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Abstract. For planar polynomial vector fields of the form

(−y + X(x, y))
∂

∂x
+ (x + Y (x, y))

∂

∂y
,

where X and Y start at least with terms of second order in the variables x and

y, we determine necessary and sufficient conditions under which the origin is
a center or a uniform isochronous centers.

1. Introduction and statement of the main results

A real planar polynomial differential system is a system of the form

(1) ẋ = P (x, y), ẏ = Q(x, y),

where the dot denotes derivative with respect to an independent variable here called
the time t, and P and Q are real coprime polynomials in R[x, y]. We say that the
polynomial differential system (1) has degree m = max {degP, degQ}.

In what follows we assume that origin O := (0, 0) is a singular or equilibrium
point, i.e. P (0, 0) = Q(0, 0) = 0.

The equilibrium point O is a center if there exists an open neighborhood U of
O where all the orbits contained in U \ {O} are periodic.

The study of the centers of polynomial differential systems (1) has a long history.
The first works are due to Dulac [4] and Poincaré [11]. Later on where developed
by Lyapunov [9], Bendixson [2], Frommer [5] and many others.

Assume that the origin of the polynomial differential system (1) is a center. It
is well–known that, after a linear change of variables and a constant scaling of the
time variable (if necessary), system (1) can be written in one of the next three
forms:

(2)
ẋ = −y + F1(x, y), ẏ = x + F2(x, y),
ẋ = y + F1(x, y), ẏ = F2(x, y),
ẋ = F1(x, y), ẏ = F2(x, y),

where F1(x, y) and F2(x, y) are polynomials without constant and linear terms
defined in a neighborhood of the origin. Then the origin O of the polynomial
differential system (1) is called linear type, nilpotent or degenerate if after a linear
change of variables and a scaling of the time it can be written as the first, second
and third system of (2), respectively.
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A center O of system (1) is a uniform isochronous center if the equality xẏ−yẋ =
a(x2 +y2) holds with a ̸= 0; or equivalently if in polar coordinates, x = r cos θ, y =

r sin θ, we have that θ̇ = a. It is known that isochronous centers and in particular
isochronous uniform centers are linear type centers. This is due to the fact that
blowing up the origin where the center is located for the linear type centers the
origin blows up to a periodic orbit, but for nilpotent and degenerate centers the
origin blows up to a graphic and consequently the periodic orbits near the origin
cannot have constant period. We recall that a graphic is formed by finitely many
singular points and orbits connecting these points in such a way that in one of
the two sides of the graphic a return Poincaré map is defined. To see examples of
isochronous centers which are not uniform, see for instance [8].

The following necessary and sufficient condition in order that the origin O of the
first polynomial differential of system (2) be a center was obtained by Poincaré, and
it was extended to analytic differential systems by Lyapunov (see for more details
[6, 9]).

Theorem 1. A planar polynomial differential system

(3) ẋ = −y +
m∑

j=2

Xj(x, y), ẏ = x +
m∑

j=2

Yj(x, y),

of degree m has a center at the origin if and only if it has an analytic first integral
of the form

(4) H =

∞∑

j=2

Hj(x, y) =
1

2
(x2 + y2) +

∞∑

j=3

Hj(x, y),

where Xj, Yj and Hj are homogenous polynomials of degree j.

One of the main objectives of the present paper is to study the centers and the
uniform isochronous centers using the inverse theory (see for instance [7, 12]). More
precisely, we want to determine the polynomials Xj and Yj of system (3) in order
that a function of the form (4) be a first integral of the polynomial differential
system (3) in a neighborhood of the origin O.

As usual the Poisson bracket of the functions f(x, y) and g(x, y) is defined as

{f, g} :=
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
.

Our first result provides the expression of the polynomial differential system (3)
in function of its first integral (4).

