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Abstract 

 

Different types of biomass are being examined for their optimum hydrogen production 

potentials and actual hydrogen yields in different experimental set-ups and through different 

chemical synthetic routes.  In this review, the observations emanating from research findings 

on the assessment of hydrogen synthesis kinetics during fermentation and gasification of 

different types of biomass substrates have been concisely surveyed from selected publications.  

This review revisits the recent progress reported in biomass-based hydrogen synthesis in the 
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associated disciplines of microbial cell immobilization, bioreactor design and analysis, 

ultrasound-assisted, microwave-assisted and ionic liquid-assisted biomass pretreatments, 

development of new microbial strains, integrated production schemes, applications of 

nanocatalysis, subcritical and supercritical water processing, use of algae-based substrates and 

lastly inhibitor detoxification.  The main observations from this review are that cell 

immobilization assists in optimizing the biomass fermentation performance by enhancing bead 

size, providing for adequate cell loading and improving mass transfer; there are novel and more 

potent bacterial and fungal strains which improve the fermentation process and impact on 

hydrogen yields positively; application of microwave irradiation and sonication and the use of 

ionic liquids in biomass pretreatment bring about enhanced delignification, and that 

supercritical water biomass processing and dosing with metal-based nanoparticles also assist in 

enhancing the kinetics of hydrogen synthesis.  The research areas discussed in this work and 

their respective impacts on hydrogen synthesis from biomass are arguably standalone.  Thence, 

further work is still required to explore the possibilities and techno-economic implications of 

combining these areas for developing robust and integrated biomass-to-hydrogen synthetic 

schemes.  

 

Key words: biomass; hydrogen; green chemistry; novel microbial strains; immobilization; 

nanocatalysis 

 

1. Introduction 

 

The increasing need for clean energy generation and its usage have both mobilized considerable 

research efforts in exploring the integration of key green chemistry and green engineering 

principles for the comprehensive assessment of the biomass types in their respective potential 

to yield hydrogen (Çelik and Yıldız, 2017).  Hydrogen generation by fermentative routes using 

biomass has several key advantages.  The main advantages are that there are no greenhouse 

gas emissions and there is a high potential to reuse wastes biomass as renewable feedstocks.  

Therefore, the switch to a future hydrogen fuel biotechnology regime holds a good share of 

promise.  A quick survey of the available literature will show that there are very many different 

types of original research works and reviews that have been reported on biomass utilization for 

hydrogen production, and which have provided useful information on the diverse technical, 

biochemical, mechanistic, economic and energy-related considerations (Dasgupta et al., 2010; 

Mattos et al., 2012; Lin et al., 2012; Christopher and Dimitrios, 2012; Ghimire et al., 2015; Azwar 

et al. 2014; Parthasarathy and Narayanan, 2014; Trchounian, 2015; Lee, 2016; Sivagurunathan 

et al., 2016; ; Elbeshbishy et al., 2017;  Rezania et al., 2017; Boodhun et al., 2017; Liu et al., 
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2018).  In this review, we discuss some recent trends in research on hydrogen production from 

various biomass types specifically in relation to reaction environments where (i) different 

microbial cell immobilization techniques and bioreactor configurations have been assessed, (ii) 

different biomass pretreatment routes involving microwave waves, ultrasound waves and ionic 

liquid have been assessed, (iii) novel microbial strains have been developed, (iv) applications of 

metal-based nanocatalysis have been made, (v) subcritical and supercritical water processing 

conditions have been tested for biomass gasification, and (vi) finally, where different inhibitor 

detoxification options have been studied.   

 

 

2. Cell immobilization 

 

Hydrogen synthesis using continuous systems based on the suspended cells design 

configuration have also been gaining attention, but have unfortunately been found to fail in 

certain circumstance because of process limitations emanating from short hydraulic retention 

times and cell wash-out (Zhao et al., 2017; Chandolias et al., 2016; Yeshanew et al., 2016; 

Zagrodnik et al., 2015; Mohammadi et al., 2014).  To address these biomass-based hydrogen 

production technical issues, many useful immobilization strategies have been therefore 

formulated.  Cell immobilization, which can be broadly classified as natural immobilization and 

artificial immobilization, ensures that larger concentrations of biomass are utilized and as a 

result the reactor sizing requirements decrease and processes can be run over longer durations 

(Sagir et al., 2017b).   Indeed, many of the most commonly used biocell immobilization 

techniques have significantly improved hydrogen generation rates (Zhang et al., 2017a)  and 

enhanced the overall process yields and equally brought useful insights into how to tackle 

issues related to reaching stable hydrogen operational modes (Mohan et al., 2008) and 

production schemes.  

 

The main cell immobilization techniques which have been assessed and have brought net 

positive contributions to enhance the biomass-based hydrogen generation kinetics are 

adsorption-based and attachment type immobilizations (Basile et al., 2010; Wu et al., 2012; 

Reungsang et al., 2013), encapsulation-based immobilization (Sekoai et al., 2018; ), polymer-

based immobilization (Ismail et al., 2011), and immobilization on nanoparticles (Shuttleworth 

et al., 2014; Seelert et al., 2015).  These techniques have been widely studied and a number of 

attempts have been reasonably successful in optimizing the overall performance with respect to 

the process and design parameters namely bead size and cell loading, mass transfer coefficient, 

pH and immobilized biomass ratio (Kao et al., 2016), support materials, types of 
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microorganisms immobilized, supplements, temperature (Satar et al., 2017), the bioavailability 

of organic portions of the biomass, and in exploring the possibility to integrate the synergistic 

influence of co-immobilization and using nanoparticles.  Kerčmar and Pintar (2017) have 

demonstrated that the type of support material has a pivotal influence on the properties and 

behaviour of the attached biomass during anaerobic processes.  Salem et al. (2017) have 

reported that amendment with hematite nanoparticles had improved the hydrogen production 

rate from 3.87 L hydrogen/L.d to 5.9 L hydrogen/L.d when hydrogen generation from a sucrose 

wastewater was investigated.  Nasr et al. (2015) reported that an enhanced hydrogen yield 

reaching 104.75±12.39 mL hydrogen/g CODremoved had been obtained in an anaerobic baffled 

reactor which was inoculated with sludge immobilized on maghemite nanoparticles. 

 

Pansook et al. (2016) have studied biohydrogen synthesis by Aphanothece halophytica cells 

immobilized in alginate beads, and their results indicated that such immobilization conditions 

gave better process performance with respect to conditions where there were free cells within 

the reaction control volume.  Li et al. (2017) have developed a new photothermal biomaterial 

(GeO2-SiO2-Chitosan-Medium-LaB6) which they tested as a support for photosynthetic bacteria 

in its influence on biohydrogen generation using.  The results from Li et al. (2017) 

demonstrated the high capability of this new biomaterial in enhancing biohydrogen production 

since the hydrogen production rate increased by a factor of 4.1 and the mean biofilm growth 

rate was boosted by a factor of 3.4 in contrast to the control experiments with no biomaterial 

support.  The essential inference from the work of Li et al. (2017) supported the potential of 

such biomaterial in assisting in the design of more effective and efficient photobioreactors for 

biohydrogen synthesis.  Following the discussions put forward by Gokfiliz et al. (2017) and Ma 

et al. (2017)  in regards to the influence a specific type of support material can exert on the 

kinetics of hydrogen synthesis, the optimization of the specific process parameters in relation to 

the type of biomass used and the interaction of the physical process conditions is then needed.  

As a consequence, further research will be needed before a unified design approach may be 

formulated for the use of such biomaterial supports in photo-mediated biochemical reactions 

for hydrogen synthesis. 

