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 
Abstract— In this paper, the upper limits on the bandwidth of single 

resonant UHF-RFID tags as a function of the tag size are investigated, 

with and without forcing perfect matching between the antenna and the 

application specific integrated circuit (ASIC). By means of a circuit 

network analysis, it is found that bandwidth upper bounds of small tags 

are significantly higher in comparison with considering conjugate 

matching. Particularly, it is shown that the half-power bandwidth is √2 

times (approximately 41%) higher, requiring a proper relaxation of the 

matching level at resonance. It is also shown that bandwidth of small real 

tags with perfect matching, which is typically far from its upper bound, 

can also be enhanced approximately the same factor at the expense of a 

small reduction (13.4%) in the peak read range. A practical example is 

provided where two small SRR-based tags of same size (k0a = 0.31) are 

designed. It demonstrates that such improvement on the tag bandwidth 

can be approximately obtained by simply changing the chip position, 

without the need of an external matching network. The improved tag was 

fabricated and measured, as a proof of concept. The results obtained 

from the proposed analysis allow RFID designers to determine how well a 

tag performs, compared to theoretical bandwidth limits. 

 

Index Terms— Antennas, bandwidth, quality factor, radio 

frequency identification (RFID), RFID tags, split-ring resonator 

(SRR). 

I. INTRODUCTION 

Radio frequency identification (RFID) is a rapidly developing 

technology that provides objects tagging and tracking capability by 

means of electromagnetic waves [1]. Typical applications of this 

technology are asset identification, retail item management, access 

control, animal tracking and vehicle security, among others. Passive 

tags operating at the UHF-RFID frequency band are especially 

employed for this kind of applications. A passive tag consists of an 

antenna matched to an application specific integrated circuit (ASIC), 

which contains the information about the tagged item. According to 

the current regulations for passive UHF-RFID systems [2], the 

frequency range comprised between 864 MHz and 928 MHz is 

operated within all the countries allocations authorized for RFID 

applications. In the last years, the cost of tags has experienced a 

significant decrease, mostly due to the development in semiconductor 

technology and mass production. This has involved an increase of the 

number of applications where RFID becomes a profitable solution. 

One of the most challenging aspects regarding passive UHF-RFID 

tag design is size reduction. Since RFID chips are always much 

smaller than tag antennas, tag dimensions are determined by the 

antenna size, or the antenna plus the matching network when it is 

present. The most commonly used technique for tag size reduction 

consists in antenna meandering [3], [4]. However, as it is well 

known, size reduction leads to a trade-off between efficiency and 

bandwidth, especially when electrically small antennas (ESAs) are 
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treated [5], [6]. An antenna is considered to be small when k0a < 0.5 

according to [5], [6], where k0 denotes the resonance wavenumber, 

and a is the radius of an imaginary sphere circumscribing the largest 

dimension of the antenna (henceforth called antenna size for the sake 

of brevity). Bandwidth limitations of resonant antennas are closely 

related to the antenna quality factor (Q), which is required to be 

minimized for bandwidth enhancement [6]−[9]. The Q of a tuned (to 

have zero reactance at the resonance frequency ω0) antenna is defined 

as the quotient between the power stored in the reacted field and the 

accepted power (power loss within the antenna plus radiated power). 

This definition presumes that the antenna may be tuned by an 

external matching circuit to provide a real input impedance at the 

operation frequency [6], [8]. Yaghjian and Best [8] derived the 

relationship between bandwidth and Q of single resonant antennas 

under conjugate matching condition. However, unlike conventional 

antennas, RFID antennas must be matched to an ASIC having a 

complex input impedance, rather than a purely resistive port. This 

produces a direct effect upon tag bandwidth upper bounds. 

In [10], the equivalent circuit network required to achieve the 

upper limit of the area under the return loss curve (determined by the 

Bode criterion [11]) was obtained for single resonant tags with 

perfect matching between the chip and the antenna. Meaning that 

maximum bandwidth at all matching levels was obtained under 

conjugate matching condition. The present paper shows, by means of 

a circuit network analysis, that such bandwidth can only theoretically 

be achieved by using antennas that are not electrically small. 