Theorem 2. Given an analytic function of the form (4) a polynomial differential
system having such function as a first integral can be written as

(5)

ẋ =

m+1∑

j=2

gm+1−j{Ψj , x} = −y + X (x),

ẏ =

m+1∑

j=2

gm+1−j{Ψj , y} = x + X (y),
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where g0 = 1 and gm+1−j is an arbitrary homogenous polynomial of degree m+1−
j ≥ 0 satisfying

(6) {Hm+l−1, H2} =

m∑

j=2

Xj(Hm+l−j), l = 3, 4, . . . ,

where

X =
m∑

j=2

(
Xj

∂

∂x
+ Yj

∂

∂y

)
=

m∑

j=2

Xj

=
m∑

j=2

({Hj+1, } + g1{Hj , } + . . . + gj−1{H2, }) ,

Ψj =

j∑

k=2

Hk, for j = 2, . . . , m + 1.

Theorem 2 is proved in section 2.

We remark that Theorem 2 shows that all polynomial differential systems having
a first integral of the form (4) have a center at the origin, because we have proved
that such systems are of the form (3) and consequently they have a focus or a
center at the origin, but the existence of the first integral forces that the origin is
a center. Note that this provides a new proof of the Poincaré–Liapunov Theorem
(i.e. Theorem 1).

On the other hand, if a polynomial differential system has a linear type center
at the origin by Theorem 1 it has an analytic first integral of the form (4), and the
differential system has the structure described in Theorem 2. So this structure is
necessary in order that a polynomial differential system has a center at the origin.

Now we shall put our attention on the uniform isochronous centers by using
Theorem 2.

The following result is well–known, see for instance [3].

Proposition 3. Assume that a planar polynomial differential system of degree m
has a center at the origin of coordinates. Then this center is a uniform isochronous
center if and only if doing a linear change of variables and a scaling of the time the
system can be written as

(7) ẋ = −y + x
m∑

n=2

φn−1, ẏ = x + y
m∑

n=2

φn−1,

where φn−1 = φn−1(x, y) is a homogenous polynomial in x and y of degree n − 1

This result can be improved as follows. Thus, using Theorem 2 we provide a
first characterization of the uniform isochronous centers.

Theorem 4. A polynomial differential system (3) has a uniform isochronous center
at the origin if and only if the system can be written as (7) with

φn−1 =
1

n + 1

n−1∑

j=1

{H2Υn−1−j , gj}
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where H2 = (x2 +y2)/2, gj and Υj are arbitrary homogenous polynomials of degree
j, and the system has a first integral of the form

(8) H = H2 (1 + Υ1 + Υ2 + . . .) ,

in a neighborhood of the origin.

The following result is well–known (see for instance [10]) and give the lineariza-
tion criterion for the isochronocity of a center.

Theorem 5. A center of an analytic system is isochronous if and only if there
exits an analytic change of coordinates X = x + o(|(x, y)|), Y = y + o(|(x, y)|),
reducing the system to the linear isochronous system Ẋ = −Y, Ẏ = X.

Corollary 6 (Linearization of uniform isochronous center). Under the assumptions
of Theorem 4 we get that by the analytic change of coordinates

X = x
√

1 + Υ1 + Υ2 + . . ., Y = y
√

1 + Υ1 + Υ2 + . . .,

the differential system (7) becomes Ẋ = −Y, ˙Y = X.

Theorem 4 and Corollary 6 are proved in section 3.

In the next result we provide a second characterization of the uniform isochronous
centers.

Theorem 7. The origin of the polynomial differential system (3) is a uniform
isochronous center if and only if this system can be written as (7) and

x(t) = cos t
∞∑

j=1

εjsj(t), y(t) = sin t
∞∑

j=1

εjsj(t),

is a periodic solution with the initial conditions (ε, 0) where ε is a small parameter,
and sj(t) is a convenient 2π–periodic function such that s1(t) = 1, and sj(0) =
sj(2π) = 0 for j > 1.

Theorem 7 is proved in section 4.

The next corollary provides a characterization of the linear type centers of poly-
nomial differential systems when their nonlinearities are homogenous polynomials.

