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Abstract. In this paper we characterize all cubic polynomial dif-
ferential systems in the plane having two circles as invariant alge-
braic limit cycles.
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1. Introduction and statement of the main results

A planar polynomial differential system is a differential system of the
form

(1)
ẋ = P (x, y),
ẏ = Q(x, y),

where P and Q are real polynomials. We say that the polynomial
differential system (1) has degree n, if n is the maximum of the degrees
of the polynomials P and Q. Usually a polynomial differential system
of degree 3 is denoted simply as a cubic system. The dot in (1) denotes
derivative with respect to the independent variable t.

In this paper we want to analyze all cubic polynomial differential
systems having two circles as algebraic limit cycles.

In [4] the authors proved, first that every planar polynomial vector
field of degree n with n invariant circles is Darboux integrable without
limit cycles, and second that a planar polynomial vector field of degree
n has at most n − 1 invariant circles as algebraic limit cycles. So, in
particular, cubic systems have at most two circles as algebraic limit
cycles.

Our first result is to provide a normal form for all cubic polynomial
differential systems having two circles as invariant algebraic curves.
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Consider two circles on the plane that do not intersect between them.
These circles after a scaling and a rotation of the coordinates around
the origin can be written, without loss of generality, as one of the
following forms:

(I) f1(x, y) = x2 + y2 − 1 and f2(x, y) = x2 + y2 − r2, with r > 1
(in this case both circles are concentric).

(II) f1(x, y) = x2 + y2 − 1 and f2(x, y) = (x − x0)
2 + y2 − r2 with

0 < x0 < x0 + r < 1 (this is the case in which one circle, f1 = 0,
contains the other, f2 = 0 in the bounded region that it delimits
and both circles are not concentric).

(III) f1(x, y) = x2 + y2 − 1 and f2(x, y) = (x − x0)
2 + y2 − r2 with

x0 > r+1 and r > 0 (this is the case in which none of the circles
contains the other in the bounded region that they delimit).

Given a polynomial f = f(x, y) ∈ C[x, y] we say that f = 0 is
an invariant algebraic curve of system (1) if there exists a polynomial
K = K(x, y) ∈ C[x, y] called the cofactor so that

P
∂f

∂x
+ Q

∂f

∂y
= Kf.

If system (1) has degree n then the cofactor has degree at most n − 1.

Theorem 1. A cubic system having the two invariant circles f1 = 0
and f2 = 0 as in (I) can be written as

(2)
ẋ = −y(a0 + a1x + a2y + a3x

2 + a4xy + a5y
2),

ẏ = x(a0 + a1x + a2y + a3x
2 + a4xy + a5y

2),

where ai ∈ R for i = 0, 1, . . . , 5. The cofactors of f1 = 0 and f2 = 0
are zero.

Note that system (2) after a rescaling of time can be written as
ẋ = −y, ẏ = x which has the first integral H = x2 + y2. Since the first
integral is defined in the whole plane, this system has no limit cycles.
So when the two invariant circles of a cubic system are concentric they
cannot be limit cycles.

Theorem 2. A cubic system having the two invariant circles f1 = 0
and f2 = 0 as in (II) or in (III) can be written as

ẋ = A1y + A2xy + A3y
2 + A4x

2y + A5xy2 + A6y
3,

ẏ = B0 + B1x + B2y + B3x
2 − A3xy − B0y

2 + B4x
3

+ B2x
2y + B5xy2 − B2y

3,

(3)
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where

A1 = −a0 − a2(1 − r2 + x2
0)

2x0

, A2 = a2 − a1(1 − r2 + x2
0)

2x0

,

A3 = −a3(1 − r2 + x2
0)

2x0

, A4 = a0 + a1, A5 = a3, A6 = a0,

B0 = −a0x0 − a2

2
, B1 = a0 − a1

2
+

a2(1 − r2 + x2
0)

2x0

, B2 = −a3

2
,

B3 = a0x0 − a2

2
+

a1(1 − r2 + x2
0)

2x0

, B4 = −a0 − a1

2
, B5 = −a0 +

a1

2
,

with a0, a1, a2, a3 ∈ R. The cofactors of f1 = 0 and f2 = 0 are

K1 = y(a2 + 2a0x0 + a1x + a3y), K2 = y(a2 + a1x + a3y),

respectively.

Note that when a0 = 0 system (3) has the rational first integral
f1/f2, and consequently no limit cycles. Therefore in what follows we
consider that a0 ̸= 0.

Now we want to characterize when system (3) has f1 = 0 and f2 = 0
as limit cycles.

The following result shows that the two circles f1 = f2 = 0 are never
both limit cycles of system (3) when a3 = 0.

Theorem 3. If a3 = 0 and a0 ̸= 0, then both circles f1 = 0 and f2 = 0
are not limit cycles of system (3).

