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Abstract 28 

 29 

Fleshy fruits using ethylene to regulate ripening have developed multiple times in the 30 

history of angiosperms, presenting a clear case of convergent evolution whose molecular 31 

basis remains largely unknown. Analysis of the fruitENCODE data consistint of 361 32 

transcriptome, 71 accessible chromatin, 147 histone and 45 DNA methylation profiles 33 

reveals three types of transcriptional feedback circuits controlling ethylene-dependent 34 

fruit ripening. These circuits are evolved from senescence orfloral organ   pathways in 35 

the ancestral angiosperms either by neofunctionalisation or repurposing pre-existing 36 

genes. The epigenome, H3K27me3 in particular, has played a conserved role in restricting 37 

ripening genes and their orthologues in dry and ethylene-independent fleshy fruits. Our 38 

findings suggest that evolution of ripening is constrained by limited hormone molecules 39 

and genetic and epigenetic materials, and whole-genome duplications have provided 40 

opportunities for plants to successfully circumvent these limitations. 41 

 42 

Keywords: ENCODE, fleshy fruit; ripening, ethylene, convergent evolution, genome 43 

duplication, senescence.  44 



Introduction 45 

 46 

Angiosperms are the largest and most diverse group of land plants. Unlike gymnosperms, 47 

seeds of angiosperms are enclosed and protected by a structure called a fruit, which is 48 

differentiated from the ovary or its surrounding floral tissues. Fruits can be classified as 49 

dry or fleshy, and the more ancient dry fruits or their seeds are adapted for dispersal by 50 

mechanical expulsion, wind and by attaching to the fur of animals1. The development of 51 

fleshy fruits enabled angiosperms to interact with coevolving animals (frugivores), which 52 

consumed the fruits and dispersed the seeds to different locations, thus enhancing 53 

distribution, minimizing parental competition and increasing plant reproductive success2.  54 

 55 

Many fleshy fruits, such as apples, bananas and tomatoes are climacteric, where a 56 

respiratory burst occurs at the commencement of ripening as a prelude to the molecular 57 

changes that alter fruit colour, flavour, texture, aroma and nutritional properties. Despite 58 

having evolved independently, climacteric fruits use the same plant hormone ethylene as 59 

a ripening signal3,4. These climacteric fruits are often harvested unripe, stored and treated 60 

with ethylene to complete maturation. Too much ethylene, on the other hand, leads to 61 

rapid deterioration of the fruit. Hence, controlling ethylene synthesis or signalling is of 62 

great practical importance during post-harvest storage, shipping and for maintaining 63 

shelf-life and quality. 64 

 65 

Climacteric fruits also evolved a mechanism to synthesize ethylene in an autocatalytic 66 

manner, which is historically referred to as system II ethylene to distinguish it from the 67 

self-inhibitory system I ethylene in other tissues, such as immature fruit and leaves3,4. Its 68 

autocatalytic nature suggests a positive feedback loop controlling ethylene synthesis 69 

during ripening. Although extensive studies have identified isoforms of ethylene 70 

biosynthesis genes that are specifically required for system I and II ethylene production, 71 

their regulation remains largely unknown5,6. 72 

 73 

In tomato, the most studied fruit model, a series of transcription factors such as 74 

COLOURLESS NON-RIPENING (CNR), NONRIPENING (NOR) and RIPENING 75 

INHIBITOR (RIN) are required for ripening and autocatalytic ethylene synthesis7,8. In 76 

addition, genome-wide DNA hypomethylation is associated with tomato fruit 77 

development, and silencing the DNA demethylase DML2 could delay ripening9,10. These 78 



results suggest that the epigenome acts as a developmental switch to restrict the activities 79 

of ripening regulators before seed maturation. Although tomato is still the predominant 80 

model for fruit research, many fleshy fruit genomes have now been sequenced, raising 81 

the questions whether and to what degree the tomato model is universal. In addition, 82 

tomato has experienced whole-genome duplication (WGD) ~ 71 Myr, and key ripening 83 

regulators including RIN and ethyene biosynthesis genes are paralog members of 84 

duplicated gene families11. Hence, plants without WGD or demethylase expressed during 85 

ripening might have evolved diferent regulatory systems. 86 

 87 

It is difficult to resolve complex convergent traits, such as ripening, in diverse taxa by 88 

sequencing and comparing genomes if the convergence occurred through the evolution 89 

of different genes and pathways, or if the genes are the same but the cis-regulatory 90 

elements or points of epigenetic regulation are different. To address these questions, we 91 

used an ENCODE-style functional genòmic approach to systematically characterize the 92 

molecular circuits controlling ripening in multiple plant species. We found three major 93 

types of transcriptional circuits controlling climacteric fleshy fruit ripening (Fig. 1). 94 

