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Abstract 24 

Production of enzymes through solid-state fermentation (SSF) of agro-industrial wastes 25 

reports high productivity with low investment. The extraction of the final product from 26 

the solid waste and solid disposal represent the main cost of the process. In this work, 27 

the complete downstream processes of SSF of two industrial residues for the production 28 

of proteases, soy fibre (SF) and a mixture of hair and sludge (HS), were studied in terms 29 

of activity recovery, using different extraction parameters (extracting solvent, ratio 30 

solid:solvent and extraction mode). Activity after lyophilisation was tested. Solid waste 31 

valorisation after extraction was studied using respiration techniques and biogas 32 

production tests, as part of a zero waste strategy. 33 

Results showed a maximum extraction yield of 91% for SF and 121% for HS, both in 34 

agitated mode and distilled water as extraction agent. An average activity recovery of   35 

95 ± 6 % and 94 ± 6 % for SF and HS respectively was obtained after lyophilisation and 36 

redissolution.  To reduce the cost of extraction, a ratio 1:3 w: v solid-solvent in static 37 

mode is advised for SF, and 1:2 w:v extraction ratio in agitated mode for HS, both with 38 

distilled water as extracting agent. Both composting and anaerobic digestion are suitable 39 

techniques for valorisation of the waste material. 40 

 41 

Keywords: downstream, extraction, protease, organic wastes, solid-state fermentation, 42 

zero-waste. 43 

 44 
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Introduction 46 

The use of enzymes in industrial processes is growing every day. They are used, for 47 

example, in detergent manufacturing, bioethanol production and food and beverage 48 

processing. Their use versus traditional chemical processes allows reducing 49 

manufacturing costs and waste generation, also avoiding the need of harsh operational 50 

conditions, as high pressure or temperature (Singh et al. 2016).   51 

Two main processes are used to produce enzymes, solid-state fermentation 52 

(SSF) and submerged fermentation. In recent years, the use of SSF has become 53 

outstanding due to its higher yield and the requirement of simpler and smaller 54 

equipment (Kriaa et al. 2016). As substrates, literature provides a wide range of 55 

residues, the most popular being agro-industrial residues, like the coffee pulp waste 56 

used by Kandasamy et al. (2016) to produce protease. These residues are adequate as a 57 

substrate due to their low cost and availability. Besides, several microorganisms have 58 

been reported to produce all types of enzymes when inoculated in sterile conditions on 59 

an adequate substrate (Riyadi et al. 2017, Lizardi-Jiménez and Hernández Martínez, 60 

2017). In fact, the main part of the studies carried out in solid state and submerged 61 

fermentation are focused on the improvement of the production yield by optimizing 62 

fermentation parameters as temperature, particle size, moisture or selecting the right 63 

strain (Sun et al. 2011; Karpe et al. 2015). 64 

However, several issues regarding operational conditions still need to be solved 65 

to ensure a successful scale-up of the SSF processes, like overheating problems (Finkler 66 

et al. 2017), or optimization of aeration and agitation modes (Gassara et al. 2013).  67 

Also, since most of the optimal working temperatures of SSF microorganisms are 68 

around 30ºC, questions like moisture and temperature are critical in the scale-up of SSF 69 
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processes. Despite the good yields obtained, SSF is mainly being developed at lab scale 70 

(El-Bakry et al. 2015). 71 

Apart from all the technical issues mentioned above, the assessment of the 72 

performance of the entire process at industrial scale, results crucial to determine its 73 

profitability. Activity losses can occur during extraction due to a low contact area 74 

between solid and solvent (Zhang and Sang. 2015), and thus inefficient mass transfer, or 75 

due to stability of the enzyme, which is mainly affected by pH and temperature (Silva et 76 

al. 2014). Storage of the crude extract can also lead to activity losses through time or 77 

during purification (Negi et al. 2011) or lyophilisation stage (Mensink et al. 2017). 78 

Also, the disposal of solid biodegradable residues generated after extraction should be 79 

studied. These residues still contain a considerable amount of biodegradable matter, a 80 

resource to obtain biogas or organic amendments. Despite the relevance of having a 81 

better understanding of downstream and global performance of SSF processes, to our 82 

knowledge, no complete study at pilot scale has been published.  83 

Some data obtained at lab scale are provided by Rashid et al. (2013), where 84 

mannose extraction from 0.9 kg of palm kernel cake was studied, finding that soaking 85 

time, nature of solvent, physical state, solid to solvent ratio and number of washes have 86 

great influence on enzyme recovery. Chaithanya et al. (2012) also extracted protease 87 

from fermented bran, finding that the optimum leaching conditions were glycerol and 88 

tap water as solvent, contact time 60 min and agitation at 100 rpm. Both authors 89 

obtained the highest recovery yield when agitation was applied and the solvent was a 90 

mixture of water and glycerol. A solid-solvent ratio of 1:5 (w: v) was also determined as 91 

optimal in both cases. The most influential parameter was the ratio solid-solvent, which 92 

produced the highest difference within the maximum and the minimum activity 93 

recovery in the extraction of protease.  94 
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In previous works by Abraham et al. (2013) and Abu Yazid et al. (2016), the 95 

listed problems of SSF processes at pilot scale were overcome, developing and 96 

describing robust SSF processes at pilot scale. The operational strategy was based on 97 

allowing the native consortia of microorganisms present in the residue to develop, so 98 

inoculation and sterilization would not be necessary. Protease activity obtained in those 99 

works was remarkably higher than those previously reported and with simpler 100 

operational conditions.  101 

Therefore, the aim of this work is to provide a complete picture of the 102 

downstream process of two SSF processes for protease production at pilot scale, 103 

including activity recovery from enzyme extraction, lyophilisation of the crude extract 104 

and activity conservation after dissolving the lyophilised. Downstream processes for 105 

two different wastes, soy fibre waste and cow hair, were studied. Influence of extraction 106 

parameters (w:v ratio, type of solvent and presence/absence of agitation) was studied to 107 

determine the activity recovery obtained with each strategy. Operational conditions 108 

were selected considering their suitability for industrial scale. Regarding the 109 

management of the substrate after extraction, its potential as feedstock for biogas 110 

production was assessed, along with the possible transformation of the solid into an 111 

agricultural organic amendment according to its stability for soil application in a zero 112 

waste strategy. 113 

 114 

Materials and Methods 115 

 116 

Raw material 117 

Two wastes were assessed for the extraction of protease after SSF, soy fibre (SF), from 118 

a soy beverage manufacturing plant in Castellterçol (Barcelona, Spain), and cow hair, 119 
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from a local tannery industry located at Igualada (Barcelona, Spain). Cow hair was 120 

mixed with dehydrated sludge from the WWTP (wastewater treatment plant) of 121 

Igualada (Barcelona, Spain) as inoculum for the SSF process in a ratio 1:2 hair: sludge 122 

(w: w) (HS), and moisture was adjusted to 65%. Neither inoculation nor moisture 123 

adjustment was needed for SF as the residue possesses a native population of 124 

microorganisms and adequate water content. In both cases, wood chips from a 125 

composting plant in Manresa (Barcelona) were used as bulking agent in ratio 1:1 (v: v). 126 