By Theorem 3 in order that both f1 = 0 and f2 = 0 are limit cycles
of system (3) we must have a3 ̸= 0. The following result characterizes
when the circles f1 = 0 and f2 = 0 are limit cycles of system (3). This
is the main result of this paper because it characterizes when a cubic
polynomial differential system has two circles as invariant algebraic
limit cycles.

Theorem 4. The two circles f1 = 0 and f2 = 0 are limit cycles for
system (3) if and only if

a3a0 ̸= 0,
∆0 = a2

3 + a2
1 − a2

2 < 0,
∆1 = (a2

1 + a2
3)r

2 − (a2 + (2a0 + a1)x0)
2 < 0,

either B2
4 + B2

3 + B2
1 ̸= 0 if (II) holds, or if (III) holds with

B4 = 0 then B3 ̸= 0 and B2
1 − 4B0B3 > 0.

The paper has been divided as follows: In section 2 we prove Theo-
rems 1 and 2. In section 3 we give some preliminary results related to
system (3) that will be used in the proofs of Theorems 3 and 4. The



4 J. GINÉ, J. LLIBRE AND C. VALLS

study of the singular points of system (3) is given in section 4. Finally,
Theorems 3 and 4 are proved in section 5.

Taking into account the results on algebraic limit cycles and algebraic
circle limit cycles of the papers

2. Proofs of Theorems 1 and 2

Proof of Theorems 1 and 2. Suppose that a cubic system in the plane
has two invariant circles that do not intersect. As pointed out in the
introduction, two circles on the plane that do not intersect after a
rescaling and a rotation of the coordinates around the origin they can
be written, without loss of generality, as in (I), or as in (II), or as in
(III).

We write a cubic planar polynomial differential system in the form

(4) ẋ =
3∑

i+j=0

aijx
iyj, ẏ =

3∑

i+j=0

bijx
iyj,

where aij, bij ∈ R for i + j = 0, 1, 2, 3.
We assume that f1 = 0 and f2 = 0 are invariant algebraic curves of

system (4), with cofactors k1 and k2 given, respectively, by

k1 =
2∑

i+j=0

αijx
iyj, k2 =

2∑

i+j=0

βijx
iyj,

where αij, βij ∈ R for i + j = 0, 1, 2.

We recall that f1 = 0 and f2 = 0 are invariant algebraic curves of
system (4) that is, they satisfy

kifi =
∂fi

∂x
ẋ +

∂fi

∂y
ẏ

=
3∑

i+j=0

aijx
iyj ∂fi

∂x
+

3∑

i+j=0

bijx
iyj ∂fi

∂y
, i = 1, 2.

(5)

If f1 and f2 are as in (I) from (5) we get system (2) where we have
used the notation a0 = a01 = b10, a1 = a11 = b20, a2 = a02 = b11,
a3 = a31 = b30, a4 = a12 = b21 and a5 = a30 = b12. Moreover, in this
case K1 = K2 = 0.

If f1 and f2 are as in case (II) or (III) from (5) we get system (3) with
the corresponding cofactors, where we have used the notation a0 = a03,
a1 = β11, a2 = β01 and a3 = β02. �
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3. Preliminary results on system (3)

In this section we introduce some preliminary results on system (3)
that will be used in the proof of Theorems 3 and 4.

Lemma 5. System (3) with a3 = 0 is invariant with respect to the
change (x, y, t) → (x,−y, −t).

Proof. System (3) with a3 = 0 becomes

ẋ = A1y + A2xy + A4x
2y + A6y

3,

ẏ = B0 + B1x + B3x
2 − B0y

2 + B4x
3 + B5xy2

which is obviously invariant with respect to the change (x, y, t) →
(x, −y, −t). �
Lemma 6. If system (3) has a unique singular point p inside the circle
f1 = 0 (resp. the circle f2 = 0) which is a limit cycle, then this singular
point cannot be a center.

Proof. We will prove that if the unique singular point inside f1 = 0 is
a center, then f1 = 0 is not a limit cycle. The proof for the circle f2

can be done in a similar way.

Consider a Poincaré map defined in a transversal section with end-
points the center and a point of the circle f1 = 0. This Poincaré map is
analytic because the differential system is polynomial and consequently
analytic. We have a continuum of periodic orbits surrounding the cen-
ter, so the Poincaré map in a neighborhood of the center is the identity,
and by analyticity it is the identity in all the consider transversal sec-
tion, consequently the circle f1 = 0 is not a limit cycle. �

We shall need the following result. For the proof of Lemma 7 see for
instance [5].

Lemma 7. Consider a two-dimensional autonomous polynomial differ-
ential system having an invariant algebraic curve g = 0 with cofactor
k. Then all singular points of the differential system are contained in
the union of the sets {g = 0} ∪ {k = 0}.
Proposition 8. The two circles f1 = 0 and f2 = 0 are periodic solu-
tions for system (3) with a0 ̸= 0 if and only if

(6) ∆0 = a2
3+a2

1−a2
2 < 0, ∆1 = (a2

1+a2
3)r

2−(a2+(2a0+a1)x0)
2 < 0.