Moreover, upper bounds on the bandwidth of single resonant UHF-

RFID tags, with and without forcing perfect matching, are inferred as 

a function of the tag size. It is also shown that the bandwidth of small 

real tags with conjugate matching can be considerably enhanced by 

means of a proper reduction of the matching level at resonance, 

without necessarily involving an increase in the tag size. 

II. UPPER BOUNDS ON THE TAG BANDWIDTH 

The input impedance of an UHF-RFID ASIC can be modeled by a 

parallel combination of a conductance Gc and a capacitance Cc [12]. 

Let us consider an inductive antenna (or antenna plus matching 

network) with an equivalent circuit model consisting of a parallel 

combination of a general antenna susceptance Ba and a frequency 

dependent conductance Ga, tuned at a frequency ω0 by the chip 

capacitance. The antenna conductance Ga = Gr + Gl is modeled as a 

parallel combination of the radiation antenna conductance Gr and the 

loss conductance Gl (that accounts for the conductive and dielectric 

losses of the antenna). To maintain generality, both Gr and Gl are 

assumed to be frequency dependent. The efficiency of the antenna is 

related to the elements of the antenna equivalent circuit model by 

η = Gr/Ga [13]. The quality factor of a general one port lossy linear 

antenna tuned at ω0 (presenting a single sufficiently isolated 

resonance within its operating bandwidth) with Q >> 1 (Q greater 

than 2 usually suffices) can be accurately approximated from the 

antenna input impedance by [8] 
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where Z0'(ω0) = R0'(ω0)+jX0'(ω0) is the frequency derivative of the 

input impedance of the tuned antenna (assuming Cc to be the tuning 

element) at ω0, R0'(ω0) and X0'(ω0) being the frequency derivative of 

the input resistance R0 and reactance X0 of the tuned antenna at ω0, 

respectively. It is clear from (1) that minimum Q (required for 

bandwidth broadening) is obtained by reducing Z0'(ω0), which can be 

written in terms of the conductance G0 and susceptance B0 of the 

tuned antenna using R0'(ω0) = −G0'(ω0)/G0
2(ω0), 

X0'(ω0) = −B0'(ω0)/G0
2(ω0). Because the tuning capacitor is connected 

in parallel with the antenna, G0 = Ga and B0 = Ba+Bc (Bc = ω0Cc being 

the chip susceptance at ω0). Thus, assuming a frequency independent 

antenna conductance makes R0'(ω0) = 0. Whereas, X0'(ω0) is 

minimized making Ba'(ω0) as small as possible. As it was pointed out 

in [10], the Foster’s reactance theorem [14] holds for the antenna 

equivalent circuit network required to obtain a single tag resonance 

with proper impedance matching between the chip and the antenna, 

i.e., Ba'(ω0) > 0. The Foster network that provides a certain negative 

susceptance (inductance behavior) at a given frequency with the 

lowest frequency derivative of such susceptance is simply an inductor 

(La) [15]. This leads to B0'(ω0) = 2Cc and QZ = ω0Cc/Ga. 

There is a well-known lower bound on the Q for a general single-

mode (fundamental TE or TM mode) tuned antenna, the Chu limit, 

which is related to the value of k0a, namely QChu = η[(k0a)−3+(k0a)] 

[16]. Chu considered electrically small antennas, but later 

Sievenpiper et al. [17] showed that it serves as a good design 

guideline even for non-ESAs. To achieve a Q close to that limit, the 

antenna must fully occupy the spherical volume defined by k0a [18]. 

However, most UHF-RFID antennas must fit in a planar shape and, 

therefore, the antenna Q cannot approach to the Chu bound as closely 

as in the case of considering antennas with a spherical shape. 

Recently, Gustafsson et al. [19], [20] derived a new limit for antennas 

of arbitrary shape using a “sum rule”. In [21], Yaghjian and Stuart 

used a quasi-static analysis to obtain a bound on Q in terms of 

antenna volume and static polarizability. Lately, Mohammandpour 

Aghdam et al. [22] applied the result given in [21] to planar 

structures (i.e., the volume tends to zero) with rectangular shape. 