Eudicots with recent WGD utilized their duplicated MADS transcription factors to form 95 

the ripening circuits, while those without WGD used carpel senescence-related NAC 96 

transcription factors. The monocot plant banana also experienced recent WGD and uses 97 

both MADS and NAC genes to form two interconnected circuits. We also found that the 98 

ripening genes, as well as their epigenetic marks restricting their expression, are 99 

conserved in their orthologues in non-climacteric fruits and even dry fruits, suggesting 100 

that these independently evolved ripening mechanisms are originated from pre-existing 101 

pathways that served different functions in the ancestral angiosperms. 102 

 103 

Results 104 

 105 

The fruitENCODE data. The fruitENCODE project aims to generate a comprehensive 106 

annotation of functional elements in seven climacteric fruit species (apple, banana, melon, 107 

papaya, peach, pear and tomato) with sequenced reference genomes. Four non-108 

climacteric fleshy fruit species (cucumber, grape, strawberry and watermelon) and two 109 

dry fruit plants (Arabidopsis and rice) were also included for comparative analysis. To 110 

construct a multidimensional dataset for fleshy fruit functional genomics, we have used 111 

wholegenome bisulfite sequencing (WGBS), ChIP-Seq, DNaseI-Seq and RNA-Seq to 112 



profile their tissue-specific DNA methylation, histone modifications, accessible 113 

chromatin and transcriptome profiles, respectively (Supplementary Tables 1–34).  114 

 115 

We have also included a large collection of mutants with altered ripening phenotypes. For 116 

other non-model species such as melon, which lack large mutant collections, we have 117 

included four varieties with different ripening characteristics for comparative analysis. 118 

The current dataset encompassed 361 transcriptome, 71 accessible chromatin, 119 

147 histone modification and 45 methylome profiles. All processed datasets can be 120 

accessed from the fruitENCODE data base (www.epigenome.cuhk.edu.hk/encode.html). 121 

 122 

Using the fruitENCODE data, we sought to clarify the regulatory circuits controlling 123 

climacteric fruit ripening. We first identified transcription factors and ethylene 124 

biosynthetic genes expressed during ripening. The accessible chromatin dataset enabled 125 

us to identify their cis-regulatory elements and candidate transcription factors. We could 126 

then validate these regulatory interactions by performing transcription factor ChIP-Seq 127 

and promoter activation assays. In view of the difficulty in carrying out genetic assays in 128 

crops, particularly fruit trees, we developed a heterologous tobacco system involving 129 

ectopic expression of gene components under their native promoters from all seven 130 

climacteric species to recreate the autocatalytic ethylene symptomatic of climacteric 131 

ripening. 132 

 133 

MADS-type positive feedback loop controlling ripening in tomato, apple and pear. 134 

We first reconstructed the ripening regulatory circuit for the model tomato fruit, which 135 

has three known components: ethylene, transcription factor RIN and DNA methylation. 136 

From the DNaseI hypersensitive sites (DHS) dataset, we found an EIN3 binding motif in 137 

the promoter of RIN, the functional significance of which was confirmed by our EIN3 138 

ChIP-Seq (Fig. 2a and Supplementary Table 32). RIN is a MADS-box transcription 139 

factor, which functions in a multimeric complex with TAGL1. TAGL1 is 140 

expressed during both early and late fruit development12. We performed ChIP-Seq for 141 

both RIN and TAGL1, and found that they can directly target the ripening ethylene 142 

biosynthesis genes ACC SYNTHASE2 (ACS2) and ACC OXIDASE1 (ACO1) (Fig. 2a). 143 

 144 

Our findings suggest that ethylene transcription factor EIN3 and MADS-box transcription 145 

factors RIN–TAGL1 could form a positive feedback loop to synthesize autocatalytic 146 



system II ethylene, while the downstream ripening genes are coupled to the loop through 147 

