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Abstract
We prove the existence of 3-periodic orbits in a dynamical system associated to a Landen
transformation previously studied by Boros, Chamberland and Moll, disproving a conjecture
on the dynamics of this planar map introduced by the latter author. To this end we present
a systematic methodology to determine and locate analytically isolated periodic points of al-
gebraic maps. This approach can be useful to study other discrete dynamical systems with
algebraic nature. Complementary results on the dynamics of the map associated with the

Landen transformation are also presented.
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1 Introduction

Given a definite integral depending on several parameters, a Landen transformation is a map on
these parameters that leaves invariant the integral. In [1, 2], G. Boros and V. Moll introduced the

dynamical system given by

a _ 5ap + 5by, + anby +9 b _ apt+by+6

n+1 — (an+bn+2)4/3 ) n+1 — (an+bn+2)2/37

S dn + e+ cp dour (b + 3)cn + (an + 3)e, + 2d, . B Cn +en
T (@ b+ 2023 T tn + by +2 CT T (G + by +2)13

as a Landen transformation associated to the integral

©  cxt+da?+e
I(a,b,c,d, e) = d 1
(2,8, c,d,e) /0 2 tazt t b1 (1)
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that is, I(@n+1,bn+1, Cnt1sdnt1,€nt1) = L(an, by, Cp,dp,e,). This dynamical system contains a
2-dimensional uncoupled subsystem. M. Chamberland and V. Moll in [3], related the convergence
of the integral (1) with the dynamics given by the iteration of the planar, non invertible map

associated to it:

5a+5b+ab+9 a+b+6
G(a,b) := , .
(a+b+2)43 7 (a+b+2)2%3
In particular they proved that the map G has only three fixed points, characterizing their nature,
and they also proved that the region of the (a,b)-plane where the integral (1) converges is the
basin of attraction of the fixed point (3, 3).
In Section 3 we will give a brief description of the known results about the dynamics of the

map G. In Section 4 we prove our main result,
Theorem 1. Consider the map G.

(a) It has exactly three fixved points. A super-attracting point in (3,3), an oscillatory saddle in

the boundary of the basin of attraction of (3,3) and an unstable focus.
(b) It has not periodic points with minimal period 2.

(¢) It has exactly twelve periodic points of minimal period 3, that correspond with four 3-periodic

orbits.

For completeness we include in its statement the results about fixed points already proved
in [3]. In fact, in that paper it is also proved that there are no periodic points with minimal
period 2 above the line a + b + 2 = 0. Our statement (b) extends their result to the whole plane.

As we will see, item (c) disproves a conjecture about the dynamics of this map, see [11, Conj.
15.6.3] or Section 3. We will also determine analytically the location of the 3-periodic orbits.

Although it is easy to find 3-periodic points numerically, when trying to prove their existence
there appear important computational obstacles. Thus, to prove the existence of 3-periodic points
of G, as well as the non-existence of 2-periodic points, we have developed a procedure to determine
analytically the number of isolated periodic points of discrete dynamical systems of algebraic nature

and locate them with a prescribed precision. This method consists in the following four steps:

e Convert the problem into an algebraic one, characterizing the periodic points as the solutions

of a system of polynomial equations.

e Include these solutions into the ones of an uncoupled system of equations given by one-

variable polynomials.

e Combine an algorithm based on the Sturm’s method for isolating the real roots of a one-

variable polynomial with a discard procedure for systems of polynomial equations in order to



efficiently remove those solutions of the later system that do not correspond with the periodic

points.

e The application of the Poincaré-Miranda theorem to prove that the non discarded solutions
are actual solutions of the first system of polynomial equations and, in consequence, give rise

to periodic points.

This procedure is explained in detail in next section. Recall that the Poincaré-Miranda theorem
is essentially the extension of Bolzano theorem to higher dimensions. It was stated by H. Poincaré
in 1883 and 1884, and proved by himself in 1886, [12, 13]. In 1940, C. Miranda re-obtained
the result as an equivalent formulation of Brouwer fixed point theorem, [10]. Recent proofs are
presented in [8, 15]. We also recall this theorem in Section 2.

As a complement, in Section 5 we characterize the stable set associated to the fixed point of G
of saddle type, and we provide an analytic-numeric study that gives evidences of the existence of
homoclinic trajectories associated to it, as well as of the existence of some points in the intersection
of the unstable set of this fixed point and the non-definition set of the map, which recall that it is
formed by all the preimages of the straight line a + b+ 2 = 0.

2 Determination of periodic points of discrete dynamical systems

We consider a discrete dynamical system defined by a map F : U C R¥ — U where U is an
open set. Fix p € N and assume that it has finitely many p-periodic points. These points are
characterized by the real solutions of the system of k equations given by FP = Id. Let us suppose
that the solutions of the above system are in correspondence with the ones of a new system of

n > k non-trivial polynomial equations given by

{ A =0, 20 =0, fux) =0, @)

where x = (21, ..., 2,) are not necessarily the k-independent variables of F. Suppose also that using
some algebraic transformations, like for instance successive resultants between the given equations,
we reach an uncoupled polynomial system whose set of solutions contains all the solutions of
system (2):

{ q1(z1) =0, ga(22) =0, - -+, gn(zs) = 0. (3)

To clarify with an example the above situation we sketch here the systems involved in the
computation of the 3-periodic points of the map G. The k = 2 equations corresponding to
G3(a,b) = (a,b) can be transformed into a new system of n = 3 polynomial equations (see system
(11)) in the new variables m, n,r given by (10). This new system plays the role of system (2), and

its solutions are in correspondence with the periodic points, by forthcoming Lemma 4. Lemma 5



will show that the solutions of system (11) are included in the set of solutions of the uncoupled
system {di7(m) = di7(n) = di7(r) = 0}, where dyi7 is a polynomial of degree 371 introduced
n (12). This system plays the role of system (3).