From [22], the theoretical lower bound on Q that can be achieved by 

a linearly polarized planar tuned antenna can be written as  

 
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
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where ζ , can be considered a structural penalty which depends on the 

antenna geometry. Gustafsson et al. found in [20] that the minimum 

value for ζ  (9π/8) can only be obtained by means of planar antennas 

presenting a circular disk shape with radius a. However, in real life, 

most UHF-RFID tag antennas are enclosed by a rectangular shape 

and provide a single pure linear polarization (typically a single 

TM mode) in the direction along the length. The minimum 
structural penalty for this kind of antennas is around ζ = 5.2 

(considering directivity 1.5, according to Gustafsson conditions [20]), 

which occurs for an optimum aspect ratio (i.e., length to width ratio) 

of 1.84 [22]. Notice that for a fixed efficiency, Qlb increase rapidly as 

k0a decreases. In order to satisfy Q ≥ Qlb, B0'(ω0) must be increased 

(with respect to 2Cc) for very low k0a, by adding an additional shunt 

element in the tag circuit model. The simplest network able to raise 

B0'(ω0) maintaining the tag resonance at ω0 is a single capacitor, 

named here Ca. Thus, an RLC parallel-circuit antenna model, 

cascaded to the ASIC, is to be considered to obtain the upper bounds 

on the bandwidth of RFID tags (see Fig. 1).  

 
Fig. 1.  Equivalent circuit model of single resonant UHF-RFID tags based on 

an RLC parallel-circuit antenna model. 

 

A. Upper Bounds under Conjugate Matching Condition 

By isolating B0 from the power reflection coefficient |s|2 between 

the chip and the antenna in Fig. 1 [23] 
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it is found that there are two solutions for a certain value of the power 

reflection coefficient |s|2 = α: 
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Forcing the left hand side of (4) to be the susceptance of a parallel 

combination of a capacitance Cp = Ca+Cc (i.e., parallel connection of 

Cc and Ca, according to Fig. 1) and an inductance La = 1/(ω0
2Cp) (to 

achieve tag resonance at f0), the resulting fractional bandwidth 

evaluated at α can be written as 

2

1
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where Q = ω0Cp/Ga, see for example [24]. By forcing Ga = Gc in (5), 

it is clear that upper bounds under perfect matching condition are 

achieved if Q = Qlb. Such a condition requires the antenna 

capacitance to be Ca = (GcQlb/ω0)−Cc. Thus, upper bound on 

bandwidth increases with the antenna size (as expected from the 

literature) while Ca decreases. However, it achieves its maximum 

value when Q reaches Qc (the chip quality factor evaluated at ω0 

given by Qc = ω0Cc/Gc [24]) and consequently Ca vanishes. The 

resulting circuit model corresponds to the ideal circuit for bandwidth 

broadening obtained in [10]. This leads to 

lb
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It is worth mentioning that (6a) perfectly agrees with the relationship 

between bandwidth and Q derived in [8], and (6b) is in agreement 

with the −3 dB maximum bandwidth inferred in [10]. Notice that 

(k0a)conj = (ηζ/Qc)
1/3 (inferred by forcing Qlb = Qc) corresponds to the 

minimum antenna size required to achieve maximum bandwidth 

under perfect matching condition, given by (6b). Such bandwidth can 

only be reached by non-ESAs, since (k0a)conj > 0.5 for typical tags 

(ζ = 5.2, Qc ~ 10) with η > 0.1. For lower sizes, bandwidth upper 

bounds are determined by the antenna, whereas for higher sizes by 

the ASIC. 