RIN–TAGL1 (Fig. 1a). Our ChIP-Seq data confirmed that the RIN–TAGL1 complex 148 

targets well-known ripening genes that are involved in fruit softening, colour change, 149 

aroma production and sugar metabolism (Supplementary Tables 30 and 31). Given the 150 

central role of the MADS genes in this ripening model, we named it 151 

the MADS positive feedback loop.  152 

 153 

To test this feedback loop, we attempted to recreate the autocatalytic ethylene synthesis 154 

in tobacco leaf by expressing the core tomato loop genes. It is well known that the 155 

ethylene synthesis and signalling pathways are conserved in plants4,13
. Leaf has 156 

endogenous EIN3 and ACO, and lacks ACS activity, which is the rate-limiting enzyme 157 

In its ethylene biosynthesis under normal growth conditions. When we expressed the 158 

tomato RIN and ACS2 using their native promoters, and TAGL1 was supplied under a 159 

constitutive CaMV35S promoter, spontaneous ethylene synthesis was observed (Fig. 3a 160 

and Supplementary Fig. 1). We could then mutate the EIN3 binding motif in the RIN 161 

promoter and the RIN binding motif in the ACS2 promoter, both of which disrupted the 162 

spontaneous ethylene synthesis (Fig. 3a and Supplementary Fig. 1c). These results 163 

confirmed that the exogenous tomato ACS2 and MADS genes are responsable for the 164 

observed ethylene burst. We also treated the tobacco leaf expressing the loop with 165 

ethylene inhibitor 1-MCP, which causes degradation of the EIN3 protein14. We found that 166 

1-MCP blocked the ethylene synthesis, suggesting that the ethylene generated by the 167 

tomato MADS loop in tobacco leaf is indeed autocatalytic, a key characteristic of the 168 

system II ethylene produced by ripening climacteric fruits (Fig. 3a and Supplementary 169 

Fig. 1b). 170 

 171 

However, ethylene is a stress hormone and such an autocatalytic feedback loop involving 172 

a diffusible signal molecule poses a major threat to the plant itself and its neighbours 173 

because any leakiness could cause developmental perturbations, including senescence 174 

and tissue death (Supplementary Fig. 1f). Our DHS and epigenome datasets showed that 175 

the EIN3 binding site in the RIN promoter is demethylated and becomes accessible only 176 

in ripening fruit tissues, while RIN and ACS2 are associated with the repressive histone 177 

mark H3K27me3 in leaf and immature fruit (Fig. 2a). 178 

 179 



We examined the fruitENCODE data from other species and found that only apple and 180 

pear have similar MADS-type positive feedback loop. Their MADS promoters contain 181 

EIN3 binding motifs, while their ethylene biosynthesis genes have MADS binding motifs 182 

(Supplementary Figs. 2 and 3). We also used the tobacco system to confirm that the apple 183 

and pear loops were capable of generating autocatalytic ethylene. Interestingly, apple and 184 

pear shared a recent WGD15, and their ripening MADS genes targeted by EIN3 are 185 

orthologues. Both of them are members of the duplicated MIKCc MADS transcription 186 

factor family and are homologues of the tomato RIN (Supplementary Fig. 4). These 187 

suggest that similar ripening circuits have idependently evolved through 188 

neofunctionalization of the duplicated MADS genes originally controlling floral organ 189 

identity in the ancestral angiosperms. 190 

 191 

Tomato is the only reported species to activate DNA demethylase expression during fruit 192 

ripening10. Our methylome datasets confirmed that apple and pear lack a tomato-like 193 

whole-genome demethylation during fruit development (Supplementary Fig. 19). 194 

However, from the histone modification datasets, we found that tomato, apple and pear 195 

have the same tissue-specific H3K27me3 on their ethylene biosynthesis and MADS gene 196 

loci, whereas they are absent in the ripe fruit tissues (Fig. 2a, Supplementary Fig. 4). We 197 

also found that the ethylene-independent pear cultivar Dangshanshuli contains hyper-198 