SF average particle size is between 800 µm and 0.074 µm while cow hair particle size is 127 

about 1 cm long. 79% in weigh of bulking agent particle size is between 16 mm and 128 

3.15 mm, Soy fibre was stored at -20ºC before the experiments, while fresh sludge and 129 

hair were stored at 4ºC due to the structural changes that freezing produces in fresh 130 

sludge. The suitability of these industrial residues as raw materials for protease 131 

production through SSF has been described by Abraham et al. (2013, 2017) and Abu 132 

Yazid et al. (2016), where details of the process and proteases production range are 133 

thoroughly provided.   134 

 135 

SSF Materials and experimental set up 136 

SSF was carried out in 10 L and 50 L (working volume) adiabatic reactors, in order to 137 

minimize environment influence, as described in detail in previous works (Figure 1) 138 

(Maulini-Duran et al. 2014; Puyuelo et al. 2010). Reactors consist in a Dewar-glass with 139 

an outside metallic coverage and an adjusted cap to close the container hermetically. 140 

The inward part of the cap is covered with isolating material. In the bottom of the glass, 141 

a double plastic net was placed to provide support to the fermentable waste, create a 142 

space for lixiviates and distribute evenly the inlet air-flow. In the cap, there are three 143 

connexions, two for inlet and outlet gases and the last for a temperature prove. Inside 144 
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the reactor, a plastic pipe conducts the inlet air to the bottom of the reactor, below the 145 

plastic net. The oxygen content of exhausted gases was measured by an electrochemical 146 

oxygen sensor and data were collected using a personal computer. Data analysis was 147 

carried on by non-commercial software called Sensor. Temperature and air flow were 148 

also measured. A control system for air-flow based in oxygen content in the outlet gases 149 

was used, stablishing an upper and lower set point of 12.5% and 11.5% oxygen content 150 

and variation of volumetric air-flow between values of 300 and 1000 mL min-1, assuring 151 

that oxygen was always above 10% in exhaust gases. Reactors capacity (mass) was 3.8 152 

kg of SF and 2.8 kg of HS for 10 L reactors and 17.5 kg of HS and 20 kg of SF for 50 L 153 

reactors, respectively.  154 

 155 

Protease activity recovery - Material and experimental set up 156 

 157 

Influence of extraction parameters  158 

Extractions were performed to evaluate the recovery of protease activity under different 159 

experimental conditions. 200 g of fermented solid from SSF performed in 10 L and 50 160 

L reactors were used in every extraction. The solid and the solvent were in contact 161 

during one hour under different regimes, at environment temperature, in this case, 162 

around 15 °C, and then the liquid phase centrifuged during 10 minutes at 10000 rpm. 163 

Protease activity of the supernatant was measured and referred to a value considering 164 

the total protease activity produced. 165 

To obtain the total protease activity, an extraction in agitated mode at 1:5 solid: 166 

solvent ratio and HCl-Tris (hydroxymethyl aminomethane) buffer pH 8.1 as solvent was 167 

also performed during one hour. The selected ratio was based on Salariato et al. (2010) 168 
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that extracted polygalacturonase with distilled water at a ratio 1:5. Also, results obtained 169 

in this work from consecutive extractions confirm the accuracy of the choice. 170 

The experimental parameters assayed were solvent type, extraction mode and w: 171 

v solid: solvent ratio. The variations of each parameter were: 172 

Solvent type: Two different solvents were used to perform extractions, distilled 173 

water (DW) and HCl-Tris (hydroxymethyl aminomethane) buffer at pH 8.10 174 

(TB).  175 

Extraction mode: The extraction modes were three: i) no agitation (static mode), 176 

ii) orbital agitation at 120 rpm, and iii) circulation of the solvent through a 177 

column packed with the waste at 96 mL min-1, which resulted in the renewal of 178 

the whole volume of liquid 14 and 7.2 times, for 1:2 w:v and 1:4 w:v extractions 179 

respectively, as added volume of solvent in 1:4 extraction is double than for 1:2.  180 

Waste to solvent ratio (weight: volume): Assayed ratios of solid: solvent were 181 

1:1, 1:2, 1:3 and 1:4.  182 

The different combinations of these tested variables are shown on Table 2.  183 

Experimental set up for static and agitated mode consist of a set of glass 184 

containers of different volumes where solvent and solid were placed. Static extraction 185 

was performed introducing the fermented solid and the chosen volume of solvent in a 186 

beaker and waiting for one hour. To obtain the extract in agitated mode, the same 187 

procedure was followed but beakers were placed in a Sony orbital shaker incubator for 188 

an hour at 120 rpm and room temperature. 189 

The experimental set up used in liquid circulation extraction was composed of a 190 

peristaltic pump Watson-Marlow 400L2 with variable rotor speed from 2.5 to 50 rpm 191 

and a 0.5 L plastic vessel with two adaptors, one at the top and one at the bottom, 192 

connected by plastic tubes to the pump input and output. Inside the vessel, a device was 193 
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coupled to let the water fall over the biomass in a drop-shower mode, in order to 194 

achieve a homogenous contact with the solid in a percolation mode. Fermented matter 195 

was placed inside the vessel and solvent added. The flowrate was set up in the pump 196 

and liquid circulation lasted for an hour 197 

 198 

Number of extraction stages  199 

Enzyme recovery from consecutive stages was assayed performing four consecutive 200 

extractions to the same fermented material. Between extractions, the biomass was 201 

drained to reduce its moisture as much as possible. 1:2 solid: solvent w: v ratio was 202 

chosen for these experiments. Differences between static/agitated mode and TB/DW 203 

were evaluated. 204 

 205 

Lyophilisation 206 

15 ml of supernatant obtained after centrifugation of the extraction mixture Solid-DW 207 

and Solid-TB were frozen at -80°C and later lyophilized using a Virtis 5L sentry 208 

lyophilizer connected to an Edwards vacuum pump RV5 A653_01_903. The protease 209 

activity was measured in the dissolved lyophilized solid and the activity recovery 210 

calculated. 211 

 212 

Zero waste strategies  213 

 214 

Anaerobic digestion - Biogas Potential Test (BPT) 215 

Biomass fermented for the production of protease was tested as feedstock for biogas 216 

production through anaerobic digestion after extraction. Sludge from an anaerobic 217 
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digester of raw sludge from a municipal WWTP in Sabadell (Barcelona) was used as 218 

inoculum. 219 

The methodology used was a modified method of the protocol described by the 220 

German Institute for Standardization and reported by the Ordinance on environmentally 221 

compatible storage of waste from human settlements (2001), detailed by Ponsá et al. 222 

(2010) Inoculum and biomass from SSF were mixed in a feed to inoculum (F/I) ratio of 223 

0.5 for both residues and placed in hermetic closed bottles. Each sample was tested in 224 

triplicate. The ratio F/I was calculated based on the initial amounts of volatile solids 225 

(VS) of substrate and inoculum. According to Ponsá et al. (2010), this ratio is the 226 

optimum to maximize biogas production. The content of volatile solids in fermented SF, 227 