Proof. Note that f1 = 0 and f2 = 0 are invariant algebraic curves of
system (3) with cofactors K1 and K2, respectively. In view of Lemma
7, the singular points of system (3) are on {f1 = 0}∪{K1 = 0} and on
{f2 = 0} ∪ {K2 = 0}.
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We first compute the singular points on f1 = 0. We obtain the four
points

z1,2 = (x1,2, y1,2), z3,4 = (x3,4, y3,4)

where

(7) x1,2 =
−a2a1 ± a3

√
∆0

a2
1 + a2

3

, y1,2 =
−a2a3 ∓ a1

√
∆0

a2
1 + a2

3

and

(8) x3 = x4 =
1 − r2 + x2

0

2x0

, y3,4 = ∓
√

1 − (1 − r2 + x2
0)

2

4x2
0

.

Computing the singular points on f2 = 0 we obtain the points z3 =
(x3, y3), z4 = (x4, y4) given in (8) and two additional points

z5,6 = (x5,6, y5,6)

where

x5,6 =
−a2a1 − 2a0a1x0 + a2

3x0 ∓ a3

√
∆1

a2
1 + a2

3

,

y5,6 =
−a2a3 − 2a0a3x0 − a1a3x0 ± a3

√
∆1

a2
1 + a2

3

.

(9)

Note that the two singular points z3 and z4 are on the circles f1 = f2 =
0 and thus they are complex.

By the expressions of K1 and K2 given in Theorem 2 we have that
K1 = yk̃ being k̃ = a2 + a1x + 2a0x0 + a3y and K2 = yk̂ being k̂ =
a2 + a1x + a3y. Computing the singular points of system (3) on k̃ = 0
we get the points z5 = (x5, y5), z6 = (x6, y6) given in (9). So, these
singular points are on f2 = 0. Now computing the singular points of
(3) on k̂ = 0 we get the points z1 = (x1, y1) and z2 = (x2, y2) given in
(7). So, these singular points are on f1 = 0. Finally, on y = 0 we have
that K1 = K2 = 0. Moreover, computing the singular points (x̄, ȳ) of
(3) on y = 0 we obtain that they satisfy

F (x) = B0 + B1x̄ + B3x̄
2 + B4x̄

3 = 0.

In summary, conditions (6) together with the condition

(10)
F (1)F (−1)F (x0 − r)F (x0 + r) =
(a2

1 − a2
2)(a2 + 2a0x0 + a1(r + x0)) ̸= 0

are equivalent to say that there are no singular points on the two circles
f1 = 0 and f2 = 0 (we recall that f1 = f2 = 0 on y = 0 are, respectively,
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x = ±1 and x = x0 ± r). Note that (10) is automatically satisfied since
condition ∆0 < 0 implies that

a2
1 − a2

2 < a2
3 + a2

1 − a2
2 = ∆0 < 0

and condition ∆1 < 0 implies that

(a2 + 2a0x0 + a1(r + x0))(a2 + 2a0x0 + a1x0 − a1r)

= (a2 + 2a0x0 + a1x0)
2 − a2

1r
2

> (a2 + 2a0x0 + a1x0)
2 − (a2

1 + a2
3)r

2 = −∆1 > 0

and consequently a2 + 2a0x0 + a1(r + x0) ̸= 0. �

4. The singular points

In this section we study the singular points of system (3). For this,
we introduce some notation.

ẏ|y=0 = F (x) = B0 + B1x + B3x
2 + B4x

3,

∆2 = (r − x0 + 1)(r − x0 − 1)(r + x0 − 1)(r + x0 + 1),

D0 = −B2
1B

2
3 + 4B0B

3
3 + 4B3

1B4 − 18B0B1B3B4 + 27B2
0B

2
4 ,

D1 = B2
3 − 3B4B1.

(11)

First we note that by the definition of the forms of f1 and f2 in cases
(II) and (III) we readily have that ∆2 ̸= 0. Moreover, under the as-
sumptions ∆0 < 0, ∆1 < 0 we have already proved that the unique
singular points of system (3) are on y = 0 and F (x) = 0. Now we will
study them under the assumptions ∆0 < 0, ∆1 < 0.

We first recall some important observation that will be used all
through the paper.