Corollary 8. Under the assumptions of Theorem 2 the planar polynomial differ-
ential system of degree m

(9) ẋ = −y + Xm, ẏ = x + Ym,

where Xm and Ym are homogenous polynomials of degree m, has a center at the
origin if and only if it can be written as

(10)
ẋ = {H2 + Hm+1, x} + gm−1{H2, x} := −y + Xm(x),

ẏ = {H2 + Hm+1, y} + gm−1{H2, y} := x + Xm(y),

where
Xm = {H2 + Hm+1, } + gm−1{H2, },

and gm−1 = gm−1(x, y) is a homogenous polynomial of degree m − 1 satisfying

(11) Xm(Hk) + {H2,Hm+k−1} = 0 for k = 3, 4, . . . .

Corollary 8 is proved in section 5.

In [3] Conti proved the following result.
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Theorem 9. The polynomial differential system (9) with

Xm = xφm−1(x, y), Ym = yφm−1(x, y), φm−1(x, y) =
∑

i+j=m−1

aijx
iyj ,

has a uniform isochronous center at the origin if either m is even, or m is odd and

m−1∑

j=0

am−1−j,j

∫ 2π

0

cosm−1−j t sinj t dt = 0,

Conti’s result can be improved as follows.

Theorem 10. The polynomial differential system (9) has a uniform isochronous
center at the origin if and only if this system can be written as

(12)

ẋ = −y +
x

m + 1
{H2, gm−1},

ẏ = x +
y

m + 1
{H2, gm−1},

where H2 = (x2 + y2)/2 and gm−1 = gm−1(x, y) is an arbitrary homogenous poly-
nomial of degree m − 1 satisfying (11). Moreover this system has the rational first
integral

F =
Hm−1

2(
1 +

m − 1

m + 1
gm−1

)2 .

Theorem 10 is proved in section 5.

Theorem 10 characterizes the form of the polynomial uniform isochronous centers
with homogeneous nonlinearities.

Note that, under the assumptions of Theorem 10 and using the notation of
Theorem 4, the first integral F 1/(m−1) has the following development as the origin

F 1/(m−1) := H = H2 (1 + Υ1 + Υ2 + . . .) ,

i.e. system (12) has a local first integral at the origin having H2 as a factor, where
Υj is a convenient homogenous polynomial of degree j.

Corollary 11 (Linearization of uniform isochronous centers with homogenous non-
linearity). Under the assumptions of Theorem 10 we get that by the analytic change
of coordinates in a neighborhood of the origin

X =
x

(
1 +

m − 1

m + 1
gm−1

)1/(m−1)
,

Y =
y

(
1 +

m − 1

m + 1
gm−1

)1/(m−1)
,

the differential system (12) becomes

Ẋ = −Y, Ẏ = X.

Corollary 11 is proved in section 5.
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2. Proof of Theorem 2

Proof of Theorem 2. Consider a general polynomial vector field of degree m that
we write as

X =




m∑

j=0

Xj(x, y)


 ∂

∂x
+




m∑

j=0

Yj(x, y)


 ∂

∂y
,

where Xj and Yj for j = 0, 1, . . . , m are homogenous polynomials of degree j. Since
the analytic first integral H starts with H2 = (x2 +y2)/2, without loss of generality
this implies that X0(x, y) = Y0(x, y) = 0, X1(x, y) = −y and Y1(x, y) = x. Hence
the following infinite number of equations follow
(13)

xX2 + yY2 = {H3,H2},

xX3 + yY3 +
∂ H3

∂x
X2 +

∂ H3

∂y
Y2 = {H4,H2},

xX4 + yY4 +
∂ H3

∂x
X3 +

∂ H3

∂y
Y3 +

∂ H4

∂x
X2 +

∂ H4

∂y
Y2 = {H5,H2},

...
...

...
...

...
...

xXn + yYn +
∂ H3

∂x
Xn−1 +

∂ H3

∂y
Yn−1 + . . . +

∂ Hn

∂x
X2 +

∂ Hn

∂y
Y2 = {Hn+1,H2},

xXn+1 + yYn+1 +
∂ H3

∂x
Xn +

∂ H3

∂y
Yn + . . . +

∂ Hn+1

∂x
X2 +

∂ Hn+1

∂y
Y2 = {Hn+2,H2},

...
...

