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ABSTRACT: 

Plants employ a diverse intracellular system of NLR (Nucleotide-binding, Leucine rich-

Repeat) innate immune receptors to detect pathogens of all types. These receptors 

represent valuable agronomic traits that plant breeders rely on to maximize yield in the 

face of devastating pathogens. Despite their importance, the mechanistic underpinnings 

of NLR-based disease resistance remain obscure. The rapidly increasing numbers of 

plant genomes are revealing a diverse array of NLR-type immune receptors. In parallel, 

mechanistic studies are describing diverse functions for NLR immune receptors. In this 

review, we intend to broadly describe how the structural, functional and genomic 

diversity of plant immune receptors can provide a valuable resource for rational 

engineering of plant immunity. 

 

Introduction: Layers of the plant immune system. 

Plants have evolved an elaborate innate immune system to detect and limit the growth 

of potential pathogens. Lacking an adaptive immune system with mobile cells, each 

plant cell must be able to detect and defend appropriately against pathogens. Plants 

mount a sophisticated multilayered defense response including local physical barriers 

and chemical weapons, systemic signaling to prime uninfected cells and programmed 

cell death to limit pathogens that rely on living host cells. To present an appropriate 

response, plants must have a mechanism to identify microbes of all types and 

discriminate between friend and foe. To integrate signals from their biotic environment, 

plants rely on a diverse collection immune receptors often numbering in the hundreds 
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per genome (53; 59; 99). Despite their numbers, exactly how a limited set of 

genomically-encoded immune receptors can protect plants against a deluge of rapidly-

evolving microbial pathogens remains unknown. 

Plant immune receptors come in two broad classes that have been proposed to play 

complementary roles (55). The first class of immune receptors, termed Pattern 

Recognition Receptors (PRRs), monitors the extracellular environment for signals 

derived from microbes (25; 112). The PRR class is responsible for transducing 

recognition of pathogens across the plasma membrane to activate a defense response 

known as PAMP-triggered (pathogen-associated molecular patterns) immunity, or PTI 

(25; 134). PTI-activating signals are usually conserved, essential microbe-derived or 

generated molecules (15; 86). PRRs typically have an extracellular ligand-binding 

domain, a transmembrane-spanning domain, and an intracellular kinase domain (145). 

PTI is sufficient to render plants immune to a large number of potential pathogens. 

Microbes that are successful pathogens on a given host have evolved tools to defeat 

PTI. In many cases, these evolved tools are secreted or translocated proteins known as 

“effectors” or small molecule toxins (16; 119). The second layer of the plant immune 

system has evolved to defeat these evolved pathogens, by recognizing pathogen 

virulence tools as reliable indicators of pathogenesis. This second layer of defense is 

composed NLR-type (Nucleotide-binding, Leucine-rich Repeat or, alternatively, NOD-

Like Receptor) immune receptors (139). These NLR receptors recognize evolved 

pathogens either directly by the presence or indirectly, by the activity of translocated 

effectors and toxins. This effector-triggered immunity (ETI) “reboots” plant immune 

responses dampened by pathogen manipulation and results in strong disease 

resistance, often associated with programmed cell death known as the hypersensitive 

response (HR) (26). In some interesting cases, the boundaries between PTI and ETI 

are less distinct and PRR-type receptors can behave genetically like ETI-triggering 

NLRs (113). Together PRRs and NLRs must be sufficient to recognize and discriminate 

between environmental microbes, symbionts and pathogens (47).  

Since the rise of agriculture, farmers and breeders have selected for resistance traits to 

maximize yield by reducing losses to pathogens. The genetic behavior of these traits led 

to Flor’s gene-for-gene hypothesis which proposed single dominant genes in the plant 

somehow recognized single dominant genes in the pathogen (39). In the 20th century, 

researchers realized that the plant resistance traits are often encoded by NLR immune 

receptors. One of the most striking and unexpected findings was that immunity to 

pathogens of all kingdoms could be encoded by a single stereotyped class of immune 

receptor. Since then we have greatly expanded our knowledge of NLRs, but many basic 

mechanistic facts remain poorly understood. While commonalities between NLRs were 

striking when first discovered, intensive study has exposed a great deal of diversity in 

both their structure and function. As increasing numbers of genomes are sequenced, 



evidence for NLR diversity at the species and population level is also rapidly 

accumulating. In this review we will focus on NLRs, their structural, functional and 

genomic diversity, and progress and prospects for engineered disease resistance.  

NLRs are multi-domain molecular switches.  

Upon their identification, plant NLR proteins were recognized to contain conserved 

domains in a stereotypical configuration: a variable N-terminal domain, a central 

nucleotide binding site (NBS) domain with similarity to the AAA-ATPase family and a C-

terminal LRR. The variable N-terminal domains are typically a TIR (Toll-interleukin-1 

receptor) or a CC (Coiled-Coil) domain (Figure 1). More recently, evolutionarily distinct 

classes of CC domains have been described, and many CC-type NLRs (CNLs) have 

been refined as RPW8-type CC-NLRs (CCr-NLRs or RNLs) based on their similarity to 

the CC-only disease resistance gene RPW8 (24; 132; 144). How these domains interact 

during both the inactive resting state and the activated, signaling state remains 

unknown. How plant NLRs function is ultimately a difficult structural biology problem. 

Unfortunately, the structure of any full-length plant NLR has not yet been determined.  

NLR proteins are proposed to function as multi-domain switches with inactive and active 

states driven by the nucleotide-bound status of the central NBS domain; binding to ADP 

promotes a closed, inactive conformation and binding to ATP promotes an open, active 

conformation (Figure 1) (reviewed in (12)). The basis for thinking of plant NLRs as NBS-

driven switches is largely drawn from structurally-related NBS domains of animal 

proteins (56; 109). Homology modeling to the NBS domain of animal proteins such as 

the apoptosome component APAF1 reveal that NLRs contain conserved motifs with 

predictable functions (109). The P-loop nucleotide binding motif is required for 

nucleotide binding and can be reliably mutated to generate a loss of function mutant (7; 

32; 111; 127). A second motif, characterized by the amino acid sequence MHD, can be 

mutated to generate gain of function autoactive alleles (7; 28; 50; 127). Despite the 

strikingly similar domain structure of plant and animal NLRs, as well as mechanistic 

similarities they are likely products of convergent evolution (117).  

If the NBS domain is responsible for controlling the switch between resting and 

activated states of NLRs, which domain is responsible for signaling downstream? 

Deletion analysis of the various domains has found that for a number of NLRs the N-

terminal CC, CCr or TIR domain is required and often sufficient for cell death signalling 

(10; 24; 76; 108). Thus the N-terminus is proposed to transduce the activation signal to 

downstream pathways. In the case of both CC and TIR domains, oligomerization of the 

N-terminus is proposed to be the critical event in activation. At the whole NLR level, 

oligomerization can be effector induced, as with the tobacco N gene (81) or with 

Arabidopsis RPP1 (97). Other NLRs, such as the RPS4/RRS1 complex appear to 

constitutively self-associate pre-activation, and then subsequently form post-activation 



N-terminal multimers to activate defense (51) (Figure 1). Several dimeric CC and TIR 

structures now exist for NLR N-termini, but the exact conformations of resting and 

activated multimers and the extent of their oligomerization remains elusive (33; 138). 

How N-terminal domain multimers form in response to conformational change in the 

NBS in response to nucleotide binding remains an important unanswered question. 

While there is much agreement that NLRs behave as switches, exactly how these three 

domains respond to pathogens and activate cell death remains mechanistically unclear 

(77; 110). 

NLRs can directly or indirectly recognize pathogen effectors 

Evolved pathogens of all kingdoms deliver intracellular effector molecules to 

immunosuppress and manipulate the host. Thus, these effectors are excellent reliable 

signals for the plant to monitor. In many cases, NLRs can directly recognize pathogen 

effectors by binding to them (Figure 1). There do not appear to be generalizable rules to 

how or where NLRs bind pathogen effectors. The LRR of the rice CNL Pi-ta was first 

proposed as an effector binding domain (54). A role in substrate binding makes intuitive 

sense given the known role of LRRs as diverse substrate-binding platforms (40). 

Subsequently, LRRs have been found to directly bind diverse effectors and also to be 

under diversifying selection, presumably driven by effector diversity and diversification 

(44; 64). Beyond the LRR, other domains are also clearly regulating recognition. In the 

case of genes at the L locus of flax, TNLs with identical LRRs, but slightly divergent TIR 

domains have distinct specificities (34).  

How effector-binding to the LRR (or other domains) opens NLRs and promotes 

oligomerization remains unclear. Analysis of alleles of the flax TNLs L6 and L7 suggest 

that in the absence of pathogens NLRs may be in an equilibrium in the “on” and “off” 

states, and that effectors stabilizes the active, ATP-bound state (9). Consistent with this 

model, for L6 and L7, the activating effector was found to bind inactive versions of the 

NLR more weakly than active forms (9). If closed, inactive NLRs have multiple points of 

intramolecular contact between or among domains, then effectors could bind to any of 

them and disrupt a closed state, or stabilize an open one.  

 

NLRs can indirectly recognize pathogen effectors by guarding important immune 

targets 

NLRs can also indirectly recognize the presence of pathogen effectors by monitoring 

their impact on host targets (Figure 1). This model was first proposed to explain the 

Pto/Prf/AvrPto system, where targeting of the Pto kinase by AvrPto is detected by the 

CNL Prf (118). This “guard hypothesis” proposes that by guarding important, conserved 

targets of pathogens (or decoys of targets) the plant immune system can detect all 



pathogens without a separate, genomically encoded receptor for each pathogen (27). 

Another important outcome of the guard hypothesis is that we can better understand the 

plant immune system by knowing the set of proteins that evolution has selected to be 

guardees of NLRs. Indirect recognition can allow plants to detect mechanistically-

distinct effectors that target the same host protein.  

Downstream signalling events are not understood. 