HS and anaerobic inoculum were measured, obtaining a percentage of 26%, 24%, and 228 

1.5%, respectively. A triplicate with only inoculum was also tested as control and its 229 

biogas production subtracted from the sample tests. 230 

All the bottles were placed in an incubator Memmert In750 working at 37ºC for 231 

21 days. The amount of biogas produced was calculated from the biogas pressure, 232 

measured by an ISE 30A-01-P vacuum switch, temperature and headspace volume. The 233 

bottles were manually agitated before and after measurement, and biogas was 234 

periodically released to avoid overpressure. 235 

Representative measures of methane percentage in the biogas were taken at 236 

different days of incubation. Percentage of methane and carbon dioxide were measured 237 

using a gas chromatograph 5890A with a column 17066_F ParcpackQ (250C), support 238 

100/120, tube 3m 1/8”x 5.5 mm.  Initial oven temperature was 70 °C, final oven 239 

temperature was 120°C, determination time was 8 min, injector temperature was 150 °C 240 

and detector temperature was 180°C. Methane peak was detected at 0.8 minutes. 100 µl 241 

of gas sample were required for the analysis. 242 
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 243 

Composting assays 244 

Solid material after SSF and protease extraction was stabilized in order to test its 245 

suitability as soil organic amendment. Experiments were carried out in 50 L and 4.5 L 246 

working volume reactors (Figure 1), for HS and SF respectively. Both reactors have 247 

been previously described (Sayara et al. 2010; Maulini-Duran et al. 2014). 50 L reactor 248 

was a packet bed type reactor, working in almost-adiabatic conditions and made of 249 

steel. Similar to the 10 L reactor, the cover had two connectors for the outlet air and the 250 

temperature prove, at the bottom of the reactor another connector was placed for the 251 

inlet air and also a faucet for lixiviate leaching. The outlet air was conducted through a 252 

water trap at 4 °C, and oxygen content measured by an electrochemical sensor. 4.5 L 253 

reactor is identical to the 10 L reactor described above but in a smaller size. Composting 254 

process was performed with air supplied under OUR control (Puyuelo et al. 2010), a 255 

control system based in an algorism which assure maximum O2 consumption during the 256 

experiment. Volumetric flow oscillated between 1300 and 200 mL min-1 for HS and 257 

between 1000 and 100 mL min-1 for SF.  258 

In the case of HS, a drying stage was required after extraction for moisture 259 

removal, in order to continue the stabilization. During the drying step, the solid was 260 

disposed in thin layer out of the reactor for 24 hours.  261 

 262 

Analytical methods 263 

 264 

Protease activity determination 265 

Protease activity was determined using an adaptation of the Alef and Nannipieri (1995) 266 

method for activity determination in soil (Abraham et al. 2013). According to the 267 
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methodology, 1 g of soil is mixed in a falcon tube with 5 mL of HCl-Tris buffer pH 8.1, 268 

5 mL of bovine casein salt (2% ) as substrate, covered and incubated for 2 h at 50 °C. 269 

During this time, the protease will break the molecules of casein, releasing peptides and 270 

free amino acids into the media. In this case, 1 g of soil specified in the methodology 271 

was replaced by 1 mL of extract from the SSF and 4 mL of TB were added instead of 5 272 

mL. The conditions for the standard extraction were fixed in a ratio of 1:5 in g of 273 

biomass per mL of HCl-tris buffer pH 8.1, agitation mode and environment 274 

temperature. The extract was centrifuged 10 min at 10000 rpm and the supernatant was 275 

analysed. After the 2 incubation hours, 5 mL of trichloroacetic acid (TCA) (15%) were 276 

added in order to precipitate the non-soluble peptides at this TCA concentration. 1.5 mL 277 

of an alkaline solution and 1 mL of Folin-Ciocalteu reagent (25%) solution were added 278 

to 1 mL of the incubated mixture after centrifugation and then incubated at environment 279 

temperature for 1h, in order to perform a colorimetric determination of the amount of 280 

tyrosine present, using and spectrometer working at 700 nm. L-tyrosine was used as a 281 

standard. So, protease activity was expressed in activity units per gram of dry matter, 282 

being an Activity Unit (U) 1 µg of tyrosine released after 1 hour under incubation 283 

conditions. Calculations were carried out according to Equation 1. 284 

 285 

Protease activity (U g-1DM)	= 
C 15 V  

DM 
                                 (Eq 1) 

 286 

Where C is the concentration of tyrosine expressed as µg of tyrosine per ml in the 15 ml 287 

of solution after incubation, 15 is the transformation factor to obtain the concentration 288 

in 1 ml of extract; V is the volume of solvent used in the extraction (ml) and DM (g) is 289 

the dry matter of fermented solid used in the extraction.  290 

 291 
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Activity recovery calculation 292 

Activity recovery was calculated referring the activity obtained in the extraction at 293 

given conditions as a percentage of the standard extraction according to Equation 2. 294 

 295 

                                                         296 

(Eq 2) 297 

 298 

As the extractions were performed by triplicate, rule of 25% was applied, 299 

discarding the values that differ more than 25% from the average.  300 

 301 

Chemical oxygen demand (COD) 302 

2 mL of the extract obtained for activity determination with DW as solvent were used to 303 

determine COD with a Lange Kit LCK 514 ranging from 100 to 2000 mg O2 L
-1 and 304 

COD measures were taken by a Lange Spectrophotometer DR 3900. 305 

 306 

Dynamic Respirometric Index (DRI) 307 

In this case, respirometric tests were performed on the residues before and after SSF in 308 

order to determine their stability (German Federal Ministry for the Environment, Nature 309 

Conservation and Nuclear Safety, Ordinance on environmentally compatible storage of 310 

waste from human settlements and on biological waste treatment facilities, 2001). 311 

A dynamic respirometer following the method described by Adani et al. (2003) 312 

was used. The experimental device was described by Pognani et al. (2011). According 313 

to Gea et al. (2004) the test was carried out at a constant temperature of 37°C. All the 314 

experiments were performed in triplicate. Cumulative oxygen demand, AT4 (g O2 kg-1 315 

100 x Protease activity (U g-1 DM)  

Standard protease activity (U g-1 DM) 

% Activity recovery =  
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dry matter), and Dynamic Respirometric Indices, DRI24 DRI1hour (g O2 kg-1 dry matter 316 

h-1), were calculated (Mejias et al. 2017, Almeira et al. 2015).  317 

 318 

Routine methods 319 

pH was calculated by soaking 10 g of sample in 50 mL of distilled water. After 30 min, 320 

pH value was measured with a pH meter Crison micro pH 2001. Volatile solids, 321 

moisture content, total organic carbon (TOC), total Kjeldahl nitrogen, (TKN) and 322 

Soluble N-NH4
+ were measured according to TMECC (The U.S. Department of 323 

Agriculture and The U.S. Composting Council, 2001).  324 

TOC (Total Organic Carbon) was determined using an O.I. Analytical Solid 325 

TOC Analyser/Win TOC Solids v3.0, and TKN was measured using a Bloc Digester 6 326 