...
...

...
....

The first equation can be rewritten as

x

(
X2 +

∂ H3

∂y

)
+ y

(
Y2 − ∂ H3

∂x

)
= 0,

by solving with respect to X2 and Y2 we obtain the following polynomial solutions

X2 = −∂ H3

∂y
− yg1 = {H3, x} + g1{H2, x} := X2(x),

Y2 =
∂ H3

∂x
+ xg1 = {H3, y} + g1{H2, y} := X2(y),

where g1 = g1(x, y) is an arbitrary homogenous polynomial of degree one. By
substituting these polynomials into the second equation of (13) we get

x

(
X3 +

∂ H4

∂y
+ g1

∂ H3

∂y

)
+ y

(
Y3 − ∂ H4

∂ x
− g1

∂ H3

∂x

)
= 0.

By solving this equation with respect to X3 and Y3 we have

X3 = −∂ H4

∂y
− g1

∂ H3

∂y
− yg2 = {H4, x} + g1{H3, x} + g2{H2, x} := X3(x),

Y3 =
∂ H4

∂x
+ g1

∂ H3

∂x
+ xg2 = {H4, y} + g1{H3, y} + g2{H2, y} := X3(y),

where g2 = g2(x, y) is an arbitrary homogenous polynomial of degree two. By
continuing this process recursively we obtain X4, Y4, . . . , Xm, Ym. By substituting
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Xj and Yj for j = 1, . . . , m into the rest of equations (13) we deduce the partial
differential equations (6). Introducing the respectively notations we get

−y + X2 + X3 + . . . + Xm = −y + X (x) =
m+1∑

j=2

gm+1−j{Ψj , x},

x + Y2 + Y3 + . . . + Ym = x + X (y) =
m+1∑

j=2

gm+1−j{Ψj , y},

with g0 = 1. Thus the proof of the theorem follows. �

Remark 12. A polynomial differential system having a linear type center at the
origin can written as system (5), consequently this system gives a necessary condi-
tion in order to have a linear type center, but this condition is not sufficient. Indeed
it is known (see [1]) that a quadratic differential system with a center at the origin
can be written as

ẋ = −y − λ3x
2 + (2λ2 + λ5)xy + λ6y

2,

ẏ = x + λ2x
2 + (2λ3 + λ4)xy − λ2y

2,

or equivalently (see (10) for m = 2)

ẋ = {H2 + H3, x} + g1{H2, x}, ẏ = {H2 + H3, y} + g1{H2, y},

with

H3 =
1

3
(λ2 + λ5)x3 + λ3x

2y − 1

3
(λ4 + λ6)y

3 − λ2xy2,

g1 = λ4y − λ5x.

It is well known that there are values of the parameters λ2, λ3, λ4, λ5 and λ6 for
which the origin is a focus.

Proposition 13. Let Ψ = Ψ(x, y) be an arbitrary polynomial and H2 = (x2+y2)/2.
Then the following statements hold.
(a)

(14)

∫ 2π

0

{Ψ,H2}|x=cos t, y=sin t dt = 0.

(b) Under the assumptions of Theorem 2 we have that

(15)

∫ 2π

0

Xj(Hm+l−j)|x=cos t, y=sin t dt = 0,

for j = 2, . . . , m and l = 3, 4, . . . .

Proof. From the relations

d

dt
Ψ(cos t, sin t) = cos t

∂Ψ(x, y)

∂y
− sin t

∂Ψ(x, y)

∂x

∣∣∣∣
x=cost,y=sint

= {H2, Ψ}|x=cos t,y=sin t ,

it follows that
∫ 2π

p

{Ψ, H2}|x=cos t,y=sin t = Ψ(cos t, sin t)|2π
0 = 0.