Surprisingly, the main function of NLRs, the downstream activation of disease 

resistance and cell death remains mechanistically obscure. How effector activation 

eventually is transduced into disease resistance, and often cell death, is unknown for 

any NLR. Downstream events have proven remarkably resistant to forward genetic 

analysis. The lack of mutable genes required for NLR signalling has prompted 

hypotheses of redundancy or lethality. An alternative is that the pathways are extremely 

direct and lack a downstream element. A direct action hypothesis proposes that NLRs 

are capable of directly activating immune responses and/or killing cells. Intriguingly, it 

has been proposed that the CNLs Rx1 and I-2 can bind and deform DNA in an effector-

dependent manner (36; 37). How DNA binding and deformation by NLRs promotes an 

“immune-competent” state remains to be determined, but could represent an extremely 

direct and redundant pathway. 

There are however a few identified genes that are required for NLR function. 

Chaperones such as HSP90, RAR1 and SGT1 are generally required for NLR protein 

accumulation (100). Genetic analysis of suppressors of autoactive NLRs has revealed a 

number of novel regulators of NLR homeostasis (reviewed in (72)). Signalling 

components downstream of NLR accumulation are more rare. Interestingly, the 

downstream genes appear to split NLR function by TIR vs CC class. All TNLs tested 

require a lipase-like gene called EDS1 (125). In addition to EDS1, TNLs also require 

EDS1-like family members such as PAD4 and SAG101, which function in complexes 

with EDS1 (121). These proteins interact with TNLs and shuttle in and out of the 

nucleus. Their biochemical function remains mysterious as conserved lipase catalytic 

residues are not required for supporting TNL immune function (121). CNLs do not 

appear to directly require EDS1, but several are strongly dependent on the function of 

NDR1, a protein with homology to integrins (62). Exactly how NDR1 is required for CNL 

function remains obscure and NDR1 function may not be limited to NLR signalling, as 

ndr1 mutant plants also have altered responses to compatible Pseudomonas syringae, 

which lacks recognized ETI-triggering effectors (62).  

Diversity of NLR domain structure 

In spite of the fact that NLRs were initially recognized to have a stereotyped domain 

structure, sequencing of the Arabidopsis genome revealed an unexpected diversity in 



NLR-like sequences (84). Not only full CNL and TNL receptors exist, but also 

“truncated” versions that could lack LRR or NBS-LRR domains (Figure 1). These 

truncated forms are reminiscent of truncated animal immune receptors such as Myd88, 

a TIR protein that serves as a cytoplasmic adapter for a number of Toll-like receptors. 

Myd88, and similar TIR adaptor proteins act downstream of multiple receptors to 

transduce receptor activation (90). In the case of truncated plant TNLs, their function 

appears to be more specific, although the number of cases tested remains low. RLM3, a 

TIR-NBS protein is the first example of a “truncated TNL” protein which is required for 

disease resistance (103). Other TIR-NBS proteins such as TN2 and CHS1 have loss of 

function or overexpression phenotypes consistent with immune receptors (123; 136; 

142). The TIR-only protein RBA1 is required for cell death in response to the type III 

effector protein HopBA1 (Figure 1) (87). Exactly how truncated TNLs function in the 

immune system remains unclear, but a compelling hypothesis is that they form hetero-

complexes with full-length TNLs. Consistent with a hetero-interaction hypothesis, chs1 

autoimmunity phenotypes were recently shown to require SOC3, a full-length TNL 

(Figure 1) (140).  

Genomic pairs and “integrated domains” are a shortcut to novel virulence targets 

The most important recent NLR discovery has been the realization that some NLRs 

function as genomically-linked pairs (20; 126; 137). These dual NLR systems are 

proposed to be made up of a signaling NLR and a receptor NLR (18). The signalling 

NLR behaves much like a traditional NLR and guards the receptor NLR. Remarkably, 

the receptor NLR behaves as an effector binding platform, containing unusual motifs 

(i.s. not CC/TIR, RPW8, NBS or LRR domains) that are recognized by pathogen 

effectors. Integrated domains can be found in many locations within an NLR (Figure 1). 

These effector-interacting NLR motifs have similarity to the intended pathogen virulence 

targets and have been referred to as “integrated domains”, or “integrated decoys” (IDs) 

(18; 88).  In the case of RPS4 and RRS1, the two molecules preexist as a complex, and 

the signaling TNL RPS4 is activated after the effector PopP2 acetylates an RRS1-

integrated WRKY transcription factor domain (Figure 1). PopP2 “intended” targets are 

WRKY transcription factors; PopP2 acetylation targets the DNA-binding domain of 

WRKY transcription factors required for proper immune responses (69). Some RRS1 

alleles are capable of recognizing both PopP2 and the sequence-unrelated effector 

AvrRps4, apparently through mechanistically distinct targeting of RRS1 (96). Similarly, 

CNLs such as RGA4/RGA5 also exist in genetically linked pairs that contain a decoy 

domain (RATX1/HMA, a putative metal-binding domain in RGA5) that is targeted by 

multiple effectors (19; 78).  

As more plant genomes are made available, the list of atypical domains integrated into 

NLRs is rapidly expanding (Supplemental Table 1). These genomic pairs reveal 

important information solely through their primary sequence and can be identified 



across the plant phylogeny (65). There are many useful hypotheses that follow from 

these observations. First, pairs at a locus (especially head to head) are now reasonably 

hypothesized to function as a unit. To test this hypothesis, mutations in one locus 

should suppress the second. Accordingly, transient reconstruction assays of paired loci 

should include both genes. Second, unusual domains should be considered as effector 

binding targets and their homologs as relevant to pathogenicity. Thus the universe of 

NLR IDs across the plant phylogeny is now a minimal set of pathogen virulence targets. 

Many of these IDs have not been previously indicated as pathogen virulence targets. 

These domains are a hypothesis generator based solely on genome sequences. While 

it has not yet been demonstrated, it remains an open possibility that some IDs may 

retain their former biochemical function (131). 

Helpers and genetic interactions across NLR-type.  

Canonically, NLRs have been associated with recognizing a specific pathogen and 

conferring qualitative disease resistance. More recently, “helper” NLRs have been 

identified that are required for (or “help”) the function of other NLRs. One of the first 

cloned NLRs was the N-gene in tobacco; a TNL that confers resistance to the tobacco 

mosaic virus (124). To identify other component of N-mediated disease resistance, 

Peart et al. performed a VIGS assay looking for loss of N-mediated cell death (92). This 

screen identified NRG1 as an CCr-containing RNL required for the function of the TNL 

N-gene. NRG1 is a member of a gene family that also includes ADR1 RNL proteins. 

Silencing NRG1 and ADR1 in combination resulted in loss of cell death mediated by the 

CNL Rx2, while single silencing constructs had no effect. Similar redundancy and cross-

type interaction was reported in Arabidopsis for the ADR family (13). Interestingly, in 

Arabidopsis the function of ADR1-L2 as a helper NLR is independent of the p-loop, 

which is typically required for ETI across NLRs (13). Despite this functional divergence, 

the N-termini of ADR1 and NRG1 proteins are capable of triggering cell death, 

indicating that helpers may have functions as ETI-triggers as well as helpers for other 

NLRs (24). Intriguingly, RNL NRG1 helpers appear to have been co-retained or lost with 

TNLs multiple times during plant evolution (24). More recently, the NRC family of CNL 

helpers has been found to be required for clade-specific NLR function (130).  

PigmR/PigmS: A novel genomically-paired NLR “helper” mechanism to reduce 

the cost of resistance 

Not all helper NLRs are positive regulators of another NLR’s function. In rice, cloning of 

the rice blast gene Pigm revealed a novel, agronomically important mechanism 

imparted using a canonical CC-NBS-LRR domain structure (30). Deng, et al. found that 

PigmR, which encodes a CNL is responsible for broad-spectrum, durable resistance to 

rice blast. Interestingly, PigmR is found at an NLR cluster with an extremely closely 

related partner CNL PigmS (only four polymorphic AA between PigmR and PigmS). 



Intriguingly, this genomically-linked pair does not follow the integrated decoy model of 

RPS4/RRS1. Instead, PigmS heterodimerizes with PigmR and suppresses PigmR-

based resistance. This suppression apparently counteracts a cost of PigmR-mediated 

resistance, as it results in increased grain yield. The PigmS impact on productivity may 

be determined in a tissue-specific manner as while PigmR is constitutively expressed 

throughout the plant, PigmS is pollen-specific. This presents a novel, potentially 

engineerable, mechanism of NLR-improvement: tissue-specific expression of dominant-

negative “inhibitor NLRs” to decrease fitness costs of NLRs.  

Unveiling the diversity of NLR-coding genes 

 

Much of the mechanistic study of NLR function described above has been derived from 

a limited number of model organisms and genes. With improvement of costs and 

capabilities of next-generation sequencing technologies, genomic approaches became 

front line resources to characterize NLR diversity across plant species and populations. 

To date, the NLR repertoires of over 100 species are available, or can be easily 

obtained from genome annotations (Supplemental Table 2 lists genome-wide NLR 

interrogation studies performed to date). Taken together, those repertoires allow 

extensive comparative analyses and the definition of evolutionary paths. 

 

An intricate evolutionary history explains current diversity 

 

Knowledge of NLR diversity and distribution can reveal novel sources of resistance with 

enormous biotechnological potential. Preliminary efforts towards characterization of 

NLR diversity started immediately after the first R-genes were cloned in the mid 1990’s 

(8; 85; 124). At that time, comparative analysis focused on the LRR region, given the 

results from seminal studies showing significant clustering of nonsynonymous 

substitutions in that region (14; 34; 80; 89; 122), and the preliminary indications showing 

that R gene specificity was determined by LRRs (40; 54; 105). An early population-level 

study aimed at characterizing intraspecific NLR polymorphisms was developed in 

Arabidopsis thaliana by Bakker et al. in 2006. This study provided a snapshot of LRR 

domain diversity across 27 NLRs from 96 accessions of Arabidopsis (4). The 

methodological innovation, at the time, was to compare LRR polymorphisms to a 

genome-wide empirical distribution of polymorphisms, rather than to neutral models. 

