidopsis* development. *Plant Physiol* **147**: 1110–1125

Sassi M, Lu Y, Zhang Y, Wang J, Dhonukshe P, Bilotou I, Dai M, Li J, Gong X, Jaillais Y, et al (2012) COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in *Arabidopsis*. *Development* **139**: 3402–3412

Seluzicki A, Burko Y, Chory J (2017) Dancing in the dark: darkness as a signal in plants. *Plant Cell Environ* **40**: 2487–2501

Shahnejat-Bushehri S, Tarkowska D, Sakuraba Y, Balazadeh S (2016) *Arabidopsis* NAC transcription factor JUB1 regulates GA/BR metabolism and signalling. *Nat Plants* **2**: 16013

Shi H, Shen X, Liu R, Xue C, Wei N, Deng XW, Zhong S (2016) The red light receptor phytochrome B directly enhances substrate-E3 ligase interactions to attenuate ethylene responses. *Dev Cell* **39**: 597–610

Sibout R, Sukumar P, Hettiarachchi C, Holm M, Muday GK, Hardtke CS (2006) Opposite root growth phenotypes of hy5 versus hy5 hyh mutants correlate with increased constitutive auxin signaling. *PLoS Genet* **2**: e202

Silk WK, Erickson R (1978) Kinematics of hypocotyl curvature. *Am J Bot* **65**: 310–319

Sinclair SA, Larue C, Bonk L, Khan A, Castillo-Michel H, Stein RJ, Grolimund D, Begerow D, Neumann U, Haydon MJ, et al (2017) Etiolated seedling development requires repression of photomorphogenesis by a small cell-wall-derived dark signal. *Curr Biol* **27**: 3403–3418.e7

Soy J, Leivar P, González-Schain N, Martín G, Diaz C, Sentandreu M, Al-Sady B, Quail PH, Monte E (2016) Molecular convergence of clock and photo-sensory pathways through PIF3-TOC1 interaction and co-occupancy of target promoters. *Proc Natl Acad Sci USA* **113**: 4870–4875

Soy J, Leivar P, González-Schain N, Sentandreu M, Prat S, Quail PH, Monte E (2012) Phytochrome-imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis. *Plant J* **71**: 390–401

Soy J, Leivar P, Monte E (2014) PIF1 promotes phytochrome-regulated growth under photoperiodic conditions in Arabidopsis together with PIF3, PIF4, and PIF5. *J Exp Bot* **65**: 2925–2936

Stephenson PG, Fankhauser C, Terry MJ (2009) PIF3 is a repressor of chloroplast development. *Proc Natl Acad Sci USA* **106**: 7654–7659

Strand A, Hernandez-Verdeja T (2018) Retrograde signals navigate the path to chloroplast development. *Plant Physiol* **176**: 967–976

Stoyanova-Bakalova E, Karanov E, Petrov P, Hall MA (2004) Cell division and cell expansion in cotyledons of Arabidopsis seedlings. *New Phytol* **162**: 471–479

Sweere U, Eichenberg K, Lohrmann J, Mira-Rodado V, Bäurle I, Kudla J, Nagy F, Schäfer E, Harter K (2001) Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling. *Science* **294**: 1108–1111

Symons GM, Schultz L, Kerckhoffs LHJ, Davies NW, Gregory D, Reid JB (2002) Uncoupling brassinosteroid levels and de-etiolation in pea. *Plant Physiol* **115**: 311–319

Theimer RR, Rosnitschek I (1978) Development and intracellular localization of lipase activity in rapessed (*Brassica napus* L.) cotyledons. *Planta* **139**: 249–256

Toledo-Ortiz G, Huq E, Rodríguez-Concepción M (2010) Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. *Proc Natl Acad Sci USA* **107**: 11626–11631

Toledo-Ortiz G, Johansson H, Lee KP, Bou-Torrent J, Stewart K, Steel G, Rodríguez-Concepción M, Halliday KJ (2014) The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. *PLoS Genet* **10**: e1004416