 

3.  Novel reactor configurations 

 

The type of reactor and its configuration are also closely linked to and influence the hydrogen 

generation process (Mudhoo et al., 2011; Kumar et al., 2015; Kadier et al., 2016).  Accordingly, 

many workers have been studying innovative experimental bioreactor designs and 

configurations in view to optimize the biomass-to-hydrogen conversion processes and obtain 
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better hydrogen production rates and yields.  We revisit here some of the recent findings in this 

aspect of biomass-to-hydrogen production, and highlight the process and operation-related 

aspects which endow the novel reactor configurations with better performances. 

 

Khan and Kana (2016) demonstrated that designing a novel reactor design is important in 

providing the efficient mass transfer and improving the hydrogen yield via dark fermentation 

process. In their study, they have designed a novel baffled design bioreactor with a supporting 

matrix for cell immobilization using a 3-D filament polylactic acid compound. Here, a stainless 

steel stand with a mounting angle of 180◦ was designed to provide a sufficient mixing of the 

bioreactor by increasing the turbulence thereby enhancing the interaction between the 

immobilized cells and the liquid medium. The hydrogen production performances were then 

assessed between the standard flask fermentation and novel immobilized cells system and 

showed an increment in hydrogen yield of 31% when compared to the control standard flask 

fermentation. In the work of Khan and Kana (2016), the improved performances are achieved 

by the effective catabolism of glucose and a reduction of the lag phase period. Besides, the 

formation of a biofilm layer on the surface of the cartridge wall and the observance of rod 

shaped microorganisms was noticed in this work. In addition, the COD removal efficiency also 

comparatively better than the shake flash reactor and demonstrated that the designing a novel 

reactor is important for achieving the stable hydrogen production performances and nutrient 

removal from the wastewater.  del Pilar Rojas et al. (2016) reported the ethanol-type hydrogen 

fermentation in a novel anaerobic down-flow structured bed reactor (ADSBR) via controlling 

the operational parameter of organic loading rate for enhancing the hydrogen production 

performances. Their results demonstrated that the gradual increase in the specific organic 

loading rate improves the hydrogen production process and microbial attachment into the 

reactor compartments. Furthermore, the microbial community analysis in this work 

demonstrated that the presence of active hydrogen and ethanol producing microbes and the 

major energy production achieved via hydrogen and ethanol production.  Ri et al. (2017) 

designed a novel lab scale horizontal type continuous stirred-tank reactor for efficient 

separation of gas-solid-liquid, suitable for operation at a low agitation speed. The results 

obtained from this study showed that operating a novel CSTR with a low agitation speed of 40-

50 rpm provided the stable biogas and hydrogen yield from the process. Besides, the agitation 

speed controlled by computational stimulation process provided the better biomonitoring and 

kinetic control for stable hydrogen production for scale-up of the process. Bakonyi et al. (2017) 

integrated the novel gaseous separation membrane with CSTR reactor to intensify the 

biohydrogen production process. The process used the produced biogas separated via gaseous 

membrane and sparged into the reactor with a concentrated fraction of CO2 and H2 to test its 
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intensification process. The results showed that sparging the concentrated H2-sparging 

negatively affected the hydrogen production, whereas sparging with CO2 enhanced the 

hydrogen production rate and it could be viable process for enhancing the hydrogen 

production.  Zhang et al. (2018) tested s combined dark fermentation and photo fermentation 

process in a pilot scale reactor using the left over corn stover as a feedstock.   The integrated 

process provided a maximum volumetric biogas rate of 87.8 m3/d with an average H2 content of 

68%. Despite the major variations in terms of biohydrogen production were noticed between 

the compartments due to the insufficient mixing and this research direction could be further 

explored for the real time industrial scale applications.  

 

Palomo-Briones et al. (2017) assessed the impact of hydraulic retention time on metabolism 

and microbial structural changes during a CSTR operation and their outcomes showed that 

operating a short hydraulic retention time of six hours favored the hydrogen production 

reactions with the presence of interactive hydrogen producing microbial communities of 

Clostridiaceae-Lachnospiraceae-Enterobacteriaceae, whereas at long HRT the shift of the active 

hydrogen producing metabolism to lactate fermentation with the observance of 

Sporolactobacillaceae-Streptococcaceae.  Elreedy et al. (2016) tested the production of various 

biofuels from petrochemical wastewater via anaerobic packed bed baffled reactor and showed 

that anaerobic degradation pathway is directly dependent on the applied organic loading rate. 

They inferred that operating a low hydraulic retention time of 9 hours favored the hydrogen 

and ethanol production, whereas the long hydraulic retention time of 27 hours favored the 

methane production and the developed process could provide a net annual profit over 40% 

than the traditional single anaerobic bed reactor.  Muri et al. (2018) investigated three types of 

supporting materials for the enhancement of biohydrogen production in an anaerobic packed-

bed reactor (APBR) and demonstrated that choice of supporting materials influenced the 

microbial attachment, distribution of microbial byproducts and biohydrogen production 

performances. In another report, Anzola-Rojas and Zaiat (2016) tested three different carrier 

materials with the ADSBR and showed that the biomass carrier with plastic support of 

polyethylene and polyurethane foam provided better biohydrogen production performances. 

Although the ceramic matrix provided a higher biomass loading in this work, the hydrogen 

production was hindered due to the limited flow pattern and inefficient mixing inside the 

reactor.   

 

Blanco et al. (2017) have developed an anaerobic structured-bed reactor which has shown high 

capability to produce hydrogen despite some process drawbacks were noted with regards to  

biomass washout. Besides other interesting findings, Blanco et al. (2017) highlighted that 
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accumulation of biomass had not significantly affected the average residence time of the novel 

reactor configuration and this had contributed positively to its improved solids retention 

capability and overall robustness.  Fu et al. (2017) have also designed a new biofilm 

photobioreactor incorporating a light guide plate serving the purpose of a light guider and 

support for the microbial biofilm.  Fu et al. (2017) tested a number of process optimization 

scenarios and concluded that a SiO2-chitosan-medium modified light guide plate was more 

conducive for the formation of microbial biofilms and as a result their novel bioreactor 

embodies significant capabilities for enhancing biohydrogen synthesis.  Wu et al. (2017) 

explored the performance of photo-fermentative biohydrogen generating system through the 

formation of microbial biofilms on the surface of cell carrier in the biofilm reactor.  Their results 

demonstrated that biohydrogen synthesis and substrate utilization efficiency (which increased 

from 36% to reach 63%) have been considerably enhanced in this specific bioreactor 

configuration. 