This approach identified RPP13 as highly polymorphic and with signatures of balancing 

selection, adding to the already known genes under balancing selection: RPP1 (14), 

RPS2 (17), RPP5 (89), RPM1 (104), RPS5 (114), and elucidated seven more loci with 

weaker balancing selection signatures: AT1G56540, AT1G59780, AT3G50950, 

AT4G14370, AT4G14610, AT5G58120, and AT5Gg63020 (4). PCR-based approaches 

have been employed to address sequence recombination, conversion, indels and copy-

number variation at particular gene clusters in species other than A. thaliana (5; 66; 67; 



73). Those studies aimed to characterize the complex selective forces on the evolution 

of individual genes or clusters.  

 

Genome-wide studies, such as those in A. thaliana (46) and rice (133) have provided a 

deeper insight into NLR distribution, diversity and evolution. In those studies, 

researchers found that genetically clustered NLR genes frequently swap sequences and 

are thus more polymorphic than singleton loci. Distinct evolutionary paths and rates for 

TIR- and non-TIR containing NLRs are apparent in A. thaliana (23). NLRs evolve 

rapidly, and copy number variants were more often found in NLR genes relative to the 

genome as a whole. 33.3 % of NLR-coding genes from the reference Col-0 accession 

appeared to be deleted in at least one of the 80 accessions, compared to 12.5% of 

genes in the entire genome (46). An equivalent number of NLRs must be absent from 

the Col-0 reference genome. This indicates that there is much to be learned from a 

deep dive into closely related genomes.   

 

With the advent of second and third generation sequencing technologies, efforts 

definitively shifted towards genome-wide comparative studies. An early attempt to 

characterize genome-wide variation among 18 A. thaliana ecotypes employed paired-

end Illumina reads and a combination of reference-based and de novo assembly (41). 

Bioinformatic limitations of short-read assembly forced authors to limit the analysis to 

single-copy regions homologous to the the reference (Col-0) genome. Accordingly, 

analysis of copy-number and structural variation was hampered, as well as the 

discovery of novel NLRs (93). The currently reported A. thaliana pan-NLRome (At-

panNLRome), defined as the union of NLR genes of the different ecotypes, is thus 

restricted to the genes known in a single genotype reference accession (Col-0) (93). 

Nevertheless, accumulated knowledge shows that the At-panNLRome expands beyond 

the Col-0 NLR repertoire (31; 89). An interesting example is the A. thaliana 

DANGEROUS MIX2 (DM2) cluster, which in Col-0 contains two RPP1-like genes, but in 

Ler contains up to seven RPP1-like genes (21; 107). To date, it is still unknown if NLRs 

in the different DM2 loci contribute to recognition of different pathogens. Further 

expansion of the At-panNLRome will help describe how NLR genes expand and 

contract across populations in response to pathogen selective pressures. 

 

The NLR content of the A thaliana Col-0 genome was first described in 2003 (83), since 

then our knowledge of NLR gene content across the plant phylogeny has rapidly 

expanded. Bioinformatic comparative analysis opened a new avenue for studying NLR 

genetic diversity and evolution.  In a recent study, a panel of 6,000 NLR genes from 22 

Angiosperm species were incorporated in a comparative analysis and phylogenetic 

reconstruction. The reported results elucidate how all currently known NLRs likely 

diversified from 23 NLRs belonging to three distinct ancestral TNL, CNL and RNL 



lineages (99). A similar ancestral state reconstruction analysis using 38 sequenced 

species representing the six kingdoms of life (eubacteria, archaebacteria, fungi, protists, 

plants and animals) showed that the most basal plants analyzed had a very limited NLR 

repertoire (30 NLRs in Physcomitrella patens and 17 in Selaginella moellendorffii) (135). 

On the other hand, higher plant genomes typically encode numerous NLR genes, with 

hundreds of genes in gymnosperm and angiosperm genomes. Detailed analysis of plant 

lineages reveals expansion and contraction of particular NLR classes (99).  

 

The scenario of NLR genes expansion and contraction is complex. While TNLs are 

expanded in Brassicaceae, the opposite is observed in Poaceae, with TNLdepletion and 

an expansion of the CNL class (Table 1). Family-level evolutionary paths are not that 

clear across the plant phylogeny. Comparative analysis of Fabaceae has shown 

multiple expansion and contraction events, leading to an increase in of NLRs in Cajanus 

cajan and Medicago truncatula and a decrease in the NLR repertoire of Lotus japonicus, 

Phaseolus vulgaris and Cicer arietinum (143). Interestingly, whole genome duplication 

does not seem to necessarily contribute to net increase the number of NLR genes. 

NLRs seem to be rather maintained in a dosage- or diploidization-sensitive scheme. In 

fact, the mechanisms governing NLR gene expansion and/or contraction in the different 

species might depend on the intraspecific diversity, widespread or restricted geographic 

distribution, ploidy, mating system (inbreeding or outcrossing), generation time and 

domestication history (in the case of crops).  

 

As more plant genomes are sequenced, comparative analyses of NLRs and NLRomes 

will provided a better understanding of its diversity and evolutionary history. For that, the 

establishment of rigorous and reproducible analysis pipelines will be key. In some 

cases, analyses of the NLR content reported by different groups can be strikingly 

inconsistent (Table 1). The observed variance might be due, at least in some cases, to 

the use of different genome annotation versions, or to which bioinformatic tools and 

settings are used to perform the analysis. Use and reporting of standardized methods 

could reduce variance reported between publications and facilitate comparisons [see 

SIDEBAR]. 

 

 

Good practices for Genome-wide identification of NLRs. 

Exploratory descriptions of NLR repertoires provide a valuable glimpse at the species-

level NLR diversity and allow comparative NLRome analysis across the different 

taxonomic clades (3; 60; 65; 95; 99). To that end, a variety of bioinformatic tools have 

proven useful to identify NLR genes from genome sequences and annotated gene 

models. Available methods include ab initio predictors, identification of functional 

domains or motifs, similarity searches against databases, PCR amplification with 



partially degenerated primers, and R-gene enrichment and sequencing (several studies 

in Supplementary Table 2 use those methods).  

 

Accurate identification of protein domains in a collection of sequences is critical to 

defining and organizing proteins into families. Multidomain NLR proteins can be further 

classified according to domain architectures. To this end, hidden Markov model (HMM) 

profiles have become a popular means to identify protein domains. High quality, 

manually curated and biologically relevant HMM profiles for a wide range of domains 

are available via Pfam (38), TIGRFAM (48) and SMART (71). Each HMM profile in the 

Pfam-A database contains curated bit score thresholds (38).  

 

One limitation in reproducibly defining NLRomes, may simply be the lack of a unified 

definition for NLR-coding genes. Given the current mechanistic understanding of plant 

NLR biology, a putative NLR-coding gene would contain either an NB-ARC, or TIR, or 

RPW8 domain. LRR domains commonly occur in other protein families and should not 

be considered part of the primary definition of NLRs. CC folds can’t be easily detected 

using domain profiles, and often require secondary structure prediction such as 

Paircoil2 (79), MARCOIL (29), COILS (75), MultiCoil (129), and PCOILS (45). The 

different CC prediction tools generate slightly different outputs, but their union and/or 

intersections can be informative and assist identification of high probability CC 

signatures.  

 

Criteria for defining NLRs has changed as our mechanistic understanding of NLR has 

deepened. Historically, NB-ARC alignments and NB-ARC motifs have been used to 

discriminate between TIR, or non-TIR NLRs (40; 82; 91). When the first NB-LRR and 

RPW8 NLRs were reported (132), it became relevant to distinguish between CC-NB-

LRRs, RPW8-NB-LRRs and NB-LRRs. A curated RPW8 HMM profile is available from 

Pfam-A, allowing distinction between CC and CCr classes. TIR and TIR-NB proteins are 

increasingly being described with immune receptor-like function (discussed above), thus 

a broader definition of “NLR” is likely warranted. Recent reports have also pointed to the 

importance of considering TIR_2 domains in addition to TIR domains when defining 

NLRs (95).  

 

Resistance from relatives in the post genomic era 

 

Plant species with major agricultural and economic interest frequently have large and 

complex genomes. Therefore, cheap and efficient methods to identify NLRs at a 

genome-wide level are invaluable. R-gene enrichment and sequencing (RenSeq) is a 

method that allows selective sequencing of NLR-containing genomic fragments (42; 58). 

The method allows the definition of the NLRome of any plant by using an RNA bait 



library (complementary to known or partially annotated NLRs from related species) 

combined with a HT sequencing platform (typically Illumina, Pacbio or Nanopore) (43; 

57). The technique reduces the overall complexity of the genomic sample, and allows 

focused sequencing on the enriched gene family.  

 

RenSeq technology allowed refinement of NLR gene annotations, as well as the 

identification of 317, 105 and 126 previously unreported NLRs in S. tuberosum DM 

clone, S. lycopersicum Heinz 1706 and S. pimpinellifolium LA1589, respectively (1). 

Most of the novel genes mapped to unannotated or gapped regions of the genomes. 

RenSeq allowed thus the definition of previously unidentified or incomplete NLR 

clusters, in which the novel genes were found to reside (1; 2; 58; 94; 115). This 

technique can also be applied to plant species for which there is no available draft 

genome. RenSeq applied to wild relatives of tomato allowed the identification of 

markers that cosegregated with resistance to Phytophtora infestans (58). RenSeq 

combined with long read Single Molecule Real Time (SMRT) sequencing is effective at 

resolving NLR clusters that are notoriously difficult to sequence. (42; 43; 128). RenSeq 

has also been successfully used to enrich NLR cDNAs, allowing transcript validation of 

167 S. lycopersicum Heinz 1706 and 154 S. pimpinellifolium LA1589 NLRs (1). 

Identification of sources of resistance from wild relatives, or ancestral progenitors from 

the primary geographic diversity centers will provide novel NLR variants to further 

increase the disease resistance gene pool available for breeding programs (70; 120)  

 

NLR transfers between genomes 

Understanding NLR diversity at the mechanistic and genomic levels provides an 

invaluable resource for breeding and, eventually, rationally engineering disease 

resistance. Traditionally, sources of resistance have been selected for, or found in 

closely related genomes. Plant genomes have followed independent evolutionary paths 

and each has a unique set of immune receptors. To what extent are immune receptors 

transferable between more distant genomes? To what extent will genomic studies 

define a pan-NLRome allowing the use of these diverse products of evolution from 

across the kingdom as resistance traits? 