B. Upper Bounds Compared to the Conjugate Matching Case 

Maximization of tag bandwidth can be thought as a constrained 

optimization problem in which the fractional bandwidth (5) becomes 

a function of two variables (Ga and Ca), subject to the following three 

constraints: Q ≥ Qlb, Ga > 0 and Ca ≥ 0. Such inequalities are referred 

to as the Karush-Kuhn-Tucker (KKT) conditions for the stated  
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TABLE I 

ELEMENTS OF THE IDEAL RLC PARALLEL-CIRCUIT ANTENNA MODEL 

Region Ga Ca La Q 
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generalization of the method of the Lagrange multipliers), three 

different set of solutions for the variables Ga and Ca were found, as a 

function of Qlb or, equally, k0a (see Appendix). The upper bounds for 

the tag fractional bandwidth were found to be 
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The constituent elements of the RLC parallel-circuit antenna model, 

as well as the Q of the tuned antenna, required to achieve the upper 

bounds on the tag bandwidth are summarized in Table I1. It can be 

demonstrated that the three different regions in (7), as well as the 

corresponding boundaries, collapse to (6) when γ tends to 1 (or, 

equivalently, α tends to 0). For γ > 1 (i.e., bandwidth upper bounds 

are considered at α > 0), (k0a)conj splits into (k0a)1 = (ηζ/γQc)
1/3 and 

(k0a)2 = (ηζγ/Qc)
1/3, and consequently an intermediate region (called 

here region II) appears. As γ increases, this region becomes wider, 

and bandwidth upper bounds separates more and more towards 

higher values with respect to the conjugate matching case, except at 

(k0a)conj. A plot representation of (6) and (7) for α = 1/2 (half-power 

bandwidth) and ζ = 5.2, using the Alien Higgs 3 (SOT-323 

packaging) commercial chip, is showed in Fig. 2(a) for further 

comprehension. It was considered η = 0.3 in order to show the three 

different regions in a 0 < k0a < 1 plot. It can be seen that both 

bandwidths are equal at (k0a)conj, as deduced by comparing (6) and 

(7). Thus, it corresponds to the unique antenna size that requires 

perfect matching at resonance to achieve bandwidth upper bounds at 

all matching levels. Within region I, Q = Qlb is achieved by gradually 

reducing the antenna capacitance Ca as k0a increases, until it is 

canceled at (k0a)1. Whereas, in region II the same condition for Q is 

obtained by increasing the antenna conductance with k0a from Gc/γ to 

γGc, going through Gc at (k0a)conj. Therefore, besides (k0a)conj, 

bandwidth upper bounds at a certain matching level requires 

sacrificing perfect matching at resonance. 

Lowering the efficiency of the antenna involves a displacement of 

the boundaries (k0a)1, (k0a)2, and (k0a)conj towards lower values of 

k0a, as well as an increase of (6a), (7a) and (7b), while the maximum 

upper bounds (6b) and (7c) remain constant. Thus, bandwidth upper 

bounds of small tags (i.e., tags based on ESAs) increase by 

decreasing η, as expected from the well-known trade-off between 

efficiency and bandwidth [17]. However, small tags with relatively 

high values of the antenna efficiency are of special interest in RFID, 

since they provide higher read ranges and size reduction. Assuming 

small tags based on efficient antennas and typical RFID chips 

(Qc ~ 10), we find that bandwidth upper bounds evaluated at α ≤ 1/2  

 
1It is worth mentioning that the antenna conductance in the ESA region 

agrees with equation (16) in [27], where the circuit of Fig. 1 was considered 
for bandwidth maximization of single-tuned T-match-dipole tags. 

 
Fig. 2.  Upper bounds on the tag half-power bandwidth against antenna size 

with (blue) and without (black) forcing conjugate matching, considering the 

Alien Higgs 3 and ζ = 5.2 in the (a) three regions (light gray, gray and dark 
gray, respectively) with η = 0.3, and (b) ESA region for η = 0.6, 0.8 and 1. 

 
are given by (6a) and (7a). This result comes from the fact that region 

I extends beyond the limit for ESAs, i.e., (k0a)1 > 0.5. Thus, it seems 

reasonable to identify (7a) as the ESA region. A comparison between 

(6) and (7) within the ESA region 

ub

conj,ub

FBW 1

FBW 2

 
 , (8) 

reveals that bandwidth upper bounds of small tags are significantly 

higher (for a relatively large value of γ) with respect to the case of 

considering conjugate matching. However, as mentioned previously, 

it requires a reduction of the matching level at resonance, namely 

|s|2(ω0) = α0
2 (inferred by evaluating (3) at f0 where B0 = 0). 