H3K27me3 in its ethylene biosynthesis gene loci compared to the ethylene-dependent 199 

cultivar Williams (Supplementary Fig. 3). The non-ripening tomato mutant nor also 200 

contains hyper-H3K27me3 in the ACS2 and RIN loci (Supplementary Fig. 5). This 201 

suggests that instead of using DNA methylation, H3K27me3 could play a conserved role 202 

from preventing the MADS positive feedback loop from generating 203 

autocatalytic ethylene. 204 

 205 

Peach, papaya and melon operate a NAC positive feedback loop. Climacteric fruits, 206 

such as peach, papaya and some climacteric melon cultivars, can also produce and require 207 

autocatalytic ethylene for ripening but, unlike the MADS-type fruits, did not undergo 208 

recent WGD15,16. To reconstruct their ripening circuits, we first examined what 209 

transcription factors could regulate their ACS and ACO genes during ripening. 210 

Interestingly, in their promoter DHS, we identified NAC instead of MADS transcription 211 

factor binding motifs. In addition, they all have NAC genes with ripening-specific 212 

expression pattern (Supplementary Tables 17, 23–25). 213 



 214 

NAC is one of the largest plant-specific transcription factor families, with members 215 

involved in many developmental processes such as senescence, stress, cell wall formation 216 

and embryo development. The peach, melon and papaya ripening-specific NAC genes we 217 

found are orthologues of the Arabidopsis carpel senescence-related 218 

transcription factors NARS1/2 and are distantly related to the leaf senescence-related 219 

AtNAP17,18 (Supplementary Fig. 6). Examination of their NAC gene promoter DHS 220 

revealed EIN3 binding sites, suggesting that instead of neofunctionalization of the 221 

duplicated MADS genes, plants without WGD might have repurposed their 222 

carpel senescence NAC to generate a positive feedback loop with ethylene to regulate 223 

ripening (Fig. 1b). 224 

 225 

To test this, we performed ChIP-Seq in ripening peach fruit tissues using an antibody 226 

against the NAC protein (ppa007577m), and found that it can bind to the ACS and ACO 227 

promoter (Fig. 2b). Next, we used the tobacco system to test whether they could form a 228 

positive feedback loop. We ectopically expressed the peach NAC and ACS 229 

(ppa004774m) genes under their native promoters and found that they were capable of 230 

generating ethylene spontaneously (Fig. 3b). We also performed EIN3 motif deletion to 231 

confirm that EIN3 binding to the NAC promoter is required. The ethylene synthesis could 232 

be blocked by treatment with 1-MCP, suggesting that the ethylene generated by the NAC 233 

positive feedback loop is autocatalytic. 234 

 235 

In tomato, the downstream ripening genes are directly coupledto the MADS positive  236 

feedback loop through the RIN–TAGL1 transcription factors. Our ChIP-Seq data showed 237 

that the NAC transcription factor also binds to the promoter of key fruit ripening genes, 238 

such as those involved in pigment accumulation, volatile secondary metabolite 239 

production, cell wall softening and sugar accumulation (Supplementary Table 33). 240 

 241 

Genes involved in the MADS-type loop found in tomato, apple and pear are associated 242 

with conserved H3K27me3 marks (Fig. 2a). Our epigenome data revealed similar tissue-243 

specific H3K27me3 patterns in the peach NAC and ACS loci (Fig. 2b). In papaya and the 244 

climacteric melon cultivar Védrantais, we also found this NAC-type positive feedback 245 

loop with key genes associated with H3K27me3 in non-ripening tissues (Supplementary 246 



Figs. 7 and 8). In the nonclimacteric melon cultivar Piel de Sapo, we found that NAC is 247 

downregulated and is associated with increased H3K27me3 level 248 

(Supplementary Fig. 8). These results suggest that H3K27me3 plays a conserved and 249 

perhaps central role in regulating both the MADS and NAC-type positive feedback loops 250 

that generate ripening ethylene in different plant species, despite having evolved 251 

independently. 252 

 253 

Monocot banana operates a dual-loop system. Banana is also a climacteric fruit that 254 

requires autocatalytic ethylene to ripen and it has experienced three recent WGD15,19. The 255 

autocatalytic ethylene production in other climacteric fruits such as tomato can be 256 

interrupted by the ethylene-action inhibitor 1-MCP, a scenario that we reproduced in the 257 

heterologous tobacco system. However, a unique ripening feature in banana is that 258 

inhibitor treatment is unable to interrupt its ethylene production after ripening has been 259 

initiated, indicating a transition from autocatalytic to ethylene-independent ripening20. 260 

