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Highlight  

We demonstrate that carotenoids have a role in UV-B photoprotection in 

Arabidopsis thaliana. Particularly, we show that β,β-xanthophylls, but not other 

plastidial isoprenoids, are required for the UV-B protection observed.  

 

Abstract 

 

Plastidial isoprenoids, such as carotenoids and tocopherols, are relevant anti-oxidant 

metabolites synthesized in plastids from precursors generated by the methylerythritol 

4-phosphate (MEP) pathway. In this work, we found that irradiation of Arabidopsis 

thaliana plants with UV-B caused a strong increase in the accumulation of the 

photoprotective xanthophyll zeaxanthin but also slightly higher levels of γ-tocopherol. 

Plants deficient in MEP enzymes 1-deoxy-D-xylulose 5-phosphate synthase and 1-

hydroxy-2-methyl-2-butenyl 4-diphosphate synthase showed a general reduction in 

both carotenoids and tocopherols associated with increased DNA damage and 

decreased photosynthesis after UV-B exposure. Genetic blockage of tocopherol 

biosynthesis did not affect DNA damage accumulation. In contrast, lut2 mutants 

accumulating β,β-xanthophylls showed decreased DNA damage when irradiated with 

UV-B. Analysis of aba2 mutants showed that UV-B protection is not mediated by ABA 

(a hormone derived from β,β-xanthophylls). Plants accumulating β,β-xanthophylls also 

show decreased oxidative damage and increased expression of DNA repair enzymes, 

suggesting that this can be a mechanism for these plants to decrease DNA damage. In 

addition, in vitro experiments also provide evidence that β,β-xanthophylls can directly 

protect against DNA damage by absorbing radiation. Together, our results suggest 

that xanthophyll cycle carotenoids that protect against excess illumination could also 

contribute to the protection against UV-B.  

 

 

Key words: isoprenoids, MEP pathway, UV-B damage, violaxanthin, xanthophylls, 

zeaxanthin. 
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Introduction 

 

In natural environments, plants are continuously exposed to different potentially damaging 

conditions. Sunlight reaching the earth’s surface is composed by UV-B (280-315 nm), UV-A 

(315-400 nm), photosynthetically active (PAR, 400-700 nm) and infrared radiation (>700 

nm). In recent decades, UV-B radiation levels reaching the earth have increased due to a 

decrease in the ozone layer as a result of the use of chlorofluorocarbons (McKenzie et al., 

2007). Despite the use of these compounds was forbidden in the Montreal Protocol, the 

problem still continues possibly because of the release of greenhouse gasses (Newman et 

al., 2001). In this way, sunlight is required for photosynthesis and plant development, but it 

also represents a major hazard. For example, too much light energy can overwhelm the 

photosynthetic capacity of the cell and eventually cause photooxidative damage. Also, 

excess UV-B levels can produce mutations in the DNA. Thus, plants, due to their sessile 

conditions, have evolved different adaptation strategies to protect themselves against 

excessive PAR or UV-B levels (Li et al., 1993; Stapleton and Walbot 1994; Landry et al., 

1995; Jansen et al., 1998; Wargent et al., 2011; Agati et al., 2013; Solovchenko and 

Neverov, 2017; Baker et al., 2017). In particular, carotenoids have been directly linked to 

photoprotection of the photosynthetic apparatus in plants. This ability is probably due to their 

function as efficient quenchers of high energy shortwave radiation. Interestingly, 

xanthophylls, a term that includes all the oxygenated derivates of carotenes, absorb the 

shortest wavelength radiation within the light harvesting complexes (Middleton and 

Teramura, 1993).  

Among the several UV-B protection mechanisms that plants have developed, one of 

the most studied is protection by secondary metabolism pathways products, in particular the 

production of phenolic compounds in leaves (Li et al., 1993; Stapleton and Walbot 1994; 

Landry et al., 1995). Because DNA strongly absorbs UV-B; it is one of the most important 

targets of UV-B induced damage (Britt, 1996). Phenolic compounds have been 

demonstrated to decrease UV-B induced DNA damage. For example, in maize, plants with 

increased flavonoid levels (primarily anthocyanins), have lower DNA damage after UV-B 

exposure than plants that are genetically deficient in these compounds (Stapleton and 

Walbot, 1994).  Moreover, we have recently demonstrated that flavonols, a different class of 

flavonoids, are able to protect Arabidopsis plants from damage generated by exposure to 

UV-B radiation, including in the DNA (Emiliani et al., 2013).  

In addition to flavonoids, recent metabolomics studies have suggested that 

isoprenoids could also participate in UV protection in plants (Matus, 2016). Isoprenoids are a 

Downloaded from https://academic.oup.com/jxb/advance-article-abstract/doi/10.1093/jxb/ery242/5045404
by UNIVERSITAT AUTONOMA DE BARCELONA user
on 29 June 2018

https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6603341737&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6602714372&zone=


Acc
ep

te
d 

M
an

us
cr

ipt

 

 

group of different biologically active compounds that participate in a wide range of biological 

functions including photosynthesis, respiration, growth, defense, and adaptation to 

environmental conditions. Examples of isoprenoids are the photosynthetic pigments 

chlorophylls and carotenoids, including the xanthophylls; the hormones abscisic acid (ABA), 

gibberellins, cytokinins and brassinosteroids; and tocopherols (Fig. 1A; Vranová et al., 

2013). Among them, carotenoids and tocopherols protect chloroplasts against high light, 

either by dissipating excess excitation energy as heat or by scavenging reactive oxygen 

species (ROS) and suppressing lipid peroxidation (Peñuelas and Munné-Bosch, 2005). All 

isoprenoids are derived by consecutive condensations of isopentenyl diphosphate (IPP) and 

its isomer dimethylallyl diphosphate (DMAPP). In plant plastids, both IPP and DMAPP are 

produced by the methylerythritol 4-phosphate (MEP) pathway (Fig. 1A; Rodríguez-

Concepción and Boronat, 2015). While the effect of flavonoids on filtering or absorbing UV-B 

is clear, the role of isoprenoid production in UV-B protection has not been clearly 

demonstrated. Therefore, to further expand the identification of plant metabolites with 

adaptive functions to allow survival under conditions of increased UV-B radiation, we 

analyzed the role of different isoprenoids from the MEP pathway in UV-B protection. For this 

aim, Arabidopsis thaliana transgenic and mutant lines deficient in the expression of different 

enzymes of the synthesis of isoprenoid derivatives from the MEP pathway were used. DNA 

damage accumulation, photosynthesis, oxidative stress and isoprenoid accumulation 

patterns parameters were analyzed and compared using wild type (WT) and 

transgenic/mutant plants. The results presented here demonstrate that MEP derivate 

isoprenoids, and in particular carotenoids of the β,β-xanthophyll type, protect plants against 

UV-B induced damage. 