From (6) and (14) it follow (15). �

The following result is due to Liapunov, see Theorem 1, page 276 of [9].
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Theorem 14. Let U = U(x, y) be a homogenous polynomial of degree k. The linear
partial differential equation

y
∂V

∂x
− x

∂V

∂y
:= {V, H2} = U,

has a unique homogenous polynomial solution V of degree k if k is odd; and if V
is a homogenous polynomial solution when k is even then V + c(x2 + y2)k/2 where
c ∈ R are all the homogenous polynomial solutions.

Proposition 15. Assuming that system (3) is given and that Xj = Xj
∂

∂x
+Yj

∂

∂y
,

then the following statements hold.

(a) Condition (15) are necessary and sufficient in order that the linear first
order partial differential equations (6) for l = 3, 4, . . . in the dependent
variable Hm+l−1(x, y) has solutions.

(b) The homogenous polynomial solution Hm+l−1(x, y) of (6) when m+ l−1 is
odd is unique. If Hm+l−1(x, y) is a homogenous polynomial solution of (6)
when m+ l − 1 is even, then all the other homogenous polynomial solutions
are of the form Hm+l−1(x, y) + c(x2 + y2)(m+l−1)/2 with c ∈ R.

Proof of Proposition 15. Statement (a) follows from Proposition 13. Statement (b)
is an easy consequence of Theorem 14. �

3. Proof of Theorem 4 and Corollary 6

First we prove the following lemma.

Lemma 16. Under the assumptions of Theorem 2 and assuming that

Hn+1 = − 1

n + 1

(
ng1Hn + (n − 1)g2Hn−1 + . . . + 2gn−1H2

)
,

for n > 1. Then

Xn(x) =
x

n + 1

n−1∑

j=1

{Hn+1−j , gj} := xφn−1,

Xn(y) =
y

n + 1

n−1∑

j=1

{Hn+1−j , gj} := yφn−1.
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Proof. Substituting the polynomial Hn+1 into Xn(x) we obtain

Xn(x) = {Hn+1, x} + g1{Hn, x} + . . . + gn−1{H2, x}

= −∂Hn+1

∂ y
− g1

∂ Hn

∂y
− . . . − gn−1y

=
1

n + 1

(
n

∂Hn

∂y
g1 + nHn

∂g1

∂y
− (n + 1)g1

∂Hn

∂y

+ . . . + 2
∂H2

∂y
gn−1 + 2H2

∂gn−1

∂y
− (n + 1)gn−1

∂H2

∂y

)

=
1

n + 1

((
x

∂Hn

∂x
+ y

∂Hn

∂y

)
∂g1

∂y
−

(
x

∂ g1

∂x
+ y

∂g1

∂y

)
∂ Hn

∂y

)

+ . . . +
1

n + 1

((
x

∂H2

∂x
+ y

∂H2

∂y

)
∂gn−1

∂y
−

(
x

∂ gn−1

∂x
+ y

∂gn−1

∂y

)
∂ H2

∂y

)

=
x

n + 1

n−1∑

j=1

{Hn+1−j , gj}.

Here we use the property of the homogenous polynomial jgj = x
∂gj

∂y
+ y

∂gj

∂y
. In a

similar way we obtain the expression for Xn(y). �

Proof of Theorem 4. If the origin is a linear type center of a polynomial differential
system then in view of Theorem 2 we obtain that this system can be written as (5),
or equivalently,

ẋ = −y + X (x)

= −y −
(

∂Hm+1

∂ y
+ g1

∂ Hm

∂y
+ . . . + gm−1y

)
−

(
∂Hm

∂ y
+ g1

∂ Hm−1

∂y
+ . . . + gm−2y

)

− . . . −
(

∂H4

∂ y
+ g1

∂ H3

∂y
+ g2

∂ H2

∂y

)
−

(
∂H3

∂ y
+ g1

∂ H2

∂y

)
,

ẏ = x + X (y)

= x +

(
∂Hm+1

∂ x
+ g1

∂ Hm

∂x
+ . . . + gm−1x

)
+

(
∂Hm

∂ x
+ g1

∂ Hm−1

∂x
+ . . . + gm−2x

)

+ . . . +

(
∂H4

∂ x
+ g1

∂ H3

∂x
+ g2

∂ H2

∂x

)
+

(
∂H3

∂ x
+ g1

∂ H2

∂x

)
.