Examination of the banana data showed that it has two positive feedback loops, and the 261 

second one is able to maintain the ethylene synthesis when the first ethylene-dependent 262 

loop is blocked (Fig. 1c). 263 

 264 

The first banana loop is similar to the NAC-type positive feedback loop in eudicots 265 

without WGD (Fig. 1c). The banana ACS (Ma04_t35640.1) and ACO (Ma07_t19730.1) 266 

have NAC motifs in their promoter DHS, while the NAC gene (Ma06_t33980.1) contains 267 

an EIN3 binding motif. To test the loop, we ectopically expressed the banana NAC and 268 

ACS genes under their native promoters in tobacco and found that they are sufficient to 269 

generate ethylene in an autocatalytic manner. Ethylene inhibitor 1-MCP, as well as EIN3 270 

motif deletion, could block ethylene production in the absence of the second loop, 271 

suggesting that loop I is a functional NAC-type positive feedback loop (Fig. 3c). 272 

 273 

It should be noted that this banana ripening NAC is an orthologue of the rice leaf 274 

senescence transcription factor OsNAP21 and is distantly related to the carpel senescence-275 

related NACs utilized by the eudicots climacteric fruits (Supplementary Fig. 6). We also 276 

profiled gene expression and histone modifications in the young, matured and aged 277 

banana leaves and found that this NAC is expressed during leaf senescence (Fig. 4). 278 

Consistently, the banana NAC and ACS genes are associated with tissue-specific 279 

H3K27me3 as those in the eudicots, except that the NAC locus lost H3K27me3 280 



in the aged leaves (Fig. 4). 281 

 282 

Both the eudicots MADS- and NAC-type positive feedback loops are directly coupled to  283 

the downstream ripening genes, which we confirmed by ChIP-Seq using tomato MADS 284 

and peach NAC as examples. In the absence of a suitable antibody against the banana 285 

NAC, we used the dual luciferase assay to show that it is capable of activating known 286 

ripening gene promoters (Supplementary Fig. 9), suggesting that banana ripening genes 287 

are likely to be coupled to the positive feedback loop, as in their eudicots counterparts. 288 

 289 

It should be noted that the first loop alone could not explain how banana bypasses the 290 

ethylene dependence after ripening initiation20. It has been shown that three MADS 291 

transcription factors (MADS1/2/5) are expressed in banana fruit, where MADS1/2 have 292 

been further functionally characterized via transgenic repression resulting in delayed 293 

ripening22,23. We found a NAC motif in the banana MADS1 gene promoter and a MADS 294 

motif in its NAC gene promoter, suggesting that the MADS and NAC genes could form 295 

a second positive feedback loop to bypass the first loop (Fig. 1c). 296 

 297 

To validate the second loop, we first used the tobacco system to show that the first NAC-298 

type loop could be blocked by inhibidor 1-MCP treatment (Fig. 3c). Co-expressing the 299 

three MADS genes from the second loop with MADS1 driven by its native promoter and 300 

MADS2/5 with the constitutive 35S promoter enabled the 301 

tobacco leaves to synthesize more ethylene than expressing loop 1 alone (54.27%, P = 302 

2.91 × 10−5). Most importantly, 1-MCP was unable to block the ethylene production 303 

when the second loop was present, mimicking the behaviour of the ripening banana fruit 304 

(Fig. 3c). To confirm that the second loop is dependent on the interaction of the NAC and 305 

MADS genes, we deleted the NAC motif in the MADS1 promoter, as well as the MADS 306 

motif in the NAC promoter. We found that the tobacco leaf expressing the loop 2 without 307 

these motifs could no longer bypass the ethylene inhibitor treatment 308 

(Fig. 3c). Taken together, our results showed that banana fruit ripening is controlled by a 309 

dual-loop circuit that consists of both leaf senescence NAC and floral organ identity 310 

MADS genes. The banana NAC and MADS genes are also associated with tissue-specific 311 

H3K27me3 marks (Fig. 4), suggesting that their epigenetic regulation 312 

is conserved in both eudicots and monocot. 313 

 314 



Climacteric fruit ripening gene orthologues in non-climacteric and dry fruit species. 315 