Materials and methods 

Plant material, growth conditions and UV-B treatment 

 

Arabidopsis (Arabidopsis thaliana) ecotype Columbia (Col-0) lines were used in the 

experiments. The list of mutants and transgenic lines used is presented in Table S1. 

Arabidopsis plants were sown directly on soil and placed at 4ºC in the dark, and were then 

transferred and grown in a growth chamber at 22°C with supplemental visible light (100 µE m-

2 s-1) with a 16-h / 8-h light/dark regime. After four weeks, a group of plants were exposed to 

UV-B radiation for 4-h using UV-B lamps mounted 30 cm above the plants (Bio-Rad, 

Hercules, California) at a UV-B intensity of 2 W m-2 and a UV-A intensity of 0.7 W m-2. The 

bulbs were covered with cellulose acetate filters (100 mm extra clear cellulose acetate plastic, 

Tap Plastics, Mountain View, CA) to exclude wavelengths lower than 290 nm. The lamps 
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used have emission spectra from 290-310 nm, and a peak at 302 nm. A UV spectrum from a 

similar set up was previously shown in Casati and Walbot (2003). A different group of control 

plants were treated with the same bulbs covered with a polyester film (100 µm clear polyester 

plastic; Tap Plastics, Mountain View, CA) that absorbed most UV-B radiation from the lamps 

(UV-B: 0.04 W m-2; UV-A: 0.4 W m-2). None of the plants used showed any visible phenotype 

after the UV-B treatments. Leaf samples were collected immediately after the treatments and 

stored at -80ºC. Experiments were repeated at least three times. 

 

Soluble phenolic extraction and quantification 

 

For measurements of UV-absorbing phenolic pigments, 100 mg of frozen plant samples in 

liquid nitrogen were ground to a powder with a mortar and pestle. The powder was extracted 

during 8 h with 0.6 mL of acidic methanol (1% [v/v] HCl in methanol), followed by a second 

extraction with 0.6 mL of chloroform and 0.3 mL of distilled water, as described in Emiliani et 

al. (2013). The extracts were vortexed, then centrifuged for 2 min at 3,000 g and the upper 

aqueous phases were collected. The final pH is nearly 1; however, flavonoids and other 

phenolic compounds that absorb UV radiation are stable at this pH (Friedman and Jurgens, 

2000). The absorbance of the aqueous phase solution was measured at 312 nm.  

 

Maximum efficiency of photosystem II measurements 

 

Chlorophyll (Chl) fluorescence parameters were measured on dark-adapted leaves using a 

Qubit Systems pulse-modulated fluorometer (Qubit Systems Inc, Ontario, Canada). The 

minimum Chl fluorescence at an open photosystem II (PSII) center (Fo) was determined after 

20 min in the dark using light (655 nm) at an intensity of 0.1 µmol m-2 s-1. A saturation pulse of 

white light (2,500 µmol m-2 s-1 for 0.8 s) was applied to determine the maximum Chl 

fluorescence at closed PSII centers in the dark (Fm). The parameters of light-adapted leaves 

(Fm’ and Ft) were measured after 20 min of illumination with 100 µmol m-2 s-1. Maximum 

efficiency of PSII (Fv/Fm) and quantum yield of PSII (PSII) was calculated as Fm – Fo/Fm and 

Fm’ - Ft/Fm’ (Baker and Rosenqvist, 2004; Ifuku et al., 2005). The measurements were made 

three times in at least three different plants. 
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DNA Damage Analysis 

 

CPD levels were determined using monoclonal specific antibodies from Cosmo Bio Co., Ltd. 

(TDM-2; Japan) as described in Emiliani et al. (2013).  

For in vitro DNA damage analysis, genomic DNA from A. thaliana leaves (2 μg) was 

incubated in triplicate with 14 µg mL-1 violaxanthin purified from mango (Mangifera indica), 

with 100 µg mL-1 rutin, or in the absence of any compound for 30 min at 4C in a final volume 

of 100 L before UV-B irradiation. Commercial quercetin-3--D-rutinoside (rutin, Sigma-

Aldrich) was used as a positive control (100 µg mL-1), as it protects against UV-B induced 

DNA damage (Kootstra, 1994). Samples were then irradiated at a UV-B intensity of 0.5 W m-2 

and a UV-A intensity of 0.45 W m-2 in 96-well plates for 5, 10 and 15 min. Control samples 

were exposed for 15 min under the same UV-B lamps but covered with polyester filters to 

exclude UV-B radiation. After exposure, samples were transferred to tubes, genomic DNA 

was denatured in 0.3 N NaOH for 10 min and dot blotted in a nylon membrane for CPDs 

quantification as described above. The experiments were repeated at least three times.  

 

Isoprenoids measurements and quantification 

 

The isoprenoid pigment content of Arabidopsis leaf samples were examined by HPLC-DAD-

FLD (Fraser et al., 2000). All samples were protected from light and heat during all steps 

during the extraction procedure. 4 mg of lyophilized Arabidopsis tissue was extracted with 

methanol (400 µL) with the addition of 1.2 mg of canthaxanthin as an internal standard. The 

suspension was mixed by agitation for 10 min at 4°C and 400 µL of Tris-HCl (1 M, pH 7.5) 

was added, with further agitation at 4°C for 10 min. After that, chloroform (800 µL) was added 

and mixed for 5 min a 4°C. After centrifugation at maximum speed in a chilled benchtop 

microcentrifuge (Eppendorf 5418R, Hamburg, Germany) for 5 min at 4°C, two different 

phases were produced. The upper phase was removed with a Pasteur pipette, and the lower 

phase, corresponding to the organic layer, was dried in a vacuum centrifuge (Eppendorf 

Concentrator Plus). Dried residues were resuspended in 200 μl ethyl acetate and filtered 

through a 0.2 μm Polytetrafluoroethylene microfilter (Supelco). A 10 μL aliquot of each 

sample was injected onto an Agilent Technologies 1200 series HPLC system equipped with a 

diode array (Santa Clara, CA, USA). A C30 reverse-phase column (YMC Carotenoid, 250 x 

4.6 mm x 3 µm) was used, with three mobile phases consisting of methanol (A), 
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water/methanol (20/80 v/v) containing 0.2% ammonium acetate (w/v) (B), and tert-methyl 

butyl ether (C). Metabolites were separated with the following gradient: 95% A, 5% B 

isocratically for 12 min, a step up to 80% A, 5% B, 15% C at 12 min, followed by a linear 

gradient up to 30% A, 5% B, 65% C by 30 min. The flow rate was maintained at 1 mL·min–1. 

Isoprenoid pigments were monitored at 472 and 650 nm and compared to the retention times 

of chlorophyll and β-carotene authentic standards. Tocopherol quantification was 

accomplished through fluorescence detection (excitation 290 nm, emission 330 nm) and 

comparison to a standard curve constructed with α-tocopherol. Peak areas of the standards 

were determined at the maximum absorbance wavelengths using the Waters Millennium32 

software supplied. Peak areas of the standards were determined at the maximum absorbance 

wavelengths using the Waters Millennium32 software supplied. 