(with six tubes capacity) (J.P. Selecta S.A., Barcelona, Spain) and a Büchi Distillation 327 

Unit K‐355 (Flawil, CH). 328 

Fat content (HEM-Hexane extractable material) was measured using a standard 329 

Soxhlet method with n-hexane as organic solvent (The U.S. Environmental Protection 330 

Agency, Method 9071B) (The U.S. Department of Agriculture and The U.S. 331 

Composting Council, 2001). 332 

 333 

Statistics 334 

One-way analysis of variance was performed to compare the mean values of activity 335 

recovery obtained under different experimental conditions. Multiple factor regression, 336 

to obtain a linear equation reflecting the influence of each experimental condition in 337 

activity recovery, was calculated using also activity recovery data. Excel 2010 data tools 338 

was used in both calculations 339 

 340 
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Results and Discussion 341 

 342 

Waste characterization 343 

The results of the characterization of raw materials are summarized in Table 1. As in 344 

this work the objective of SSF was the production of protease, nitrogen-rich substrates 345 

were used. Air Filled Porosity (AFP) of the mixture was measured to ensure a good 346 

aeration of the whole mass. Casciatori et al. (2016) operated with a bed porosity of 0.75 347 

in a mixture of sugarcane bagasse and wheat bran using a packet bed bioreactor. 348 

According to Machado de Castro et al. (2016), a high porosity will ensure the oxygen 349 

transport, but the initial value will change through the process due to degradation of the 350 

support. Porosity seemed to be adequate along the experiment, achieving a good 351 

aeration of the whole sample and no heat loss. Biodegradability was evaluated through 352 

the dynamic respirometric assay. As Table 1 shows, mixtures assayed presented 353 

appropriate initial moisture and porosity, as well as a low C/N ratio. The raw material 354 

chosen as a substrate could be a good inducer of the enzyme produced (Gopalan and 355 

Nampoothiri 2016). So, for protease production using a consortium of microorganism, 356 

the substrate should be a nitrogen-rich one, which means a high content in protein. 357 

Compared to other reported wastes used as substrate for protease production like coffee 358 

pulp, corn cobs (Kandasamy et al. 2016), wheat bran (Meena et al. 2013) or Jatropha 359 

curcas seed cake (Thanapimmetha et al. 2012), which presented C/N ratios of 18.9 360 

(Eshetu et al. 2013), 36 (Pan-In and Sukasen 2016), 19.49 and 2.46 (Mishra et al. 2016) 361 

respectively, HS and SF present a high content of proteins (nitrogen). Comparing the 362 

reported values of protease production in the mentioned examples, and after 363 

optimization of the experimental conditions in all cases, maximum production 364 

correspond to Jatropha curcas, with a range of production near to 1500 U mL-1, which 365 
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was the residue that presented lowest C/N ratio, while the range of production for wheat 366 

bran and the mixture of coffee pulp and corn cobs were 920 U mL-1 and 582 U mL-1 
367 

respectively. Although wheat bran presents also a high production value, enrichment 368 

with peptone was carried out previously to the SSF process and only Jatropha curcas 369 

was specifically chosen for its high N content, according to the authors.  In the present 370 

work, a high protease production was obtained, compared with the examples above, 371 

without any enrichment of the initial mixture, as C/N ratio was already adequate. 372 

Material was also biodegradable, as the respirometric values show (Table 4).   373 

 374 

SSF process evolution in 10 L reactors 375 

Figures 2a and 2b show an example of temperature and DRI 1hour (g O2 kg-1 DM h-1) 376 

profiles obtained in the fermentation process of HS and SF, respectively. The highest 377 

protease activity for HS was always observed in the mesophilic phase after 8 days of 378 

process, while SF protease activity presented its maximum at thermophilic temperatures 379 

after 5 days of fermentation. Maximum activity point was determined in previous 380 

experiments by sampling the reactors periodically and determining the protease activity 381 

for both mixtures. Abraham et al. (2013) found that maximum activity for SF was 382 

observed at the 3rd day for a mixture equal to the one used in this work. For this residue, 383 

maximum biological activity concurred with maximum enzymatic activity. On the other 384 

hand, Abraham et al. (2017) found the highest activity value for a mixture of cow hair 385 

and digested sludge at the 14th day of fermentation. For the mixture used in this work, 386 

the highest value for protease activity was found in the 8th day of fermentation 387 

approximately. Difference with Abraham results can be due to the different inoculum, 388 

as in this work fresh sludge was used. Abu Yazid et al. (2016) characterized the 389 

protease obtained from solid state fermentation of hair and anaerobic sludge 390 
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determining that the alkaline protease was a serine type in the range between 26 and 100 391 

KDa, and exhibit good stability in a temperature range of 30-50 °C and alkaline pH.  In 392 

literature shorter optimum fermentation times are found for protease production through 393 

solid-state fermentation. Kandasamy et al. (2016) found maximum yield of protease 394 

production after 60 h of fermentation, using coffee pulp and corncob as a substrate 395 

inoculating with Bacillus sp. BT MASC 3, Pouryafar et al. (2015) determined an 396 

optimum incubation time of 48 h using wheat bran as substrate with Bacillus 397 

licheniformis. However, in the literature consulted, the SSF process was usually 398 

interrupted after a fixed time, without taking into account the biological activity. So it is 399 

difficult to determine if the maximum production occurred at this time, because no 400 

information about the complete production curve is presented. Also, the highest amount 401 

of solid used in the references found was 25 g. In consequence, temperature control and 402 

oxygen availability was not a limitation of the process. In the present work, SSF was 403 

performed at a pilot scale and this approach requires a complete monitoring of the 404 

process, which makes that highest protease activity is obtained at different times. Thus, 405 

the direct comparison is not possible. High values of DRI 1hour were maintained longer 406 

in the case of SF, which indicates a higher content of rapidly biodegradable material. 407 

These data are in agreement with previous results obtained by Abraham et al. (2013, 408 

2017). The range of protease activity obtained on this work was 6668 to 23541 U g-1 409 

DM for HS and 8054 to 33374 U g-1 DM for SF. For both residues, pH reached values 410 

between 8.0 and 8.8 during the thermophilic phase, and remained in this range until the 411 

end of the process.  412 

 413 

Protease activity recovery 414 
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Factors influencing enzyme extraction from the solid matrix at the point of maximum 415 

protease activity during SSF were evaluated for the two wastes under study. As stated 416 

above, these factors include solvent type, waste: solvent w: v ratio and operation mode 417 

(static, with agitation and recirculation). Table 2 shows the mean and standard deviation 418 

of the protease activity recovery achieved during extraction under the conditions listed 419 

on the same table. Extractions were performed a minimum of three times for each set of 420 

parameters and each residue in agitated and static mode. A duplicate of the extractions 421 

was performed in recirculated mode due to experimental constraints.  422 

Maximum activity recovery of 91 ± 8 % for SF was achieved in agitated mode at 423 

1:4 using DW as solvent while a maximum recovery of 121 ± 22% was obtained with 424 

the same extraction conditions for HS. 425 

The lowest value of activity recovery for SF was obtained at 1:1 w: v with DW 426 

as a solvent and agitated regime. HS presented its minimum at 1:3 w: v extracted with 427 