Van Buskirk EK, Reddy AK, Nagatani A, Chen M (2014) Photobody localization of phytochrome B is tightly correlated with prolonged and light-dependent inhibition of hypocotyl elongation in the dark. *Plant Physiol* **165**: 595–607

van Gelderen K, Kang C, Pierik R (2018) Light signaling, root development, and plasticity. *Plant Physiol* **176**: 1049–1060

van Zanten M, Bours R, Pons TL, Proveniers MCG (2014) Plant acclimation and adaptation to warm environments. In Franklin K, Wigge P, eds, *Temperature and Plant Development*. John Wiley & Sons, Oxford, UK, pp 49–78

Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. *Nat Prod Rep* **28**: 663–692

Waters MT, Wang P, Korkaric M, Capper RG, Saunders NJ, Langdale JA (2009) GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. *Plant Cell* **21**: 1109–1128

Wei N, Kwok SF, von Arnim AG, Lee A, McNellis TW, Piekos B, Deng XW (1994) Arabidopsis COP8, COP10, and COP11 genes are involved in repression of photomorphogenic development in darkness. *Plant Cell* **6**: 629–643

Wengier DL, Bergmann DC (2012) On fate and flexibility in stomatal development. *Cold Spring Harb Symp Quant Biol* **77**: 53–62

Xu X, Chi W, Sun X, Feng P, Guo H, Li J, Lin R, Lu C, Wang H, Leister D, et al (2016) Convergence of light and chloroplast signals for de-etiolation through ABI4-HY5 and COP1. *Nat Plants* **2**: 16066

Xu X, Paik I, Zhu L, Bu Q, Huang X, Deng XW, Huq E (2014) PHYTOCHROME INTERACTING FACTOR1 enhances the E3 ligase activity of CONSTITUTIVE PHOTOMORPHOGENIC1 to synergistically repress photomorphogenesis in Arabidopsis. *Plant Cell* **26**: 1992–2006

Yamashino T, Matsushika A, Fujimori T, Sato S, Kato T, Tabata S, Mizuno T (2003) A link between circadian-controlled bHLH factors and the APRR1/TOC1 quintet in Arabidopsis thaliana. *Plant Cell Physiol* **44**: 619–629

Yamashino T, Nomoto Y, Lorrain S, Miyachi M, Ito S, Nakamichi N, Fankhauser C, Mizuno T (2013) Verification at the protein level of the PIF4-mediated external coincidence model for the temperature-adaptive photoperiodic control of plant growth in Arabidopsis thaliana. *Plant Signal Behav* **8**: e23390

Yang J, Lin R, Sullivan J, Hoecker U, Liu B, Xu L, Deng XW, Wang H (2005) Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. *Plant Cell* **17**: 804–821

Yu Y, Huang R (2017) Integration of ethylene and light signaling affects hypocotyl growth in Arabidopsis. *Front Plant Sci* **8**: 57

Žádníková P, Petrásek J, Marhavý P, Raz V, Vandebussche F, Ding Z, Schwarzerová K, Morita MT, Tasaka M, Hejátko J, et al (2010) Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. *Development* **137**: 607–617

Žádníková P, Wabnik K, Abuzeineh A, Gallemi M, Van Der Straeten D, Smith RS, Inzé D, Friml J, Prusinkiewicz P, Benková E (2016) A model of differential growth-guided apical hook formation in plants. *Plant Cell* **28**: 2464–2477

Zhang Y, Li C, Zhang J, Wang J, Yang J, Lv Y, Yang N, Liu J, Wang X, Palfalvi G, et al (2017) Dissection of HY5/HYH expression in Arabidopsis reveals a root-autonomous HY5-mediated photomorphogenic pathway. *PLoS One* **12**: e0180449

Zhong S, Shi H, Xue C, Wang L, Xi Y, Li J, Quail PH, Deng XW, Guo H (2012) A molecular framework of light-controlled phytohormone action in Arabidopsis. *Curr Biol* **22**: 1530–1535

Zhu L, Xin R, Bu Q, Shen H, Dang J, Huq E (2016) A negative feedback loop between PHYTOCHROME INTERACTING FACTORs and HECATE proteins fine tunes photomorphogenesis in Arabidopsis. *Plant Cell* **28**: 855–874