In this setting, the proposed methodology applies in the cases where we do not know how to

obtain explicitly the solutions of systems (2) or (3) and follows the next steps:

Step 1: By using an algorithm based on the Sturm’s method ([14, Chap. 5.6]) and for each
polynomial g;, it is possible to isolate and count all its real roots by finding intervals with preset
maximum length and rational ends, each one of them containing only one isolated root. For each
Jj=1,2,...,n, let k; be the number of real roots of g;, without counting their multiplicities, and
denote by I, = [wjm,Vjm], m = 1,2,...,k; the found intervals, such that each one of them
contains exactly one of these roots. Proceeding in this way we obtain that the set of solutions of
system (2) is contained in the set formed by [[7_, k; boxes (n-dimensional orthohedrons), of the
form

Iml,...,mn = Il,ml X I2,m2 X oo X In,mna

where each m; € {1,...,k;}, for j=1,...,n.

Step 2: In order to detect those boxes that do not contain any solution of system (2) we apply a
discard procedure to each box Zp,, . .. This procedure is inspired in a technique used in [4]. To
prove that a certain polynomial P(x) has no zeros in a given box Z,, . m.,, that for the sake of

simplicity we denote as Z, we proceed as follows:

e We numerically evaluate P at the center of Z. If, compared with the working precision, this
value is far from zero, we suspect that P restricted to Z has a given sign. According whether

this value is positive or negative we continue with one of next two steps.

e For trying to prove that P(x) > 0 for all x € Z, we search a L such that 0 < L < P(x)
on Z. Write P(x) = ), My(x) where M,(x) = aga:flx? -xbn we find M, € R such that
M, < My(x) for all x € Z (this can be done using the formulas in forthcoming Lemma 2).
If the following condition is satisfied: 0 < L := >, M, < >, M;(x) = P(x), then we can
discard the box Z.

e For trying to prove that P(x) < 0 for all x € Z, we look for U € R such that P(x) < U <0
on Z. To do this, similarly than in the previous situation, we find M , € R such that M,(x) <
M for all x € Z. If it holds that P(x) =Y, My(x) < >, M, =: U < 0, then we can discard
the box 7.

To compute the bounds M , and M 4, we use the following straightforward result, which can

be easily implemented in any computer algebra software.



Lemma 2. Consider P(x) =Y, My(x) where My(x) = agrt'x? - xlr ) and a box T = [uy, v1] ¥

n >’

[ug, va] X« X [up,vy,]. Set OF ={(x1,...,2,), such that z; >0 for alli=1,...,n}. Then,

(i) If T C O CR™, then for allx €L, >, M, < P(x) <>, My, where

(a) M, = agutfu? ceubn and My = agv?v? vbnif ap > 0.

(b) M,=agv o vl and My = aguf'u - ulr if ay < 0.

(i) If T ¢ OF we can always take a number £ > 0, £ € Q such that the new box T = [up +&v1 +
E X [ug + & va + & X - X [up + & v + & C OT, and then find bounds for P on I, using the

bounds given in item (i) for 135(961, X9y ky) =Py —&wo— &, ...,xn — &) on 7.

We try to apply the discard procedure until the number of remaining boxes coincides with our
hopes. These hopes usually came from a previous numerical study of the problem. We start trying
to prove that the first function f; does not vanish in the given box. It may happen that it is easier
to try to prove the same with another f;. Notice also that sometimes to discard a box we must go

to the Step 1 and start with smaller boxes.

Step 3: Once it is achieved an optimized list of non-discarded boxes, we identify those boxes that
correspond to either fixed points or periodic points with a period being a divisor of p, which we

assume that we already know, and we also discard them.

Step 4: From the non-discarded boxes list obtained in the previous step, we try to show that each
box actually contains a solution by applying the Poincaré-Miranda theorem. For completeness, we

recall it. As usual, B and OB denote, respectively, the closure and the boundary of a set B C R™.

Theorem 3 (Poincaré-Miranda). Set Z = {x = (x1,...,2,) € R" : L; < z; < U;,1 < i < n}.
Suppose that f = (f1,fo,...,fn) : Z — R™ is continuous, f(x) # 0 for all x € dZ, and for
1<i<n,

fi(xlu s 7xi—17L’i7xi+17 cee 7$n) : fi($17 sy LTi—1, U’i7$i+17 v 7x’n) S 07
Then, there exists s € T such that f(s) = 0.

It is clear that when we define f to try to apply Poincaré-Miranda theorem, the order of the
components matters. So, sometimes to be under the hypotheses of the theorem it is better to
consider f = (fyys fog,- -+, [o,) for some permutation o. In fact, more in general, it is convenient
to apply the theorem to A(f(x))!, where A is a suitable n x n invertible matrix. When f is
differentiable, as we will see it is useful to chose A = (Df(s))~!, where 8 € Q" is a numerical
approximation of a zero of f in Z.

If we succeed in proving that there is at least a solution in each box, its uniqueness is given

by the fact that each of the intervals I, contains only a single solution of each polynomial g;.



Otherwise we can refine boxes, taking them with smaller size, and then repeating the computations

in Step 1.

3 An overview of the dynamics of GG

In this section we briefly summarize the known results on the dynamics of the map G and we
characterize their invariant sets. We mainly follow the steps in [3]. The rational integral (1) is
well-defined and convergent if P(z) = 2® 4+ az? + bz + 1 has not real positive roots. To study the

number of real roots of P when a and b vary, we consider
R(a,b) :=Res(P, P';x) = —A,(P) = —a®*b* + 40 + 40> — 18 ab + 27,

where A, is the discriminant. The curve R(a,b) = 0 is known as the resolvent one, and after
removing the point (—1,—1) it is invariant by G because

(a—b)?

R(G(a,b)) = m

R(a,b). (4)

The curve has two connected components Ly i Ly (see Figure 1 (a)). Note that the fixed point
(3,3) is the cusp of L.
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Figure 1. (a) Connected components L; and Lo of the curve R(a,b) = 0, and regions C7, Co and
(5 of the plane. (b) 10000 iterates of an orbit with initial condition in Cs.

The resolvent curve defines three open unbounded sets C, Co and C35 depicted in Figure 1 (a).
By studying the sign of the discriminant of P, and by using the Descartes rule of signs, it is
straightforward to obtain that on L; U Cy U Cs, all the real roots of P(z) are negative, so the



integral (1) is convergent; and on Cy U Ls there exists at least one positive real root, so the integral
diverges.