The first example of interfamily immune receptor transfer was between Arabidopsis and 

the solanaceous plants Nicotiana benthamiana and Tomato (68). EFR is a PRR 

receptor-like kinase that perceives the bacterial PAMP EF-Tu (elf18 peptide), but it is 

only present in the Brassicaceae. After transferring it into solanaceous genomes, EFR 

was able to confer responsiveness to elf18. Importantly, it also resulted in strong 

bacterial disease resistance in tomato. NLRs can also be transferred between 

genomes. Rice genomes don’t have a known resistance specificity for Xanthomonas 



oryzae pv. oryzicola. After identifying a disease resistance trait in maize, Zhao, et al. 

were able to transfer RXO1, a CNL, into rice and generate resistant plants (141).  

Even further phylogenetic distances are possible. The monocot CNL MLA1 has been 

transferred from barley into the dicot Arabidopsis (74). Amazingly, MLA1 is functional in 

Arabidopsis and recognizes the pathogen effector AVRa1. This result indicates that the 

machinery required for NLR function can be conserved over extremely large 

phylogenetic distances. A high level of conservation is also supported by the general 

feasibility of transient assays in Nicotiana and the conservation of Nicotiana EDS1 

function to support phylogenetically distant Arabidopsis TIR and TNL functions (87; 

126).  

There are likely limits to the transfer of immune receptors. To serve as useful traits 

NLRs must be functional and properly regulated. Functionality requires that the NLR 

can integrate into a largely unknown system required for recognition and downstream 

function. Proper regulation is required to ensure that NLRs do not have negative 

impacts on fitness via autoactivity. Autoactivity is a frequent outcome of transgenic 

expression of NLRs. This is likely due to the idiosyncratic nature of transgenic lines and 

resulting over- or mis-expression. In other cases the autoactivity may be genetically 

determined. In the case of the “Dangerous Mix” loci, incompatibilities can be revealed 

by outcrosses of Arabidopsis genomes that have undergone independent evolution 

(11). Several of these loci map to NLR immune receptors and may reflect drift between 

NLRs and guardees that results in inappropriate physical interaction and the resulting 

autoactivity (21). Thus, in the case of NLRs that guard host proteins, there may be a 

limitation based on conservation between the guardee and the adopted guardee in the 

new genome. NLRs themselves may form incompatible heteromeric complexes and one 

NLR may activate a second when they encounter each other via outcrossing (116). In 

other cases, NLRs may negatively regulate each other. Transfer of the rye Pm8 

resistance gene into wheat is limited in some genotypes by the dominant action of the 

wheat Pm3 resistance gene (52). As both genes are CNLs, it is intriguing to speculate 

that the suppression is via the formation of an inappropriate, inactive heteromeric 

receptor complex.    

NLR tinkering: fine tuning responses 

Existing NLRs can also be tinkered with, to either expand recognition or tune 

responsiveness. An early attempt at modifying NLR specificity mutagenized the Rx CNL 

in ordered to expand recognition of potato virus X strains (35). By using random 

mutagenesis targeted at the LRR, they were able to find Rx mutants that could 

recognize not only the wild-type version of PVX coat protein (CP), but also mutant CP 

that could evade wild-type Rx. Interestingly, the Rx mutants now also recognized CP 

from the distantly-related poplar mosaic virus (PoMV). One of the mutants, Rx N846D, 



displayed systemic necrosis when challenged with PoMV, demonstrating a cost to 

increased recognition. Further mutagenesis of Rx N846D was able to find new 

mutations that were able to convert the systemic necrosis into a strong resistance able 

to control PoMV (49). Interestingly, while N846D is located in the LRR, the suppressing 

mutations are in the NBS domain, suggesting an interdomain contact. Similar attempts 

to generate expanded specificities for the potato NLR R3a were able to expand 

recognition to “stealthy” versions of the AVR3a effector (22; 98).  

Study of the wheat CNL Pm3 indicates that the NBS domain of NLRs are tuned in their 

responses and that this tuning can be downstream of “triggerability” (106). In this case, 

immune output can be altered independently of propensity to be activated by mutation 

of only two residues in the ARC2 subdomain. This is consistent with a hypothesis that 

initial pathogen detection is translated into an appropriately tuned resistance response. 

These two tuning residues are surface exposed in NBS models, but higher order true 

structures of the NBS in combination with other domains will be required to understand 

how they are promoting an ATP-bound active conformation. By all indications, NLRs 

have multiple intramolecular interactions that can be tuned for a combination of 

activation and output strength.  

NLR re-engineering: building better mousetraps 

Beyond single point mutations, more extensive re-engineering of NLRs has also been 

attempted. Domain swaps between closely related NLRs (such as Rx1 and Gpa2) can 

result in a corresponding specificity swap (101). Domain swaps indicate that NBS and 

LRR intramolecular interactions are critical for maintaining the resting state of NLRs to 

avoid inappropriate, elicitor-independent activation (102). These Rx1/Gpa2 domain 

swaps used existing specificities to engineer NLR function, what are the prospects for 

novel specificities? 

Recently, breakthrough studies of the RPS5 system has presented an excellent 

opportunity to rationally engineer NLR immune recognition. In this case, the CNL RPS5 

indirectly recognizes AvrPphB proteolytic cleavage of the decoy kinase protein PBS1. 

The elegant solution described by Kim et al, is that replacement of the AvrPphB 

cleavage site with an engineered protease site will allow an unmodified RPS5 to 

activate defenses to novel proteases (61). By engineering the guardee they were able 

to obviate problems of autoactivation created by modifying the NLR itself. But even with 

a WT NLR, there are likely issues that will have to be solved for any engineered 

PBS1/RPS5 system. The authors found that activation of RPS5 defenses against turnip 

mosaic virus (TuMV) (using an engineered PBS1 cleaved by TuMV Nla protease) was 

slower than needed to limit systemic spread. They proposed that the plasma membrane 

localization of WT RPS5 may be inappropriate for detection of an effector protease 

found mostly in the nucleus. If these sorts of pathogen-specific issues can be overcome, 



the abundance of protease effectors in pathogen effector repertoires suggests that 

RPS5/PBS1 may be a widely useful NLR engineering approach.  

 In most cases, our understanding of how an NLR functions is limited. In the case 

of RPS5 and PBS1 years of research was required to adequately understand how to 

use it as an NLR engineering platform (63). The recent discovery of paired NLRs with 

integrated domains (described above) suggests a powerful shortcut for identifying 

engineering targets. NLR pairs are relatively easy to identify and are present in many 

plant genomes. Importantly, following the model of RPS4 and RRS1, if integrated 

domains are effector decoys, then we will not have to genetically identify an unknown 

guardee. The loci should be transferable to novel genomes, and as they contain both 

components of the receptor complex (receptor NLR and signaling NLR). As they define 

a complete receptor complex, they should be less susceptible to problems arising from 

incompatibility due to independent evolution. Recent study by Bailey et al. indicates that 

NLRs with integrated domains are quickly gaining and losing novel unsual domains (3) , 

and thus may be rapidly changing specificity within a conserved receptor context. It will 

be extremely informative to understand what mutations in the canonical NLR domains 

are required to accomodate a novel ID. These mutations will undoubtedly be critical for 

both maintenance of the resting state and/or appropriate activation in response to 

effector modification of the ID. Replacement of an ID with a novel effector target or with 

a homologous one derived from the recipient genome may be a viable approach to 

engineering NLRs.  

Unanswered Questions and Outlook 

 Many of the basic questions about NLR function remain unanswered. A better 

understanding of how individual NLR domains interact with one another is critical to 

understanding how the molecules function as a switch. This is important for limiting the 

costs of inappropriate activation, as well as for understanding pathogen specificity and 

strength of response. We need to understand how NLRs activate downstream events: 

how disease resistance and cell death are triggered remains, remarkably, a black box. 

How do NLRs homo and hetero-oligomerize to generate an immune system? To what 

extent do the two tiers of the immune system (NLRs and PRRs) functionally cooperate 

to form an immune system? Can we identify characteristics of NLRs that promote 

durable resistance?  

Rational engineering of immune receptors is an increasingly achievable goal. By 

mechanistically understanding how NLRs function, we will be able to modify existing 

NLRs or generate novel receptor systems that recognize pathogens of interest. By 

exploring the breadth and depth of plant NLR natural variation, we will expand our 

toolbox of deployable disease resistance traits. Accelerating climate change is predicted 

to generate novel pathogen/plant interactions, demanding rapid responses by plant 



breeders (6). Rational design of plant immune systems will be one tool, of many, that 

enables agricultural systems to keep pace with pathogens. 
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TERMS AND DEFINITIONS: 
ETI - Effector-Triggered Immunity. 
PAMP - Pathogen-Associated Molecular Pattern. 
PTI - PAMP-Triggered Immunity. 
NLR - Nucleotide-binding Leucine-Rich Repeat or NOD-Like Receptor. 
TIR - Toll/interleukin-1 receptor. 
TNL - TIR-containing NLR. 
CC - Coiled-Coil. 
CNL - CC-containing NLR. 
RNL - RPW8-containing NLR 
PRR - Pattern Recognition Receptors. 
HR - Hypersensitive Response. 
LRR - Leucine-Rich Repeat. 
NBS - Nucleotide-Binding Site. 
IDs - Integrated Domains, or Integrated Decoys. 
Pan-NLRome - union of all the NLRs found in a collection of individuals (same 
population, species, family, etc). 
At-panNLRome - Arabidopsis thaliana pan-NLRome. 
HMM - Hidden Markov Model. 
RenSeq - Resistance-gene ENrichment and SEQuencing. 
SMRT - Single Molecule Real Time. 
MBP - Mapping by Sequencing. 
SNP - Single Nucleotide Polymorphisms. 
 