 

Gene expression analyzes by RT-qPCR 

 

Total RNA was isolated using 100 mg of tissue with the TRIzol reagent (Invitrogen, 

Carlsbad, CA) and was then treated with DNase (Promega, Madison, WI). RNA was 

converted into first-strand cDNA using oligo-dT as a primer with SuperScript II reverse 

transcriptase (Invitrogen). The cDNA was used as a template for quantitative PCR 

amplification in a MiniOPTICON2 apparatus (Bio-Rad), using SYBRGreen I (Invitrogen) as a 

fluorescent reporter and Platinum Taq Polymerase (Invitrogen). Primers were designed to 

generate unique 150-250 bp-fragments with the PRIMER3 software (Rozen and Skaletsky, 

2000). A list of primers used is shown in Table S2. Three biological replicates were 

performed for each sample. To normalize the data of UV treatments, primers for CPK3 were 

used. Amplification conditions were as follows: 2 min denaturation at 94°C; 40 to 45 cycles at 

94°C for 10 s, 57°C for 15 s, and 72°C for 20 s, followed by 5 min at 72°C. Melting curves for 

each PCR product were determined by measuring the decrease of fluorescence with 

increasing temperature (from 65°C to 95°C).  

 

Electrolyte leakage and thiobarbituric acid reactive substances content 

 

Electrolyte leakage and thiobarbituric acid reactive substances content were determined as 

described in Emiliani et al. (2013).  
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Violaxanthin extraction and purification 

 

The violaxanthin purification protocol was adapted from Araki et al. (2016) with some 

modifications. Two hundred grams of mango (Mangifera indica) from a fruit market cut into 

small pieces was suspended in 300 mL of saturated aqueous NaHCO3, and was 

homogenized in a blender for 1 min. 500 mL of acetone was added to the mango solution, the 

mix was stirred for 5 min and then filtered using miracloth. The solid remaining on the filter 

paper was collected and mixed in 300 mL of CH2Cl2/acetone (2:1, v/v) for 15 min at room 

temperature to extract carotenoids. The mix was filtered again, but now the filtrate (600 mL) 

was collected and concentrated into a small volume to remove the CH2Cl2 and the acetone. 

200 mL of EtOAc and 200 ml of H2O was added, without pH adjustment. The EtOAc layer 

was concentrated to dryness; and then, the carotenoid extract was saponified by the addition 

of 10 mL of a KOH solution (5 g of KOH/100 mL of 90% EtOH (v/v)) and 5 mL of CH2Cl2. After 

this, 200 mL of EtOAc and 200 mL of H2O were added and mixed. The EtOAc layer was 

collected and concentrated to dryness, obtaining a red oil. The red oil was subjected to 

chromatography on a 20 × 20 cm aluminum plate of TLC silicagel 60 F254 (Merck) using 

hexane/acetone (3:1, v/v) as a mobile phase. Violoxanthin was separated as a yellow band 

with a rf = 0.35, and it was collected by carefully scraping the plate with a spatula. The 

compound was extracted from the silica with methanol. The solvent was filtered and 

evaporated, and purified violaxanthin was concentrated to dryness. 

 

 

Statistical analysis 

 

Data presented were analyzed using one-way and two-way analysis of variance (ANOVA); or 

by Student’s t test. Minimum significant differences were calculated by the Bonferroni, Dunett, 

Turkey and Duncan tests (P  0.05) using Sigma Stat 3.1 and Graphpad Prism 5.03 

Software.  

Factor Analysis was performed on data sets including average values of isoprenoids 

and CPD levels relative to those in Col-0 control plants. Multivariate statistical analysis was 

carried out using the software package XLSTAT (Microsoft Excel). 
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Results 

 

Isoprenoid profile changes in Arabidopsis plants exposed to UV-B 

 

To initially investigate a possible involvement of plastidial isoprenoids that derive from the 

MEP pathway in UV-B protection in Arabidopsis, we first analyzed plastidial isoprenoid profile 

changes after exposure of WT plants of the Columbia ecotype (Col-0) to UV-B for 4 hours. 

Control treatments were performed using a polyester screen that absorbed most UV-B 

radiation. While some isoprenoids remained unchanged after the UV-B treatment, a low 

although significant decrease in lutein, β-carotene and chlorophylls was detected by HPLC 

analysis (Table 1; Table S3). Moreover, a significant increase both in zeaxanthin (13-fold 

increase compared to control samples) and γ-tocopherol (1.88-fold increase; Table 1) were 

measured, suggesting that these particular plastidial isoprenoids could participate in UV-B 

protection in Arabidopsis plants. Interestingly, analysis of publicly transcriptomic data 

(GSE80111; Das et al, 2016) showed that some carotenoid biosynthetic genes were up-

regulated in 4-week-old Arabidopsis plants 4h after UV-B exposure (1.31 kJ.m-2; Fig. S1). In 

particular, the BCH1 and BCH2 genes, encoding enzymes involved in the production of 

zeaxanthin from β-carotene, was induced about 11-fold in UV-B irradiated plants. The gene 

encoding zeta-carotene epoxidase (ZEP), which transforms zeaxanthin into violaxanthin, was 

induced ca. 2-fold. The VTE1 gene, involved in tocopherol biosynthesis, was similarly up-

regulated (Fig. S1). To further validate if under our experimental conditions some of these 

transcripts were also UV-B regulated, we conducted qRT-PCR analysis using RNA samples 

extracted from plants irradiated under the same conditions as those used in HPLC analysis. 

Both BCH1 and BCH2 were significantly induced by UV-B in our assays (Fig. 1b), similarly as 

PSY and ZDS, which encode enzymes in the carotenoid, xanthophyll and carotene synthesis. 

However, neither ZEP nor VDE, which encodes the enzyme that converts violaxanthin into 

zeaxanthin, showed changes in their expression under our experimental conditions (Fig. 1b). 

Altogether, these results suggest that the observed changes in the isoprenoid profile of UV-B-

exposed plants (i.e. higher zeaxanthin and γ-tocopherol accumulation but virtually unchanged 

levels of the rest of carotenoids, α-tocopherols or chlorophylls) might be mainly caused by 

changes in the levels and hence the activities of the enzymes that produce these particular 

metabolites or transform them into downstream products.  
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Arabidopsis plants with decreased plastidial isoprenoid levels have increased DNA damage 

after UV-B exposure 

 

To investigate some of the in vivo roles of carotenoids and tocopherols in UV-B protection in 

plants, we used transgenic Arabidopsis plants with decreased activity of MEP pathway 

enzymes. We first used plants that express an antisense construct against the DXS 

transcript, (A6; Estévez et al., 2001, Table S1), which encodes the MEP pathway entry 

enzyme 1-deoxy-D-xylulose 5-phosphate synthase. These plants that were generated in the 