Lemma 9. Consider system (3) with ∆0 < 0, ∆1 < 0 and a0 ̸= 0. Its
Jacobian matrix on each of its singular points is of the form

L(x) =




∂ẋ

∂x

∂ẋ

∂y

∂ẏ

∂x

∂ẏ

∂y




∣∣∣∣∣∣∣∣
y=0

=

(
0 A1 + A2x + A4x

2

B1 + 2B3x + 3B4x
2 B2 − A3x + B2x

2

)
,

(12)

with A1+A2x+A4x
2 ̸= 0. Moreover, if a3 ̸= 0 then B2−A3x+B2x

2 ̸= 0.
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Proof. Compute L(x) as in (12). Doing the resultant between A1 +
A2x + A4x

2 and F (x) with respect to x we get

− a0

16x2
0

(a2
1 − a2

2)(a2 + 2a0x0 + a1x0 + a1r)(a2 + 2a0x0 + a1x0 − a1r)∆2

=
a0

16x2
0

∆̃0∆̃1∆2,

where ∆̃0 and ∆̃1 are, respectively, ∆0 and ∆1 restricted to a3 = 0. By
assumptions we have ∆0 < 0, ∆1 < 0, a0 ̸= 0 and by definition ∆2 ̸= 0.
So, A1 + A2x + A4x

2 ̸= 0 at the singular points.

If a3 ̸= 0 doing the resultant between B2 − A3x + B2x
2 and F (x)

with respect to x we get

a2
0a

2
3r

2∆2

8x2
0

,

which is different from zero because by assumptions a0 ̸= 0 and by
definition ∆2x0 ̸= 0. So, when a3 ̸= 0, B2 − A3x + B2x

2 ̸= 0 at the
singular points. �

When a3 = 0 then B2 = A3 = 0 and in view of Lemma 9 the singular
points can be either hyperbolic, or nilpotent but not linearly zero. In
the next result we study the singular points of system (3) when a3 = 0.
In this case system (3) becomes

ẋ = A1y + A2xy + A4x
2y + A6y

3,

ẏ = F (x) − B0y
2 + B5xy2.

(13)

Lemma 10. Consider system (3) with a3 = 0, ∆0 < 0, ∆1 < 0 and
a0 ̸= 0 If x̃ is a simple solution of F (x) = 0, then the singular point
(x̃, 0) is either a saddle or a center. If x̃ is a multiple solution of
F (x) = 0 (either double or triple), then the singular point (x̃, 0) will be
nilpotent.

Proof. In view of Lemma 9, the Jacobian matrix at a singular point
(x̃, 0) with F (x̃) = 0 is of the form (12) with A1 + A2x̃ + A4x̃

2 ̸= 0.

If x̃ is a simple solution of F (x) = 0 then B1 + 2B3x̃ + 3B4x̃
2 =

dF (x)/dx|x=x̃ ̸= 0. Therefore, the singular point (x̃, 0) will be either
a saddle, or a focus, or a center. Translating the singular point at the
origin, by making the change X = x − x̃, Y = y we see that system
(13) in the variables (X, Y ) is reversible (see Lemma 5), and so the
singular point (x̃, 0) will be either a saddle, or a center. This proves
the first statement in the lemma.
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If x̃ is a multiple solution of F (x) = 0, then B1 + 2B3x̃ + 3B4x̃
2 =

dF (x)/dx|x=x̃ = 0, then the singular point (x̃, 0) will be nilpotent. This
proves the lemma. �

When B4 ̸= 0 we will write F (x) = B4G(x) and we will talk about
the zeros of G(x) = 0.

We shall need the following result which is the part of the Andreev’s
theorem for nilpotent singular points [1], see also Theorem 3.5 in [2].

Lemma 11. Let (0, 0) be an isolated nilpotent singular point of the
vector field X given by

(14) ẋ = y + A(x, y), ẏ = B(x, y)

where A,B are analytic in a neighborhood of (0, 0) and also Ax(0, 0) =
Ay(0, 0) = Bx(0, 0) = By(0, 0) = 0. Let y = f(x) be the solution of y +
A(x, y) = 0 in a neighborhood of (0, 0) and consider F (x) = B(x, f(x))
and G(x) = (∂A/∂x + ∂B/∂y)(x, f(x)). Assume F (x) = axm + o(xm)
with a ̸= 0 and G(x) = 0. If m is odd and a > 0, then (0, 0) is a
saddle. If m is odd and a < 0 then (0, 0) is a focus, or a center. If m
is even then (0, 0) is a cusp.

Lemma 12. System (3) with a3 = 0, a0 ̸= 0 and ∆1 < 0, ∆2 < 0 has
the following singular points:

(a) If B4 = 0 and B3 = 0 then if B1 = 0 it has no singular points
and if B1 ̸= 0 it has the unique singular point (z0, 0) where

(15) z0 = −B0

B1

and it is either a saddle or a center.
(b) Assume B4 = 0 and B3 ̸= 0. If (II) holds, or (III) holds with

B2
1 − 4B0B3 > 0, then it has the two singular points (z1, 0) and

(z2, 0) with

(16) z1,2 =
−B1 ±

√
B2

1 − 4B0B3

2B3

.

Both singular points are either saddles or centers. If (III) holds
with B2

1 − 4B0B3 ≤ 0, then either f1 = 0, or f2 = 0 cannot be
a limit cycle.