 

RELATED RESOURCES:  



● The Plant Resistance Genes database (PRGdb). http://prgdb.org 

● Public release of RenSeq assemblies from 69 accessions of Arabidopsis 

thaliana, and R-genes from four Nicotiana and four Solanum species. 

http://2blades.org/resources/ 

● Wikipedia List of sequenced plant genomes (last Updated in October 2017). 

https://en.wikipedia.org/wiki/List_of_sequenced_plant_genomes 

 

 

SIDEBAR: 

Checklist for genome-wide NLR interrogation studies: 

- HMM profiles are powerful tools to identify functional domains. 

- Curated HMM profile databases include Pfam-A, Panther, SMART, TIGRFAM, 

among many others. 

- HMMER and InterproScan are currently the most used bioinformatic tools to 

detect functional domains. 

- Consider using multiple secondary structure prediction tools to detect proteins 

likely to present a coiled-coil fold, and report the probability cut-off. 

- To facilitate reproducibility, authors should include model specific cut-offs 

included in curated HMM databases and report software and database versions, 

as well as genome annotation release. 
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Figure 1) NLRs are modular switches. (a) typical plant NLRs contain a variable N-

terminal domain, either TIR (T), Coiled-coil (C) or RPW8-like (R) domain followed by an 

NBS domain (N) and Leucine-rich repeat domain (L). (b) NLRs undergo conformation 

switching depending on ADP/ATP binding state induced/stabilized by effector (or 

guardee) trigger. Multimerization of N-terminus is required and often sufficient for 

signaling (red glow). The exact multimerization state is not known, but is shown here 

only as dimeric for graphical clarity. Detection of pathogen effectors can either be direct 

(i) or indirectly via modification of a host guardee protein (G). (c) Plant genomes contain 

a diverse array of NLR domain combinations. (d) Plant genomes contain NLRs with 

unusual “integrated domains” (X). Integrated domains can occur in many locations in 

the NLR domain structure. Example shown are from Arabidopsis.  (e) NLRs with 

integrated domains are often found as pairs divergently expressed at a single genomic 

locus. In the case of RPS4/RRS1, effector (PopP2) targeting and acetylation of the 

integrated WRKY decoy domain (W) in RRS1 activates RPS4 to activate defense 

responses. The exact stoichiometry and orientation of RRS1 and RPS4 pre and post 

activation are unknown, but RPS4 and RRS1 interact pre-activation and the post-

activation complex requires RPS4-RPS4 TIR self-association to signal. (f) Truncated 

NLRs likely function in hetero-oligomeric immune complexes. (f;i) Autoactivity triggered 

by the TN mutant chs1-1 requires full length TNL SOC3. CHS1 and SOC3 also occur in 

a genomic pair. SOC3 physically interacts with CHS1, but it is unclear if this pair also 

functions to recognize a pathogen effector. (f;ii) RBA1 encodes a TIR-only protein that 

triggers cell-death in response to the pathogen effector HopBA1. While RBA1 and 

HopBA1 co-immunoprecipitate, they may not interact directly and could require 

unknown components such as a putative guardee or an unknown partner TNL.  
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Physcomitrella patens
Kim et al. 2012 JGI, v1.1 28 12 2 - - 1 0 0 - - -

Sarris et al. 2016 JGI, Phytozome v10, v3 87 49 - - 2 4 - - - - -

Oryza sativa

Zhou et al. 2004 Bai et al. 2002; Genbank; BLAST; GRAMENE; 
ab initio annotations 45 320 - - 3 - 7 160 - - -

Kim et al. 2012 MSU, v6.1 36 167 2 - 0 0 40 333 - - -
Sarris et al. 2016 JGI, Phytozome v10, v7 595 438 - - 0 0 - - - - -
Nepal et al. 2017 JGI, Phytozome - - - - - - 149 *

Triticum aestivum
Bouktila et al. 2015 NCBI; ab initio annotation 1 96 - - - - 5 334 - - -
Sarris et al. 2016 Ensembl, MIPS v22 1224 627 - - 0 0 - - - - -

Brachypodium distachyon
Tan and Wu 2012 brachypodium.org, v1.2 12 16 - - - - 48 157 - - -
Kim et al. 2012 JGI, v1 12 47 1 - 0 0 18 107 - - -
Sarris et al. 2016 JGI, Phytozome v10, v2.1 501 357 - - 0 0 - - - - -

Zea mays cv. B73
Cheng et al. 2012 maizesequence.org; ab initio annotation 7 31 - - 0 0 11 58 - - -

Kim et al. 2012 maizegdb.org, v4a.53 16 31 3 - 0 0 9 63 - - -
Sarris et al. 2016 JGI, Phytozome v10, v6a 191 105 - - 0 0 - - - - -

Solanum lycopersicum Heinz 1706
Andolfo et al. 2014 RenSeq 57 88 10 1 3 26 14 107 - - -
Sarris et al. 2016 JGI, Phytozome v10, iTAGv2.3 264 137 - - 5 19 - - - - -

Solanum pimpinellifolium LA1589 Andolfo et al. 2014 RenSeq 122 78 12 1 6 14 34 32 - - -
Solanum americanum SP2271 Witek et al. 2016 RenSeq - - - - - 100 - 528 - - -

Mimulus guttatus
Kim et al. 2012 JGI, v1 5 53 1 - 0 0 12 67 - - -
Sarris et al. 2016 JGI, Phytozome v10, v2 344 190 - - 0 0 - - - - -

Beta vulgaris Dohm et al. 2014 Genome annotation 22 56 - - - 1 26 32 - - -

Vitis vinifera

Yu et al. 2014 Genoscope 36 159 10 - 14 97 26 203 - - -
Kim et al. 2012 Genoscope 34 133 22 - 26 99 22 254 - - -
Zheng et al. 2016 NCBI/Phytozome, v8 182 130 75 - 7 14 75 69 - - -

Sarris et al. 2016 JGI, Phytozome v10, 
Genoscope12X 323 256 - - 3 18 - - - - -

Glycine max

Kim et al. 2012 JGI, v1 11 127 35 - 12 140 0 122 - - -
Shao et al. 2014 JGI, Phytozome v1.1 42 145 - - 24 124 8 109 - 1 9
Zheng et al. 2016 NCBI/Phytozome, v1.1 156 70 53 - 68 67 46 68 - - -
Sarris et al. 2016 JGI, Phytozome v10, Wm82.a2.v1 784 669 - - 49 254 - - - - -

Phaseolus vulgaris
Shao et al. 2014 JGI, Phytozome, v1 3 100 - - 13 76 9 128 - 0 5
Zheng et al. 2016 NCBI/Phytozome, v1 59 20 57 - 9 1 40 31 - - -
Sarris et al. 2016 JGI, Phytozome v10, v1 406 381 - - 15 98 - - - - -

Medicago truncatula

Kim et al. 2012 medicago.org, v3 95 132 98 - 47 142 15 139 - - -
Shao et al. 2014 JGI, Phytozome, v3 111 145 - - 49 121 16 94 - 0 8
Yu et al. 2014 medicago.org, 328 - 92 - 38 118 25 152 - - -
Zheng et al. 2016 NCBI/Phytozome, 3.5v5 193 102 44 127 44 44 49 - - -
Sarris et al. 2016 JGI, Phytozome v10, Mt4.0v1 1074 893 - - 63 361 - - - - -

Capsella rubella
Y.-M. Zhang et al. 2016 JGI, Phytozome, Aug. 2013 8 41 - - 9 31 4 32 - 1 9
Sarris et al. 2016 JGI, Phytozome v10, v1 152 127 - - 11 40 - - - - -

Arabidopsis thaliana Col-0

Kim et al. 2012 TAIR9 6 26 40 - 18 98 2 48 - - -
Yu et al. 2014 TAIR10 26 20 46 - 17 79 8 17 - - -
Y.-M. Zhang et al. 2016 JGI, Phytozome, Aug. 2013 2 13 - - 14 80 3 40 - 1 5
Sarris et al. 2016 JGI, Phytozome v10, TAIR10 213 182 - - 18 105 - - - - -

Arabidopsis lyrata
Y.-M. Zhang et al. 2016 JGI, Phytozome, Aug. 2013 15 31 - - 17 92 6 27 - 0 5
Kim et al. 2012 JGI, v1 13 36 41 - 18 98 2 33 - - -
Sarris et al. 2016 JGI, Phytozome v10, v1 204 163 - - 19 96 - - - - -

Brassica rapa
Y.-M. Zhang et al. 2016 JGI, Phytozome, Aug. 2013 8 29 - - 22 83 7 35 - 0 7
Yu et al. 2014 brassicadb.org/brad/, 29 27 42 - 23 93 15 19 - - -
Sarris et al. 2016 brassicadb.org/brad/, v1.2 207 164 - - 22 92 - - - - -

Brassica oleracea
Yu et al. 2014 ocri-genomics.org/bolbase/ 53 24 82 29 40 5 6
Golicz et al. 2016 Pangenome 114 97 41 132 30 25 2 ** 3 **

(*) Contains non-TIR (RPW8, CC, NBS-LRR)

(**) Number of genes detected in the gene models provided by the authors using a conservative hmmscan with PfamA RPW8 and NB-ARC --cut_tc thresholds

http://brassicadb.org/brad/,
http://ocri-genomics.org/bolbase/




Table 1 Legend 

 

Survey of the number of NLR proteins in 19 plant species. The total number of NBS 

genes in each domain arrangement was retrieved from the indicated papers. One 

asterisk indicates reported non-TIR NLRs. Two asterisks refer to domains present in the 

fasta sequences provided by the authors, but not explicitly presented in the respective 

publication. HMMER with Trusted Cutoff threshold was used to retrieve RPW8 domains. 