RLD background have decreased levels of DXS transcripts and DXS protein; and they were 

previously demonstrated to have a general decrease in the plastidial isoprenoids (Estévez et 

al., 2001, Table S4). The effect of reduced amount of isoprenoid products of the MEP 

pathway protecting DNA against damage after a 4h-UV-B treatment was first analyzed. WT 

(RLD) and Arabidopsis plants deficient in DXS expression were grown in the greenhouse 

under very low UV-B (0.04 W m-2, control conditions) for 4 weeks, and plants were then 

exposed to UV-B radiation for 4h (2 W m-2). As a control, different sets of plants were 

irradiated with the same lamps covered with a polyester plastic that absorbs UV-B (see 

Materials and methods). Leaf samples from control and UV-B-treated plants were collected 

immediately after the end of the treatment. DNA was extracted and cyclobutane pyrimidine 

dimer (CPD) abundance was compared by an immunological assay; this assay detects CPDs 

using monoclonal antibodies specifically raised against them. Comparison of CPD 

accumulation in samples from WT and transgenic plants after the 4h-UV-B treatment is 

shown in Fig. 2A. Under control conditions, the steady state levels of CPDs in WT and DXS 

deficient plants were similar (Fig. 2A). After the UV-B treatment, unrepaired lesions were 

accumulated in all plants; however, the accumulation of CPDs in A6 plants was more severe 

than that in WT plants (Fig. 2A), suggesting that products of the MEP pathway protect plants 

against DNA damage by UV-B. 

Decreased flux through the MEP pathway in DXS-deficient plants is expected to result 

in lower levels of the pathway intermediate methylerythritol cyclodiphosphate (MEcPP), a 

metabolite demonstrated to mediate responses to stress (Xiao et al., 2012). To test whether 

the decreased protection against UV-B irradiation in A6 plants was a consequence of reduced 

levels of MEcPP or resulted from a decrease production of downstream isoprenoids, we used 

Arabidopsis constitutive subtilisin3 (csb3) mutants (Flores-Perez et al., 2008). Unlike DXS-

defective lines, csb3 plants show lower levels of MEP-derived plastidial isoprenoids but 

higher levels of MEcPP (Flores-Perez et al., 2008; Gonzalez-Cabanelas et al., 2015) due to 

reduced activity of the enzyme 1-hydroxy-2-methyl-2-butenyl 4-diphosphate synthase (HDS), 
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which transforms MEcPP into downstream intermediates of the MEP pathway (Fig. 1A). As 

shown in Fig. 2A, csb3 plants showed an increased DNA damage after UV-B irradiation 

compared to the Col-0 WT. The similar phenotype of DXS-defective and HDS-defective lines 

in terms of UV-B protection argues against a role of MEcPP in this response and supports the 

conclusion that MEP-derived isoprenoids are required for the protection. 

 

Decreased levels of carotenoids and tocopherols also result in increased photosystem II 

damage in plants irradiated with UV-B 

 

To further investigate the effect of decreased levels of products of the MEP pathway in 

photoprotection to the photosynthetic machinery after UV-B exposure, the maximum 

efficiency of photosystem II (PSII, Fv/Fm) was assessed immediately after a 4h-UV-B 

treatment using the same plant genotypes. Under control conditions, this photosynthetic 

parameter was similar in all plants analyzed (Fig. 2B). After the UV-B treatment, WT plants in 

both genetic backgrounds, and A6 and csb3 plants showed a decrease in the maximum 

efficiency of PSII (Fig. 2B); however, this decrease was significantly more pronounced in A6 

and csb3 plants than in WT plants from the same genetic background. Interestingly, WT RLD 

and A6 plants showed similar levels of UV-B absorbing phenolic pigments under control 

conditions and after the UV-B treatment, suggesting that compounds synthesized through the 

MEP pathway are required for UV-B protection in Arabidopsis besides phenolic compounds. 

Moreover, in the Col-0 background, the csb3 mutants accumulate higher UV-B absorbing 

phenolic compounds levels than WT plants (Fig. 2C), again demonstrating a role of products 

of the MEP pathway in UV-B protection. 

 

Tocopherols are not required for protection against UV-B exposure 

 

To discriminate between the possible contribution of carotenoids and tocopherols to the 

protection against UV-B, we next carried out a genetic approach based on analyzing the 

protection against UV-B of mutants lacking one of the two groups of metabolites. Carotenoid-

deficient mutants show an albino seedling phenotype and are unable to survive. By contrast, 

mutants devoid of tocopherols are green and viable. In particular, Arabidopsis vte1 and vte2 

mutants are deficient in tocopherol cyclase and homogentisate phytyltransferase activities, 

respectively (Fig. 1), and hence lack tocopherols (Sattler et al., 2003; Maeda et al., 2008). 
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Both mutants showed CPD levels similar to WT plants after UV-B exposure (Fig. 3), 

supporting the conclusion that tocopherols do not have a major role in UV-B protection in 

Arabidopsis. 

 

β,β-xanthophylls protect plants against DNA damage after UV-B exposure in Arabidopsis 

 

To investigate whether particular carotenoids were more efficient in protecting plants against 

UV-B irradiation, we used Arabidopsis mutants defective in only some types of carotenoids. 

After desaturation and isomerization of phytoene to produce lycopene, the carotenoid 

pathway branches towards carotenes and xanthophylls with two β rings (such as β-carotene 

and derived β,β-xanthophylls) or with one β and one ε ring (such as lutein) (Fig. 1A). Loss of 

function of LUT2, the only lycopene ε-cyclase found in Arabidopsis (Ruiz-Sola and Rodriguez-

Concepción, 2012), results in no accumulation of the β,ε-xanthophyll lutein, but in increased 

levels of the β,β-xanthophylls: violaxanthin, zeaxanthin and antheraxanthin (Table 1). 

Interestingly, lut2 mutants showed lower DNA damage after UV-B exposure than WT plants 

(Fig. 4A), suggesting that one or several of the β,β-xanthophylls accumulated in these plants 

might have a role in UV-B protection in Arabidopsis.  

Next, we assayed UV-B irradiation-triggered DNA damage in mutants defective in the 

ABA1 gene, encoding the only zeaxanthin epoxidase (ZEP) enzyme found in Arabidopsis 

(Ruiz-Sola and Rodriguez-Concepción, 2012). ZEP transforms zeaxanthin into violaxanthin 

via antheraxanthin (Fig. 1) and hence aba1 mutants do not accumulate violaxanthin or 

antheraxanthin but have highly increased levels of zeaxanthin compared to WT plants (Table 

1; Table S3). Loss of violaxanthin and antheraxanthin, however, did not reduce the protection 

against UV-B in aba1 mutants, as they showed similar CPD levels as WT plants after UV-B 

exposure (Fig. 4B). It is possible then that high zeaxanthin levels (which accumulate 438-fold 

higher in aba1 than in WT plants; Table 1) could compensate for the violaxanthin and 

antheraxanthin deficiency. 