(c) If B4 ̸= 0, D0 = D1 = 0, then it has a unique multiple real
solution z3 of G(x) = 0. The singular point (z3, 0) is either a
saddle or a center.

(d) If B4 ̸= 0, D0 = 0 and D1 ̸= 0, then G(x) = 0 has two distinct
real solutions (one simple z4 and one double z5). The singular
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point (z4, 0) is a saddle or center and the singular point (z5, 0)
is a cusp.

(e) If B4 ̸= 0 and D0 < 0, then G(x) = 0 has three distinct sim-
ple real solutions z6, z7, z8. All of them can only be saddles or
centers.

(f) If B4 ̸= 0 and D0 > 0, then G(x) = 0 has a unique simple real
solution z9. The singular point (z9, 0) is either a saddle or a
center.

Proof. It follows by direct calculations. Note that when B4 = 0 equa-
tion F (x) = 0 becomes the quadratic equation B3x

2 + B1x + B0 = 0.

If B3 = 0 then if B1 = 0 it has no solutions and if B1 ̸= 0, then the
solution is as given in (15). It is a simple solution of F (x) = 0 and by
Lemma 10 it is either a saddle or a center. This proves statement (a).

If B4 = 0 and B3 ̸= 0 then F (x) = 0 has the two solutions (16),
where

B2
1 − 4B0B3 =

16a2
0r

2x2
0 + a2

2∆2

4x2
0

.

It is easy to see that if we are under the assumptions (II) then ∆2 > 0
and if we are under the assumptions (III) then ∆2 < 0. So, under
the assumptions (II) the solutions z1 and z2 are simple because B2

1 ̸=
4B0B3 > 0 and by Lemma 10 both solutions can only be saddles or
centers. Under the conditions (III), if B2

1 − 4B0B3 > 0 then again z1

and z2 are simple and they are either saddles or centers. On the other
hand if B2

1 − 4B0B3 ≤ 0 then either we have no singular points or one
singular point. But in this case since none of the circles f1 = 0 and
f2 = 0 contains the other in the bounded region that they delimit, and
inside one limit cycle there must be a singular point, we conclude that
either f1 = 0, or f2 = 0 cannot be a limit cycle. This proves statement
(b).

If B4 ̸= 0 and D0 = D1 = 0 we have a unique triple solution for
G(x) = 0, that we call z3. This means that F (x) = B4(x − z3)

3. With
a parametrization of the time we can rewrite equation (13) as

ẋ = Ã1y + Ã2xy + Ã4x
2y + Ã6y

3,

ẏ = (x − z3)
3 − B̃0y

2 + B̃5xy2,
(17)

where Ãi = Ai/B4 and B̃j = Bj/B4 for i = 1, 2, 4, 6 and j = 0, 5. We
introduce the change of variables X = x − z3 and Y = y. Then system
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(17) becomes

ẋ = Â1Y + Â2XY + Â4X
2Y + Ã6Y

3,

ẏ = X3 − B̂0y
2 + B̃5XY 2,

(18)

where Â1 = Ã1 + Ã2z3 + Ã4z
2
3 , Â2 = Ã2 + 2Ã4z3 and B̂0 = B0 − B5z3.

Note that in view of Lemma 9 we have that Â1 ̸= 0. Now we introduce
a scaling of time of the form τ = t/Â1 and we have that system (18)
becomes

ẋ = Y + A2XY + A4X
2Y + A6Y

3,

ẏ =
1

Â1

X3 − B0Y
2 + B5XY 2,

(19)

where

A2 =
Â2

Â1

, A4 =
Â4

Â1

, A6 =
Ã6

Â1

, B0 =
B̂0

Â1

, B5 =
B̃5

Â1

.

Note that (0, 0) is a nilpotent singular point and that system (19) is
precisely system (14) with

A(X, Y ) = A2XY + A4X
2Y + A6Y

3,

B(X, Y ) =
1

Â1

X3 − B0Y
2 + B5XY 2.

The solution Y +f(X) of Y +A(X,Y ) = 0 is f(X) = 0. Then F (X) =
B(X, 0) = 1

Â1
X3 and G(X) = (A2 + 2A4X − 2B0Y + 2B5XY )Y =0 = 0.

So we are under the assumptions of Lemma 11 with m = 3 and a =
1/Â1. In view of Lemma 11 we have that it is either a saddle or a focus
or a center. Since the system is reversible it can only be a saddle or a
center. This proves statement (c).

If B4 ̸= 0 and D0 = 0 and D1 ̸= 0 we have a single solution and a
double solution for G(x) = 0, that we call respectively z4 and z5. The
solution z4 is simple and thus by Lemma 10 it is either a saddle or a
center.