 

4. Novel microbial strains 

 

There is a very wide spectrum of hydrogen-synthesizing microorganisms which have been 

assessed for hydrogen production.  These microorganisms can be broadly categorized as strict 

and facultative anaerobes, photosynthetic bacteria, aerobes and photoautotrophic (Kaushik 

and Sharma, 2016).  With time and research, the possibility for isolation of novel strains of 

bacteria (Azman et al., 2016a,b) and fungal species which can give relatively very high cellulase 

or hemicellulase turnovers  is now also being seen to hold the potential to become one of the 

drivers in biomass-based hydrogen synthesis.  A review of the literature in this specific aspect 

of hydrogen synthesis using fermentation indicates that there are many research efforts being 

done to isolate those microbial strains which have superior potency to mediate biochemical 

reactions which give higher hydrogen generation rates and yields (Table 1).  Escherichia coli 

(Taifor et al., 2017), Rhodopseudomonas palustris, Clostridium butyricum (Kao et al., 2016), 

Clostridium beijerinskii (Zagrodnik and Laniecki, 2016), Rhodobacter sphaeroides (Hay et al., 

2016), Thermoanaerobacterium sp. strain PSU-2 (Sompong et al., 2017), Streptomyces 

rubiginosus (SM16) (Sivarajan et al., 2017), Bacillus licheniformis AP1 (Srivastava et al., 2017), 

Enterobacter aerogenes (Ramprakash and Muthukumar, 2016) and Clostridium pasteurianum 

(Hsieh et al., 2016) are some of these novel strains which have shown enhanced abilities to use 

biomass for hydrogen synthesis. Hence, a sine qua non condition for the development of 

fermentative biohydrogen production using the different biomass types resides in the judicious 

choice (Trchounian et al., 2017) of such bacterial strains which will sustain the biochemical 

reactions effectively.  According to Trchounian et al. (2017), the activities of [Mo]-nitrogenase 
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and [Ni-Fe]-hydrogenase and [Ni-Fe]-hydrogenases of the photo-fermentative and dark-

fermentative bacteria, respectively, have important roles on the kinetics of hydrogen synthesis 

from biomass sources which have variable carbon contents when used in pure, mixed and co-

culture microbial systems.  Indeed, a reasonable part of the work of Abreu et al. (2016), Patel et 

al. (2014) and Sivagurunathan et al. (2014) support the views of Trchounian et al. (2017).  

Abreu et al. (2016) had studied a two-step coupled dark fermentation and anaerobic digestion 

route for the production of biohythane (i.e. a mix of methane and hydrogen) using garden waste 

and reported that the co-culture of Thermotoga maritima and Caldicellulosiruptor 

saccharolyticus had given biohydrogen generation yields from cellobiose and xylose, and these 

yields were higher than those obtained with single microbial cultures.  All the more, in this 

same study, a co-culture of Caldicellulosiruptor bescii and C. saccharolyticus gave an even higher 

biohydrogen yield in comparison with the corresponding pure cultures and co-culture of C. 

saccharolyticus and T. maritima. Patel et al. (2014) had studied eleven co-cultures consisting of 

two to four strains, and observed that the synergistic effects of co-cultures consisting of 

Enterobacter cloacae HPC123, Bacillus cereus EGU43 and Klebsiella sp. HPC793 had produced 

biohydrogen yields reaching 3.0 moles hydrogen for every gram of glucose.  These workers 

equally noted that co-cultures of E. cloacae HPC123 and B. cereus EGU43 had allowed for a 

continuous generation of biohydrogen and had also performed significantly well in achieving 

enhancement in yields by a factor of 6 in comparison to free bacteria.  In their work, 

Sivagurunathan et al. (2014) reported that the main biohydrogen-synthesizing  bacterial strains 

detected in all the mixed cultures of pig slurry, sewage sludge and cow dung under study were 

Clostridium saccharobutylicum, C. butyricum, C. perfringens, C. tertium.  In this same work, the 

latter strains had offered a new approach to improve hydrogen yields from industrial effluents 

when used in a mixed-culture utilization scheme. 

 

Progress in the development of new hydrogen-producing strains is indeed providing a potential 

new direction in the formulation of more economic, process-intensive and efficient hydrogen 

synthetic routes from biomass.  However, the isolation, identification, versatility and detailed 

assessment of these new microbial species in more reaction milieu with various biomass types 

will demand more research efforts before afully workable biochemical ‘recipe’ is obtained.  Such 

a versatile biochemical method for harnessing a wide variety of biomass for biohydrogen 

production can be essentially based on dark fermentation schemes (Vésteinsdóttir et al., 2011).  

There are a number of works which indicate the potential for development of the latter 

schemes.  For example, Patel et al. (2015) have reported that Clostridium sp. IODB-O3 was able 

to utilize wheat straw prehydrolysate for biohydrogen generation and could become one of the 

components of an economic method for sustainable biohydrogen generation.  Tian et al. (2015) 
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also reported that Clostridium thermocellum ATCC 27405 was capable of degrading sugarcane 

bagasse to produce biohydrogen, and that the overall process had been significantly enhanced 

with calcium carbonate supplements. According to the findings of Tian et al. (2015), the 

buffering of the carbonate was stimulatory, and its inclusion in biohydrogen production 

schemes would present a fresh and effective approach for biohydrogen generation from 

lignocellulosics.  Yin and Wang (2016) have isolated a new biohydrogen-synthesizing strain 

from gamma irradiated sludge, and this novel strain was found to be Enterococcus faecium 

INET2. Yin and Wang (2016) reported that this new strain, when immobilized on polyvinyl 

alcohol-Na alginate, gave good hydrogen generation performance at 35 °C in a medium with a 

starting pH of 7 with a substrate concentration of 15 g/L glucose and at 0.1 inoculation ratio. In 

this specific work, it was found that E. faecium INET2 had a peak cumulative hydrogen 

generation of 0.13 L hydrogen/100 mL and a hydrogen yield of 1.16 mol hydrogen for every 

mole of glucose when using free cells, and these gas production performances increased by 

55.38% and 45.69%, respectively, when using immobilized cells. The work of Yin and Wang 

(2016) hence indicated that E. faecium INET2 holds high promise for biohydrogen synthesis 

from glucose during fermentative processes. Wu et al. (2017) have used Enterobacter sp. CN1 

for the production of biohydrogen from galactose-containing biomass.  Wu et al. (2017) 

recorded the maximum biohydrogen yield at 303.2 mL hydrogen for every gram of substrate at 

a pH of 7.3 and 36 °C. Wu et al. (2017) further explored the performance of this strain in 

producing biohydrogen using the agar hydrolysate obtained after a saccharification procedure 

by agarase and neoagarobiose hydrolase.  They reported that the combination of the 

fermentative reactions and enzymatic saccharification gave biohydrogen production rates as 

high as 5047±228 mL/L when using 50 g/L of agar, and this performance was significantly 

greater by a factor of 3.86 in contrast with the control runs.  

 

Kumar et al. (2017) reported that the genus Clostridium was successful in producing 

biohydrogen from acid pretreated de-oiled jatropha waste-derived hydrolysate to the tune of 

900 ml/l.day and 86 mL hydrogen/g of reducing sugars added for the peak biohydrogen 

generation rate and hydrogen yield, respectively.  Additionally, Kumar et al. (2017) reported 

that the immobilized Clostridium had had very good stability up to ten cycles.  Srivastava et al. 

(2017) have equally demonstrated that Clostridium pasteurianum (MTCC116) could effectively 

produce biohydrogen from enzyme hydrolyzed rice straw by dark fermentative pathways with 

a cumulative biohydrogen of 2.58L/L in 144 hours at a peak maximum generation rate of 

23.96 ml/L.h in 96 hours.  Pang et al. (2017) investigated the feasibility of  using new 

cellulolytic bacterial isolates from bovine rumen in  producing biofuel molecules from 

lignocellulosic biomass, and concluded that these new microbial species (Escherichia coli) could 
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indeed yield up to 4.71 mL/g biohydrogen from corn straw and produce concomitant 

biodegradation of cellulose and hemicellulose.  Poladyan et al. (2017) have concluded that their 

findings could be much relevant and valuable in the biohydrogen synthesis biotechnology when 

using a variety of organic substrates derived from wastes feedstocks.  The key advance of the 

work of Poladyan et al. (2017) resided in the formulation of “E. coli BW25113 wild type strain 

and hydrogenase (Hyd)-negative mutants” with gene deletion of those genes which encoded the 

main subunits of “Hyd 1–4 (ΔhyaB, ΔhybC, ΔhycE, ΔhyfG)”, and equally for a “ΔhyaB ΔhybC double 

mutant”.  Zhao et al. (2017) have studied mycelia pellets as potential biological carrier during 

the biohydrogen production process from cornstalk hydrolysate, and based on their results and 

observations, they inferred that mycelia pellets embodied such characteristics which make 

them ideal biological carriers having the ability to enhance biomass retention in the bioreactors 

for boosting biohydrogen recovery from lignocellulosic substrates.   