To further confirm our hypothesis, we performed a Factor Analysis, which is a 

multivariate statistical method, with the aim of analyzing the pattern of relationships among 

isoprenoids levels and DNA damage. Factor analysis after varimax rotation indicates that the 

first two factors explain 68.91 % of total variance. In order to find the associations, factor-

loading values were taken into account and those higher than 0.5 are considered significant. 

Table S5 shows that the second factor is positively related to lutein, γ-tocopherol and DNA 

damage, while it is negatively related to violaxanthin and antheraxanthin. This factor shows 
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that DNA damage is associated to violaxanthin and its precursor antheraxanthin in a negative 

way; thus, this statistical analysis validates our hypothesis that these xanthophylls can protect 

Arabidopsis against DNA damage caused by UV-B radiation. 

 

ABA is not involved in UV-B protection against DNA damage by UV-B in Arabidopsis  

 

The described results show that β,β-xanthophylls contribute to the protection of Arabidopsis 

plants against UV-B exposure and suggest that zeaxanthin can partially compensate for the 

loss of violaxanthin and antheraxantin. As violaxanthin and derived neoxanthin can be used 

for the production of ABA through NCED enzymes activity (Fig. 1A), we next aimed to test 

whether this hormone could also participate in UV-B protection. To this end, UV-B irradiation 

experiments were conducted using aba2 mutants (Fig. 1A), which show WT levels of 

carotenoids (including β,β-xanthophylls) but are deficient in ABA synthesis and accumulation 

(Table 1, González-Guzmán et al., 2002). As shown in Fig. 4B, aba2 mutants showed similar 

CPD accumulation as aba1 and WT Col-0 plants, demonstrating that protection against UV-B 

damage is independent of ABA. 

 

β,β-xanthophylls protect against oxidative damage after UV-B exposure in Arabidopsis 

 

To better understand the role of β,β-xanthophylls in UV-B protection, we examined the 

expression of genes that participate in UV-B signaling and response in WT plants, in cbs3 

mutants (deficient in β,β-xanthophylls), and in lut2 plants (accumulating β,β-xanthophylls). 

The expression of the UV-B photoreceptor UVR8 was similar in all samples analyzed, 

independently of the light condition or the β,β-xanthophyll levels in the plants used (Fig. 5A). 

On the other hand, HY5 (encoding a transcription factor that regulates UV-B responses), CHS 

and F3H (encoding chalcone synthase and flavanone 3-hydroxylase, respectively, that 

participate in the biosynthesis of flavonoids, UV-B absorbing phenolics in plants) were 

significantly increased after UV-B exposure in all plants (Fig. 5B-D). This was also true when 

transcript levels were analyzed in aba1 and aba2 mutants (Fig. S2 A-C). In lut2, aba1 and 

aba2 mutants, and in agreement with transcript expression analysis, UV-B absorbing 

phenolics also increased after exposure (Fig. S2 D-E). However, none of these changes 

correlated with the DNA damage accumulated after UV-B exposure in the mutants analyzed 

(Fig. 2 and 4). Consequently, DNA damage protection by UV-B mediated by β,β-xanthophylls 
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is not through changes in the expression of UV-B signaling and response genes or changes 

in the levels of UV-B absorbing phenolics. 

On the other hand, transcript levels of the DNA repair enzymes UVR2 (encoding a 

CPD photolyase) and UVR7 (encoding ERCC1, a DNA excision repair protein) were 

significantly and higher increased after UV-B exposure in lut2 than in WT plants, in 

agreement with the decreased CPD accumulation measured in these plants (Fig. 4 and 5). In 

cbs3 mutants, while UVR2 levels were similar to those in WT plants after UV-B exposure, 

UVR7 was lower expressed after irradiation, also in agreement with DNA damage measured 

(Fig. 2 and 5). Thus, β,β-xanthophyll levels may affect the expression of DNA repair 

enzymes, and, as a consequence, DNA damage accumulation after UV-B. 

In plants, carotenoids including xanthophylls, are considered to be the first line of 

protection against singlet oxygen stress (Ramel et al., 2012).Therefore, we analyzed if 

changes in transcript levels of singlet oxygen-responsive genes occur after UV-B radiation. 

Fig. 6 shows that singlet oxygen-responsive genes were significantly up-regulated after UV-B 

exposure, and that they were also differentially expressed in the cbs3 and lut2 mutants in 

comparison to WT plants, both under control conditions and after UV-B exposure. While AAA-

ATPase (one of the six AAA-ATPases of the proteasome regulatory particle), BAP1 (encoding 

a protein with a C2 domain, involved in defense and cell death regulation) and FLOT3 

(encoding a protein involved in an endocytic pathway; Lee et al., 2007) transcripts were 

significantly increased after UV-B exposure, levels were lower in lut2 than in cbs3 and WT 

plants, suggesting that oxidative stress (an in particular singlet oxygen stress) produced after 

exposure is lower in lut2 plants that accumulate β,β-xanthophylls. To validate this hypothesis, 

we analyzed the integrity of the membrane cells after UV-B exposure by measuring 

electrolyte leakage, which is a measure of oxidative damage. WT and cbs3 plants showed a 

significant increase in leaf electrolyte leakage after UV-B exposure, with cbs3 plants showing 

higher values than WT plants; however, lut2 plants exhibited no changes in electrolyte 

leakage after UV-B exposure, with lower values than WT and cbs3 plants (Fig. 6A). In 

addition, UV-B sensitivity was assayed though lipid peroxidation analysis (Blokhina et al., 

2003), by measuring the thiobarbituric acid-reactive substances (TBARS) content. TBARS 

were increased by UV-B in WT plants, while levels were high and similar under both 

conditions in cbs3 mutants (Fig. 6B). On the contrary, lut2 plants showed lower TBARS than 

WT plants, both under control and UV-B conditions (Fig. 6B). Together, our results 

demonstrate that β,β-xanthophylls protect the plants against oxidative damage after UV-B 

exposure, probably through protection against singlet oxygen stress. It is possible then that 

changes in the oxidative status of the cells may affect the expression of not only singlet 

oxygen-responsive genes (Fig. 6); but also DNA repair enzymes (Fig. 5). 
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β,β-xanthophylls can protect against DNA damage after UV-B exposure in vitro 

 

Finally, we analyzed if the role of β,β-xanthophylls in the protection against DNA damage by 

UV-B can be a consequence of direct absorption of this radiation. Therefore, we in vitro 

analyzed DNA damage after different times of UV-B exposure using DNA purified from WT 

Arabidopsis plants in the presence or absence of violaxanthin. In addition, DNA damage was 

also analyzed in the presence of rutin (quercetin 3-O-rutinoside) as a positive control, as 

quercetin is a UV absorbing compound that has been previously demonstrated to protect 

against DNA damage (Emiliani et al., 2013). Fig. 7 shows that after 5, 10 and 15 min of UV-B 

exposure, CPD accumulation increases. However, when DNA is incubated in the presence of 

rutin or violaxanthin, DNA damage is significantly decreased. On the contrary, when these 

experiments were done in the presence of other xanthophylls (neoxanthin and β carotene), 

DNA damage was similar to that irradiated in the absence of any compound (Fig. S3). Thus, 

although these experiments were done in vitro, our results suggest that β,β-xanthophylls, and 

violaxanthin in particular, could directly protect DNA against CPD formation by UV-B. 