Table rows are colored according to taxonomic family, with different shades for each 

species. Yellow, Poaceae; Orange, Solanaceae; Blue, Fabaceae; and Green, 

Brassicaceae. The phylogeny of the species listed in the table was obtained from 

timetree.org. 
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Figure 2 legend: 
 
Plant NLR repertoires at the service of pathogen resistance engineering. (A) Wild 
relatives of an interesting crop might exhibit useful disease resistance phenotypes. NLR 
sequencing with RenSeq or MBP (Mapping by sequencing, Gina et al. Nature 
Communications 2017) allows the identification of crop and wild relative NLR 
repertoires. Comparative analysis of presence-absence, SNP and InDel polymorphisms 
assist the identification of NLR(s). Upon identification of the R-gene(s) in a resistant wild 
relative, resistance can be introgressed into the crop by hybridization and consecutive 
backcrosses. RenSeq might be a valuable tool to reduce genome complexity and assist 
selection of progeny. (B) When the crop and the wild relative are sexually incompatible, 
the NLR(s) can be cloned from the wild relative (or a more phylogenetically distant 
genome) and introduced the desired crop via transgenesis. (C) In the future, the 
accumulated knowledge in NLR domain swapping, integrated decoys, pathogen effector 
targets and point-mutation alleles will be used to engineer novel resistances. Pathogen 
effector targets might be incorporated into an already existent NLR-ID, in order to create 
a novel sensor. Modification of NLR-associated guardees or decoys (such as PBS1, not 
shown) are also possible. 
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Glycos_transf_1 1
GPI2 1
GRAS 1
GTP_EFTU 1
HA2 1
Helicase_C 2
HMA 1
HSP70 1
Inhibitor_I29 1
Jacalin 1 1 1
Kelch_1 1
Kelch_3 1
Kelch_4 1
LepA_C 1
LIM 1 1
LpxK 1
MA3 1
Malectin_like 2
Med26 1
MIF4G 1
Mob1_phocein 1
Motile_Sperm 1
Myb_DNA-bind_3 1
Myb_DNA-bind_6 2
Myb_DNA-binding 1
NAC 1
NAD_binding_2 1
NAM-associated 1
NDK 1
OB_NTP_bind 1
Oxidored_q1 1
PA 1
PAH 1 1
PAN_2 2
PARP 1
Peptidase_C1 2
Peptidase_C48 1 1
PGAP1 1
Pkinase 1 2 1 1 2 2 2 2 1 2
Pkinase_Tyr 1 2 2 1 2 1 2
PP1_inhibitor 1
PP2 1
PP2C 1
RCC1 1
Reticulon 1
RHD3 1 1
Ribosomal_L23 1
Ribosomal_L23eN 1
Ribosomal_S18 1
RNA_pol_Rpb5_C 1
RNA_pol_Rpb5_N 1
RRM_1 2
rve 1
RVT_2 1
RVT_3 1 1
S_locus_glycop 1 2
Sucrose_synth 1
Sugar_tr 2
Surf_Ag_VNR 1
Thioredoxin 2 1 2
TIM-br_sig_trns 1
TPR_11 2
TPR_9 1
Transaldolase 1
Transposase_24 1
Transpos_assoc 1
tRNA-synt_1 1
UBN2 1
UBN2_3 1
U-box 1
UPF0114 1
VQ 1 1 1 1
WD40 2 2 2
WEMBL 1
WRKY 1 1 1 1 1 1
XH 1
XS 1
zf-BED 1 1 1 1 1 1
zf-CCCH 2
zf-RING_2 2
zf-RVT 1 1 1
zf-XS 1



Supplemental Table 1 Legend: 

 

Atypical domains detected NLR genes from different plant species. Data obtained 

from Sarris et al. BMC Biology 2016. Green boxes show  overrepresented in NLRs 

compared to the rest of the genomes, using significant Fisher’s exact test p-value lower 

than 0.05. Grey boxes indicate fusion of the respective domain fusion to at least one 

NLR, but no enrichment. 



Supplemental Table 2 

Species Year NLR-report References 

Oryza sativa ssp. japonica cultivar 

Nipponbare 

2004, 
2006, 
2010, 
2012, 
2017 

Yes (Monosi et al. 2004) 
(Zhou et al. 2004) 
(S. Yang et al. 2006) 
(J. Li et al. 2010) 
(Luo et al. 2012) 
(Nepal et al. 2017) 
(Sarris et al. 2016) 
(Kroj et al. 2016) 

Oryza sativa ssp indica cv 93-11 2015 Yes (S. Singh et al. 2015) 

Oryza sativa ssp indica cv HR-12 2016 Yes (Mahesh et al. 2016) 

Oryza sativa ssp japonica  2015 Yes (S. Singh et al. 2015) 

Oryza brachyantha 2015 Yes (S. Singh et al. 2015) 

Oryza nivara 2014 Yes (Q.-J. Zhang et al. 2014) 

Oryza glaberrima 2014 Yes (Q.-J. Zhang et al. 2014) 

Oryza barthii 2014 Yes (Q.-J. Zhang et al. 2014) 

Oryza glumaepatula 2014 Yes (Q.-J. Zhang et al. 2014) 

Oryza meridionalis 2014 Yes (Q.-J. Zhang et al. 2014) 

Medicago truncatula 2003, 
2008, 
2011, 
2014, 
2016, 
2017 

Yes (D. J. Bertioli et al. 2003) 
(Ameline-Torregrosa et al. 2008) 
(Young et al. 2011) 
(Shao et al. 2014) 
(Zheng et al. 2016) 
(Kroj et al. 2016) 
(Sarris et al. 2016) 
(Nepal et al. 2017) 

Vitis vinifera 2007, 
2008, 
2016 

Yes (Velasco et al. 2007) 
(S. Yang et al. 2008) 
(Zheng et al. 2016) 
(Kroj et al. 2016) 
(Sarris et al. 2016) 

Vitis davidii 2017 Yes (Y. Zhang et al. 2017) 

Carica papaya 2008, 
2009, 
2016 

Yes (Ming et al. 2008) 
(Porter et al. 2009) 
(Y.-M. Zhang et al. 2016) 
(Kroj et al. 2016) 
(Sarris et al. 2016) 

Sorghum bicolor 2009, 
2010, 
2012, 
2014,  
2016 

Yes (Paterson et al. 2009) 
(J. Li et al. 2010) 
(Luo et al. 2012) 
(Mace et al. 2014) 
(Xiping Yang and Wang 2016) 
(Kroj et al. 2016) 
(Sarris et al. 2016) 

Zea mays 2010, 
2012, 
2016 

Yes (J. Li et al. 2010) 
(Luo et al. 2012) 
(Cheng et al. 2012) 

https://paperpile.com/c/OgypLA/15iC
https://paperpile.com/c/OgypLA/rqUX
https://paperpile.com/c/OgypLA/VE4R
https://paperpile.com/c/OgypLA/E1Oi
https://paperpile.com/c/OgypLA/DEnx
https://paperpile.com/c/OgypLA/lgn8
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/NkeC
https://paperpile.com/c/OgypLA/Jlgx
https://paperpile.com/c/OgypLA/NkeC
https://paperpile.com/c/OgypLA/NkeC
https://paperpile.com/c/OgypLA/p40j
https://paperpile.com/c/OgypLA/p40j
https://paperpile.com/c/OgypLA/p40j
https://paperpile.com/c/OgypLA/p40j
https://paperpile.com/c/OgypLA/p40j
https://paperpile.com/c/OgypLA/Wjl4
https://paperpile.com/c/OgypLA/2EW8
https://paperpile.com/c/OgypLA/Wxc1
https://paperpile.com/c/OgypLA/RPkc
https://paperpile.com/c/OgypLA/I3dK
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/lgn8
https://paperpile.com/c/OgypLA/e7pt
https://paperpile.com/c/OgypLA/ZteQ
https://paperpile.com/c/OgypLA/I3dK
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/FrTh
https://paperpile.com/c/OgypLA/dZiw
https://paperpile.com/c/OgypLA/pAOr
https://paperpile.com/c/OgypLA/OWMb
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/ATV6
https://paperpile.com/c/OgypLA/E1Oi
https://paperpile.com/c/OgypLA/DEnx
https://paperpile.com/c/OgypLA/79v7
https://paperpile.com/c/OgypLA/hDf9
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/E1Oi
https://paperpile.com/c/OgypLA/DEnx
https://paperpile.com/c/OgypLA/ToYH


(Kroj et al. 2016) 
(Sarris et al. 2016) 

Brachypodium distachyon 2010, 
2012, 
2016 

Yes (J. Li et al. 2010) 
(Luo et al. 2012) 
(Tan and Wu 2012) 
(Sarris et al. 2016) 
(Kroj et al. 2016) 

Glycine max 2003, 
2011, 
2014, 
2016, 
2017 

Yes (D. J. Bertioli et al. 2003) 
(Xiaohui Zhang et al. 2011) 
(Shao et al. 2014) 
(Y.-H. Li et al. 2014) 
(Zheng et al. 2016) 
(Kroj et al. 2016) 
(Sarris et al. 2016) 
(Nepal et al. 2017) 

Glycine soja 2016 Yes (Zheng et al. 2016) 

Solanum tuberosum group phureja 2011, 
2012 

Yes (Potato Genome Sequencing 
Consortium et al. 2011) 
(Lozano et al. 2012) 

Solanum tuberosum 2013, 
2016 

Yes (Jupe et al. 2013) 
(Kroj et al. 2016) 
(Sarris et al. 2016) 

Solanum americanum 2016 Yes (Witek et al. 2016) 

Solanum lycopersicum 2013, 
2014, 
2016 

Yes (G. Andolfo et al. 2013) 
(Jupe et al. 2013) 
(Giuseppe Andolfo et al. 2014) 
(Kroj et al. 2016)(Sarris et al. 2016) 

Phaseolus vulgaris 2003, 
2014, 
2016 
2017 

Yes (D. J. Bertioli et al. 2003) 
(Schmutz et al. 2014) 
(Shao et al. 2014) 
(Vlasova et al. 2016) 
(Zheng et al. 2016) 
(Sarris et al. 2016) 
(Kroj et al. 2016) 
(Jing Wu et al. 2017) 
(Richard et al. 2017) 
(Nepal et al. 2017) 

Cajanus cajan 2010, 
2012, 
2014, 
2016 

Yes (Varshney et al. 2010) 
(N. K. Singh et al. 2012) 
(Shao et al. 2014) 
(Zheng et al. 2016) 
(Kroj et al. 2016) 

Corchorus olitorius cv. JRO-524 
(Navin) 