 

TABLE 1 is here 

 

5.0 Integrated fermentative schemes 

 

The integrated fermentative biohydrogen generation approach has been studied in different 

stages of the photo-fermentative and dark fermentative processes (Ghosh et al., 2018).  Some 

workers have coupled dark fermentation with biocatalysed electrolytic processes for hydrogen 

production from process residues (Moreno et al., 2015; Dhar et al., 2015; Marone et al., 2017) 

whereas others have investigated the performance of combined fermentation and 

heterogeneous catalysis (for example, Wimonsong et al. (2014) and Güell et al. (2015)).  Results 

from studies where sequential dark fermentation and photo-fermentation of biomass have been 

employed demonstrate the merits of this type of combined operational procedure in terms of 

the enhanced biohydrogen kinetics.  Furthermore, it is observed that the integration of the 

matching capabilities of bacterial species mediating photo-fermentation and dark fermentation 

is gradually gathering interest and proving to be a potential route to recover bioenergy with 

high turnovers, better substrate and energy conversion efficiencies from different types of 

biomass. 

 

Indeed, Chaubey et al. (2013) have argued that such hybrid biohydrogen production schemes 

hold very high potentials since they exhaust the bioavailable organic matter to the furthest 

extent and approach complete conversions. Hitit et al. (2017) have indicated that two-stage 

systems involving sequential dark and photo-fermentation will allow the optimization and 

control of microbial culture conditions to be effected separately.  Tao et al. (2007) reported that 
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the combined dark fermentation and photo-fermentation of sucrose gave higher biohydrogen 

yield. Chen et al. (2008) employed a hybrid dark/photo-fermentation process and 

demonstrated increased biohydrogen yield which reached 10.02 moles hydrogen for every 

mole of sucrose.  Su et al. (2009) observed a significant increase in biohydrogen yield by a 

factor of 3.447 from 1.59 moles H2 per mole.  In their work, Zhang et al. (2017b) concluded that 

a production scheme combining photo-fermentation and dark fermentation had considerably 

improved the overall energy conversion efficiencies of anaerobic biological treatment plants.  

When investigating the two-stage dark fermentation and photo-fermentation process of a 

starch/glucose substrate which was metabolized by Rhodopseudomonas palustris and 

Clostridium butyricum, Hitit et al. (2017) reported relatively very high biohydrogen generation 

and biohydrogen photofermentation yields.  Mishra et al. (2016) had studied the biohydrogen 

generation in a two-stage sequential dark fermentation and photo fermentation process using 

palm oil mill effluent fermentation under the action of Clostridium butyricum LS2 in the first 

stage and then by Rhodopseudomonas palustris. From this work, Mishra et al. (2016) reported 

that the two-stage fermentation had significantly augmented the total biohydrogen yield from 

0.784 ml hydrogen/ml of the effluent obtained during the single stage of dark fermentation to 

3.064 ml hydrogen/ml effluent recorded for the dark fermentation-photo-fermentation process.   

 

Chandra et al. (2015) studied a single-stage hybrid system consisting of dark fermentation and 

photo-fermentation parts and reported that their system had aided in the reaching greater 

biohydrogen generation with a real distillery wastewater than with dairy waste.  One of the 

crucial inferences from this work and many others where integrated dark and photo-

fermentation systems have been used to harness biomass types for biohydrogen is that these 

systems will give useful data for planning the design and assessment of full scale continuous 

and cost effective integrated dark-fermentation and photo-fermentation systems.  Based on 

their results, Liu et al. (2015a) have further indicated that their combined integrated dark 

fermentation and photo-fermentative reactor was both capable of dodging the complex 

pretreatment steps normally needed in two-stages processes, and also in circumventing the 

imbalance of bacterial growth and microbial metabolic rate which exists between dark 

fermentative bacteria and photo-fermentative bacteria.  Although there are a number of reports 

which advocate the complementary merits of integrated photo-fermentation and dark 

fermentation systems, these integrated biomass processing configurations still have to be 

optimized, firstly, for a continuous availability and utilization of bioavailable substrates, and 

secondly, for a more effective control of bacterial successions and pH variations. 
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6. Green biomass pretreatment schemes 

 

Indeed, the significance of the type(s) of biomass being processed via a specific biohydrogen 

production route and the specific reaction conditions imposed are high since there are different 

effects on the whole process of biohydrogen synthesis (Table 1).  In point of fact, several 

research efforts and findings have demonstrated that when lignocellulosic biomass materials 

are assessed for their individual biohydrogen production potential, there is practically always 

the need to perform some singular or combined type of biological, chemical or physical 

pretreatment (Nguyen et al., 2010; Al Shorgani et al., 2014; Diaz et al., 2015; Ibrahim et al., 

2015; Gonzales et al., 2016; Abdul et al., 2016; Sen et al., 2016; Senturk  and Buyukgungor, 

2017; Eskicioglu et al., 2017; Rafieenia et al., 2017).  Hence, by reason of the very complexity, 

variations in chemical properties and structural morphologies of the different biomass types, 

imposing some form of pretreatment on the biomass has become extremely important before 

the optimum kinetics of the intended downstream processing (Ding et al., 2016; Singhal and 

Singh, 2014).  

 

Of the several pretreatment approaches reported so far in the literature, the feasibility of 

selecting one single or a mix of pretreatment routes for process intensification and thereafter 

scale-up seems much to depend on the energy requirements, cost factors and chemoselectivity 

of the pretreatment effects on hemicellulose, holocelluloses (Monlau et al., 2013) and lignin.  In 

this line of research thinking, and notwithstanding the valuable pool of findings which have 

been accumulated so far on the pretreatment techniques studied in terms of their merits and 

demerits which can be reasonably addressed, the trend in the specific field of research and 

development in biohydrogen production from biomass has been to explore combined 

physicochemical pretreatment schemes which have a strong connection with the ‘green 

chemistry’ elements.  This is because there has been a start in the use of microwave-assisted, 

ultrasound-assisted (Budiman et al., 2017a) and ionic-liquid mediated pretreatments 

techniques of biomass. So far, the results are in general promising.  The key issues which seem 

to motivate more research in this new branch of biomass pretreatment are the cost factors and 

process scale-up issues. 