In [3], the authors proved that G has only three fixed points, namely P; for i = 1,2, 3, which
are described in Theorem 1 and given in Equation (8). One of them, the point P; = (3,3), is a
super-attracting one, i.e. both eigenvalues of the jacobian matrix are 0. Their main result states
that the basin of attraction of the fixed point Py for the map G, is the region of the (a,b)-plane
where the integral (1) converge. As a consequence, the basin of attraction of P; is L1 U Cy U Cs.

On the other hand, the connected component L5 := Lo \ {(—1, —1)} is positively invariant (as
we will see, there are points on C which are mapped into Lg). On Ls there is one fixed point, Ps,
which is a saddle. In Proposition 8 we prove that any orbit with initial condition on L} converges
to Ps.

In summary, the dynamics of G on the invariant sets A := L; U Cy U C5 and Lo is known and
simple. However, there is a poor knowledge of the dynamics of G in the set B := Cy \ F, where
F={(a,b) €eR?: In >0 : G"(a,b) € {a+ b+ 2 =0}}, is the forbidden set of G.

In [11, Conj. 15.6.3], V. Moll established the following conjecture about the dynamics of G
in B: “The orbit of any point below the resolvent curve is dense in the open region below this
curve.”

Of course one has to exclude from this conjecture the third fixed point Ps; which is in the set
C1, and the points in the forbidden set F. In Theorem 1, we prove the existence of 3-periodic
points in Cq, result that disproves the conjecture. In fact it is not difficult to find numerically
these orbits as well as other periodic points, however to prove the existence of 3-periodic points is
far from being trivial, and it is the main objective of this paper.

In Section 5 we present an analytic-numeric study that evidences the existence of points in
the unstable manifold of P, which belongs to its stable set, i.e. homoclinic points. In the case of
diffeomorphisms, by the Smale-Birkhoff homoclinic theorem, the existence of such points implies
the existence of a hyperbolic invariant set on which the dynamics is equivalent to a subshift of
finite type, see [7]. Similar results are developed in [5, 6] in the non-invertible setting. We also
give evidences of the existence of points in the unstable manifold that also belong to the forbidden
set F.

4 Proof of Theorem 1

In this section we prove Theorem 1. We split the proof in two subsections. The first one dedicated

to the fixed and 2-periodic points, and the second one to study the 3-periodic points.



4.1 Fixed and 2-periodic points

Proof of statements (a) and (b). (a) Following [3] we consider the equations given by G(a,b) =
(a,b), and we introduce the auxiliary variable m® = a + b + 2, obtaining
di(a,b,m) =m3—a—-b—2=0,
do(a,b,m) = —am* +ab+5a+5b+9 =0, (5)
ds(a,b,m) = —bm?+a+b+6=0.

Isolating a and b from the first and third equations, and substituting the obtained expressions in

the second one we get:

dy(m) = —(m —2)(m*> —m+D(m* +m+2)(m3 +m? —m —2)(m3 + m>+m+2)=0. (6)

The only real roots of the above equation are

_ _Llyp 8 1L 1 __ 1l 41 1
m =2, my = VA+ 5753 ~1.20657, mg = —_ VB + 595 3" 1.35321, (7)
where A =172+ 12+/177 and B = 188 + 121/249. From these values and (5) we obtain
P = (37 3)7
P, = <_43+3 VATT jgors _ L yuys _ 8 BB Z VAT joys | THVITT jays | 4) ~ (—4.20557, 3.95774), (8)
384 6 3 48 48 3

—21 + /249 15 — /249 17 — /249 —13 4+ /249 4
Py = ( ;6 B2/3 4 5 BY/3 _ 2, " B2/3 4 ;4FBU3 - 3) ~ (—5.30914,0.83118).

A straightforward computation of the differential matrix at these points give that the points
are, respectively, a super-attractor (null eigenvalues), an oscillatory saddle, and an unstable focus.
Moreover P, is in Ly and Ps is in Cf.

(b) Again, following [3], we consider ¢ and d such that G(a,b) = (¢,d) and G(c¢,d) = (a,b). By

introducing the two auxiliary variables m and n such that m® = a +b+2 and n® = ¢+ d + 2, we

get:
di =mP—a—-b-2=0, dy:=n*—-c—d—2=0,
d3 =—-cm*+ab+5a+5b+9=0, dy:=—-dm*+a+b+6=0,
ds =—an'+cd+5c+5d+9=0, ds:=—bn*+c+d+6=0.
Solving {d; = 0,ds = 0,d4 = 0,ds = 0} we obtain
m3n? —n3 —2n% -4 nd 44 m2n® —m? —2m?2 — 4 m? +4
a= 5 , b=—%5—, c¢= 5 , d=—F.
n n m m

By substituting the above result in ds and ds we reach the following system, which plays the role
of system (2) in our methodology:
dr(m,n) = —m*n” +m’n* + 2m*nt + m3n® + 5m3nt + 4m2nt —nb
+4mn? —2n° —n* —8n® —8n? — 16 =0, 9)
dg(m,n) := dz(n,m)=0.



Now we consider the polynomial

dg(m) :=Res(d7(m,n),dg(m,n);n)
=m* (m —2) (m +1)* (m* + m? + m +2) (m® + m? —m — 2) P(m),

where P is a polynomial of degree 56, without real roots. This is proved by using the Sturm’s
method and can also be done, for instance, by using the command realroot of the computer
algebra system Maple. Similarly, dio(n) := Res(d7(m,n),dg(m,n);m). As a consequence of the
symmetry we get that dig(n) = —dg(n) and system {dg(m) = 0, dg(n) = 0} plays the role of
system (3) in our methodology. Hence, the only non-zero reals roots of dg are —1,2,m; and
ms, where these values correspond to the ones associated with the fixed points, because the two
degree 3 factors coincide with the ones given in (6).