 

Discussion 

 

Isoprenoid derivatives are vital for all living organisms; in particular, plant isoprenoids 

participate in respiration, photosynthesis, membrane fluidity, and in the regulation of growth 

and development (Vranová et al., 2013). Moreover, as specialized metabolites, they also 

have important roles in allelopathic and plant-pathogen interactions, and in attraction of 

pollinators and seed-dispersing animals. In plants, a large group of isoprenoids participate in 

photosynthetic processes, including light harvesting, energy conversion, electron transfer, 

and quenching of excited chlorophyll triplets (for a revision see Vranová et al., 2013). In 

particular, carotenoids (including carotenes and their oxygenated derivatives, the 

xanthophylls) are isoprenoids that quench excess excitation energy during light harvesting to 
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protect the light-harvesting complex acting as antioxidants (for a revision, see Munné-Bosch 

et al., 2013). Carotenoids are lipophilic antioxidants that achieve essential roles in controlling 

oxidants such as singlet oxygen generated by PSII, when they are generated within the 

thylakoid membranes. In addition, they also participate in signal transduction pathways; for 

example, the oxidation of β-carotene leads to the production of signals that regulate gene 

expression or trigger cell death (Ramel et al., 2012). In this case, the oxidation of β-carotene 

by singlet oxygen produces different volatile derivatives that regulate the expression of singlet 

oxygen-responsive genes (Ramel et al., 2012). 

In plant plastids, all isoprenoids, including carotenoids, are synthesized by the 5-C 

units IPP and DMAPP that are produced through the MEP pathway. In this manuscript, we 

demonstrate that MEP-derived isoprenoid metabolites participate in UV-B protection in plants. 

First, we here show that after a UV-B treatment, there is an increase in the levels of specific 

plastidial isoprenoids, such as γ-tocopherol and the β,β-xanthophyll zeaxanthin (Table 1). In 

agreement with this result, plants deficient in the MEP pathway enzymes DXS (A6) or HDS 

(cbs3) have increased DNA damage after UV-B exposure and decreased photosynthesis 

(Fig. 2). Interestingly, after the UV-B treatment, A6 and csb3 plants show a higher decrease 

in the maximum efficiency of PSII than WT plants (Fig. 2B); this can be a consequence of an 

increase in oxidative stress in these plants after exposure, due to decreased levels of β-β 

xanthophylls (Figs. 5 and 6). Previously, it was reported that the MEP intermediate MEcPP 

has an important role during stress responses (Flores-Perez et al., 2008). However, the fact 

that both A6 and cbs3 accumulate lower or higher levels of this metabolite, respectively, but 

similar levels of CPDs demonstrate that, in our experimental conditions, this metabolite is not 

playing a major role in UV-B protection. 

Second, a thorough genetic approach showed that an imbalance in the xanthophyll 

levels but not in tocopherol accumulation (Fig. 3) triggers a differential impact in CPD 

accumulation after UV-B exposure. Particularly, we demonstrate that plants that over-

accumulate β,β-xanthophylls (violaxanthin, antheraxanthin and zeaxanthin) but lack β,ε-

xanthophylls (lutein), show decreased DNA damage after UV-B exposure (Fig. 4). 

Remarkably, in vitro assays demonstrate that violaxanthin can protect against DNA damage 

by UV-B (Fig. 7), probably through direct absorbance. Although experiments in planta are 

required, it is possible that β,β-xanthophylls may have an in vivo role absorbing UV-B for 

protection against DNA damage. Despite this, the role of β, β xanthophylls as screen 

pigments in the UV-B region might be very minor based on their absorption spectra. On the 

other hand, CPD formation requires a complex singlet/triplet excitation dynamics, where the 

triplet excited state of the pyrimidine dimer plays a key role before the ground state CPD is 

finally formed (Zhang and Eriksson, 2006). Therefore, if β, β xanthophylls directly participate 
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in DNA photoprotection by quenching the singlet/triplet excited state of the pyrimidine dimer 

to avoid CPD formation, these compounds should be in close vicinity to DNA molecules. The 

presence of xanthophylls in the nuclei has not been reported; but this possibility cannot be 

ruled out. Alternatively or in addition, plants that accumulate higher levels of β,β-xanthophylls 

express higher levels of DNA repair enzymes (Fig. 5); hence, increased repair may also be a 

mechanism that could explain the lower DNA damage observed in lut2 plants. 

ABA levels were previously determined in aba2 mutants by González-Guzmán et al. 

(2002) and in A6 transgenic plants in Estevez et al. (2001). Despite A6 transgenic plants with 

low ABA levels show increased UV-B damage compared to WT plants; aba2 plants, which 

also accumulate low ABA, do not show increased DNA damage after exposure. Therefore, 

we also here provide evidence that this phenotype is specifically generated by the β,β-

xanthophylls and is not mediated by their downstream product, the stress-response hormone 

ABA (Xiong and Zhu, 2003; Fig. 4). Interestingly, despite that lut2 mutants have significantly 

higher levels of β,β-xanthophylls that most mutants analyzed in this work (Z+V+A; Table S3), 

they still have 2.4 times lower amounts of these compounds than aba1, which show similar 

DNA damage as WT plants. However, this difference is accounted mostly by zeaxanthin, 

which has a minor role in UV-B protection compared to violaxanthin + antheraxanthin as 

shown in the Factor Analysis presented in Table S5. According to the data presented here, 

violaxanthin and antheraxanthin are the most important β,β-xanthophylls to provide DNA 

damage protection, and aba1 mutants are deficient in these two compounds. Therefore, 

despite the fact that zeaxanthin can provide some UV-B shielding, high accumulation of this 

compound is not enough to protect plants as are high levels of violaxanthin and 

antheraxanthin. 