 

Microwave-irradiation assisted biomass pretreatment successfully addresses the issues related 

to low heating rate and overall thermal efficiency of the process (Merino-Pérez et al., 2015; Li et 

al., 2016) and anisotropic heating effects, but it concomitantly faces some basic drawbacks 

related to reactor vessel configuration, sequencing of pretreatment steps and costs. As of date, 

many of the works completed in the use of microwave irradiation advocate the positive impacts 
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of microwave heating as a biomass pretreatment technique both at the laboratory scale and 

pilot-scale.  Lin et al. (2015a) reported that microwave-alkali pretreatment had deconstructed 

the lignocellulose network in water hyacinth, brought about visible swelling of the surfaces and 

reduced the crystallinity index by 3.0 from 16.0 as a result of cellulose being rendered 

amorphous.  Li et al. (2014a) studied the combined microwave-alkali pretreatment of cornstalk 

and observed that the disruption of lignin and a subsequent rise in the extent of solubilization 

made more organic matter available to Clostridium thermosaccharolyticum and Clostridium 

thermocellum.  The biohydrogen yield achieved was 105.61 mL/g of cornstalk for the following 

pretreatment conditions: 45 minutes treatment with of 0.12 sodium hydroxide/g of cornstalk, a 

solid to liquid ratio of 0.02 (g/mL) and a flow rate of 60 mL/s. Li et al. (2014a) found that the 

hydrogen yield with this pretreatment was 54.8% greater than that with untreated cornstalk, 

and the corresponding cellulose and hemicellulose degradations rose significantly from about 

71.28% and 41%–79.55%, respectively.  

 

One more green form of irradiation which has been continually getting attention in biomass 

pretreatment for its main advantages in improving the process dynamics is ultrasound 

irradiation (i.e. sonication).  Sonication operates on the heating effects brought about by the 

cavitational formation, growth and eventually very drastic collapse dynamics of bubbles which 

induce very strong shear forces and the production of free radicals which significantly aid in the 

lysis of cell walls and increase the extents of organic matter solubilization (Bundhoo, 2017). As 

a result of the more pronounced solubilization of organic matter of biomass, fermentative 

pathways have given better biohydrogen production rates and yields.  Martinez-Jimenez et al. 

(2017) reported that the major positive impact of sonication pretreatment had been on the 

composition of methane, carbon dioxide and hydrogen when studying the thermophilic 

anaerobic digestion of sugar production organic residues. Budiman et al. (2017b) have studied 

the effect of a single cycle sonication pretreatment of Rhodobacter sphaeroides on the photo-

fermentative biohydrogen synthesis when using different industrial effluents with organic 

matter contents.  As one of their key findings, Budiman et al. (2017b) reported that moderate 

ultrasonication at a specific energy of 256.33 J/mL had produced the greatest biohydrogen 

yield amounting to 9.982 mL hydrogen in every millilitre of the medium for a 5.125% light 

efficiency.  

 

The use of ionic liquids in the biomass pretreatment field is a relatively new area of research and 

there are relatively few studies which report the different aspects of their performance and 

mechanisms of pretreatment potential.  Ionic liquids are in essence organic salts made up of ions 

existing in the liquid state and have very low vapour pressures.  Ionic liquids have been indeed 
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gaining much attention in the pretreatment of lignocellulosic biomass for a number of green traits 

and benign characteristics.  The impacts of ionic liquids in the pretreatment of biomass have been the 

swelling of cellular walls, the dismantling effect in the interactions mediated by hydrogen bonding, 

and finally a decrease in the cellulosic crystallinity.  A survey of the literature shows that ionic liquids 

are particularly effective in bringing about an appreciable extent of delignification for a very large 

number of biomass types, and the reactions are relatively moderate to mild in their requirements for 

time of reaction, temperature and suitability of the handling equipment, as well as an advantageous 

compatibility with microorganisms needed in the downstream processing steps.  Moreover, ionic 

liquid have equally been observed to be amenable to embody a number of desirable process-specific 

biological and physicochemical properties, and then also equally benefit from reuse opportunities.  

Ionic liquids such as imidazolium-based ionic liquids (Socha et al., 2014), 1-(4-sulfobutyl)-3-

methylmidazolium hydrogensulfate (Lu et al., 2015), N-methylmorpholine-N-oxide (Cheng et 

al., 2017) and [Bmim]Oac (Li et al., 2018) have been particularly effective in assisting the fast 

saccharification of hemicellulose and cellulose (Xia et al., 2014), but their use at larger scales of 

production faces economic constraints, issues related to recyclability and biomass quality and 

variability of biomass properties (Perez-Pimienta et al., 2017).   Perez-Pimienta et al. (2017) 

indicated that ionic liquids are well suited for biomass pretreatment because they can improve 

the access of enzymes to bioavailable matter by decreasing cellulose crystallinity and 

eliminating lignin.  In their work, Xia et al. (2014) attributed, though with some reservation, the 

pretreatment efficiency of the ionic liquids they used (especially 1-butyl-3-methylimidazolium 

methanesulfonate ([BMIM][MeSO3]) aqueous solutions) to the H-bond basicity of the anionic 

component and ionic liquid polarity. 

 

7. Inhibitor effects and detoxification 

 

Whilst most of the pretreatments routes are a mix of enzymatic, chemical, acid/base and other 

emerging techniques falling under the umbrella of green chemistry and have been mostly 

effective in bringing improvements in biomass-based hydrogen production performance, these 

pretreatments are much comparable for their cost-effectiveness with respect to energy 

production intensity, and have also been found to suffer from severe inhibitor formation, which 

then impede the overall process efficiency.  A survey of the literature shows that the levels and 

partitioning of the inhibitors is influenced by a number of factors.  These factors include the 

actual type(s) and combinations of pretreatments and the stringency of the pretreatment 

conditions, and the variability in chemical composition of the biomass types being pretreated.  

The principle mechanism of inhibition on the hydrogen synthesizing anaerobic microbial 

species equally appears to consist in unionized configurations of weak acids permeating 
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through the microbial cell walls and reducing the pH within the cells and finally inducing 

unfavourable conditions for hydrogen synthesis.  Moreover, a close inspection of the relevant 

literature on hydrogen production under inhibitory conditions shows that phenolic species and 

furan derivatives are the most damaging inhibitors.  The main inhibitors are furfural and 5-

hydroxymethylfurfural which are synthesized from C5 and C6 sugars present in the cellulose and 

hemicellulose portions, methanoic acid, acetic acid, levulinic acid and a variety of phenolic 

moieties and aldehydes.  These inhibitors have been reported to severely induce unfavourable 

effects on the overall kinetics of microbial fermentative processes through decreases in the 

growth rates of cells, reductions in the permeability of the cell membranes and enhanced 

formation of oxygen species which are reactive  (Koopman et al., 2010; Quéméneur et al., 2012; 

Cantarella et al., 2004; Allen et al., 2010).  It has also been found that the levels of some of these 

inhibitors depend on the strains of the microorganisms seeded for mediating the hydrogen 

biochemical reactions to occur (Gao et al., 2010; Liu et al., 2015b; Barakat et al., 2015; Lin et al., 

2016a; Akobi et al., 2016).  When studying the generation dynamics of biohydrogen from 

glucose in continuous system, Haroun et al. (2016) have found that the initial biohydrogen yield 

of 2.27 mol H2/mol glucose rose by 6% and 17% for furfural levels of 0.5g/L and 0.25, 

respectively, but then experienced a decline by 62%, 29% and 21% for furfural concentrations 

of 4 g/L, 2 g/L and 1 g/L, respectively.  Akobi et al. (2016) equally evaluated the effects of 

furfural on the biohydrogen generation rates and yields in batch operated systems using 

synthetic substrates made up of lignocellulosic hydrolysate. The interesting finding of Akobi et 

al. (2016) was that for furfural concentrations reaching up to 1 g/L, an improvement in 

biohydrogen generation was recorded with yields being higher by 19% with respect to the 

control systems.   