This center is uniform isochronous center if and only if xẏ − yẋ = x2 + y2, conse-
quently the following relation holds xX (y) − yX (x) = 0, i.e.

x

(
∂Hm+1

∂ x
+ g1

∂ Hm

∂x
+ . . . + gm−1x

)
+ y

(
∂Hm+1

∂ y
+ g1

∂ Hm

∂y
+ . . . + gm−1y

)

+x

(
∂Hm

∂ x
+ g1

∂ Hm−1

∂x
+ . . . + gm−2x

)
+ y

(
∂Hm

∂ y
+ g1

∂ Hm−1

∂y
+ . . . + gm−2y

)

+ . . . + x

(
∂H3

∂ x
+ g1

∂ H2

∂x

)
+ y

(
∂H3

∂ y
+ g1

∂ H2

∂y

)
= 0.
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Using the Euler theorem for the homogenous polynomials Hk of degree k for k =
2, 3, . . . , m + 1 we obtain

(m + 1)Hm+1 + mg1Hm + . . . + 2H2gm−1

+mHm + (m − 1)g1Hm−1 + . . . + 2H2gm−2

... . . .
... . . .

+5H5 + 4H4g1 + 3H3g2 + 2H2g3

+4H4 + 3g1H3 + 2H2g2

+3H3 + 2H2g1 = 0,

consequently

(16)

(m + 1)Hm+1 + mg1Hm + . . . + 2H2gm−1 = 0,

mHm + (m − 1)g1Hm−1 + . . . + 2H2gm−2 = 0,

...
...

...
...

...

4H4 + 3g1H3 + 2H2g2 = 0,

3H3 + 2H2g1 = 0.

By solving system (16) with respect to H3, H4, . . . ,Hm+1 we get

H3 = −2

3
g1H2 := Υ1H2,

H4 = −3

4
g1H3 − 1

2
g2H2 =

1

4

(
2g2

1 − 2g2

)
H2 := Υ2H2,

H5 = −1

5
(4g1H4 + 3g2H3 + 2g3H2)

= −1

5

(
2g3

1 − 4g1g2 + 2g3

)
H2 := Υ3H2,

H6 = −1

6
(5g1H5 + 4g2H4 + 3g3H3 + 2g4H2)

=
1

6

(
2g4

1 − 6g2
1g2 + 4g1g3 + 2g2

2 − 2g4

)
H2 := Υ4H2,

...
...

...
...

Hj+1 = − j

j + 1
Hj − . . . − 2

j + 1
gj−1H2

=
(−1)j

j + 1

(
2gj−1

1 − . . . − 2gj−1

)
:= Υj−1H2,

...
...

...
...

Hm+1 = − m

m + 1
Hm − . . . − 2

m + 1
gm−1H2

=
(−1)m

m + 1

(
2gm−1

1 − . . . − 2gm−1

)
:= Υm−1H2,
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where Υj is a homogenous polynomial of degree j for j = 1, . . . , m − 1.

In view of Corollary 16 X (x) and X (y) can be written as

X (x) =

m∑

n=2

Xn(x) = x

m∑

n=2

1

n + 1

n−1∑

j=1

{Hn+1−j , gj},

X (y) =

m∑

n=2

Xn(y) = y

m∑

n=2

1

n + 1

n−1∑

j=1

{Hn+1−j , gj}.

Substituting X (x) and X (y) into (5) we get

ẋ = −y + x

m∑

n=2

1

n + 1

n−1∑

j=1

{Hn+1−j , gj} := −y + x

m∑

j=2

φj ,

ẏ = x + y

m∑

n=2

1

n + 1

n−1∑

j=1

{Hn+1−j , gj} := x + y

m∑

j=2

φj .