The solution z5 is double. This means that F (x) = B4(x − z4)(x −
z5)

2. With a parametrization of the time we can rewrite equation (13)
as

ẋ = Ã1y + Ã2xy + Ã4x
2y + Ã6y

3,

ẏ = (x − z4)(x − z5)
2 − B̃0y

2 + B̃5xy2,
(20)

where Ãi = Ai/B4 and B̃j = Bj/B4 for i = 1, 2, 4, 6 and j = 0, 5. We
introduce the change of variables X = x − z5 and Y = y. Then system
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(20) becomes

ẋ = Â1Y + Â2XY + Â4X
2Y + Ã6Y

3,

ẏ = (z5 − z4)X
2 + X3 − B̂0Y

2 + B̃5XY 2,
(21)

where Â1 = Ã1 + Ã2z5 + Ã4z
2
5 , Â2 = Ã2 + 2Ã4z5 and B̂0 = B0 − B5z5.

Note that in view of Lemma 9 we have that Â1 ̸= 0. Now we introduce
a scaling of time of the form τ = t/Â1 and we have that system (21)
becomes

ẋ = Y + A2XY + A4X
2Y + A6Y

3,

ẏ =
z5 − z4

Â1

X2 +
1

Â1

X3 − B0Y
2 + B5XY 2,

(22)

where

A2 =
Â2

Â1

, A4 =
Â4

Â1

, A6 =
Ã6

Â1

, B5 =
B̂5

Â1

, B8 =
B̃8

Â1

.

Note that (0, 0) is a nilpotent singular point and that system (22) is
precisely system (14) with

A(X,Y ) = A2XY + A4X
2Y + A6Y

3,

B(X, Y ) =
z5 − z4

Â1

X2 +
1

Â1

X3 − B0Y
2 + B5XY 2.

The solution Y + f(X) of Y + A(X, Y ) = 0 is f(X) = 0. Then

F (X) = B(X, 0) =
z5 − z4

Â1

X2 +
1

Â1

X3

and G(X) = (A2 + 2A4X − 2B0Y + 2B5XY )Y =0 = 0. So we are under

the assumptions of Lemma 11 with m = 2 and a = (z5 − z4)/Â1. In
view of Lemma 11 we have that it is a cusp. This proves statement
(d).

If B4 ̸= 0 and D0 < 0 then G(x) = 0 has three simple real solutions:
z6, z7 and z8, and so by Lemma 10 they can only be saddles or centers.
This proves statement (e).

If B4 ̸= 0 and D0 > 0 then G(x) = 0 has a unique simple real
solution that we call z9. Again, by Lemma 10 it can only be a saddle
or a center. This proves statement (f). �

Note that in view of Lemma 12 all singular points of system (3) with
a3 = 0 have either topological index −1 (and then they are saddles),
or topological index 0 (and they the can only be cusps), or topological
index 1 (and they can only be centers). Now we use this information
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to obtain a restriction on the shape of the singular points when f1 = 0
and f2 = 0 are both limit cycles of system (3) with a3 = 0.

To prove Corollary 14 we shall need the following result. For a proof
of it see, for instance, Proposition 6.26, Example 6.17 and Proposition
6.7 in [2].

Lemma 13. In the interior of a limit cycle there must be singular
points so that the sum of their topological indices is one.

Corollary 14. System (3) with a3 = 0 and having f1 = 0 and f2 = 0
as limit cycles can have only three real singular points: (−x, 0), (0, 0)
and (x, 0). Moreover, (±x, 0) are centers and (0, 0) is a saddle.

Proof. In order to prove that f1 = 0 and f2 = 0 be limit cycles we must
have that a0 ̸= 0, ∆0 < 0 and ∆1 < 0, see Proposition 8. Also inside
the proof of Proposition 8 we show that the singular points of system
(3) are of the form (z, 0) with F (z) = 0. In view of Lemma 5, system
(3) with a3 = 0 is symmetric with respect to the y-axis. So, if system
(3) has a unique singular point then this singular point must be the
origin (0, 0). By Lemma 13 it must have topological index one and by
the statements of Lemma 12 it must be a center, and consequently by
Lemma 6 the circle surrounding this singular point cannot be a limit
cycle. So, statements (a), (c) and (f) of Lemma 12 cannot hold.

Now assume that there are only two singular points of system (3)
with a3 = 0. By the symmetry they are of the form (±x, 0) and both
of them must have the same index. In view of Lemma 12 the only
possibility is statement (b) (because in statement (d) both singular
points have different index). But statement (b) is also not possible,
because both points have topological index either 1, or −1, so in view
of Lemma 13 in at least inside the region delimited by one of the circles
f1 = 0 or f2 = 0 there is a unique singular point, with topological index
1. Therefore, by the statement (b) of Lemma 12 such a singular point
must be a center, and consequently by Lemma 6 that circle cannot be
a limit cycle. So statement (b) cannot hold.