Hence the 2-periodic points are included in the set with 16 elements {—1,2,my, m2}2. In this
particular case, because the real solutions of the uncoupled system are explicit, in Steps 3 and 4
of our approach we have not boxes but points, and the problem is much easier. It is not difficult
to check that in this set of points the only solutions of (9) are (1, 1), (m1, m1) and (mg, mg) which
correspond to the fixed points of G. In consequence there are not points of minimal period 2

for G [ |

4.2 Proof of Theorem 1 (c): 3-periodic points

We need some preliminary results. Proceeding as in the previous cases we look for a, b, ¢, d, e,

and f € R, such that G(a,b) = (¢,d), G(c,d) = (e, f) and G(e, f) = (a,b), that is

5a 4+ 5b+ab+9 a+b+6 5¢+5d+cd+9
=cC — s = =e
(a+b+2)43 7 (a+b+2)2/3 (c+d+2)43 7
c+d+6 _ be+5f+ef+9 et f+6
(c+d+2)23 7 (e+ f+2)43 ’ (e+ f+2)%3

We introduce the auxiliary variables m, n and r, such that m®> = a+b+2, n® = ¢+ d+ 2 and
r3 = e+ f + 2. Using this notation we get
di:=m3—a—-b—-2=0, dy:=—-cm*+ab+5a+5b+9=0, ds:=—dm?>+a+b+6=0,
dy:=n>—c—d—2=0, dg:=—-en*+cd+5c+5d+9=0, dy:=—fn’+c+d+6=0,
dg:=1>—e—f—2=0, dg:=—ar*+ef+5e+5f+9=0, dog:=—br’+e+f+6=0.

First we solve the system {d; = 0,d2 = 0,d3 = 0,ds = 0,d7 = 0,dy = 0} obtaining:

m3r? —r3 — 272 — 4 3 +4 m?n3 —m3 —2m? — 4
o= . , b=1—2" = - ,
r r m
344 28 _p3 —2n? — 4 n3 44
a=""15 T =0 (10)
m n n



Substituting this result in the expressions dy4, dg, and dg, we obtain the equations
dio(m,n,r) == —mn3rt +mdrt + 2mAr* £ m3r5 £ 5m3rt 4 4m?2rt — 6 + 4m3r?
—275 —pt — 813 — 812 - 16 =0,
(11)

dyy(m,n,r) = dio(n,r,m) =0,

dia(m,n,r) := dyo(r,m,n) = 0.

From the equations (10), if (m, n,r) is a real solution of (11) such that m-n-r # 0, there exists
either an orbit with minimal period 3 given by (10) or a fixed point or G. Moreover, if (mg, nog, 0)

is a solution of system (11), then so are (ng,ro, mo) and (rg, mg,ng). As a consequence, we obtain

Lemma 4. Any 3-periodic orbit of G, {(a,b); (¢,d); (e, f)} with associated parameters m,n and r,

is in correspondence, via (10), with the solutions (m,n,r), (n,r,m) and (r,m,n) of the system (11).

The forthcoming Lemma 5 gives a first characterization of the locus where the solutions of

system (11) are located. Prior to state this result we introduce the following auxiliary polynomials

dy3(n,r) := Res(dio(m,n,r),di2(m,n,r);m), with degree 37 in n and degree 37 in r,

dy4(n,r) := Res(di1(m,n,r),dia(m,n,r);m), with degree 47 in n and degree 37 in r.

We apply the resultant once again to obtain the polynomials di5(n) := Res(diz(n,r), dia(n,r);r),
and dy(r) := Res(di3(n,r),d14(n,r);n), where deg, (di5(n)) = 2521 and deg,(dis(r)) = 1985.

Finally, we introduce the polynomial
di7(n) := ged (dis(n), dig(n)) /0", (12)

This polynomial has degree 371, and using once more Sturm’s method we get that it has exactly

16 different real non-zero roots.

Lemma 5. Let I;, withi=1,...,16, be disjoint intervals, each one of them containing a unique

real oot of di7. Then, any real solution (m,n,r) of system (11) is contained in one of the 163 sets
Ii,j,k =1 XIJ‘ X Iy, i,5,k¢€ {1,,16} (13)

Proof. Let (mg,ng, o) be a real solution of (11). We want to show that it is also a solution of
{d17(m) = 0,dy7(n) = 0,d17(r) = 0}. Observe that by construction, ng must be a root of dys.
From Lemma 4, we have that (mg, ng) must be also a zero of di3 and d14. Hence ny must be also
a zero of dig, and therefore of ged (di5(n), di(n)) which is a polynomial of degree 1087 with the
factor n"16. Since we are interested in its non-zero roots, we remove this factor, obtaining that ng
must be a root of di7. By using an analogous argument and Lemma 4 again, we can see that mg
and rq are also roots of di7.

Since di7 has 16 different real roots, any solution (m,n,r) of system (11) must be contained in

a box of the form (13), and each box contains at most one solution. ]

10



Now we can prove statement (c) of Theorem 1. We follow the steps explained in Section 2:

Step 1: Recall that di7 has 16 non-zero real roots. Two of them are n = —1, n = 2. Although two
more explicit roots are n; = m;,i = 1,2 given in (7), we prefer to take 14 intervals with rational
ends and length smaller than 1072, I;,i = 1,2, ..., 14, each one of them containing a unique root.

We consider:

= [_ 4308988841618670568853Y _ 34471910732949364550823] ) Iy = [_ 34411805733101949308435 . 17205902866550974654217]
147573952589676412928 1180591620717411303424 1180591620717411303424 590295810358705651712
Is = [_ 9138398550509024508051 . 4569199275254512254025} 7 Is = [_ 4416518740855918762195 . 8833037481711837524389} 7
1180591620717411303424 590295810358705651712 590295810358705651712 1180591620717411303424
Is = [_ 994661336537171251825 . 3978645346148685007299} 7 o = [_ 3977374161031280580629 . 994343540257820145157] 7
295147905179352825856 1180591620717411303424 1180591620717411303424 295147905179352825856
I = [_ 197879469664271669175 . 3166071514628346706799} 7 Is = [_ 3144313156826151948503 . 1572156578413075974251} 7
73786976294838206464 1180591620717411303424 1180591620717411303424 590295810358705651712
Io = [_ 399397086201257638833 o 1597588344805030555331} 7 o = [_ 1053526769518098399097, _ 131690846189762299887} 7
295147905179352825856 1180591620717411303424 4722366482869645213696 590295810358705651712
Iy = [_ 1064910654630154190265 o 133113831828769273783 ] i 2= [10655729585805428102377 532786479290271405119 } 7
9444732965739290427392 1180591620717411303424 9444732965739290427392  4722366482869645213696
128535594827653577343 1028284758621228618745 177910645965499912685 1423285167723999301481
1= [5902958103587056517127 4722366482869645213696] ’ fa = [147573952589676412928’ 1180591620717411303424] '

We also introduce the degenerate intervals I15 = [—1, 1] and ;5 = [2, 2] containing the exact roots
n = —1 and n = 2. By Lemma 5, all the real solutions of system (11) are contained in one of the
163 boxes (13), where we also call boxes the ones with some degenerate interval. Recall that if a

box Z; ;1 contains a solution of system (11), then this solution is unique.