The β,β-xanthophylls participate in the xanthophyll cycle, which has an important 

protection role in conditions of excess light energy. Under normal light conditions, the enzyme 

zeaxanthin epoxidase (ZEP) converts zeaxanthin into violaxanthin, thus maintaining the 

levels of violaxanthin elevated. However, when light intensity is too high, the enzyme 

violaxanthin de-epoxidase (VED) is activated, converting violaxanthin back to zeaxanthin 

(Fig. 1). In this way, under high light conditions, plants maintain high zeaxanthin levels, this 

β,β-xanthophyll is reported to be a better quencher than violaxanthin.  Thus, while zeaxanthin 

has been several times reported to play different photoprotective roles (Horton et al., 1996; 

Holt et al., 2005; Baroli et al., 2003; Dall´Osto et al., 2006); the function of violaxanthin as a 

direct photoprotector is more controversial. However, our results provide evidence that under 

UV-B conditions, not only zeaxanthin, but all β,β-xanthophylls, probably through the 

xanthophyll cycle, can protect plants against excess exposure.  
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Previous reports using tobacco transgenic plants overexpressing the β-carotene 

hydroxylase correlated the increased in zeaxanthin levels to a higher tolerance against UV 

radiation (Götz et al., 2002). In this work, the authors also measured an increase in 

violaxanthin levels after UV-B exposure in these transgenic plants. In the experiments 

presented here, the analysis of aba1, which does not metabolize zeaxanthin into down-

stream xanthophylls and accumulates CPDs levels similar to those in WT plants after UV-B 

exposure, suggest the existence of an active role of violaxanthin and anteraxanthin in UV-B 

photoprotection. This is further validated by the Factor Analysis presented in Table S5. On 

the other hand, tobacco plants overexpressing Arabidopsis β-carotene hydroxylase and 

accumulating xanthophylls also displayed more tolerance to UV radiation, as shown by less 

leaf necrosis (Zhao et al., 2013). Interestingly, the authors suggested that, as more 

xanthophylls were accumulated in these plants, it could be possible that at least some of 

them may be free from photosystems and biologically active as free pigments, conferring 

protection under stress conditions. Therefore, violaxanthin may also be responsible of the 

increased UV tolerance reported in these works, in agreement with our results. Although 

carotenes do not directly absorb in the UV-B range of light, they have been several times 

demonstrated to protect against UV-induced photodamage, and they have been known as 

“sun protectants” (Biesalski and Obermueller-Jevic, 2001). In this way, in animal epidermal 

cells, carotenoids can protect in vivo against UV-B sensitized photochemical reactions, where 

excited species occur with exposure to UV-B light. Thus, carotenoid pigments have been 

proposed to have anti-skin cancer activity because they can quench excited species in 

epidermis exposed to UV-B (Mathews-Roth, 1986).  

Carotenoids have been demonstrated to protect against singlet oxygen stress 

because they have the capacity to quench 1O2 through a physical mechanism involving 

transfer of excitation energy followed by thermal deactivation; and also by a chemical 

mechanism involving their oxidation (Ramel et al., 2012). In the presence of 1O2, β-carotene, 

lutein, and zeaxanthin are oxidized to various aldehydes and endoperoxides, which are 

rapidly accumulated during high-light stress. This accumulation parallels the degree of 

photosystem (PS) II photoinhibition and the expression of singlet oxygen marker genes. In 

our experiments, UV-B radiation also induce the expression of singlet oxygen marker genes 

and produce damage to membranes, which are reduced in plants accumulating higher levels 

of β,β-xanthophylls (Figs. 5 and 6). In this way, besides affecting the expression of singlet 

oxygen marker genes, it is also possible that changes in the oxidative status of the cells 

regulated by β,β-xanthophylls may affect the expression of DNA repair enzymes, and as a 

consequence DNA damage levels. 
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It is interesting to note that the upregulation of PSY and VDE by UV-B correlate with 

an increase in HY5 transcript levels, in agreement with previous results from Toledo-Ortiz et 

al. (2014), where they demonstrate that this transcription factor regulates the expression of 

these 2 genes. Therefore, the increase in zeaxanthin levels after UV-B exposure may be a 

consequence of activation of metabolic pathways from precursors generated by the MEP 

pathway regulated by HY5. 

Xanthophylls have been previously related to confer tolerance to different stresses. 

For example, tobacco plants overexpressing lycopene β-cyclase or β-carotene hydroxylase 

gene show a significant increase in the levels of xanthophyll cycle pigments without affecting 

the ABA content, making the plants more tolerant to salt or drought stress, respectively (Zhao 

et al., 2013; Jin et al., 2015). Moreover, increased zeaxanthin levels by overexpression of β-

carotene hydroxylase in Arabidopsis have been shown to confer tolerance to high light and 

high temperature (Davison et al., 2002). These transgenic plants show decreased leaf 

necrosis and anthocyanin contents, and reduced lipid peroxidation. Interestingly, these plants 

also overaccumulate violaxanthin (Davison et al., 2002). Therefore, cooperative effects on 

photoprotection by different xanthophyll species may exist. It is then possible that β,β-

xanthophylls may have a similar protective role in plants after UV-B exposure. 

Overall, the results presented here demonstrate that Arabidopsis plants accumulating 

higher levels of β,β-xanthophylls are more tolerant to UV-B damage.  Violaxanthin, 

antheraxanthin and zeaxanthin all participate in the xanthophyll cycle, and our data show that 

zeaxanthin levels significantly increase after UV-B exposure. Thus, and similarly as it has 

been demonstrated under excess white light conditions, this cycle could have an important 

protection role under UV-B.  
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Supplementary data 

 

Fig. S1. Transcriptomic changes of MEP, carotenoid biosynthesis and degradation pathways 

in 4-week-old Arabidopsis thaliana plants after 4h UV-B exposure (1.31 kJ m-2). Data was 

obtained from Das et al. (2016; GSE80111). 

 

Fig. S2. (A-C) Relative expression of flavonoid metabolism enzymes chalcone synthase 

(CHS; A) and flavanone 3-hydroxylase (F3H; B) and the UV-B regulated transcription factor 

HY5 (C) by RT-qPCR in WT, aba1 and aba2 plants under control conditions and after UV-B 

exposure. Data are represented as the means obtained from biological triplicates; the error 

bars indicate the S.E. of the samples. (D-G) UV-B-absorbing compounds after UV-B 

exposure. Total UV-B-absorbing compounds quantified by their absorbance at 312 nm from 

WT, aba1 and aba2 plants (D), and WT and lut2 plants (E) were assayed after 4 h UV-B or in 

untreated controls (C). Measurements are the average of six adult leaves from six different 

plants. Error bars represent the SEM. Statistical significance was analyzed using two-way 

ANOVA, Tukey test with P<0.05; differences from the control are marked with different 

letters. 

 

Fig. S3. CPD levels in DNA under control conditions (UV-B 0.02 W m-2 for 15 min, C) and 

after a UV-B treatment (UVB 0.5 W m-2) for 15 min. The DNA was irradiated in the presence 

of neoxanthin (A), or β carotene, or in the absence of any compound. 2 µg of DNA was 

loaded in each well. Measurements are the average of six samples. Error bars represent 

SEM. Different letters denote statistical differences (Tukey test; P < 0.05) applying a two-way 

ANOVA tests using Sigma Stat 3.1. 

 

Table S1. Transgenic and mutant Arabidopsis plants used in this study. 
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Table S2. Primers used for RT-qPCR. 

 

Table S3. Isoprenoid products from the MEP pathway relative to the internal standard 

canthaxanthin in leaves from Col-0 WT plants and mutants grown in the absence of UV-B 

and after a 4h UV-B treatment.  

 

Table S4. Isoprenoid products from the MEP pathway relative to the internal standard 

canthaxanthin in leaves from RLD WT plants and A6 transgenic plants in the absence of UV-

B and after a 4h UV-B treatment.  