TB and Static mode.  428 

Regarding the mean values of activity recovery of SF, agitated mode presents 429 

approximately 10% more efficiency than static mode. These values represent a higher 430 

recovery in static mode than the results presented by Mrudula and Kokila (2010) for the 431 

extraction of amylase from fermented bran (also a fibrous residue), where a 40% less 432 

recovery in static mode than in agitated mode was reported. However, the difference is 433 

greater for HS residue, which reached 40% difference between agitated and static mode. 434 

 435 

Solvent type 436 

One factor variance analysis was performed comparing the obtained yields between 437 

experiments differing in one extraction parameter. Results showed, for SF and HS, no 438 

significant difference between recoveries using DW or TB as extractant. Protein 439 
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solubility depends mostly on polar interactions between the molecules and the solvent, 440 

in some proteins, pH solubility profile presents a minimum value in the isoelectric 441 

region, the value of which depends on the structure of the protein (Hu et al. 2017). 442 

According to Vuong et al. (2016) salt concentration can also affect solubility, either 443 

negatively or positively, as can remove hydrate layers around protein molecules. In this 444 

work, both DW and TB are polar solvents than can be adequate for protease extraction, 445 

but with different initial pH and salinity. However, certain pH can cause deactivation. 446 

Freitas et al. (2013) reported denaturalization of protease from SSF of canola cake at pH 447 

4, so low pH should be avoided.  Table 3 show values of pH and conductivity measured 448 

in several extracts. As it can be observed, pH for DW and TB extracts presents similar 449 

results with a maximum pH of 9 and a minimum value of 8.3. Thus, no buffering 450 

properties were needed in the extraction agent to maintain an optimal pH value. pH 451 

achieved is due to the solubilisation of salts and other compounds contained in the solid 452 

matrix, which rise the pH of DW extracts. Differences between both wastes are 453 

reflected in conductivity values, where TB presents higher values due to the Tris salt. 454 

As the extraction ratio decrease, conductivity increase due to higher concentration in 455 

soluble salts from the matrix. During the SSF of SF and HS, proteases were produced 456 

when pH values reached the range of 8-9, thus, these enzymes are expected to be stable 457 

under pH extraction conditions presented in Table 3. 458 

According to literature, DW is often used for enzyme extraction with good 459 

yields (Pal and Khanum 2010, Zaslona and Trusek-Howolnia 2015). Karatas et al. 460 

(2013) compared different solvents for the extraction of proteases and α-amylase from 461 

fermented rice husk, showing tap water the best recovery yield for both enzymes over 462 

HCl-Tris buffer pH 7 and distilled water. In this case, distilled water showed almost 463 

50% less recovery than the buffer. On the other hand, Negi et al. (2011) found as the 464 
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best solvent for extraction of protease and glucoamylase from wheat bran a solution 465 

containing 10% of glycerol, other solvents assayed were water, ethanol, acetone and 466 

HCl-Tris buffer pH 6.5. Freitas et al. (2013) found that the ideal pH for protease 467 

recovery from fermented canola cake was 7, although they achieved good recoveries at 468 

a range from 5 to 8. 469 

According to the results of this work, a solvent which a pH lower than 8.1 470 

should be used, as recovery yield using distilled water was higher, having an initial pH 471 

lower than TB. However, optimum solvent will vary depending on the substrate and the 472 

characteristics of the enzyme produced (Rezaei et al. 2011) 473 

 474 

Extraction mode 475 

Three different extraction modes were assayed for protease extraction: static extraction 476 

(no agitation), orbital agitation, and recirculation of the solvent at two different 477 

extraction ratios, 1:2 w: v and 1:4 w: v, using a flow of 96 mL/min, which produces 14 478 

times recirculation of the whole volume for 1:2 extractions and 7.2 for 1:4 extractions, 479 

due to the doubled extracting volume. Results for both residues are shown in Table 2.  480 

One factor variance test was performed for 1:4 and 1:2 w: v experiments for 481 

both residues. Activity recovery for SF in agitated and static mode was considered 482 

statistically equal in all cases. However, for recirculation mode, differences with 483 

agitated mode were found for 1:4 w: v TB.  484 

Sugumaran and Ponnusami (2017) studied the effect of agitation speed in the 485 

extraction of pullulan, a polysaccharide, from two fibrous substrates, cassava bagasse 486 

and palm kernel, reporting increment of 42% and 46% of the recovery obtained at 100 487 

rpm when increasing the agitation speed to 400 rpm and 300 rpm for casaba bagasse 488 

and palm kernel respectively. This difference in recovery depending agitation mode 489 
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does not agree with the results found in this work. Also, extractions of xylanase from 490 

sorghum straw performed by Adhyaru et al. (2016) showed that in this case 491 

intermedium agitation speed was the optimum and also that interaction between other 492 

extraction parameters like temperature and ration solvent-solid were significant. 493 

SF presents very small particle size and once in contact with the solvent losses 494 

its structure allowing good contact solid-solvent. Verdanega et al. (2010) also reported 495 

no influence of the agitation speed in lipase recovery from soybean meal within a range 496 

of 50-150 rpm.   497 

When comparing results obtained for HS through one factor variance test, 498 

significant differences are shown in all cases between agitated mode and static 499 

extraction mode. Explanation for these differences is related to the nature of the residue. 500 

Sludge used in HS contains chemical compounds added at the WWTP to produce the 501 

flocculation of the solids and their sedimentation. Nabarlatz et al. (2012) compared 502 

extraction of protease and lipase from two WWTP sludge using stirring and ultra-503 

sonication, obtaining much better results in almost half of the extraction time for the 504 

second strategy. This shows that the presence of flocks, formed by the chemicals added 505 

to produce the clumping of the solids during water treatment, causes poor contact 506 

liquid-solid.  507 

Values of COD for SF and HS extracts, obtained under the same experimental 508 

conditions were 7525 and 3280 mg L-1 respectively, which indicates a higher 509 

solubilisation of SF material than HS. 510 

 511 

Volume-weight (solvent-waste) ratio 512 

 513 
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Results of one factor variance test of experiments differing from extraction ratio w: v 514 

showed, for SF, no statistical difference between extractions performed at 1:3 and 1:4 515 

w: v. However, in some cases, significant differences were found between 1:4 and 1:2 516 

w:v extractions and even more significant with 1:1 w:v. When the test was performed 517 

for HS results, there was no difference between recovery at different extraction ratios or 518 

difference appear between 1:4 and 1:3 extraction but not between 1:4 and 1:2 ratios.  519 

According to those facts, solubility of protease from SF seems to be high and 520 

related to the equilibrium between concentration of protease in the solid matrix and the 521 

solvent. In the literature, a direct relation between enzyme activity and w: v ratio is 522 

documented. For instance, Adhyaru et al. (2016) assessed the recovery of xylanase from 523 

sorghum straw at different ratios from 8 to 16 mL g-1 of substrate, locating the 524 

maximum recovery at 12.41 mL g-1 (5069.20 U g-1) when the rest of extraction 525 

parameters had been optimized. Although almost all of the studies performed on this 526 

issue confirm a direct relationship between w:v ratio and activity (Vardanega et al. 527 