The fruitENCODE project included four non-climacteric species (cucumber, grape, 316 

strawberry and watermelon), none of which have undergone recent WGD15. They have 317 

orthologues of the carpel senescence NAC with tissue-specific H3K27me3 and a 318 

ripening-specific gene expression pattern similar to those in the NAC-type climacteric 319 

fruits without WGD (Fig. 5a and Supplementary Figs. 6,10–13). However, they often lack 320 

EIN3 motif in their NAC gene promoters or the NAC motif in their ethylene biosynthesis 321 

genes promoters, both of which would preclude participation in an ethylene positive 322 

feedback loop. The dry fruit-bearing plant Arabidopsis also has orthologues of the 323 

climacteric fruit ripening NAC and MADS genes. We examined 324 

their H3K27me3 levels in its leaf, carpel and senescence silique, which is the equivalent 325 

tissue of a ripening fleshy fruit (Fig. 5b). We found that its NAC and MADS gene have 326 

similar tissue-specific expression pattern and H3K27me3. 327 

 328 

Banana is a monocot that has diverged from eudicots over 100 Mya. The dual-loop system 329 

in banana utilizes an orthologue of the rice leaf senescence OsNAP gene21. We have 330 

examined the gene expression and histone modification in young and senescence 331 

rice leaves, as well as its carpel tissues. We found that OsNAP is expressed in the aged 332 

leaves and is also associated with the repressive H3K27me3 mark in the young leaf and 333 

carpel tissues (Fig. 5c). Taken together, we showed that dry fruit and non-climacteric 334 

fleshy fruit species have orthologues of the climacteric fruit ripening genes. They are 335 

involved in leaf senescence, carpel senescence or floral development, and associated with 336 

tissue-specific H3K27me3 marks17,18,21. This suggests that the three ripening circuits in 337 

climacteric fruits were evolved from pre-existing pathways that served diferent functions 338 

in the ancestral angiosperms. 339 

 340 

Discussion 341 

 342 

The innovative fertilization and seed dispersal mechanisms are key to the evolutionary 343 

success of the flowering plants23,24. The fruitENCODE project has identified three major 344 

routes for angiosperms to evolve the ethylene-dependent climacteric fruit ripening 345 

process, and the core genetic elements and epigenetic mechanisms for these are present 346 

in non-climacteric and even dry-fruited species. Eudicots with recent WGD like tomato, 347 

utilized their duplicated MADS to form a positive feedback loop with ethylene to regulate 348 



ripening, while eudicots without WGD repurposed the carpel senescence NAC (Fig. 6). 349 

Banana has two positive feedback loops using both leaf senescence NAC and duplicated 350 

MADS, which enables it to bypass ethylene inhibitor treatment after 351 

ripening initiation20. 352 

 353 

The tomato and banana ripening models we proposed are consistent with the observations 354 

that silencing key genes in the positive feedback loop could delay or abolish fruit 355 

ripening22,23,25. Mutation in the core NAC gene in climacteric melon cultivar Charentais 356 

Mono could also delay ripening26, while both the peach and melon 357 

NAC loci are located in quantitative trait loci that are associated with late ripening 358 

phenotypes16,27. However, it should be noted that our proposed models only define the 359 

core transcriptional regulatory mechanisms centred on the ripening ethylene and do not 360 

preclude discovery of additional transcription factors or regulatory mechanisms such as 361 

post-translational regulations, which also contribute to ripening. 362 

 363 

It is common for different species to evolve similar features when exposed to the same 364 

selection pressure. However, the probability of complex traits like ripening originating 365 

multiple times through similar trajectories would be expected to be very small, unless 366 

there is strong constraint. This constraint could be the limited set of suitable signalling 367 

molecules like the ethylene gas that can easily diffuse from cell to cell. For plants without 368 

WGD, another constraint could be the limited transcription factors available in the carpel 369 

tissues, hence leading to the repurposing of the senescence NAC to form the 370 

ripening circuit. In addition to evolving key regulators, plants also need to gain ethylene 371 

responsive cis-regulatory elements, such as EIN3 binding motifs, in the promoters of the 372 

NAC or MADS genes, as well as the corresponding motifs in their ACS genes to complete 373 

the core positive feedback loop. They also need to gain hundreds or even thousands of 374 

cis-regulatory elements in downstream ripening gene promoters in order to couple them 375 

to the loop. 376 

 377 

DNA demethylation is required for the tomato fruit ripening6. Although local DNA 378 

methylation changes during fruit development are widespread in all species we examined 379 