In short, the unique possibility is that statement (e) of Lemma 12
holds, i.e. there are three singular points of system (3) with a3 = 0.
By symmetry these singular points must be of the form (±x, 0) and
(0, 0). Moreover, (±x, 0) have the same index. In view of statement
(e) of Lemma 12 and the existence of the two invariant circles which
are periodic orbits, we must have that (±x, 0) are centers and (0, 0) is
a saddle. This completes the proof of the corollary. �

Now we study the singular points of system (3) when a3 ̸= 0. In this
case, in view of Lemma 9, the singular points can be either hyperbolic,



14 J. GINÉ, J. LLIBRE AND C. VALLS

or semi-hyperbolic. More concretely, let x̃ be a double zero of F (x),
then B1 + 2B3x̃ + 3B4x̃

2 = 0, and the singular point (x̃, 0) is either a
saddle, or a node, or a saddle-node. Now we introduce the notation

H0(x) = (A1 + A2x + A4x
2)(B1 + 2B3x + 3B4x

2),

H1(x) =
(B2 − A3x + B2x

2)2

4
+ H0(x).

If x̃ is a simple zero of F (x), then the singular point (x̃, 0) is a saddle
if H0(x̃) > 0, a node if H1(x̃) ≥ 0 and a focus if H1(x̃) < 0.

Lemma 15. System (3) with a3 ̸= 0, a0 ̸= 0 ∆0 < 0, ∆1 < 0 has the
following singular points.

(a) If B4 = 0 and B3 = 0, then if B1 = 0 it has no singular points,
and if B1 ̸= 0 it has the unique singular point (z0, 0) where z0 is
given in (15). It is a saddle if H0(z0) > 0, a node if H1(z0) ≥ 0
and a focus if H1(z0) < 0.

(b) If B4 = 0 and B3 ̸= 0, then it has the two singular points (z1, 0)
and (z2, 0) with z1 and z2 given in (16) when either (II) holds,
or (III) holds with B2

1 − 4B0B3 > 0. For j = 1, 2, zj is a saddle
if H0(zj) > 0, a node if H1(zj) ≥ 0 and a focus if H1(zj) < 0.
If (III) holds with B2

1 −4B0B3 ≤ 0, then either f1 = 0 or f2 = 0
cannot be a limit cycle.

(c) If B4 ̸= 0 and D0 = D1 = 0, then F (x) = 0 has a unique triple
solution z3. The singular point (z3, 0) is semi-hyperbolic, and
consequently it is either a saddle, a node, or a saddle-node.

(d) If B4 ̸= 0, D0 = 0 and D1 ̸= 0, then F (x) = 0 has two distinct
real solutions (one simple z4 and one double z5). The singular
point (z4, 0) is a saddle if H0(z4) > 0, a node if H1(z4) ≥ 0
and a focus if H1(z4) < 0. The singular point (z5, 0) is semi-
hyperbolic.

(e) If B4 ̸= 0 and D0 > 0, then F (x) has three distinct simple real
solutions z6, z7, z8. The singular point (zj, 0) for j = 6, 7, 8 is
either a saddle if H0(zj) > 0, a node if H1(zj) ≥ 0, and a focus
if H1(zj) < 0.

(f) If B4 ̸= 0 and D0 < 0, then it has a unique simple real solution
z9. The singular point (z9, 0) is a saddle if H0(z9) > 0, a node
if H1(z9) ≥ 0, and a focus if H1(z9) < 0.

Proof. It follows by direct calculations. Note that when B4 = 0 equa-
tion F (x) = 0 becomes the quadratic equation B3x

2 + B1x + B0 = 0.
If B3 = 0 then if B1 = 0 it has no solutions and if B1 ̸= 0 then the
solution is the z0 given in (15). It is a simple solution of F (x) = 0
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and so it is hyperbolic. Therefore, by the explanation before the state-
ment of Lemma 15 we have that it is a saddle if H0(z0) > 0, a node if
H1(z0) ≥ 0 and a focus if H1(z0) < 0. This proves statement (a).

If B4 = 0 and B3 ̸= 0 then F (x) = 0 has the two solutions given
in (16). Proceeding as in statement (b) in the proof of Lemma 12 we
conclude that only when condition (III) holds with B2

1 − 4B0B3 ≤ 0
both solutions collide or disappear, so never they are simple solutions,
but in this case the same arguments imply that either f1 = 0, or f2 = 0
cannot be a limit cycle. On the other cases, z1 and z2 are hyperbolic.
Therefore, for j = 1, 2, zj is a saddle if H0(zj) > 0, a node if H1(zj) ≥ 0,
and a focus if H1(zj) < 0. This proves statement (b).

If B4 ̸= 0 and D0 = D1 = 0, we have a unique triple solution z3 for
F (x) = 0. In this case the singular point (z3, 0) is semi-hyperbolic and
by Theorem 2.19 in [2] it is either a saddle (if it has index −1), a node
(if it has index 1), or a saddle-node (if it has index 0). This proves
statement (c).