2010), the opposite result was reported by Volken et al. (2008) who found a negative 528 

effect of the increase of extraction volume during the extraction of transglutaminase 529 

from  industrial fibrous soy residue. Anyway, it must be pointed that although recovery 530 

achieved at higher ratios can be almost total, the obtained extract will present lower 531 

enzyme concentration, requiring extra processes for protease concentration or more 532 

energy during lyophilisation. This fact is not taken into account in most of the works 533 

performed at laboratory scale that do not consider further downstream stages. 534 

Linear regression using Excel software was applied to data from Table 2. 535 

Assignation  of values to the different extraction parameters in order to perform the 536 

linear regression, as only numbers can be adjusted, was as follow: values of 1 and -1 to 537 

static and agitated mode and also to DW and TB respectively, values of 1, 2, 3, and 4 to 538 
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extraction ratios of 1:1, 1:2, 1:3 and 1:4, respectively. Recirculation mode results were 539 

excluded from calculations, since experiments in this agitation regime were not 540 

performed with all ratios. Extraction parameters where designated as follow, S for 541 

solvent type, EM for extraction mode, and RA for ratio of extraction w: v. The results 542 

obtained are displayed below for SF (equation 3) and HS (equation 4). 543 

 544 

% Activity recovery = 48.9 + 1.7(S) -3.4 (EM) + 9.6 (RA)     (R2 = 0.81) (Eq 3) 545 

% Activity recovery = 51.3+ 5.2(S) -18.3(EM) + 9.0 (RA)     (R2 = 0.82) (Eq 4) 546 

 547 

As observed, there is a correlation between the different results, as regression 548 

coefficients are 0.81 and 0.82, considered high for experimental values. 549 

SF regression shows the highest coefficient for RA, which means that extraction 550 

ratio has the greater influence in the extraction of protease. However, for HS, the 551 

parameter that presents more relevance is the extraction mode. In both cases, it is clear 552 

that agitated mode will produce the maximum recovery yield. 553 

To sum up, the facts that can be deduced from those equations agree with the 554 

results obtained by one factor variance test, indicating that extraction yield will increase 555 

with extraction ratio for SF with little dependence on the agitation mode. When 556 

proteases are extracted from HS, agitation must be applied to achieve maximum activity 557 

recovery, but a lower extraction ratio is allowed. 558 

 559 

Number of extraction stages 560 

Consecutive extractions were carried out for HS and SF using DW and TB in a ratio of 561 

1:2 w: v with agitation and in static mode. Figure 3 a) and b) shows the percentage of 562 

activity recovery for the consecutive extractions performed on 200 g of fermented solid. 563 
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As it can be seen for both residues, approximately the 80% of the total activity 564 

recovered is extracted during first and second extraction, leaving a small amount of 565 

protease in the solid matrix. For both residues, the final percentage of activity recovery 566 

is higher for agitated regime. Regarding the total activity recovery after two consecutive 567 

extractions, it is possible to conclude that with 1:5 extraction ratio in agitated mode and 568 

TB as solvent, practically a 100% recovery of the protease contained in the solid matrix 569 

for both residues can be achieved.  570 

Ahmed and Mostafa (2013) reported a recovery of 98% of exo-571 

polygalacturonase produced by solid state fermentation of orange bagasse under 572 

optimum leaching conditions after three washes. However, 70% of the enzyme was 573 

extracted with the first wash. Also, Abd el Aty and Mostafa (2015) Extracted α-amylase 574 

from pre-treated and fermented potato shells with six consecutive washes at the 575 

optimum extraction parameters, achieving a recovery of 90.3% at the forth one. In this 576 

case, recovery in the first and second extraction was very similar, approximately a 35%.  577 

Comparing the results obtained for protease, activity recovery yield was higher in both 578 

SF and HS. In view of these results it seems that efficiency recovery of successive 579 

extraction stages may be related to the type of enzyme and specifically studied in 580 

economic terms. 581 

 582 

Lyophilisation process 583 

15 ml of fresh extract were lyophilised and the remaining solid powder dissolved in DW 584 

to its original volume. The activity of that solution was measured and compared to the 585 

fresh extract to determine the activity recovery of the lyophilisation process. The 586 

process was performed by duplicate. Lyophilisation resulted in high yields of activity 587 

recovery, for SF, 95 ± 4 % was recovered as a mean value and 96 ± 6 % for HS extracts. 588 
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No relation between extraction parameters and activity conservation was observed, as 589 

samples of each set of extraction parameters were assayed. Minimum activity recovered 590 

was 87 ± 3 for HS and 88% for SF. Abu Yazid et al. (2016) reported an activity loss of 591 

21% after lyophilisation of protease extract obtained also from the fermentation of hair 592 

and sludge. During freezing and drying, protein can suffer denaturation, losing its 593 

activity. Bonds between water molecules disappear during drying process, but some 594 

components present the ability to stabilize the protein structure and preserve activity 595 

(Mensink et al. 2017). The same protein in a different matrix can lead to different 596 

activity preservation. Activity losses have been reported by Imamura et al. (2014) for 597 

different proteins after drying in sodium and potassium phosphate buffer. The highest 598 

recovery with no salts addition reached 31%. Thus, lyophilisation in this case results in 599 

low activity losses compared to the results reported, and a possible explanation can be 600 

that no unfolding of the protein is happening during lyophilisation. 601 

 602 

Protein hydrolysis by SSF produced protease 603 

Abu Yazid et al. (2017) described the immobilisation of protease, obtained from the 604 

same residues used in this work, onto functionalized magnetic iron oxide nanoparticles 605 

through covalent binding method, obtaining a retention yield of 96%. Abu Yazid et al. 606 

(2017) also used the immobilized enzymes during at least three cycles for protein 607 

hydrolysis with no loss of activity. With an initial protein amount of 5.2 mg from 608 

casein, the degree of protein hydrolysis achieved was 75% and 50% of the initial 609 

amount of protein for enzymes produced by HS and SF respectively.   610 

According to those results, for a 50 L reactor of fermented HS and SF (17.5 kg 611 

and 20 kg respectively), obtaining the maximum activity achieved in this work, 23541 612 

U DM-1 for HS and 33374 U DM -1 for SF, it would be possible to hydrolyse 156.6 mg 613 
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and 238.3 mg of protein from casein bovine with the recovered protease from HS and 614 

SF respectively. For this calculation the immobilized enzyme would be used during 6 615 

cycles, in which initial activity does not diminish until the fourth cycle. Jin et al. (2010), 616 

reported hydrolysation of 2.1 mg of protein from rapeseed meals in one cycle using 1 617 

mL of immobilised protease on ferric nanoparticles solution (8.50 mg/mL), during two 618 

hours incubation at 50°C. Hydrolysis yield in this case was lower (9.86%) compared to 619 

the one reported by Abu Yazid et al. (2017) (75% and 50%). Comparing activity to 620 

commercial products, neutral protease for beer brewing (Food grade) provided by 621 