Step 2: We apply the discard procedure to dijp and the 4096 boxes of the form (13) given by
the intervals computed before. In Lemma 2 we use the value £ = 30 and consider the polynomial
P(m,n,r) = dig(m — &,n — &, r — &), which has 224 monomials. The procedure implemented in
Maple v.17 took 5.61s of real time in an Intel i7-3770-3.4GHz CPU to discard 4080 boxes. The
code is given in [9, Chap. 5]. In short, we obtain that each solution of system (11) must be

contained in one of the following 16 non-discarded boxes

Tisat | Loe12 | L3713 | Zagio | Lsa1,1 | Le12,2 | L7133 | 28,104

Zy99 | Zr04s | L1115 | T12.26 | Z13,3,7 | 14,1414 | L16,16,15 | L16,16,16

Observe that the degenerated box Zj6,16,15, which corresponds with (m,n,r) = (2,2, —1), must
also be discarded because di0(2,2,—1) =0, but d11(2,2,—1) = 2304.

Step 3: Following similar arguments that in the proof of statement (b) we can discard boxes

Z16,16,165 L14,14,14 and Zg g 9 because they correspond to the fixed points P;, P» and Ps, respectively.

Step 4: We have obtained 12 non-discarded boxes that, from Lemma 4, if they correspond to
periodic points of minimum period 3, they would contain the parameters (m,n,r) corresponding

to the periodic points according to the following groupings:
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O1Chis11UZs 111U, O2 Cag12UZs 122 U122,
(14)
O3 CI3713UT7133UT1337, Os CLyg14UTg 144U L1445

We will prove that the above 12 boxes indeed contain a solution of system (11), which will be
unique as reasoned above. To do this, we will apply the Poincaré-Miranda theorem (Theorem 3).
Again by Lemma 4 we only need to prove that there is a solution of the system (11) in the boxes:
Ti 511, L2612, Z3,7,13, and 7y g 14. For reasons of space we only give details for the first box.

We consider the polynomial map f(m,n,r) := (dio(m,n,r),di1(m,n,r),di2(m,n,r)). We de-
note the ends of the intervals I, I5 and I;; respectively: [m,m| := I, [n,71] := I5, [r,7] := I11.
Consider also the middle point of Z1 511, p = (m,n,7) = ((m+m)/2, (n+n)/2, (r +7)/2).

Figure 2.  The surfaces gi(m,n,r) = 0,
g2(m,n,r) = 0and gs(m,n,r) = 0 in blue, green
and red, respectively, in the box [m —e, m +¢| x

[ —e,n+¢] X [F—¢e,7+¢], where ¢ = 10710,

The hypothesis of Poincaré-Miranda theorem for f using the box Z; 511 are not satisfied: for
instance, at the points (m,n,7) and (7, n,7) none of the functions djo,d;; and dj2 changes sign.

So in order to rectify the level 0 surfaces of the components of f, we consider the new function

g(m,n,r) = (g1(m,n,7), g2(m,n,7), gs(m,n,r)) := (DF ()~ (f (m,n,7))".
We omit here the expressions of (Df(p))~! and g since they involve huge rational numbers with
numerators and denominators with hundreds of digits. Notice that since det (D f(p)) # 0 the point
(mg,ng,ro) is a zero of g if and only if it is a zero of f.
Observe that g(m,n,r) = g(p) + (m — m,n —n,7 —7) + O(||(m — Mm,n —n,r — 7)[|?). Since
g(p) ~ 0, near p it holds that g(m,n,r) ~ (m — m,n —n,r — 7) and so, a small enough box
centered at p should be under the hypotheses of Poincaré-Miranda theorem, see Figure 2. Now we

will check that, indeed, this is the situation for the function g in the box Z; 5 11.
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In order to prove that the components of the function g have no roots, and alternate signs
at the faces of 7511 we will apply repeatedly the following technical result, that is a simplified

version adapted to our interests of a result given in [4]:

Lemma 6. Let Go(z) = gn(a)z"+gpn—1(a)z" 1+ - +g1(a)z+go(c) be a family of real polynomials
that depend continuously on a real parameter o € A = [y, a] C R. Fix J = [a,b] C R and assume
that:

(i) There ezists g € A such that Go,(x) has no real roots in J.

(i) For all « € A, Ga(a) - Go(b) - Az(Gy) # 0, where AL (Gy) is the discriminant of G, with

respect to x.
Then for all o € A, Go(x) has no real roots in J.

We will prove that the first component of g has no roots, and alternates signs at the faces
m = m and m = m of the box Z; 511. Consider the function G, (r) = g1(m, n,r) - g1(Mm,n,r). We
will prove that G, (r) < 0 for all (n,r) € I5 x I1; using Lemma 6 with A =I5 and J = I1;.

By the Sturm’s method it can be seen that the polynomial Gz (r) has only 6 different real roots
and that none of them is in the interval I1;. Hence the hypothesis (i) is satisfied. Moreover Gy (r)
restricted to I7; is negative.

Proceeding in an analogous way, we obtain that G, (r) - G,,(7) has only 4 different real roots
and none of them belongs to Is. Hence Gy (r) - G,,(7) # 0 for all n € Is. We also check that
the discriminant A, (Gp(r)), which is a polynomial of degree 192 in n, has 37 different real roots.
Again, we prove that they are not in I5 and so, we are under the hypothesis (i7) of Lemma 6.
Hence by this lemma we get that Gy, (r) < 0 for all (n,r) € I5 x I;1, as we wanted to prove.