To finish the proof of the theorem we prove that conditions (6) hold. Indeed in
view of the relations

Hj = H2Υj−2 for j = 3, . . . ,m + 1,

Xj = φj−1(x
∂

∂x
+ y

∂

∂y
) for j = 2, . . . , m,

Xj(Hm+l−j) = (m + l − j)Hm+l−jφj−1,

we get that

(17)

0 =
m∑

j=2

Xj(Hm+l−j) + {H2,Hl+m−1}

=

m∑

j=2

(m + l − j)Hm+l−jφj−1 + {H2,Hl+m−1}

= H2

m∑

j=2

(m + l − j)Υm+l−j−2φj−1 + {H2,Hm+l−1},

for l = 3, 4, . . . . Hence by considering that {H2, H2Υm+l−3} = H2{H2, Υm+l−3}
we have that the solution of (17) are Hm+l−1 = H2Υm+l−3, for l = 3, 4, . . . where
the homogenous polynomial Υm+l−3 of degree m + l − 3 is the solution of the first
order partial differential equation

{Υm+l−3,H2} =

m∑

j=2

(m + l − j)Υm+l−j−2φj−1.

From the previous results it follows that Hj = H2Υj−2 for j = 3, 4, . . . . Con-
sequently the first integral (4) becomes H = H2(1 + Υ1 + Υ2 + . . .). In view of
Theorem 2 the theorem is proved. �

Proof of Corollary 6. By Theorem 4 the polynomial differential system (7) of degree
m has the first integral H = H2(1 + Υ1 + . . .) := H2Φ, if and only if the following
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relations hold

dH

dt
=

d

dt
(H2Φ) =

dH2

dt
Φ + H2

dΦ

dt
= 2H2Φφ + H2

dΦ

dt
= 0,

where φ =
m∑

n=2

φn−1. From
dH

dt
= 0, we have in a small neighborhood the origin

that

2H2

√
Φ

2
+ H22

√
Φ

d
√

Φ

dt
= 0.

Consequently
d
√

Φ

dt
= −

√
Φφ. Hence

dX

dt
= (−y + xφ)

√
Φ + x

d
√

Φ

dt
= −y

√
Φ = −Y,

dY

dt
= (x + yφ)

√
Φ + y

d
√

Φ

dt
= x

√
Φ = X.

�

4. Proof of Theorem 7

From Proposition 3 it follows that a differential system with a uniform isochronous
center at the origin can be written as (7). Now we shall compute the solution
(x(t), y(t)) of system (7) satisfying that (x(0), y(0)) = (ε, 0). where ε is a small
parameter.

We use the following complex notation

z(t) = x(t) + iy(t) =
∞∑

j=1

εj (xj(t) + iyj(t)) =
∞∑

j=1

εjzj(t),

and we assume that the polynomial φ has the following development

φ(t) =
m−1∑

j=1

φj(x(t), y(t), ε) =
∞∑

j=1

εjτj(t).

Hence

τ1 = φ1(x1(t), y1(t)),

τ2 = φ1(x2(t), y2(t)) + φ2(x1(t), y1(t)),

τ3 = φ1(x3(t), y3(t)) + . . . + φ3(x1(t), y1(t)),

... = . . . . . .
... ,

τj = φ1(xj(t), yj(t)) + . . . + φj(x1(t), y1(t)),

... = . . . . . . ,

By substituting φ(t) into differential system (7) which now is of the form

ż = z (i + φ̃(z, z̄)) ,
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we obtain an infinite number of differential systems, one for each coefficient of the
different powers of ε :

(18)

ż1 = iz1,

ż2 = iz2 + z1τ1,

ż3 = iz3 + z1τ2 + z2τ1,

...
... . . .

...,

żk = izk + z1τk−1 + z2τk−2 + . . . + zk−1τ1,

...
... . . .