Creative Enzymes (Creative enzymes) was taken as example. The mentioned product 622 

activity, as manufacturing specifications says is 70000 U/g, being a unit the amount of 623 

enzyme that hydrolyses casein to get 1 µg of tyrosine in 1 min. at 30°C and pH 7.5. Abu 624 

Yazid et al. (2017) was capable of immobilize 45.9 U / mg of ferric nanoparticles (NP) 625 

for HS and 31.9 U / mg nanoparticles (NP) for SF, being a unit (U) the amount of 626 

enzyme that hydrolyses casein to get 1 µg of tyrosine in 1 min. at 50°C and pH 8.1,  The 627 

resulted product described by Abu Yazid et al. (2017) will have an activity of 45900 U / 628 

g NP, and being reusable during at least 3 cycles without activity loss,  resulted in a 629 

much better yield that the commercial one. 630 

 631 

Zero waste strategies  632 

As described above, the solid residue obtained after extraction was tested as feedstock 633 

for biogas and soil organic amendment production in the framework of a zero waste 634 

strategy. 635 

 636 

Anaerobic digestion 637 
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Biogas potential tests were undertaken to determine the suitability of anaerobic 638 

digestion to treat the solid waste after enzyme extraction. After 21 days, SF replicates 639 

produced 365, 304 and 273 mL of biogas g-1 VS with a content of approximately 43% 640 

of methane. During the same period of time, HS produced 132 and 111 mL biogas g-1 641 

VS, with both presenting 40% of methane content. Biogas production in this case was 642 

significantly lower than for SF. This result was expected since HS fermentation lasted 6 643 

more days than SF, so HS was more biodegraded at the point of maximum protease 644 

production and extraction. 645 

Kafle et al. (2013) reported biogas potential of different agricultural and animal 646 

wastes like apple waste, bread waste or cutlet fish waste. The values reported ranged 647 

from 508 to 617 biogas mL g-1 VS, significantly higher than the values reported in this 648 

study, since SF and HS were already partially degraded. Values reported by Ponsá et al. 649 

(2011) of biogas production for organic fraction of municipal solid waste with no 650 

mechanical pre-treatment (340 mL g-1 DM) and for municipal solid waste with 651 

mechanical pre-treatment (133 mL g-1 DM) are in the range of SF and HS biogas 652 

production values obtained in the present study. No values of biogas production were 653 

found in literature regarding SF and HS before and after SSF and extraction, Merlino et 654 

al. (2012) reported a production approximately of 590 Nm3 t-1 VS of broken soybean 655 

after 35 days of digestion at 40 °C, with a methane content of approximately a 55%. 656 

That data is barely comparable to biogas production of SF since SF was already a 657 

fermented material and a part of SF volatile solids were lignocellulosic, non-658 

biodegradable material. 659 

 660 

Composting process 661 
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The stabilization of the solid waste after enzyme extraction under aerobic conditions 662 

was also tested. Composting was evaluated as a valorisation technology to obtain an 663 

organic soil amendment. 664 

HS required a drying stage after enzyme extraction and before composting, in 665 

order to decrease its moisture content from 74% to 62%. Before drying, no biological 666 

activity was occurring despite the aeration provided. According to Chen et al. (2012), 667 

excessive water content can hamper the oxygen transfer. 668 

For HS, temperatures up to 55ºC, required for sanitation were not reached during 669 

composting. This is probably due to the amount of waste in the reactor (17 kg) 670 

compared to industrial scale quantities to which EU regulations apply (European 671 

Commission, Working document, Biological treatment of Biowaste 2nd draft, 2001). 672 

Abu Yazid et al. (2016) also composted a mixture of hair and anaerobic digested sludge 673 

after fermentation and extraction of protease at a 10 L scale for approximately 30 days 674 

without reaching thermophilic temperatures. Onyuka et al. (2013) composted a mixture 675 

of cow hair and soil achieving maximum temperature of 51 °C at a scale of 2 L. In an 676 

industrial scale, it would be expected to reach the required temperature for sanitation, as 677 

heat gradient will increase as scale does (Ge et al. 2017). Table 4 shows DRI24 values of 678 

2.0 ± 0.1 and 0.61 ± 0.05 for initial mixture of HS after SSF and composted product 679 

respectively, indicating that the material becomes stable after composting. This stage 680 

lasted 5 days for HS. 681 

In the case of SF, SSF experiments were stopped for enzyme extraction at the 3rd 682 

and 5th day of process, showing values of average oxygen uptake rate during the last 24 683 

hours (OUR24) of 3, 4.5, 9 g O2 kg -1 DM h-1 in thermophilic range. Thus, SF was 684 

clearly a non-stable material at this stage of the process. 685 
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Composting of SF after SSF and enzyme extraction was carried out in 4.5 L 686 

reactors in duplicate. Both replicates showed an increase of temperature and oxygen 687 

consumption during the first 24h, followed by a fast decrease to environment 688 

temperature. The maximum temperature values reached were 34°C and 42°C 689 

respectively, and maximum OUR24 values around 5 g O2 kg-1 DM h-1, but never 690 

reaching the thermophilic range again.  691 

After 9 days of composting process, the residue could not be considered stable 692 

as it presented a DRI24 value of 2.1 ± 0.4 g O2 kg-1 DM h-1 and AT4 value of 146 ± 27 g 693 

O2 kg-1 DM. A longer composting process will be needed, since the decrease of 694 

biological activity is slow. 695 

According to Barrena et al. (2009), aerobic and anaerobic indices are closely 696 

related. Values reported for the ratio between DRI24 and biogas production in liquid 697 

condition and between AT4 and biogas production at the same condition for different 698 

wastes were 86 and 1.56 respectively. The same ratios were calculated using the values 699 

obtained in this study, giving values of 84 and 1.56 respectively. These numbers agree 700 

with the parameters reported by Barrena et al. (2009). 701 

 702 

Conclusions 703 

In this work a complete assessment of the downstream of SSF processes for the 704 

production of proteases has been performed (Figure 4). Yields of activity recovery in 705 

protease extraction and lyophilisation stages, under a wide variety of conditions, were 706 

calculated. According to the results, extraction ratio of 1:3 for SF is recommended and 707 

agitation mode at extraction ratio 1:2 would be the adequate conditions for HS. 708 

Consecutive extractions in static mode seem an efficient way of obtaining also a good 709 

yield, with no agitation but double extraction time. Economical balance between 710 
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profitability of the recovered product and water/energy consumption should be 711 

performed. Lyophilisation provides a high activity recovery, around 95% as an average. 712 

It was also observed that as the solubility of the solid matrix increases, the ratio waste: 713 

solvent w: v becomes the most determining factor in the activity recovery yield, while 714 

agitation mode is the key factor when solubility decrease. 715 

After enzyme extraction, the use of SF and HS as feedstock for anaerobic 716 

digestion reported relatively high biogas production. Also, HS and SF could be treated 717 

throw composting obtaining a stable product. 718 
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Figure captions 

 

Figure 1. a) 4.5 L and 10 L reactors, b) 50 L reactor 

1: 4.5 L and 10 L reactor; 2: 4.5 L and 10 L reactor inside; 3: Mass-flowmeter; 4: 

Temperature probe; 5: Water trap; 6: O2 Electrochemical sensor. 7: 50 L reactor; 8: 50 L 

reactor inside  

 

Figure 2. Temperature (lines) and DRI 1 hour (short-short) profiles obtained in SSF 

processes a) HS fermentation, b) SF fermentation. 