Doing similar arguments and computations, we obtain that the second and third component
of g do not vanish, and alternate signs on the faces n = n and n =7, and r = r and r = 7 of
75,11, respectively. See [9, Chap. 5] for more details. Thus g(m,n,r) verifies the hypothesis of
the Poincaré-Miranda theorem in 7 5 11. Hence the function g, and therefore the function f, have

at least one zero in this box, which is unique by construction.

4.3 Analytic location of the 3-periodic points

In this section we use that the parameters m, n and r associated to each periodic point are located

in the 12 boxes given in (14), to obtain an analytic location of them in the (a,b)-plane.
Lemma 7. Let m € [m,m| and r € [r,T], and the functions a(m,r) and b(r) given by (10), then:

(i) If 0 < r < T then a := m3—F—2—4/z2 < a(m,r) §m3—z—2—4/F2 =: a and

a
bi=r+4/F2<b(r)<7+4/r> =D
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(ii) If r <7 < 0 thena :=m? —7—2—4/72 < a(m,r) < m> —r —2—4/r*> = a and

bi=r+4/r* <b(r) <T+4/7? =:b.

Proof. (i
0<r<
By combining all these chains of inequalities we get statement (i). The statement (ii) follows

) From (10) we get that a(m,r) = m® —r — 2 —4/r? and b(r) = r + 4/r%. Notice that if
r <7 then -7 < —r < —r < 0 and —% < _%2 < _%2 < 0. Moreover, m* < m? < m?.

similarly.

By using the inequalities in (ii) of Lemma 7 we obtain, for example, that the 3-periodic point

(a,b) of G, associated to the parameters (m,n,r) € Z 5 11, satisfies a € [a,a) and b € [b, b] where

1435686715756812113129131753291751212473714621389705932746390847605145815709035232062993533718832495489341

- 56947609584619278435915236206283183709714097978506070511694763452312581699417401160811385506316156928
47044582301919219323098597682011430719430330620984084471100755414697990442772197382375529104298060913286874119

1866059270868804515791575090678155019012542140400238364480469557193740712623709418953041434224970065510400

e

2l

and
3368785687756582636246263551756811406295236320753178521304454421527

10710654937528498667637446691242283113536911386660380934878003200
6579659546399575461418490144259606329620802274396204966850496409

20919247924860348960190099800217926294342327605140376818548736

lo~

Sl

By using the decimal approximation we get,

a € [a,a] ~ [—25210.658115921519312682, —25210.658115921519312679],
b € [b,b] ~ [314.5265819322469464743, 314.5265819322469464749),

where we observe that max(a — a,b — b) ~ 2.8 10718,
Applying Lemma 7 to each of the 12 boxes (14), we obtain rational bounds for the components

of each periodic point of minimal period 3, that are summarized in the following tables, where only
the decimal expression of some significative digits is given. In all the cases the maximum length of

the interval localizing the 3-periodic points is smaller than 10~!7, so the given expression of both

ends of the intervals coincide.

01 a b (o a b
-25210.658115921519313 314.52658193224694647 -25080.503857555317449 314.36115078061939834
-11.080089229288244821 | -29.194152462502174029 -11.094342178650567807 | -29.143225143670723223
1.0164106270635353803 | -3.0178440371837045505 1.0179782228602330827 | -3.0165421366176918413

O3 a b Oy a b
-550.35997876621370288 84.580855473468510676 -500.96942815695686889 80.145842594816842809
-13.613164340185764400 | -7.6737642167841728949 -13.481597649423988848 -7.4104176831057891201
0.13590789992610542444 | -2.1255835876361107899 0.088325991394389446424 | -2.0994294342645985249

5 Dynamics associated to the saddle point P,

In this section we study the invariant sets of the saddle point P,. First, Proposition 8 characterizes

the stable set of P». We will also give numerical evidences of the existence of homoclinic orbits,
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that is, initial conditions on the local unstable manifold, whose orbit converges to P». Finally, we
will provide numerical evidences of the existence of points on the local unstable manifold, whose

orbits end in the non-definition set.

5.1 The stable set of P,

We denote the stable set of the fixed point Py as W*(P,) = {(a,b) € R? : lim,,_,o, G"(a,b) = Py}.
This set is not necessarily a manifold. For hyperbolic points, like P, there is also the so called
local stable manifold Wy (P») C W#(P»), that is an actual manifold and is only defined in a small
neighborhood of the fixed point. Our first result characterizes totally the stable set of P» and its

local stable manifold.
Proposition 8. It holds that

W*(P2) = (Ly U{(a,b) € R?: 3n>0:G"a,b) € Ry U Ci}) \ {(-1,-1)},
where Ry = {a — b= 0}. Moreover, W} (P») is contained in L.

Proof. Observe that Equation (4) implies that the only initial conditions mapped by G to the resol-
vent curve are the points of the straight line R;, except (—1, —1). Hence, to prove the proposition
it suffices to show that L, = Lo \ {(—1,—1)} € W#(P2). Let us prove this inclusion.

Recall that Ly C {R(a,b) = 0}. The resolvent curve R(a,b) = 0 is algebraic and has genus 0, so
it admits rational parametrizations. For instance, if we define P(t) = (P1(t), P2(t)) = <t3t-54’ t31-t16)
it holds that R(Py(t), P»(t)) = 0. This parametrization has been already was also used in [3, Thms

3 and 4]. The component Ly corresponds with ¢t € (—00,0), and Ly with ¢ € (0,00). Some
4(a®-30)
a?b—4b2+3a”
Lo we need to study the one-dimensional map

computations give P’l(a, b) = Hence, to study the dynamics of G on the component

(2 +4)(t + 2)?
$2
see also [3, Thm 4]. Observe that ¢ = —2 corresponds with (a,b) = (—1,—1) which belongs to the

gt) = P oGoP(t) = V41— ( >2/3 for t € T := (—00,0) \ {~2}
(t+2)2 ’ ' ’ ’

non-definition line {a + b+ 2 = 0} and is excluded in our statement. The map ¢(¢) has a unique

fixed point in Z

3/512 2/3
p= _% 40+ ‘@g 827 44111, where C = {/86 + 6 VITT.

Our objective is to prove that this fixed point is a global attractor of ¢(t) in Z.