If B4 ̸= 0, D0 = 0 and D1 ̸= 0, we have a simple solution z4 and
a double solution z5 for F (x) = 0. The singular point (z5, 0) is semi-
hyperbolic and thus it is either a saddle, a node, or a saddle-node. The
singular point (z4, 0) is simple and it can be a saddle if H0(z4) > 0, a
node if H1(z4) ≥ 0, and a focus if H1(z4) < 0. This proves statement
(d).

The proof of statements (e) and (f) are similar to the previous ones.
�

5. Proof of Theorems 3 and 4

In this section we prove Theorems 3 and 4 separately.

Proof of Theorem 3. In view of Corollary 14 the unique possible distri-
bution for the singular points is (±x, 0) and (0, 0), being (±x, 0) centers
and (0, 0) a saddle.

Assume first we are under the assumptions (III). By Lemma 13 each
circle f1 = 0 and f2 = 0 surrounds a center, and by Lemma 6 these
circles cannot be limit cycles.

Now assume we are on the assumptions (II). All the three singular
points must be contained in the limited region of the circle f2 = 0,
otherwise that circle would be inside the period annulus of a center,
and consequently it would not be a limit cycle (see Lemma 6). Since
f1 = 0 must be a limit cycle, the orbit around it must spiral, but this
is not possible due to the symmetry with respect to the y-axis (see
Lemma 5). �
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Proof of Theorem 4. Assume that f1 = 0 and f2 = 0 are limit cycles.
Then by Theorem 3 and the arguments in the introduction a0a3 ̸= 0.
Since they are periodic orbits in view of Proposition 8 we must have
∆0 < 0 and ∆1 < 0.

If (II) holds and B2
4 +B2

3 +B2
1 = 0 then, by Lemma 15(a) there are no

singular points and thus f1 = 0 and f2 = 0 cannot be limit cycles. So,
if we are under the assumptions (II) we must have B2

4 + B2
3 + B2

1 ̸= 0.
On the other hand, if (III) holds with B4 = 0, and either B3 = 0 or
B3 ̸= 0 with B2

1 − 4B0B3 ≤ 0, then by Lemma 15(b), f1 = 0 and
f2 = 0 cannot be limit cycles. So in order that both f1 = 0 and f2 = 0
are limit cycles if (III) holds and B4 = 0 we must have B3 ̸= 0 and
B2

1 − 4B0B3 > 0. This proves the “only if” part of Theorem 4.

Now assume that a0a3 ̸= 0, ∆0 < 0, ∆1 < 0 and either B2
4+B2

3+B2
1 ̸=

0 if (II) holds, or (III) holds and B4 = 0, B3 ̸= 0 and B2
1 − 4B0B3 > 0.

In view of Proposition 8 we have that f1 = 0 and f2 = 0 are periodic
orbits. Moreover, since a3 ̸= 0 by Lemma 15 all singular points are
either hyperbolic or semi-hyperbolic, and thus they must be either a
focus, or a node, or a saddle, or a saddle-node (see Lemma 2.19 in
[2]). In order to prove that f1 = 0 and f2 = 0 are limit cycles it only
remains to prove that they are isolated in the set of all periodic orbits
of the differential system. We proceed by contradiction. Assume that
they are non-isolated. Since the Poincaré map defined in a transversal
section in each of the two circles is analytic (the differential system is
polynomial and consequently analytical), it must be the identity. In
short, we have a continuum of periodic orbits surrounding a focus, a
node, a saddle or a saddle-node, but this is a contradiction because it
cannot exist the closest periodic orbit of this continuum either to the
focus, or to the node, or to the saddle, or to the saddle-node, because if
such closest periodic orbit γ exist applying again the argument of the
analyticity of the Poincaré map defined in a transversal section to γ it
follows that γ is not the closest periodic orbit to the focus, to the node,
to the saddle or to the saddle-node, a contradiction. This completes
the “if” part of Theorem 4. �

Acknowledgements

The first author is partially supported by a MINECO grant num-
ber MTM2014-53703-P, and an AGAUR (Generalitat de Catalunya)
grant number 2014SGR 1204. The second author is partially supported
by a MINECO grant MTM2013-40998-P, an AGAUR grant 2014SGR
568, and two grants FP7-PEOPLE-2012-IRSES numbers 316338 and



TWO CIRCLES AS ALGEBRAIC LIMIT CYCLES 17

318999. The third author is partially supported by FCT/Portugal
through the project UID/MAT/04459/2013.

References

[1] A.F. Andreev, Investigation of the behaviour of the integral curves of a
system of two differential equations in the neighbourhood of singular points,
Trans. Amer. Math. Soc. 8 (1958), 183–207.

[2] F. Dumortier, J. Llibre and J.C. Artés, Qualitative theory of planar
differential systems, Universitext, Springer–Verlag, 2006.

[3] J. Llibre and G. Swirszcz, Classification of quadratic systems admitting
the existence of an algebraic limit cycle, Bull. Sci. Math. 131 (2007) 405–421.
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