DRI 1h: Dynamic Respirometric Index 1 hour average value 

 

Figure 3. Percentage of activity recovery obtained in consecutive extractions of 200 g of 

fermented solid at 1:2 w: v ratio a) HS b) SF. 

HS: Hair and Sludge; SF: soy fibre; TB: HCl-Tris Buffer (pH = 8.10); DW: Distilled 

water 

 

Figure 4. Downstream summary. 

DRI 1h: Dynamic Respirometric Index 1 hour average value; AT4: Cumulative Oxygen 

Consumption during 4 days; HS: Hair and Sludge; SF: soy fibre; TB: HCl-Tris Buffer 

(pH = 8.10); DW: Distilled water; VS: Volatile Solids   
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Table 1: Characterization of wastes and mixtures used as substrates in SSF 

 

 

wb: wet basis. db: dry basis; n.a.: not available; HEM: Hexane extractable material. 

HS: Hair waste:sludge (1:2, w.w) and wood chips (1:1, v:v); SF: Soy fibre and wood chips 

(1:1, v:v). 

Values are the average of independent experiments and its standard deviation. 

 

Parameters Hair waste Sludge HS SF 

Moisture (%, wb) 67 ± 8 75 ± 2 62.3 ± 0.8 67 ± 8 

Organic matter (%, db) 86 ± 1 67 89 ± 1 96 ± 3 

pH 9.9 ± 0.8 7.8 ± 0.4 7.6 ± 0.3 6 ± 2 

EC (mS cm-1) 4.5 ± 0.8 2.3 ± 0.9 3 ± 1 0.9 ± 0.2 

Total organic carbon (%, db) 51 ± 9 n.a. 64 ± 3 69 ± 3 

Total Kjeldahl Nitrogen (%, 

db) 

10 ± 4 16 7.3 ± 0.5 4.9 ± 0.6 

C/N ratio 6  ± 1 3 7.1 ± 0.8 14 ± 1 

Fat content – HEM (%, db) 0.9 ± 0.3 n.a. n.a. 6 ± 2 

Air filled porosity (%) n.a. n.a. 77 ± 4 74 
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Table 2: Summary of extraction experiments for fermented soy fibre (SF) and fermented cow hair and sludge (HS) (Extraction time: 1h) 

 

% Activity recovery Extraction parameters 
SF 

Mean 
SF 

St deviation 
HS 

Mean 
HS 

St deviation 
Solvent 

(S) 
Extraction mode 

(EM) 
Ratio W:V 

(RA) 
53 9 71 5 DW  Agitated  1:1 
54 10 66 3 TB Agitated  1:1 
55 4 49 8 DW  Static 1:1 
55 9 52 4 TB Static 1:1 
83 18 99 16 DW  Agitated  1:2 
70 6 93 19 TB Agitated  1:2 
73 12 49 3 DW  Static 1:2 
65 8 50 6 TB Static 1:2 
63 6 71 8 DW  Recirculated 1:2 
71 2 58 8 TB Recirculated 1:2 
88 20 114 18 DW  Agitated  1:3 
85 3 72 9 TB Agitated  1:3 
74 3 62 2 DW  Static 1:3 
78 22 44 6 TB Static 1:3 
91 8 121 22 DW  Agitated  1:4 
86 3 99 23 TB Agitated  1:4 
79 8 66 11 DW  Static 1:4 
77 7 72 3 TB Static 1:4 
76 19 93 21 DW  Recirculated 1:4 
72 1 56 12 TB Recirculated 1:4 

DW: Distilled water, TB: HCl – Tris buffer (pH = 8.10), EM: Extraction mode, S: Solvent type, RA:Ratio of extraction w:v 
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Table 3: pH and conductivity of the extracts 

SF (Fermented Soy Fibre) HS (Fermented Hair + Sludge) 

S EM RA pH 
Conductivity 

(mS/cm) S EM RA pH 
Conductivity 

(mS/cm) 
DW Agitated 1:1 8.9 6.9 DW Agitated 1:1 8.7 11.46 
DW Agitated 1:2 8.9 4.7 DW Agitated 1:2 8.83 7.77 
DW Agitated 1:3 8.9 3.2 DW Agitated 1:3 8.78 5.83 
DW Agitated 1:4 9.0 2.9 DW Agitated 1:4 8.77 4.76 
DW Static 1:1 8.5 2.4 DW Static 1:1 8.79 10.16 
DW Static 1:2 8.7 3.0 DW Static 1:2 8.82 5.99 
DW Static 1:3 8.7 3.5 DW Static 1:3 8.81 4.34 
DW Static 1:4 8.6 2.7 DW Static 1:4 8.85 4.32 
TB Agitated 1:1 8.6 ± 0.2 7.5  ± 0.5 TB Agitated 1:1 8.69 12.04 
TB Agitated 1:2 8.5  ± 0.1 6.1  ± 0.7 TB Agitated 1:2 8.6 8.76 

TB Agitated 1:3 
8.5  ± 
0.04 5.2  ± 0.2 TB Agitated 1:3 8.5 7.09 

TB Agitated 1:4 8.4  ±0.04 4.7  ± 0.4 TB Agitated 1:4 8.51 6.67 
TB Static 1:1 8.58 12.55 
TB Static 1:2 8.54 8.35 
TB Static 1:3 8.37 5.83 
TB Static 1:4 8.31 5.09 

DW (distilled water): pH: 7.81, Conductivity: 1.86 (mS/cm); TB (HCl – Tris buffer: pH: 8.1, Conductivity: 2.48 (mS/cm) 
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Table 4. Results of respirometric assays. Final SSF values are initial composting values. 

 

 

 

 

AT4: Accumulated O2 consumption after 4 days; DRI24: dynamic respirometric index based on 24 hours of maximum O2 consumption. 

Values are the average of independent experiments. 

 

 

 

 

 

 

 

 

 

 Solid State Fermentation Composting 

Residue 
Initial AT4  

(g O2 kg -1 DM) 

Final AT4   

(g O2 kg -1  DM) 

Initial  DRI24 

(g O2 kg-1 DM  h-1) 

Final DRI24  

(g O2 kg-1 DM  h-1) 

Final AT4  

(g O2 kg -1  DM) 

Final DRI24  

(g O2 kg-1  DM h-1) 

SF 326 ± 98  185 ± 48 5 ± 2  3 ± 1  146 ± 27 2.1 ± 0.4 

HS 113 ± 11 61 ± 6  2.0 ± 0.1 1.0 ± 0.1  48 ± 4 0.61 ± 0.05 
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Figure 2 
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Figure 3 
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Figure 4 

 

 

 

 

 