(Supplementary Fig. 23), direct genetic evidence to link DNA methylation change to a 380 

regulatory role in ripening was only found in tomato9,10. Our study 381 



revealed a surprisingly conserved role of H3K27me3 in regulating the core ripening genes 382 

and their orthologues (Figs. 1 and 5), while DNA methylation dynamics were often 383 

associated with promoter chromatin accessibility changes (Supplementary Fig. 21). 384 

 385 

H3K27me3 is associated with silencing of key developmental genes in both animals and 386 

plants28. In animals, it is catalysed and bound by the polycomb repressive complexes, 387 

which condense chromatin and silence gene expression. In plants, H3K27me3 is best 388 

known for silencing the flowering regulator FLOWERING LOCUS C and floral 389 

homeotic gene AGAMOUS, both of which are MADS-box transcription factors29. For 390 

fleshy fruit species, it is of significant evolutionary advantage to use a stable epigenetic 391 

mark like H3K27me3 to keep the autocatalytic ripening loop under strict developmental 392 

control. We found that H3K27me3 targets key ethylene biosynthesis genes, as well as the 393 

MADS and NAC transcription factors in the loops. Their orthologues in four non-394 

climacteric and two dry fruit species also have similar tissue-specific H3K27me3 395 

dynamics, suggesting that the climacteric fruits have not just hijacked the genetic 396 

pathways in the ancestral angiosperms, but also utilized their epigenetic marks to 397 

regulate ripening.  398 

 399 

However, the trigger for epigenome reprograming, including the tomato whole-genome 400 

cytosine demethylation and theremoval of H3K27me3 in the NAC and MADS loci, 401 

remains largely unknown. Our tomato dataset included two mutants, cnr and nor, the 402 

fruits of which do not synthesize ethylene or ripen if ethylene is supplied externally. Cnr 403 

is an SBP-box transcription factor epimutant7. Although it does not disrupt the expression 404 

of RIN, our data showed that the ripening gene promoters targeted by RIN 405 

became hypermethylated in Cnr6,9. The nor mutant fruit on the other hand is unable to 406 

express both RIN and ACS2, and these loci are associated with hyper-H3K27me3 when 407 

compared to wild-type (Supplementary Fig. 5). The nor fruit contains a missense mutation 408 

in a NAC gene orthologous to the ripening NAC used by other climacteric fruits 409 

(Supplementary Fig. 6), suggesting that the carpel senescence pathway is involved in 410 

tomato ripening initiation by controlling the H3K27me3. 411 

 412 

The fruitENCODE project has generated a comprehensive funcional genomic resource 413 

for 11 fleshy fruit species, which opens the door for addressing some important problems 414 

in agricultural practices. For example, post-harvest loss is a major concern for horticulture 415 



produce worldwide, especially in developing countries, but is also prevalent in modern 416 

food supply chains. Control of ethylene and ripening is critical because deterioration and 417 

rotting is an inevitable consequence of unhindered ripening. However, improvement in 418 

shelf-life through manipulation of ethylene often leads to reduced quality and nutritional 419 

value, which is to be expected because most of the downstream ripening genes are tightly 420 

coupled to the autocatalytic ethylene loop. With a comprehensive annotation of the cis-421 

regulatory elements, and much improved understanding of their regulators, it is now 422 

possible to design strategies to engineer promoter cis-regulatory element to manipulate 423 

candidate gene expression to alter specific ripening attributes to improve nutritional 424 

quality, consumer appeal and shelf-life without affecting the general ripening process. 425 

 426 

 427 
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Fig. 1 Three types of transcriptional feedback circuits controlling climacteric fruit ripening. a, Model for 524 
tomato fruit ripening regulation. Ethylene transcription factor EIN3 activates the MADS transcription  525 
factor RIN. RIN forms a complex with TOMATO AGAMOUS-LIKE1 (TAGL1), and activates the 526 
ethylene biosynthesis genes, forming a positive feedback circuit that generates autocatalytic ethylene during 527 
ripening. Downstream ripening genes are directly coupled to the loop through the MADS transcription 528 
factors. In leaf and immature fruits, the loop is repressed with key genes associated with 529 
promoter DNA hypermethylation and repressive histone mark H3K27me3 in the gene body. b, Model for 530 
peach fruit ripening regulation, which utilizes a NAC instead of a MADS transcription factor. c, Model for 531 
banana fruit ripening regulation. An additional loop between the NAC and MADS enables the 532 
banana fruit to synthesize ethylene in the presence of ethylene inhibitor 1-methylcyclopropene (MCP) after 533 
ripening initiation. 534 
 535 