Specifically, the half-power bandwidth results in a factor of √2 

(approximately 41%) higher, at the expense of reducing the matching 

level at resonance to 1/4. Fig. 2(b) shows a plot representation of the 

upper bounds on the half-power bandwidth of small tags based on 

efficient ESAs and the Alien Higgs 3 chip. Notice that bandwidth 

upper bounds are governed by (6a) and (7a), when high efficiencies 

are considered, and increase by lowering η. 

From the previous analysis, we conclude that the antenna 

determines bandwidth upper bounds of small tags, whereas both the 

ASIC and the antenna determine bandwidth upper bounds for non-

ESAs. Conversely, the maximum achievable tag bandwidth is 

determined by the ASIC, and can only be reached by using antennas 

that are not electrically small. 

III. READ RANGE ANALYSIS AND DISCUSSION 

The read range is defined as the maximum distance at which the 

RFID reader can detect the backscattered signal from the tag. It can 

be calculated as [4] 

EIRP
RR ,

4 c

G

P
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

 
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where λ is the wavelength and EIRP is the equivalent isotropically 

radiated power, determined by local country regulations (e.g., 3.3 W 

in Europe and 4 W in USA). Pc is the minimum threshold power 

necessary to activate the RFID chip, G is the gain of the tag antenna, 

and τ is the power transmission coefficient, which is related to the 

power reflection coefficient by  = (1−|s|2). It can be observed in (9) 

that the read range is proportional to the square root of . This 

indicates that a significant reduction (to some extent) of the conjugate 

matching level at the tag resonance might not involve an important 

degradation of the read range. The ratio between the peak read ranges 

(achieved at the tag resonance [4]) inferred using  = 1−α0
2 (half-

power bandwidth upper bound) and  = 1 (conjugate matching case) 

in (9), namely 
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Fig. 3.  Simulated read range of small tags exhibiting upper bounds on the 

half-power bandwidth with (black) and without (blue) conjugate matching for 

k0a = 0.1, 0.3, 0.5. The dashed line indicates the half-power read range level 

(RRconj

peak
/√2). The UHF-RFID band is highlighted in gray. 

 

reveals that the aforementioned 41% increase of the upper bounds on 

the half-power bandwidth of a small tag compared to the conjugate 

matching case (see Section II) involves a reduction of 13.4% in the 

peak read range. Expression (10) was obtained assuming EIRP, Pc, 

and G to be equal in both cases. This can be appreciated in Fig. 3, 

where a read range plot of square-shaped (i.e., assuming ζ = 5.2) 

small UHF-RFID tags, considering both upper bounds on the half-

power bandwidth with and without conjugate matching, is shown for 

different antenna sizes (k0a = 0.1, 0.3 and 0.5). It was obtained with 

the help of (9) considering EIRP = 4 W, G = ηD (assuming η = 1 and 

D = 1.5, i.e., directivity of an elementary electric or magnetic dipole 

[13]). The power reflection coefficient was obtained from simulation 

(Keysight ADS) of the circuit of Fig. 1 using the Alien Higgs 3 chip 

(Gc = 1/1500 Ω−1, Cc = 0.9 pF, and Pc = −17 dBm, according to the 

manufacturer). As expected, approximately (notice that RR also 

depends on λ) a 41% higher bandwidth evaluated at the half-power 

read range level (see Fig. 3) and a 13.4% reduction on the peak read 

range is obtained, in agreement with the value predicted by (8) and 

(10), respectively. Notice also that the read range of the upper bound 

tag becomes flatter within the UHF-RFID frequency band, compared 

to the conjugate-matched tag.  