2017 Yes (Sarkar et al. 2017) 

Capsicum annuum 2014, 
2017 

Yes (S. Kim et al. 2014) 
(S. Kim et al. 2017) 

Solanum melongena 2012 
(PCR), 
2014, 
2015 

Yes (Zhuang, Zhou, and Wang 2012) 
(Xu Yang et al. 2014) 
(Reddy et al. 2015) 
(Di Donato et al. 2017) 

https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/E1Oi
https://paperpile.com/c/OgypLA/DEnx
https://paperpile.com/c/OgypLA/5Qja
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/Wjl4
https://paperpile.com/c/OgypLA/ohXG
https://paperpile.com/c/OgypLA/RPkc
https://paperpile.com/c/OgypLA/ZgZX
https://paperpile.com/c/OgypLA/I3dK
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/lgn8
https://paperpile.com/c/OgypLA/I3dK
https://paperpile.com/c/OgypLA/d0v9
https://paperpile.com/c/OgypLA/d0v9
https://paperpile.com/c/OgypLA/zWYs
https://paperpile.com/c/OgypLA/GbZ9
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/u2q9
https://paperpile.com/c/OgypLA/TYDT
https://paperpile.com/c/OgypLA/GbZ9
https://paperpile.com/c/OgypLA/WYhh
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/Wjl4
https://paperpile.com/c/OgypLA/eqQE
https://paperpile.com/c/OgypLA/RPkc
https://paperpile.com/c/OgypLA/LG6s
https://paperpile.com/c/OgypLA/I3dK
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/7Msk
https://paperpile.com/c/OgypLA/l0MP
https://paperpile.com/c/OgypLA/lgn8
https://paperpile.com/c/OgypLA/sWOs
https://paperpile.com/c/OgypLA/jhn8
https://paperpile.com/c/OgypLA/RPkc
https://paperpile.com/c/OgypLA/I3dK
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/ugvH
https://paperpile.com/c/OgypLA/pq2Y
https://paperpile.com/c/OgypLA/m5BJ
https://paperpile.com/c/OgypLA/P3Qb
https://paperpile.com/c/OgypLA/Zd0G
https://paperpile.com/c/OgypLA/4Mf7
https://paperpile.com/c/OgypLA/yrno


(PCR), 
2017 

Solanum torvum 2014 Yes (Xu Yang et al. 2014) 

Solanum pennellii 2016 Yes (Stam, Scheikl, and Tellier 2016) 

Nicotiana glauca 2016 Yes (Long et al. 2016) 

Nicotiana noctiflora 2016 Yes (Long et al. 2016) 

Nicotiana cordifolia 2106 Yes (Long et al. 2016) 

Nicotiana knightiana 2016 Yes (Long et al. 2016) 

Nicotiana setchellii 2016 Yes (Long et al. 2016) 

Nicotiana tomentosiformis 2016 Yes (Long et al. 2016) 

Nicotiana tabacum 2014 Yes (Sierro et al. 2014) 

Nicotiana sylvestris 2014 Yes (Sierro et al. 2014) 

Nicotiana tomentosiformis 2014 Yes (Sierro et al. 2014) 

Arachis ipaensis  2016, 
2017 

Yes (David John Bertioli et al. 2016) 
(Hui Song et al. 2017) 

Arachis duranensis 2003, 
2016, 
2017 

Yes (Bertioli et al. 2003) 
(David John Bertioli et al. 2016) 
(Hui Song et al. 2017) 

Daucus carota 2016 Yes (Iorizzo et al. 2016) 

Cicer arietinum 2006, 
2016,  
2017 

Yes (Palomino et al. 2006) 
(Zheng et al. 2016) 
(Kroj et al. 2016) 
(Sharma, Rawat, and Suresh 2017) 

Vicia faba 2006 Yes (Palomino et al. 2006) 

Lotus japonicus 2003, 
2015, 
2016 

Yes (D. J. Bertioli et al. 2003) 
(H. Song et al. 2015) 
(Zheng et al. 2016) 
(Kroj et al. 2016) 

Arachis cardenasii 2003 Yes (D. J. Bertioli et al. 2003) 

Arachis hypogaea var. Tatu 2003 Yes (D. J. Bertioli et al. 2003) 

Arachis stenosperma 2003 Yes (D. J. Bertioli et al. 2003) 

Arachis simpsonii 2003 Yes (D. J. Bertioli et al. 2003) 

Lactuca sativa 2004, 
2009, 
2015, 
2017 

Yes (Plocik, Layden, and Kesseli 2004) 
(McHale et al. 2009) 
(Christopoulou et al. 2015) 
(Reyes-Chin-Wo et al. 2017) 

Helianthus annuus 2004, 
2008 

Yes (Plocik, Layden, and Kesseli 2004) 
(Radwan et al. 2008) 

Cichorium intybus 2004 Yes (Plocik, Layden, and Kesseli 2004) 

Cucumis melo 2005, 
2012, 
2014, 
2016, 

Yes (van Leeuwen et al. 2005) 
(Garcia-Mas et al. 2012) 
(González et al. 2014) 
(Natarajan et al. 2016) 
(Casacuberta, Puigdomènech, and 
Garcia-Mas 2016) 

Cucumis sativus 2009, 
2013, 
2016 

Yes (Sanwen Huang et al. 2009) 
(Wan et al. 2013) 
(Kroj et al. 2016) 
(Sarris et al. 2016) 

https://paperpile.com/c/OgypLA/Zd0G
https://paperpile.com/c/OgypLA/396o
https://paperpile.com/c/OgypLA/aUT6
https://paperpile.com/c/OgypLA/aUT6
https://paperpile.com/c/OgypLA/aUT6
https://paperpile.com/c/OgypLA/aUT6
https://paperpile.com/c/OgypLA/aUT6
https://paperpile.com/c/OgypLA/aUT6
https://paperpile.com/c/OgypLA/Fl6w
https://paperpile.com/c/OgypLA/Fl6w
https://paperpile.com/c/OgypLA/Fl6w
https://paperpile.com/c/OgypLA/FxUq
https://paperpile.com/c/OgypLA/keQt
https://paperpile.com/c/OgypLA/Wjl4
https://paperpile.com/c/OgypLA/FxUq
https://paperpile.com/c/OgypLA/keQt
https://paperpile.com/c/OgypLA/Onm7
https://paperpile.com/c/OgypLA/4aHD
https://paperpile.com/c/OgypLA/I3dK
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/lbsP
https://paperpile.com/c/OgypLA/4aHD
https://paperpile.com/c/OgypLA/Wjl4
https://paperpile.com/c/OgypLA/qZ4v
https://paperpile.com/c/OgypLA/I3dK
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/Wjl4
https://paperpile.com/c/OgypLA/Wjl4
https://paperpile.com/c/OgypLA/Wjl4
https://paperpile.com/c/OgypLA/Wjl4
https://paperpile.com/c/OgypLA/fqYU
https://paperpile.com/c/OgypLA/GkTg
https://paperpile.com/c/OgypLA/x7mS
https://paperpile.com/c/OgypLA/ObUj
https://paperpile.com/c/OgypLA/fqYU
https://paperpile.com/c/OgypLA/vXf9
https://paperpile.com/c/OgypLA/fqYU
https://paperpile.com/c/OgypLA/2U0d
https://paperpile.com/c/OgypLA/Z3lx
https://paperpile.com/c/OgypLA/Hkml
https://paperpile.com/c/OgypLA/YaUg
https://paperpile.com/c/OgypLA/m2P5
https://paperpile.com/c/OgypLA/m2P5
https://paperpile.com/c/OgypLA/IieB
https://paperpile.com/c/OgypLA/wGx3
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/zk1G


Arabidopsis thaliana 2003, 
2011, 
2014, 
2015, 
2016, 
2017 

Yes (Meyers 2003) 
(Y.-L. Guo et al. 2011) 
(Gan et al. 2011) 
(Peele et al. 2014) 
(Y.-M. Zhang et al. 2016) 
(Zapata et al. 2016) 
(Kroj et al. 2016) 
(Sarris et al. 2016) 
(Nepal et al. 2017) 

Arabidopsis lyrata 2011, 
2014, 
2015, 
2016 

Yes (Y.-L. Guo et al. 2011) 
(Peele et al. 2014) 
(Y.-M. Zhang et al. 2016) 
(Buckley et al. 2016) 
(Sarris et al. 2016) 

Capsella rubella 2012, 
2014, 
2016 

Yes (Gos, Slotte, and Wright 2012) 
(Peele et al. 2014) 
(Y.-M. Zhang et al. 2016) 
(Sarris et al. 2016) 

Capsella grandiflora 2012, 
2016 

Yes (Gos, Slotte, and Wright 2012) 
(Sarris et al. 2016) 

Brassica rapa 2009, 
2014, 
2016 

Yes (Mun et al. 2009) 
(P. Wu et al. 2014) 
(Peele et al. 2014) 
(Yu et al. 2014) 
(Y.-M. Zhang et al. 2016) 
(Sarris et al. 2016) 

Eutrema salsugineum 
(Thellungiella salsuginea) 

2014, 
2016 

Yes (Peele et al. 2014) 
(Y.-M. Zhang et al. 2016) 
(Sarris et al. 2016) 

Brassica napus 2014, 
2016 

Yes (Chalhoub et al. 2014) 
(Sarris et al. 2016) 

Camelina sativa 2013 Yes (Liang et al. 2013) 

Brassica oleracea 2014, 
2016 

Yes (Yu et al. 2014) 
(Golicz et al. 2016) 

Aquilegia coerulea 2011 Yes (Collier, Hamel, and Moffett 2011) 

Ananas comosus  2016 Yes (Xiaodan Zhang, Liang, and Ming 
2016) 

Malus domestica 2010, 
2014, 
2015, 
2016 

Yes (Velasco et al. 2010) 
(Arya et al. 2014) 
(Zhong et al. 2015) 
(Kroj et al. 2016) 
(Sarris et al. 2016) 

Arabidopsis halleri 2016 Yes (Suryawanshi et al. 2016) 

Triticum aestivum 2015, 
2016 

Yes (Bouktila et al. 2015) 
(Sarris et al. 2016) 