First we summarize some features of g(t) in Z that we will need (see Figure 3): (i) It has only
two relative extremes (maximum) in Z given by t = —4 F 2v/3 (t ~ —7.4641 and t ~ —0.5359
respectively), and such that g(—4 F 2v/3) = —4. We denote m := —4 — 2¢/3. (ii) It holds that

lim g¢(t) = lim g(t) = —oo. (iii) It also holds that lim g(¢) = —oo. (iv) For all ¢t € (—o0,p),
t——2% t—0— t——o0

we have ¢g(t) > t. (v) The map g has not 2-periodic points as a consequence of Theorem 1 (b).
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Figure 3. Graph of the function g(t) in Z.

The proof has three steps, namely (A)—(C): (A) From the properties (i) and (ii), we conclude
9((~2,0)) = (—00,~4].

(B) Using (i) and (ii) again, we conclude that ¢ ((—o0,—2)) = (—o0,—4], hence the interval
(—00, —2) is invariant by g. We will study the dynamics in this interval.

Let ¢ € (p,—2) be the unique value in this interval such that g(¢) = m (¢ ~ —2.6675). By using
the monotony of g, the interval [m, (] is invariant. Indeed, g([m,¥]) = [g(£),g(m)] = [m,—4] C
[m, €], see again Figure 3. Now we claim that for all t € (—oo,m)U (¢, —2) there exists n > 0 such
that t, = g"(t) € [m, ).

Indeed, by the monotonicity of ¢ in (¢, —2) we have that g((¢,—2)) = (—oo,m). Since for all
t € (—oo,m), we have g(t) < —4 < ¢, then g(t) ¢ (¢,—2), hence g(t) € (—o0,¢). We only need,
therefore to prove the claim in t € (—oo, m). We proceed by contradiction. Consider ty € (—oo,m)
and suppose that none iterate t,, € [m,¢], so that for all n > 0 we have ¢,, € (—oo, m). From (iv),
the sequence {t,} is increasing, and as we are assuming that it is bounded from above by m, the
sequence must have a limit that, by continuity, must be a fixed point, which is a contradiction
because there is no fixed point in (—oo, m]. Hence the claim is proved, and we only have to study
the dynamics of g in [m, ¢].

(C) We study now the dynamics on the interval [m,¢]. We denote my := m and ¢y := ¢, and

consider the sequences

U, = g(mi—1) = ¢*(Le—1) and my, = g(€x) = g (mk—_1). (15)
Observe that since ¢ is strictly decreasing in [m, ¢], for k > 1 we obtain

[mi—1, 4] == g** L (Im,£]) and [my, ly] := ¢** ([m,1]).

We will prove that {my} and {{;} are increasing and decreasing sequences, respectively, that

converge to the fixed point p, thus proving the result.
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Some computations show that ¢; = g(m) = —4 < ¢ = {y, and that my = m < m; =
g(l1) = g(—4). We proceed by induction, assuming that my_; < my and ¢ < ¢;_1. Using
(15), as g is decreasing and my_1 < mg, we have £, = g(mg_1) > g(my) = lr11. Likewise, since
U1 < U we have my1 = g(lky1) > g(lx) = my. Therefore, the sequences {my} and {{;} are
monotonous increasing and decreasing, respectively. Since both sequences are bounded, and using
the expressions in (15), we have that both converge to a fixed point of g2. But since there are not
2-periodic points, except the fixed point p, we have klirn my = klggo ly, = p. ]

— 00

5.2 Local expression of the unstable manifold

In order to search numerically the homoclinic points associated to P», we compute an approxi-
mation of the local unstable manifold of the saddle point P> = (ag,bs). We consider the change
u = a—ag and v = b — by, which brings P, to the origin (0,0). We also consider the map
é(u,v) = G(u + ag,v + be) — (az,be) which is conjugate with G, and the linear map given by
H(r,s) =L~ (r,s)!, where L is the matrix formed by the eigenvectors of DG(P,). Hence

Uooap) L= M Y,
0 A

where A\; and Ay are the eigenvalues of DG(P,), given by

pyp— ((7@, 111) A2 (sﬁf 264) A3 _ 768) ~ 7.0701,

~ 384
Ao = % ((\/ﬁ - 25) A3 4 (8 VITT — 136) AV3 4 1280) ~ —0.4470,

where A := 172 + 12 /177.

We compute the Taylor development of the unstable manifold associated to the origin of the
map F(r,s) = H ' oG o H(r,s) = (M 4+ O(||(r, 9)|1%), A2s + O(]|(r, 8)||*) . The expression of the
local unstable manifold W} ,(0,0) of F is s = w(r) = war? + wsr® + war? + wsr® + O(r®), where

w2 ~ —0.00259107002218996975513519324145, w3z =~ —0.00013220529650666650558465802906,
wy ~ —0.00000889870356674847560384348601, ws ~ —0.00000069374812274441343473691330.

These coeflicients have been computed using the formulas in Lemma 9 of the Appendix, by using
floating-point arithmetic with 60 digits in the mantissa. Observe that we can parametrize W (P»)

using the function s = w(r), by considering
r — H(r,w(r)) + P, for r ~0. (16)

We use this parametrization to obtain Figures 4 and 5.
Finally, from the expression of the local unstable manifold of the origin for the map F, we
obtain that the points (a,b) € Wi (P) satisfy w(H; '(a — az2,b — bs)) — Hy '(a — az,b — bz) = 0,
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that can be approximated by

5
Dy (a,b) = Zwi(Hfl(a —az,b—by))" — Hy'(a—as,b—by) =0,
i=2
where Dj(a,b) is a polynomial of degree 5 that we do not explicite for the sake of shortness, see
[9, Chap. 5] for more details.

5.3 Computation of the homoclinic point

Previous to find a homoclinic point we remember that, by Proposition 8, any point (a, b) such that
there exists k € N verifying G¥(a,b) € Ry = {a —b =0} NCy \ {(—1,—1)} belongs to the stable
set of Ps, since Gk+1(a, b) € Lo. In this sense, we have graphically observed that, except for the
point P», there is no intersection of W},
intersections of W) (P2) with Ry = {a — b = 0} at the region C1, nor points (a,b) € W (P»)
such that G(a,b) € R; U C}, but we have seen the existence of at least one point such that
G?(a,b) € Ry U Cy. See Figure 4.