For a real tag, deviations from the ideal quality factor (Qlb) 

towards higher values are expected. Also, deviations from the ideal 

equivalent circuit model for the tag antenna (an RLC parallel-circuit) 

are common. Consequently, the resulting bandwidth is typically far 

from its upper bound. Bandwidth of a small real tag presenting 

conjugate matching at resonance can be approximated by (7a) when 

Qlb is replaced by the quality factor of the tuned antenna [8]. In virtue 

of the susceptance slope concept [24], bandwidth of small real tags 

designed to exhibit proper antenna conductance (Gc/γ) for bandwidth 

optimization can be approximated by (6a), replacing Qlb by Q of the 

tuned antenna. Therefore, (8) and (10) are approximately valid for 

real tags of same size, provided Q and G are equal in both tags under 

comparison.  

UHF-RFID chips exhibit strongly capacitive input impedance and 

small resistance (the real part being about an order of magnitude 

smaller than the imaginary part) [3]. This forces the tag antenna to 

exhibit an inductive reactance much higher than the resistance at ω0, 

i.e., Xa(ω0) >> Ra(ω0), in order to achieve proper impedance 

matching. Thus, the equivalent antenna conductance and susceptance 

of a general tag antenna evaluated at ω0 can be approximated by 

Ga(ω0) ≈ Ra(ω0)/Xa
2(ω0) and Ba(ω0) ≈ −1/Xa(ω0), respectively. Of 

course, the reactance of the tuned antenna is equal to zero at the tuned 

frequency (ω = ω0), and Ra(ω0) = Rc (Rc being the real part of the 

chip impedance) for conjugate matching. Equivalently, the 

susceptance B0 of the tuned antenna is equal to zero at the tag 

resonance, and the conductance of the tuned antenna satisfies 

G0(ω0) = Ga(ω0) = Gc for perfect matching. It directly follows that 

Gc ≈ Rc/Xa
2(ω0). Therefore, by forcing the antenna resistance to be 

Ra(ω0) = Rc/γ, one obtains that Ga(ω0) ≈ Gc/γ and, consequently, 

bandwidth enhancement with respect to the conjugate matching case, 

approximately given by (8), is expected. The input resistance of 

symmetrically fed small wire antennas (commonly used for tag 

design) is in general much lower than the chip resistance Rc, giving 

rise to a significant impedance mismatch. However, it is possible to 

increase the input resistance to obtain good impedance matching by 

changing the chip position, without the need of an external matching 

network [13], [28]. This procedure avoids lowering η for bandwidth 

enhancement (a commonly used technique in practice), allowing the 

design of efficient small tags with high read range. 

IV. PRACTICAL EXAMPLE 

Two small RFID tags (same size) based on a split-ring resonator 

(SRR) antenna and a commercial integrated ASIC (the Alien Higgs 3 

with SOT-323 packaging) were designed (by means of the Keysight 

Momentum commercial software) for bandwidth comparison 

purposes. The input impedance of this chip provided by the 

manufacturer is Zc = 25−j193 Ω at f0 = 900 MHz. The following 

points were considered as design guidelines: (1) bandwidth 

broadening was forced at the half-power level (α = 1/2), (2) the tag 

antenna was forced to be electrically small; meaning that k0a < 0.5, 

(3) the available ASIC with the lowest sensitivity was selected, since 

it provides higher read range without affecting the upper bounds on 

bandwidth within the ESA region, (4) the efficiency of the antenna 

was forced to be high enough to ensure operating within the ESA 

region (i.e., k0a1 ≥ k0a). 

The Arlon CuClad 250LX with thickness hs = 0.49 mm, relative 

permittivity εr = 2.42, and loss tangent δloss = 0.0018, was selected as 

a substrate. We first design a conjugate-matched tag following the 

design procedure presented in [28]. The dimensions of the tag 

antenna (see Fig. 4a) are a = 16.5 mm (λ0/20, k0a = 0.31), 

c = 2.2 mm, d = 0.5 mm, and the slit width 2.2 mm. The chip position 

was found to be φp = 130º. A second tag was designed for half-power 

bandwidth enhancement by forcing the antenna resistance to be 

Ra(ω0) = Rc/γ = 25/3 Ω. To this end, the chip position was changed to 

φp = 76º, and the distance between rings was adjusted to d = 0.28 mm 

in order to maintain resonance at f0. 