 

The core aim of detoxification methods resides in segregating the non-sugar molecules from the 

pretreatment hydrolysates with a minimum possible loss of the fermentable sugars (Deng and 

Aita, 2018).  Various detoxification approaches which include biological and physicochemical 

methods have been assessed and these have consisted in techniques based on flocculation, 

evaporation, adsorption using activated carbon, overliming, use of laccases and ion exchange 

resins (Moreno et al., 2012; Carter et al., 2011; Mateo et al., 2013; Lee et al., 2011; Vallejos et al., 

2016; Den and Aita, 2018).  In view to curb the severe impacts of furfural and 5-

hydroxymethylfurfural on the overall biohydrogen production performance, a number of 

studies have been conducted in this specific branch of research, and a few have shown 

interesting promise.  Kumar et al. (2015) reported that only 5-hydroxymethylfurfural (5-HMF) 

could be removed from red algal hydrolysate which had been pretreated with dilute sulphuric 

acid using hybrid immobilized cells but the whole process was accompanied by a net decrease 
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in the biohydrogen generation dynamics.  Vedrenne et al. (2015) have studied the effects of 

photo-Fenton on the extent of furfural detoxification during the pretreatment involving corncob 

prehydrolyzates, and found that an optimal dose of peroxide-to-iron in the ratio 112 had 

produced a final furfural concentration of 0.35±0.23 g/L whereas the levels of xylose and 

mannose was decreased to 4.00±0.29 g/L. Vedrenne et al. (2015) concluded that photo-Fenton 

reactions for effecting the detoxification pretreatment of prehydrolyzates needed sufficient 

dose which could eventually minimize chemical use and equally aid in the degradation of 

mannose and xylose, and all the same ensuring adequate biological compatibility with the strain 

of microorganisms being used for mediating the biochemical biohydrogen-producing reactions.  

Lin et al. (2015b) have assessed the use of sodium borohydride in its ability to detoxify 

aldehydes inhibitors during biohydrogen generation in fermentation reactions.  They reported 

relatively very high extents of detoxification of furfural and 5-hydroxymethylfurfural with 

30 mmol/L sodium borohydride to the tune of 96.7% and 91.7%, respectively. Lin et al. (2015b) 

also observed that the sodium borohydride had brought about adequate reduction potential for 

the reduction of the aldehyde inhibitors.  The key outcome from this promising work was that 

there had been a notable recovery in the yields of biohydrogen yield at 99.3% and 64.6% 

recovery of the maximum biohydrogen generation rate.  Lin et al. (2017) have developed a 

novel and very effective approach for producing biohydrogen from real textile desizing 

effluents.  Their method consisted in conducting a coagulation-pretreatment and it led not only 

to significantly enhanced biohydrogen generation (3.9 L hydrogen/L.day and biohydrogen yield 

reaching up to 1.52 mol hydrogen/mol hexose) but also followed much seemingly the butyrate-

type fermentative pathways and assisted in the removal of some toxic moieties which would 

otherwise have inhibited the overall process performance.   Yee et al. (2018) reported the 

ability of recombinant manganese peroxidase synthesized from Pichia pastoris in degrading 

furfural and HMF. Yee et al. (2018) found that recombinant manganese peroxidase had reduced 

the furfural and HMF levels and that the extent of degradation was dependent on the dose of the 

recombinant manganese peroxidase added.   Growth assays performed by Yee et al. (2018) 

using Saccharomyces cerevisiae demonstrated that  recombinant manganese peroxidase had 

decreased the toxic and inhibitory characteristics of furfural and HMF, and as a result these 

outcomes could be harnessed for optimizing the growth patterns and kinetics of 

microorganisms during fermentative processes involving biomass.  

 

8. Subcritical and supercritical water processing 

 

Hydrothermal technologies are defined as the transformation and/or conversion of biomass 

using water at high temperature and pressure (Peterson et al., 2008). The application of water 
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as a non-toxic, non-flammable solvent is favourable over conventional processes in being a 

promising and green alternative for biomass (Déniel et al., 2016) since it does not generate 

effluents that need treatment. Water as a reaction medium, in a subcritical and supercritical 

state, is an efficient reaction medium for the production of chemical products, biofuels and the 

generation of gases such as hydrogen (Yanik et al., 2007). The water in subcritical state is at a 

temperature range of 100 to 374 °C using pressures higher than the vapor pressure avoiding 

the phase change. In turn, under supercritical conditions, the temperature conditions are higher 

than those of its critical point (critical temperature of 374.15 °C and 22.1 MPa) (Lachos-Perez et 

al., 2017; Mayanga-Torres et al., 2017). Under these conditions, water is a highly reactive 

solvent, and this is due to such interesting changes in its properties (namely density, dielectric 

constant, ionization constant and viscosity) due to the progressive increase in temperature and 

pressure (Brunner, 2009; Kruse and Dahmen, 2015; Kruse and Dinjus, 2007; Möller et al., 2011; 

Yu et al., 2007) which are appropriate for effective hydrothermal biomass processing. 

 

In subcritical conditions water is an excellent medium for ionic type reactions that favour the 

depolymerization and hydrolysis of biomass (cellulose, hemicellulose and lignin) resulting in 

the production of low formulaic molecular mass organic species (e.g. sugars, furanic aldehydes 

and acids organic) (Reddy et al., 2014; Sasaki et al., 1998; Watchararuji et al., 2008). In the 

supercritical state, the conversion of organic products into gases is favoured by means of free-

radical type reactions which are very important for the production of hydrogen through the 

gasification process (Kruse and Dinjus, 2007). This occurs because in normal conditions of 

temperature the water presents hydrogen bonds very well grouped, which in the supercritical 

state break, reducing the value of its dielectric constant. The high diffusivity improves the 

transfer of mass in the process of gasification in conditions existing in supercritical water, and 

can easily be accessed through the porosity of the biomass, allowing quick reaction time in the 

gasification process (Guo et al., 2015).  The gasification of model molecules namely glucose and 

cellulose in supercritical water provides information of the reaction mechanisms through a 

series of complex chemical reactions that react with each other. This gives a deeper insight in 

view of the conversion of the real biomass (Behnia et al., 2016; Correa and Kruse, 2018). But, 

the use of complex biomass types, and the interactions amongst their different components are 

usually different because the variable operating conditions of the process such as pressure 

(Safari et al., 2018), temperature (Amrullah and Matsumura, 2018; Safari et al., 2018), type of 

cooling regime (Zhang and Zhang, 2017), residence time (Safari et al., 2018), catalyst (Rana et 

al., 2018) and concentration can alter the composition of the gas and lead to the formation of 

solids (Calzavara et al., 2005; Yanik et al., 2007).   
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Moreover, in the subcritical/supercritical state, the polymerization and consequently hydrolysis 

of the lignocellulosic material generates monomers namely pentose (C5) and hexoses (C6), and 

the lignin is degraded in its respective phenolic compounds and acidic compounds that are 

formed in parallel by the thermal effect (Prado et al., 2014; Sasaki et al., 1998). The 

transformation of the biomass for bio-hydrogen has been studied applying different operational 

conditions, but it is known that the application of high temperature favors the hydrogen yield 

(Kruse and Dahmen, 2015) in the gasification process with supercritical water. In the 

gasification process with supercritical water, the sugars and water-soluble materials are 

converted into gases, whose majority composition is in hydrogen. Some research findings such 

as those from Guan et al. (2014) and Molino et al. (2017) suggest using metal-based catalysts to 

improve the hydrogen generation yields using average temperatures during the gasification 

process. The advantage of supercritical water gasification is that the reactions that are 

developed favour the production of a hydrogen-rich gas (Behnia et al., 2016; Castello et al., 

2013; Guo et al., 2010; Kruse, 2008; Molino et al., 2014; Zhang et al., 2011). The reaction 

mechanism for the generation of hydrogen using water as a reaction medium or reactant is 

developed in part by steam reforming (Equation 1) and vapour-water displacement (Equation 

2): 

 

CO             (Equation 1) 

 

 

It verifies that the consumption of water is essential at high temperatures, thus minimizing 

energy costs in additional processes such as drying (Reddy et al., 2014; Zhang et al., 2011). 