Imposing G1(a,b) — Ga(a,b) = 0, we find that the points (a,b) such that G(a,b) € Ry satisfy:

(P2) with the curve Ls. Also we have observed neither

Dy(a,b) == (ab+5a+5b+9)° —(a+b+6)(a+b+2)?=0.

Hence, the points such that G%(a,b) € Ry are those satisfying Do(G(a,b)) = 0, or equivalently
Ds(a,b) := numer(Dy(G(a,b))) = 0, where D3(a,b) is a polynomial of degree 10 in the variable
m = (a + b+ 2)%/3 with 22 terms, that we omit here.

Therefore, the homoclinic point P must verify the system {D;j(a,b) = 0, D3(a,b) = 0}. We
solve it numerically, using floating-point arithmetic with 60 digits in the mantissa, and we get a

solution in [—6, —5] x [3.5,5], given by P = (p1,p2) where

p1 >~ —5.67750144031789435343891174392876990152177028290023619512062,
p2 =~ 4.10574868714920935493626045239900450809925741194290963919902.

By using the parametrization of W (P) given by (16), we find that the point P corresponds
with the parameter r ~ —1.48202152087749433523.

By construction, G3(P) which must lie on Ly. A computation shows that the absolute error
when we evaluate R(a,b) on this point, is |R(G3(p))’ ~ 10758, Accordingly, the point P exhibits,
numerically, a homoclinic behavior.

As can be seen in Figure 4, there exists another solution of {D;(a,b) = 0, D3(a,b) = 0} in

[—8, —6] x [3.5,5], given by P = (p1,p2) where

P1 ~ —7.32664831286596004531700787733138125161658087249633041273728,
P2 =~ 4.26205920129322448141657538934356322617112224124511704493689.
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The point P corresponds to the parameter value r ~ —3.14702449177907104545.

=
Figure 4. Location of the points P,G?(P)
and G3(P) on W (P) (brown), the curve
T 0 Ds(a,b) = 0 (green), the diagonal Ry (blue)
and the resolvent curve (red), respectively.
GP) - The point G(P) is outside the image.

ab=0
Ds(ab)=0

_10_

5.4 Computation of points in W (P,) NF

To find a point in W (P) N F, we solve numerically the system {Di(a,b) =0,a +b+2 =0},
obtaining the point @ = (q1, ¢2), where

q1 ~ —6.15163017029193114270539883292276699558057876233980350720282, ¢2 = —2 — q1,

This point corresponds with the parameter r ~ —1.96025815386161687597.

To find another point with a parameter value closer to zero (hence giving a better evidence of
really being in W) (P%)), we find a point ()1 such that G(Q_1) = Q. The points (a, b) such that
G(a,b) € {a + b+ 2 = 0}, verify

Dy(a,b) :==5a+5b+ab+9+ (a+0b+6) {/(a+b+2)2+2§‘/(a+b+2)4=0.

By solving numerically the system {D;(a,b) = 0, D4(a,b) = 0}, we find Q_; := (21, 22) where

z1 ~ —4.43931733951927306713914976146761550810750048579478327758904,
22 =~ 3.98185284365899589972467095578564600569428848801825836848384.

The point ()_; has an associated parameter value r ~ —0.23505956788542861108. The location
of the above points is shown in Figure 5.

Observe that the parameters of the points ), P and ()_1 are interspersed, so the points are
also interspersed in Wy’ (). An analytic proof of this fact would show that arbitrarily near of

P, there are homoclinic points and points in F.
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Figure 5. Location of the points  and _; in
Wit (P2) N F; the curve Dy(a,b) = 0 (green);
5 10 the line a +b+2 = 0 (blue); and the resolvent

curve (red), respectively.
R(ab=0
D4ab=0 -5

a+tb+2=0

_10_

Appendix: Local unstable manifold near a hyperbolic saddle point

Lemma 9. Consider the smooth map, defined in a neighborhood of the origin U:

5 5
Flay) =Xz + Y fizz'y’ + Ol o)l%), my + D giga'y’ + O(|(z,v)[%)
i+j=2 i+j=2
where |\| > 1> |u|, so that the origin is a hyperbolic saddle. Let y = w(z) = 3 0_, wpa® + O(x5)

be the expression of the local unstable manifold in a neighborhood of the origin. Then:

92,0 N30 — 2 f2,002.0 — 1£93,0 + 91,1920 wr Wy

T T (V=) (V= ) R R )

where

w2

Wi = gaoX" + (=3 f2,0930 — 2 3,092,0) A\° + (5 f22,og2,0 — 29100 + §2,092,1) N’
+ ((6 f2,093,0 + 2 f3,092,0 — 9a,0) 1 — 2 fl,lgio — 3 f2001,192,0 + 91,193,0) A*
+ (gaor® + (=5 f22,092,0 + 2 f3,092,0 — 92,092,1) 1t — 2 f2,091,192,0 + 90,293,0) A3
+ ((=3 f2,093.0 + 2940) 1° + (f3092.0 + 3 f2,091,192.0 — 291,193,0 — 92,092,1) b
+97192,0) A + (=2 fz0g2,01° + (2 fr195.0 + 2 f2,091,192,0) 1) A
- 94,0#3 + (—f22,092,0 + 91,1930 + 92,092,1) ALQ + (-90,29%,0 - 9%,192,0) ©
and
o N
(A2 = )* (N3 = ) (M = o) (X — o)

where p;, i = 1,2,...,13 are polynomials in the other variables of F' that we skip, although we have

ws =

used, for the sake of shortness (they are given in [9, Chapter 5]).
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Proof. Due to the particular form of the linear part of F', the local unstable manifold W} (0,0)
is given by a smooth function of the form y = w(z) = waa?® + w3r® + wyr* + wsz® + O(29),
that is, a point is on the local stable manifold if it is of the form (z,w(x)). Imposing that
F(z,w(x)) = (Fi(x,w(x)), Fa(x,w(x))) is also on this curve we get that the points on the local
unstable manifold must satisfy F»(z, w(z)) = w(Fi(z,w(z))). The result follows by comparing the

terms in the Taylor development of both members of the last equation. ]
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