The simulated results for the conjugate-matched tag and the tag 

with improved bandwidth are summarized in Table II. The efficiency 

is similar in both cases and much higher than the minimum value 

(0.19 in this case) to ensure operation within the first region. It can be 

also seen that the quality factor of the improved antenna is slightly 

higher, due to small differences in the geometry (i.e., distance 

between rings changes). The simulated power reflection coefficient 

|s|2 of the designed tags is depicted in Fig. 4(b). The improved tag 

reaches 12.9 MHz half-power bandwidth, i.e., a 37% bandwidth 

increase with respect to the conjugate-matched case (9.4 MHz), 

which is very close to the expected value (41%), inferred using (8). 

Such small difference is mainly attributed to the fact that the quality 

factor of the antenna with improved bandwidth is somewhat higher. 

The simulated fractional bandwidth is very close to the predicted 

value for the perfect-matched (1.07%, 9.6 MHz) and the improved 

(1.42%, 12.8 MHz) tag, inferred respectively from (6a) and (7a), 

replacing Qlb by QZ. According to (6a) and (7a), the upper bounds on 

the tag half-power fractional bandwidth are FBWub = 3.4% 

(30.6 MHz) and FBWconj,ub = 2.4% (21.7 MHz). It was considered 

η = 0.7 and ζ = 9π/8 (corresponding to planar antennas with a circular 

disk shape) which leads to Qlb = 83, that is significantly smaller than 

QZ for both tags. This suggests that further increase of the tag 

bandwidth can theoretically be obtained maintaining the same 

maximum antenna dimension and shape, by simply restructuring the 

tag antenna to reduce its interior fields and therefore its Q (which is 

out of the scope of this paper) [8]. Of course, as Fano shows [29] and 

Sievenpiper illustrates [17], designing an antenna with multiple 

resonances and avoiding a perfect match can exceed the upper 

bounds on bandwidth given in (7), within the Bode limit [11].  
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Fig. 4.  (a) Topology of the SRR. The cut at the bottom of the external ring 

indicates the chip position. (b) Simulated power reflection coefficient of the 
designed tags. 

 
TABLE II 

SIMULATED RESULTS OF THE DESIGNED TAGS 

 k0a η QZ HP-FBW RRpeak(m) 

Conj. 

Match. 
0.31 0.7 187.3 1.04% (9.4 MHz) 11.2 

Improved 0.31 0.68 198.1 1.43% (12.9 MHz) 9.8 

 

 
Fig. 5.  (a) Photograph of the fabricated tag and (b) simulated and measured 
read range. A simulation of the conjugate-matched tag is also shown for 

comparison purposes. The gray region indicates the UHF-RFID band.  

 
The designed tags behave as small current loops providing a 

dipole-like radiation pattern within the entire UHF-RFID band [28]. 

The simulated read ranges (see Fig. 5b) were obtained from (9) 

assuming a constant gain over frequency with D = 1.6 and η = 0.7 

(obtained from electromagnetic simulation at f0). It can be seen that 

the read range of the optimized tag was significantly improved in 

most of the band presenting a peak value of 9.8 m, i.e., a 12.5% 

reduction with respect to the perfect-matched tag, which is very close 

to the expected 13.4%. The tag designed to enhance the half-power 

bandwidth was fabricated (see Fig. 5a) and the experimental read 

range was obtained in a TEM cell environment as reported in [28]. 

Simulated and measured results (Fig. 5b) are in good agreement, 

showing a small frequency shift of 2 MHz between them. The 

experimental read range reaches a peak value of approximately 10 m, 

which is very close to the value obtained from electromagnetic 

simulation (9.8 m). Moreover, the experimental read range half-

power bandwidth (12 MHz), is close to the simulated value 

(12.9 MHz). The difference is mainly attributed to variations on the 

tag antenna gain over frequency (not considered in the simulated read 

range) and frequency variations of the chip sensitivity [30]. 