Citrus sinensis 2013, 
2015, 
2016 

Yes (Q. Xu et al. 2013) 
(Wang et al. 2015) 
(Kroj et al. 2016) 

Citrus clementina 2015 Yes (Wang et al. 2015) 

https://paperpile.com/c/OgypLA/ZZtK
https://paperpile.com/c/OgypLA/e3r6
https://paperpile.com/c/OgypLA/02t5
https://paperpile.com/c/OgypLA/o8mC
https://paperpile.com/c/OgypLA/OWMb
https://paperpile.com/c/OgypLA/GX4z
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/lgn8
https://paperpile.com/c/OgypLA/e3r6
https://paperpile.com/c/OgypLA/o8mC
https://paperpile.com/c/OgypLA/OWMb
https://paperpile.com/c/OgypLA/DXWX
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/RWXO
https://paperpile.com/c/OgypLA/o8mC
https://paperpile.com/c/OgypLA/OWMb
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/RWXO
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/3snw
https://paperpile.com/c/OgypLA/NKSJ
https://paperpile.com/c/OgypLA/o8mC
https://paperpile.com/c/OgypLA/0BHg
https://paperpile.com/c/OgypLA/OWMb
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/o8mC
https://paperpile.com/c/OgypLA/OWMb
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/5LXT
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/asYV
https://paperpile.com/c/OgypLA/0BHg
https://paperpile.com/c/OgypLA/hK9C
https://paperpile.com/c/OgypLA/CGMV
https://paperpile.com/c/OgypLA/SkVz
https://paperpile.com/c/OgypLA/SkVz
https://paperpile.com/c/OgypLA/Ri0f
https://paperpile.com/c/OgypLA/9zCI
https://paperpile.com/c/OgypLA/gZb7
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/LRE8
https://paperpile.com/c/OgypLA/8IFa
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/6CwZ
https://paperpile.com/c/OgypLA/p2Jh
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/p2Jh


Eucalyptus grandis 2014, 
2015, 
2016 

Yes (Myburg et al. 2014) 
(Christie et al. 2015) 
(Sarris et al. 2016) 

Fragaria vesca 2013, 
2015, 
2016 

Yes (J. Li et al. 2013) 
(Zhong et al. 2015) 
(Sarris et al. 2016) 

Pyrus bretschneideri 2012, 
2015 

Yes (Jun Wu et al. 2013) 
(Zhong et al. 2015) 

Prunus persica 2013, 
2015, 
2016 

Yes (International Peach Genome 
Initiative et al. 2013) 
(Zhong et al. 2015) 
(Van Ghelder and Esmenjaud 2016) 
(Sarris et al. 2016) 

Prunus mume 2012, 
2015 

Yes (Q. Zhang et al. 2012) 
(Zhong et al. 2015) 

Rubus occidentalis 2016 Yes (VanBuren et al. 2016) 

Gossypium raimondii 2012, 
2013, 
2015, 
2016, 
2017 

Yes (Paterson et al. 2012) 
(Wei et al. 2013) 
(Chen et al. 2015) 
(Kroj et al. 2016) 
(Sarris et al. 2016) 
(Xiang et al. 2017) 

Gossypium arboreum 2014, 
2017 

Yes (F. Li et al. 2014) 
(Xiang et al. 2017) 

Theobroma cacao 2011, 
2014, 
2016 

Yes (Argout et al. 2011) 
(F. Li et al. 2014) 
(Kroj et al. 2016) 
(Sarris et al. 2016) 

Hibiscus syriacus 2017 Yes (Y.-M. Kim et al. 2017) 

Gossypium hirsutum 2017 Yes (Xiang et al. 2017) 

Gossypium barbadense 2017 Yes (Xiang et al. 2017) 

Linum usitatissimum 2011 
(review) 
2013, 
2016 

Yes (Dodds and Thrall 2009) 
(Kale et al. 2013) 
(Sarris et al. 2016) 

Musa acuminata ssp malaccensis 2008, 
2016 

Yes (Azhar and Heslop-Harrison 2008) 
(W. Wu et al. 2016) 
(Kroj et al. 2016) 

Musa balbisiana 2008, 
2016 

Yes (Azhar and Heslop-Harrison 2008) 
(W. Wu et al. 2016) 
(Kroj et al. 2016) 

Musa itinerans 2016 Yes (W. Wu et al. 2016) 

Musa schizocarpa 2008 Yes (Azhar and Heslop-Harrison 2008) 

Musa textilis  2008 Yes (Azhar and Heslop-Harrison 2008) 

Musa velutina 2008 Yes (Azhar and Heslop-Harrison 2008) 

Musa ornata 2008 Yes (Azhar and Heslop-Harrison 2008) 

Marchantia polymorpha 2012 Yes (Xue et al. 2012) 

Nelumbo nucifera 2013 Yes (R. Z. Jia, Ming, and Zhu 2013) 

Physcomitrella patens 2012, Yes (Yue et al. 2012) 
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2016 (Xue et al. 2012) 
(Kim et al. 2012) 
(Kroj et al. 2016) 
(Sarris et al. 2016) 

Panicum virgatum 2013, 
2016 

Yes (Q. Zhu, Bennetzen, and Smith 
2013) 
(Frazier et al. 2016) 

Populus trichocarpa 2006, 
2008, 
2010, 
2016, 
2017 

Yes (Tuskan et al. 2006) 
(Kohler et al. 2008) 
(Germain and Séguin 2011) 
(Kroj et al. 2016) 
(Nepal et al. 2017) 
(Sarris et al. 2016) 

Ricinus communis 2014, 
2016 

Yes (Sood et al. 2014) 
(Kroj et al. 2016) 
(Sarris et al. 2016) 

Jatropha curcas 2014 Yes (Sood et al. 2014) 

Setaria italica 2014, 
2016 

Yes (Y. B. Zhu et al. 2014) 
(Zhao et al. 2016) 
(Kroj et al. 2016) 
(Sarris et al. 2016) 

Selaginella moellendorffii 2012, 
2016 

Yes (Yue et al. 2012) 
(Kroj et al. 2016) 
(Sarris et al. 2016) 

Hordeum vulgare 2016 Yes (Andersen et al. 2016) 
(Kroj et al. 2016) 
(Sarris et al. 2016) 

Aegilops tauschii 2013 Yes (J. Jia et al. 2013) 

Amborella trichopoda 2016 Yes (Kroj et al. 2016) 

Coffea canephora 2016 Yes (Kroj et al. 2016) 

Elaeis guineensis 2016 Yes (Kroj et al. 2016) 

Manihot esculenta 2016 Yes (Kroj et al. 2016) 
(Sarris et al. 2016) 

Picea abies 2016 Yes (Kroj et al. 2016) 

Phoenix dactylifera 2015, 
2016 

Yes (Hazzouri et al. 2015) 
(Kroj et al. 2016) 

Coccomyxa subellipsoidea C-169 2016 Yes (Sarris et al. 2016) 

Micromonas pusilla 2016 Yes (Sarris et al. 2016) 

Mimulus guttatus 2012, 
2016 

Yes (J. Kim et al. 2012) 
(Sarris et al. 2016) 

Ostreococcus lucimarinus 2016 Yes (Sarris et al. 2016) 

Triticum urartu 2016 Yes (Sarris et al. 2016) 

Volvox carteri 2016 Yes (Sarris et al. 2016) 

Pinus monticola 2012 Yes (Yue et al. 2012) 

Juglans regia 2016 Yes (Martínez-García et al. 2016) 

Dimocarpus longan 2017 Yes (Lin et al. 2017) 

Actinidia chinensis 2013 Yes (Shengxiong Huang et al. 2013) 

Citrullus lanatus 2013 Yes (S. Guo et al. 2013) 

Ziziphus jujuba 2014 Yes (Liu et al. 2014) 

https://paperpile.com/c/OgypLA/Foyb
https://paperpile.com/c/OgypLA/0wec
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/tO1T
https://paperpile.com/c/OgypLA/tO1T
https://paperpile.com/c/OgypLA/HAfJ
https://paperpile.com/c/OgypLA/OoCF
https://paperpile.com/c/OgypLA/QpgJ
https://paperpile.com/c/OgypLA/fKtc
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/lgn8
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/0mJc
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/0mJc
https://paperpile.com/c/OgypLA/a8u1
https://paperpile.com/c/OgypLA/VFmy
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/3gmA
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/4SBa
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/fnnd
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/Kr8N
https://paperpile.com/c/OgypLA/xwIp
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/0wec
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/zk1G
https://paperpile.com/c/OgypLA/3gmA
https://paperpile.com/c/OgypLA/WzWl
https://paperpile.com/c/OgypLA/lrao
https://paperpile.com/c/OgypLA/i8eN
https://paperpile.com/c/OgypLA/VuGG
https://paperpile.com/c/OgypLA/PMN1


Morus notabilis 2013 Yes (He et al. 2013) 

Solanum aethiopicum gr. Gilo 2012 
(PCR), 
2015 

(PCR) 

Yes (Zhuang, Zhou, and Wang 2012) 
(Reddy et al. 2015) 

Solanum linnaeanum,  2012 
(PCR) 

Yes (Zhuang, Zhou, and Wang 2012) 

Solanum integrifolium 2012 
(PCR) 

Yes (Zhuang, Zhou, and Wang 2012) 

Solanum sisymbriifolium 2012 
(PCR) 

Yes (Zhuang, Zhou, and Wang 2012) 

Solanum khasianum 2012 
(PCR) 

Yes (Zhuang, Zhou, and Wang 2012) 

Solanum viarum 2015 
(PCR) 

Yes (Reddy et al. 2015) 

Capsicum baccatum  2017 Yes (S. Kim et al. 2017) 

Capsicum chinense 2017 Yes (S. Kim et al. 2017) 

Hevea brasiliensis 2016 Yes (Lau et al. 2016) 

Beta vulgaris 2014 Yes (Dohm et al. 2014) 

Spinacia oleracea 2017 Yes (C. Xu et al. 2017) 

Pinus taeda 2014 Yes (Neale et al. 2014) 
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