Excess water as a reaction agent in combination with carbon monoxide, are responsible for half 

the hydrogen formed in the synthesis gas (H2 and CO2) produced at temperatures equal to or 

less than 500 °C and reducing the carbon monoxide content with the use of catalysts leads to an 

increase in the production of hydrogen (Equation 2) (Yanik et al., 2007). 

 

Different types of interesting investigations have been based on supercritical water gasification 

studies in the last five years using different reaction conditions and the results on the hydrogen 

production hold out good promise for proceeding to the next sequel of scaling-up the processes 

for further optimization of the core green chemical engineering process metrics which are 

renewability, recyclability, scalability, robustness, controllability and clean-up.  Hence, the 

application of supercritical water technology for the conversion of biomass into hydrogen 

guarantees the development of sustainable energy and its use becomes more competitive for 

the production of biofuels. To this is the added advantage of an efficient use of catalysts in 
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supercritical water to increase the conversion of biomass into soluble polar organic compounds 

which in the supercritical state result in high yields of synthesis gas at moderate temperatures 

(Azadi and Farnood, 2011; Dimitriadis and Bezergianni, 2017; Peng et al., 2017; Safari et al., 

2018; Yanik et al., 2007).  A proposal that is advantageous for the process of gasification in 

supercritical water is the generation of two phases which originate as a result of the 

depressurization of the system (a synthesis gas phase and an aqueous phase with the polar 

organic compounds that were not gasified). The synthesis gas can be purified and hydrogen 

thus isolated for application in clean fuel cells, while the aqueous phase can be recirculated to 

the process for conversion to gas. 

 

9. Metal-based nanoparticulate catalysis 

 

The development of the processes which metabolize organic matter in the various biomass 

forms to produce biohydrogen has been continually advanced with better engineered catalytic 

transformations. The different techniques for catalyst synthesis and catalyst usage have all been 

geared towards improving the general and certain specific properties of the catalysts 

themselves, and as a result, enhancing the overall performance of the catalytic biomass 

conversion systems. Such enhancements in catalytic properties can be relatively well achieved 

by selecting and thereafter tailoring suitable combinations of metals, and any other green 

component(s) or conditions such as nanoparticles (Table 2), ionic liquids, zeolites and 

subcritical/supercritical conditions, respectively, as evidenced by many published data. For the 

sake of conciseness, this part of the review has revisited selected research articles and 

highlighted the key outcomes of studies addressing the issue of improvement in biohydrogen 

synthesis under catalytic conditions using nanoparticles. 

 

Figure 1 depicts the main interactions and reactions mediated during the dark fermentative 

synthesis of hydrogen in the presence of metal based nanoparticles.  Data in Figure 1 show that 

nanoparticles (NPs) do not invigorate the enzymatic catalytic action of hydrogenase but instead 

indicates the potential enhancement brought about by NPs in the degradation process of the 

substrate (in this case, glucose). Here, it is assumed that electric streams could move 

throughout the metal NPs via conductivity effects, and thus accordingly interceding exchange of 

electrons in the periplasm. Step I involves the degradation of biomass-based carbohydrates to 

form pyruvate and this leads to the formation of acetyl-coA from the degradation by means of 

ferredoxin oxidoreductase (Fdox) in the cytoplasm where it is related to the function of reducing 

the surroundings. In Step II, there is a formation of iron-sulphur proteins namely ferredoxin 
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(Fdre) occurring via ferredoxin oxidoreductase thereby occasioning the exchange of electrons to 

the hydrogenase from the NPs where Fdrd is further reoxidized by the production of H2 in the 

periplamic layer, it comprises Step III. As a result, Fdrd mediates the electron transfer process, 

and NPs-Fe can upgrade the electron exchange between Fdrd and hydrogenase and this 

enhances the productivity of biohydrogen (Hsieh et al., 2016). 

 

TABLE 2 IS HERE 

 

FIGURE 1 IS HERE 

 

One advantage of the metal-based nanocatalysis in biohydrogen production from biomass is 

that the concomitant use of ionic liquid solvents ultimately increases the turnover number of 

the catalyst. Metal-based nanoparticulate components which have been adequately stabilized in 

solvents such as ionic liquids have proven to be interesting and chemically attractive catalysts 

for biomass conversions to various types of bioenergy, namely biomethane, bioethanol and 

biohydrogen. Cheng et al. (2017) have treated residues of cassava in N-methylmorpholine-N-

oxide as the ionic liquid medium and reported an improved overall kinetics and a combined 

biohythane production with a net bioconversion which had escalated to 21.4–27.9%. In 

addition to other interesting results in this work, Cheng et al. (2017) also reported that the 

enzymolyzed cassava residues pretreated with N-methylmorpholine-N-oxide had produced 

biohydrogen with a yield which had escalated from 92.3 to 126 mL/g TVS. Taherdanak et al. 

(2016) compared the effects of Fe0 and Ni0 nanoparticles, Fe2+ and Ni2+ on H2 production from 

dark fermentation of glucose and obtained higher H2 yield for Ni2+ followed by Fe0 nanoparticle, 

Fe2+ and Ni0 nanoparticles. In fact, there are a few but initial successful studies which advocate 

the merits of nanocatalysis in biohydrogen production. They have adapted the selective H2 

producers to improve biohydrogen throughout the fermentative route. In addition, these NPs 

were effectual at some point in the biomass pretreatment and immobilization of the entire cells 

as well which were utilized. It has been found that the integration of dark-fermentation with 

photo fermentation is a more effectual for improving the development of economy. Seif et al. 

(2016) were compared the use of three catalysts namely MnO2, CuO and Co3O4 on hydrothermal 

gasification of industrial wastewaters and stated that Co3O4 was the best, followed by CuO and 

MnO2 catalysts for H2 production. Li et al. (2014b) investigated the effects of Fe as catalyst for 

methane decomposition using three porous supports namely HBETA zeolite, HZSM-5 zeolite 

and Al2O3 and reported highest H2 production with 20 wt% Fe using Al2O3 as support. Mostafa 

et al. (2016) reported that the addition of magnetite/graphene oxide (MGO) enhanced 
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biohydrogen production from dark fermentation of gelatinaceous wastewater and is due to 

change from the propionic metabolic pathway to the butyric reaction path. On the other hand, 

the conversion procedure of magnetite/graphene oxide nano composite is almost of the given 

dosage dependent. Le and Nitisoravut (2015) compared the use of different hydrotalcites and 

reported a maximum increase in bio-hydrogen production using Ni-Mg-Al hydrotalcite (HT). 

Likewise, Wimonsong et al. (2013) studied the influence of different hydrotalcites on 

biohydrogen generation and inferred that Mg-Al hydrotalcite gave the highest H2 yield. 

However, the same authors later reported that Zn-Mg-Al hydrotalcite supported Au catalyst 

yield a higher amount of bio-hydrogen (Wimonsong et al., 2014). 