V. CONCLUSION 

In this paper, the upper bounds on the bandwidth of single 

resonant UHF-RFID tags related to the maximum tag dimension, 

with and without considering conjugate matching, have been 

explored. We have found that the antenna determines bandwidth 

upper bounds of small tags (k0a < 0.5), see (7a), whereas both the 

ASIC and the antenna determine bandwidth upper bounds for non-

ESAs. Conversely, the maximum achievable tag bandwidth, given by 

(7c), is determined by the ASIC, and can only be reached by using 

antennas that are not electrically small. It has been shown that the 

upper bounds on the bandwidth of small tags are substantially higher 

with respect to the case of considering perfect matching at resonance. 

Specifically, the tag half-power bandwidth is 41% higher, requiring a 

relaxation of the conjugate matching condition at the tag resonance in 

an appropriate manner. Moreover, two SRR-based tags of same size 

(k0a = 0.31) has been designed to show that bandwidth of small real 

tags with conjugate matching (typically much smaller than its upper 

bound) can also be improved approximately the same factor by 

simply changing the chip position, at the expense of a small reduction 

(13.4%) of the peak read range. The enhanced tag has also been 

fabricated and measured, as a proof of concept. The analysis 

presented in this work provide RFID designers with the capability of 

determining how well a tag performs in terms of bandwidth, 

compared to theoretical upper bounds. 

APPENDIX  

THE KARUSH-KHUN-TUCKER METHOD 

Let us consider the fractional bandwidth function (5) to be 

maximized for a given RFID ASIC, subject to the following 

constraints: Qap ≥ Qlb, Gap > 0 and Cap ≥ 0. This problem can be 

simplified by considering a new function f, resulting from squaring 

the product between the right hand side of (5) and ω0, to be 

maximized, i.e.,  
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subject to the aforementioned necessary conditions or, equivalently, 
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To solve this problem by means of the Karush-Kuhn-Tucker (KKT) 

method [25], [26], we first define the Lagrangian function as 

3

ap ap

1

( , ) ,i i

i

L f G C g


   (A.3) 

where λi are the KKT (or Lagrange) multipliers. We then define the 

KKT conditions as 
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These conditions give rise to the following equations 

 
 

 

 

 

ap 0
1 ap 22 2

apap

2 2

ap ap 0
1 33

apap

0
1 ap lb

ap

2 ap

3 ap

2 2
0

2 2
0 

0

0

0.

c

c

c

c c

c

c

G G
C C

GC C

G G G G

GC C

C C Q
G

G

C

 
 

 
 









   



 
  



 
   

  





 

(A.5) 

 

0.88 0.89 0.90 0.91 0.92
-10

-8

-6

-4

-2

0

0.88 0.89 0.90 0.91 0.92
-30

-20

-10

0

 

 

s 
(d

B
)

Frequency (GHz)

 Conj. Match.

 Optimized

 

 

s 
(d

B
)

Frequency (GHz)

0.86 0.88 0.90 0.92 0.94
0

3

6

9

12

 Sim. Conj. Match.

 Sim. Optimized

 Meas. Optimized

 

 

R
ea

d
 R

an
g

e 
(m

)

Frequency (GHz)

b) a) 

b) a) 



 

 

6 

TABLE A.I 

SOLUTIONS OF THE SYSTEM OF EQUATIONS (A.5) 

Gap  Cap  λ1 λ2 λ3 
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Three points were found to be solutions of (A.5) and are summarized 

in Table A.I. Such points must simultaneously satisfy λi ≤ 0 and the 

necessary conditions Q ≥ Qlb, Ga > 0, and Ca ≥ 0, according to the 

KKT method. An inspection of the results shown in Table A.I reveals 

that the first point (top row in Table A.I) is a valid solution provided 

that Cap ≥ 0 or, equivalently, Qlb ≥ γQc. The second point (middle row 

in Table A.I) becomes a valid solution provided that λ1 ≤ 0 and λ3 ≤ 0 

or, alternatively, Qc/γ ≤ Qlb ≤ γQc. Finally, the third point (bottom row 

in Table A.I) results in a real solution for the optimization problem 

provided that λ3 ≤ 0 or, identically, Qlb ≤ Qc/γ. 
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