 536 
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Fig. 2 Tomato and peach ripening genes are associated with tissue-specific epigenetic marks. a, Examples 538 
of dynamic chromatin accessibility, histone modification, DNA methylation and transcription in ripening 539 
gene loci in leaf, 17 days post-anthesis immature fruit and fully ripened tomato fruit tissues. Browser track 540 
shows normalized coverage of different features using merged data from multiple biological replicates. 541 
Detailed information is shown in Supplementary Table 2, 3, 5, 9 and 13. Individual data can be accessed 542 
on the fruitENCODE website. b, Peach ripening genes chromatin dynamics in leaf, 21 days post-anthesis 543 
immature fruit and fully ripened fruit tissues. 544 
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Fig. 3 Recreation of the positive feedback circuits for autocatalytic ethylene synthesis in tobacco. a, 547 
Expression of tomato MADS-loop components RIN and ACS2 under their native promoter and TAGL1 548 
under the 35 S promoters is sufficient to generate autocatalytic ethylene. Mutation of the EIN3 motif in the 549 
RIN promoter or ethylene inhibitor 1-MCP treatment can disrupt the autocatalytic ethylene production. b, 550 
Ectopic expression of the peach NAC and ACS genes under native promoter generated 551 
autocatalytic ethylene. c, Ectopic expression of the NAC and ACS genes from the banana loop 1 generated 552 
autocatalytic ethylene, which could be disrupted by inhibitor treatment or EIN3 motif deletion. When loop 553 
1 is co-expressed with the three MADS from loop 2, the autocatalytic ethylene could not be blocked by 1-554 
MCP. Deletion of the NAC motif in the MADS1 promoter and the MADS motif in the NAC promoter could 555 
disrupt the second loop. Sample sizes are shown in the figure legends. Individual values 556 
and their mean value are shown as dots and bars, respectively. Error bars represent ± s.e.m. P values were 557 
calculated using two side Student’s t-test. Tobacco leaves infiltrated with empty vector were used as a mock 558 
control. 559 
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 561 

Fig. 4 Chromatin and epigenome features of the banana ripening genes. Key banana fruit ripening genes 562 
are associated with H3K27me3 in non-ripening tissues. The banana NAC is an orthologue of the monocot 563 
rice leaf senescence OsNAP and is associated with reduced H3K27me3 level in aged leaf and ripening fruit 564 
tissues. Browser track shows normalized coverage of different chromatin features using merged data from 565 
multiple biological replicates. Detailed information is shown in Supplementary Tables 2, 5, 9 and 13. 566 
Individual data can be accessed on the fruitENCODE website. 567 
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Fig. 5 Fruit ripening gene orthologues in non-climacteric and dry fruit species are associated with tissue-570 
specific H3K27me3. a, Watermelon is a nonclimacteric species that does not require ethylene for fruit 571 
ripening. Its NAC and MADS orthologues are associated with H3K27me3 in leaf and immature fruit tissues. 572 
b, NARS1 controlling Arabidopsis carpel senescence is an orthologue of the NAC transcription factors 573 
involved in eudicots climacteric fruit ripening. SEP4 is the orthologue of the tomato RIN. c, Banana ripening 574 
gene orthologues in the monocot rice. Browser track shows normalized coverage of different chromatin 575 
features using merged data from multiple biological replicates. Detailed information is shown in 576 
Supplementary Table 2, 9 and 13. Individual data can be accessed on the fruitENCODE website. 577 
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 579 

Fig. 6 Speciation, fruit ripening types and polyploidization in diferent angiosperms lineages. Plant species 580 
bearing dry, fleshy climacteric and fleshy non-climacteric fruits are indicated in black, red and green, 581 
respectively. The basal angiosperm Schisandra chinesis is highlighted with a question mark because it bears 582 
fleshy fruit with uncharacterized ripening behaviour. Confirmed whole-genome duplications and 583 
triplications are shown with red and green circles. The three types of ethylene-dependent regulatory circuit 584 
are shown in parenthesis. 585 
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