 

The main attributes to the improvement in the yield of so catalyzed bioprocesses are the large 

surface-to-volume ratio of the nano-based catalysts, the superior hydrothermal resistance and 

stability of these types of catalysts and their related acidity control properties. An ability to 

control the acidity of the reaction medium would most reasonably enable a more robust control 

of the pH and buffering capacity of the biomass to bioenergy conversion process. A restricted 

number of previous work have demonstrated that the metal nanoparticulate components 

significantly determine the type of catalytic transformations whereas the subsequent use of the 

ionic liquid aids much in defining the active sites and porosity distributions within the catalysts 

and hence influencing the overall chemistry and surface reactivity of the metal-based 

nanoparticles. Lu et al. (2016) observed that the use of the electrocatalyst NiFe layered double 

hydroxide enhanced H2 production rates and recovery from wastewater in microbial 

electrolysis cells. Wang et al. (2016) studied the effects of Ni/MgO catalyst on steam reforming 

of butanol and reported highest H2 yield with Ni0.12/MgO. Lervolino et al. (2016) compared 

commercial TiO2 with home-prepared TiO2 both modified with Fe-Pt and reported a higher 

photocatalytic H2 production with the home-prepared catalyst. Hsieh et al. (2016) found that Fe 

nanoparticles could enhance biohydrogen production while nanoTiO2 addition had no 

significant effects on H2 production. Jafari and Zilouei (2016) reported an enhancement in 

biohydrogen production of 127  % for bagasse pretreated with nanoTiO2 (1 g/L), ultraviolet 

irradiation (120 min) followed by acid hydrolysis (30 min) as opposed to bagasse subjected to 

only acid hydrolysis (30 min). Dolly et al. (2015) also obtained enhanced biohydrogen 

production with Fe-nanoparticle as supplement. Similarly, the addition of γ-Fe2O3 nanoparticle 

was reported to have enhanced biohydrogen synthesis from glucose (Lin et al., 2016b). Zhao et 

al. (2011) compared ferrous ions with Fe3O4 nanoparticle for enhancing H2 production and 

reported higher H2 yield was higher with Fe3O4 nanoparticle. Similarly, Beckers et al. (2013) 

studied the effects of lead, silver, copper, palladium and iron oxide nanoparticles encapsulated 
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in porous SiO2 (silica) and found that iron oxide nanoparticle exhibited the highest H2 yield. 

Mullai et al. (2013) obtained an improvement in biohydrogen production by 22.7% by means of 

maximum H2 production yield of 2.54 mol/mol glucose by anaerobic sludge with the addition of 

5.7 mg/L Ni nanoparticles under the thermophilic condition (55 oC). One green trait with 

respect to the use of iron oxide NPs is that they can easily be removed and recycled as they have 

magnetic properties. At this time, the difference in the yields of H2 production might be related 

to the variation in the structural composition of the feedstock. 

 

10. Algae-based hydrogen production 

 

Our survey also indicates that the bioconversion of algal biomass for hydrogen production is 

also an active area of biomass-to-bioenergy research.  However, when compared to the other 

biomass-to-bioenergy systems such as biodiesel production, algae-based biomass-to-bioenergy 

transformation is not fully developed and much still remains to be worked on before it may be 

echeloned to viable full-scale  implementation.  Amongst the several important aspects and 

issues discussed by Show et al. (2018), the design and optimization of the most suitable 

bioreactor configuration(s), the control of light intensity from sunlight and the integration of 

beneficial transformations resulting from metabolic and genetic engineering in biomass 

conversion routes are key research areas which will assist in the development of mature algae-

based hydrogen production systems.  Kumar et al. (2016) have surveyed that very few studies 

have reported the use of mixed microbial cultures for the fermentation of microalgae when 

compared to the more frequent use of single cultures.  Shobana et al. (2017) indicated one 

more research bottleneck in this specific area wherein the mechanisms of catalytic action of 

enzymes are yet to be fully spelt out, following which process optimization may here be 

undertaken.  These latter workers also indicate that biohydrogen synthesis using microalgae 

by biophotolysis, photofermentation and microbial electrolysis schemes is outsmarted by dark 

fermentation.  Shobana et al. (2017) have summarized the main merits of such systems and 

these are, inter alia, greater generation rates of biohydrogen, more concentrated but variable 

concentrations of carbohydrates, lipids and proteins in micro-algae and macro-algae, no 

requirement for land for cultivation, the possibility to utilize a variety of process effluents for 

growing the algae by harnessing the nutrient contents of these growth media, enhanced 

possibility to meet up with greenhouse gas emissions mitigation, possibility to produce by a 

series of side reactions many value-added chemicals which have significant economic value, 

and finally the versatility of algae-based biohydrogen production schemes in a very large 

number of countries.  Besides the latter favourable traits of algal biomass for biohydrogen 
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production, Chen et al. (2016) have equally stressed that the absence of lignin in microalgal 

cellulose structures renders saccharification reactions of these biomass species significantly 

easier than would be the kinetics observed with lignocellulosic biomass.   

 

11. Conclusions and Research Outlooks 

 

To conclude, there is definitely an extensive panoply of research work being conducted 

worldwide in pursuit to study and refine the biomass-to-hydrogen production processes.  As a 

result, hydrogen produced from biomass places itself as a promising green biofuel in the future 

energy mix.  The research trends in the synthesis of hydrogen from a variety of biomass 

substrates under different reaction conditions have been reviewed, and the main observations 

are: 

• Cell immobilization and the use of nanoparticles have been found to considerably enhance 

biomass-to-hydrogen generation rates and yields. 

• The fabrication of novel and more potent microbial strains has given higher cellulase 

turnovers which improve hydrogen synthesis 

• Furthermore, microwave irradiation, ultrasonication and the use of ionic liquids all 

unanimously, and in their own respective specificities, have proven to be useful and green 

biomass pretreatments 

• Biological detoxification methods have been found to lower inhibitor levels significantly 

and thus promote yield recovery.   

• The gradual rise in research of integrated photo- and dark fermentation systems also 

holds promise in enhancing biomass-to-hydrogen production.   

• Algae-based biomass-to-hydrogen production is still in its early stages of research and 

deeper process analysis is much required 

 

Notwithstanding the rich pool of data already compiled in the literature on hydrogen 

production from biomass, the following future works can be planned and undertaken to further 

improve the biomass-to-hydrogen production routes and assist in the leapfrogging of the 

bench-scale systems to ones having full-scale implementation potential: 

• Conducting more elaborate techno-economic analysis of novel hydrogen production 

schemes which may integrate one or more of the following green process enhancement 

component: cell immobilization, better bioreactor design features, green biomass 

pretreatment regimes, new and more potent microbial strains, use of metal nanocatalyst, 
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subcritical or supercritical water reaction conditions and workable inhibitor detoxification 

methods 

• Undertaking mathematical modeling and simulation of those potentially scalable bench-

scale biomass-to-hydrogen production schemes for process optimization 

• Optimizing bench-scale biomass-to-hydrogen production schemes with respect to the key 

process metrics of biomass and energy conversion efficiency, controllability, yield, safety 

and hazard control and recyclability within the scaled-up scheme 

• Devoting more attention to sort out the techno-economic and socioeconomic sustainability 

issues related to the acquisition, handling and conditioning of biomass for hydrogen 

production 

• In addition, addressing potential technical and operational issues which could crop up in 

relation to selectivity towards hydrogen synthesis, poisoning and probable deactivation of 

metal-based catalysts and equally the fouling of bioreactor piping networks due to char 

formation 

• Exploring the implications of innovative integrated biomass-to-hydrogen production 

schemes such as combined fermentation-gasification processes 

• Last but not the least, pursuant to the above points, allocating research resources in 

further improving those hydrogen production routes which qualify for potential full-scale 

implementation by conducting risk assessment and lifecycle impact analysis 
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