...,

where k ≥ m, recall that m is the degree of the polynomial differential system. The
solutions of (18) are

z1 = eit := eits1,

z2 = eit q1 := eits2,

z3 = eit

(
1

2!
q2
1 + q2

)
:= eits3,

z4 = eit

(
1

3!
q3
1 + q1q2 + q3

)
:= eits4,

z5 = eit

(
1

4!
q4
1 +

1

2!
q2
1q2 +

1

1!
q1q3 +

1

2!
q2
2 + q4

)
:= eits5,

... . . .
...,

zk = eit

(
1

(k − 1)!
qk−1
1 +

1

(k − 3)!
qk−3
1 q2 + . . . + qk−1

)
:= eitsk,

... . . .
...

where qj = qj(t) =

∫ t

0

τj(x, y)|x=cos t, y=sin t dt, for j = 1, . . . ,m − 1. Hence system

(7) has a center at the origin if and only if zj(0) = zj(2π) = 0 for j > 1, i.e if and

only if sj(0) = sj(2π) = 0, for j > 1 which is equivalent to

∫ 2π

0

τj(x, y)|x=cos t, y=sin t dt =

0, for j ≥ 1, On the other hand by considering the solution of system (7) is

z(t) = x(t) + iy(t) =

∞∑

j=1

εjzj(t) = eit
∞∑

j=1

εjsj(t),

we get that

x(t) = cos t
∞∑

j=1

εjsj(t), y(t) = sin t
∞∑

j=1

εjsj(t),

and it is periodic if and only if sj(0) = sj(2π) = 0 for j > 1. In short the theorem
is proved.
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5. Proof of Corollaries 8 and 11, and Theorem 10

Proof of Corollary 8. It follows from Theorem 2 under the conditions

(19) gj =

{
0 if 1 ≤ j ≤ m − 2,
gm−1 if j = m − 1.

Hj =





0 if 3 ≤ j ≤ m,
H2 if j = 2,
Hm+1 if j = m + 1.

�

Proof of Theorem 10. Assume that the differential system (9) has a center at the
origin, then in view of Corollary 8 we get that this system can be written as (10).
If the center is a uniform isochronous center then, from Theorem 4 with gj and
Hj given in (19) we obtain the differential system (12). The reciprocal is obtain as
follows.

From (12) it follows that

dH2

dt
=

2H2

m + 1
{H2, gm−1},

dgm−1

dt
=

(
1 +

1

m + 1

(
x

∂gm−1

∂x
+ y

∂gm−1

∂y

))
{H2, gm−1}.

Since gm−1 is a homogenous polynomial of degree m − 1, then

dH2

dt
=

2

m + 1
H2{H2, gm−1},

dgm−1

dt
=

(
1 +

m − 1

m + 1
gm−1

)
{H2, gm−1}.

Thus the curve H2 = 0 and 1+
m − 1

m + 1
gm−1 = 0 are invariant algebraic curves with

cofactors
2

m + 1
{H2, gm−1} and

m − 1

m + 1
{H2, gm−1} respectively. Therefore a first

integral is

F =
Hm−1

2(
1 +

m − 1

m + 1
gm−1

)2 .

Consecutively the origin is a center, and the theorem is proved . �

Proof of Corollary 11. Since

F 1/(m−1) =
H2(

1 +
m − 1

m + 1
gm−1

)1/(m−1)
:= H2Φ

is a first integral of system (12), we have as in the proof of Corollary 6 that
d
√

Φ

dt
=

−φ
√

Φ. Consequently

dX

dt
= (−y + xφ)

√
Φ + x

d
√

Φ

dt
= −y

√
Φ = −Y,

dY

dt
= (x + yφ)

√
Φ + x

d
√

Φ

dt
= x

√
Φ = X.

�
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[4] H. Dulac, Détermination et integration d’une certaine classe d’équations différentielle ayant
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versitat Politécnica de Cataluña, 2002 (in Spanish).
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gili, Avinguda dels Päısos Catalans 26, 43007 Tarragona, Catalonia, Spain.
E-mail address: rafaelorlando.ramirez@urv.cat

3 Universitat de Barcelona, Gran V́ıa de las Cortes Catalanas, 585 08007 Barcelona,
Spain.

E-mail address: vramirsa8@alumnes.ub.edu
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