 

Table S5. Percentage of variation, percentage of accumulated variation and factor loadings 

associated to the first two factors after varimax rotation. 

 

Accession Numbers. 
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Table 1. Isoprenoid products from the MEP pathway relative levels to those in Col-0 

control plants. Isoprenoids showing statistical significant differences (P<0.05) to those in Col-

0 control plants are shown with an asterisk, in bold are shown those with higher levels than 

Col-0 control, while those that accumulate at lower levels are underlined. N.D.: not detected. 

 

 Control UV-B 

 Col-0 csb3 lut2 aba2 aba1 Col-0 csb3 lut2 aba2 aba1 

Violaxanthin  1.00±0.17  0.54±0.10* 1.80±0.27* 1.01±0.49 N.D. 0.97±0.12 0.60±0.06* 1.77±0.34* 0.84±0.22 N.D. 

Neoxanthin 1.00±0.08 0.90±0.05 0.69±0.07* 1.07±0.02 N.D. 1.04±0.07 1.06±0.07 0.70±0.08* 1.07±0.06 N.D. 

Lutein 1.00±0.08 0.83±0.03* N.D. 1.10±0.11 1.24±0.11* 0.92±0.08* 0.91±0.05 N.D. 1.09±0.08 1.12±0.06* 

Zeaxanthin 1.00±0.50 1.01±0.06 11.75±4.16* 1.15±0.11 438.68±22.33* 13.05±2.82* 24.83±1.88* 15.00±5.77* 15.77±3.25* 423.94±25.44* 

β-carotene 1.00±0.08 0.70±0.05* 1.08±0.12 1.12±0.09 1.52±0.35* 0.90±0.10* 0.90±0.06 1.09±0.10 1.08±0.09 1.31±0.11* 

Chlorophyll b 1.00±0.08 0.93±0.03* 0.78±0.08* 1.02±0.02 1.19±0.24 0.94±0.07* 0.87±0.04* 0.80±0.12 0.99±0.05 1.04±0.15 

Chlorophyll a 1.00±0.09 0.85±0.04* 0.78±0.10* 1.08±0.03 1.20±0.23 0.93±0.08* 0.83±0.05* 0.83±0.12 0.95±0.07 1.04±0.13 

γ-tocopherol 1.00±0.37 0.71±0.07* 0.96±0.37 1.27±0.19* 3.18±0.45* 1.88±0.42* 1.39±0.12* 1.16±0.43 1.52±0.38* 2.42±3.38* 

α-tocopherol 1.00±0.15 0.66±0.03* 1.06±0.12 0.91±0.03 21.24±2.74* 1.03±0.10 0.95±0.06 0.99±0.11 0.94±0.04 9.71±1.42* 

Phytoene N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

Antheraxanthi

n 1.00±0.04 0.98±0.05 7.28±0.67* 1.07±0.02 N.D. 1.06±0.03 1.08±0.09 7.72±0.34* 1.03±0.05 0.95±0.03 
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FIGURE LEGENDS: 

 

Fig. 1. (A) MEP pathway in Arabidopsis thaliana. Enzymes catalyzing steps regulating 

different branches are indicated. Deoxyxylulose 5-phosphate synthase (DXS); 1-deoxy-D-

xylulose 5-phosphate reductoisomerase (DXR); 1-hydroxy-2-methyl-2-butenyl 4-diphosphate 

synthase (HDS); 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR); phytoene 

synthase (PSY); phytoene desaturase (PDS); zeta-carotene desaturase (ZDS); carotenoid 

isomerase (CRTISO); lycopene cyclase (LCY); carotene beta-ring hydroxylase/ oxygen 

binding (CYP97); carotenoid cleavage dioxygenase (CCD); carotene beta-ring hydroxylase 

(BCH); zeaxanthin epoxidase (ZEP); violaxanthin de-epoxidase (VDE); 9-cis-epoxycarotenoid 

dioxygenase (NCED); xanthoxin dehydrogenase (XDH); phytol kinase (VTE5); tocopherol 

cyclase (VTE1); homogentisate phytyltransferase (VTE2). HY5 regulated steps are named in 

blue. (B) Relative expression of MEP pathway enzymes under control conditions and after 

UV-B exposure in Arabidopsis plants. Data are represented as the means obtained from 

biological triplicates; the error bars indicate the S.E. of the samples. Student’s t test with 

P<0.05; differences from the control are marked with asterisks. 

 

Fig. 2. UV-B effects in A6 and csb3 plants. (A) CPD relative levels to those in WT plants in 

DNA of WT (RLD) and transgenic A6 plants and WT (Col-0) and csb3 mutant plants under 

control conditions without UV-B (C) and after a UV-B treatment for 4h. Experiments were 

done under conditions that allowed photorepair in the light. 2 g of DNA was loaded in each 

well. (B) Maximum efficiency of PSII WT (RLD) and transgenic A6 plants and WT (Col-0) and 

csb3 mutant plants under control conditions without UV-B (C) and after a UV-B treatment for 

4h. (C) UV-B-absorbing compounds after UV-B exposure. Total UV-B-absorbing compounds 

were assayed after 4 h UV-B (UV-B) compared with untreated controls (C) WT (RLD) and 

transgenic A6 plants and WT (Col-0) and csb3 mutant plants under control conditions without 

UV-B (no UV-B) and UV-B treatment for 4h. Measurements are the average of six adult 

leaves from six different plants. Error bars represent the SEM. Statistical significance was 

analyzed using ANOVA, Tukey test with P<0.05; differences from the control are marked with 

different letters. 

 

Fig. 3. Tocopherols do not protect Arabidopsis plants against UV-B exposure. CPD relative 

levels to those in WT plants in DNA of WT (Col-0), vte1 and vte2 mutant plants under control 

conditions without UV-B (C) and after a UV-B treatment for 4h. Experiments were done under 
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conditions that allowed photorepair in the light. 2 g of DNA was loaded in each well. 

Measurements are the average of six adult leaves from six different plants. Error bars 

represent SEM. Different letters denote statistical differences (Tukey test; P  0.05) applying 

ANOVA tests using Sigma Stat 3.1. 

 

Fig. 4. β,β-xanthophylls protect Arabidopsis plants from UV-B damage. (A) CPD levels in 

DNA of WT (Col-0) control plants and lut2 mutant plants under control conditions without UV-

B (C) and after a UV-B treatment for 4h. (B) CPD levels in DNA of WT (Col-0) control plants, 

aba1 and aba2 mutant plants under control conditions without UV-B (C) and after a UV-B 

treatment for 4h. Experiments were done under conditions that allowed photorepair in the 

light. 2 g of DNA was loaded in each well. Measurements are the average of six adult leaves 

from six different plants. Error bars represent SEM. Different letters denote statistical 

differences (Tukey test; P  0.05) applying ANOVA tests using Sigma Stat 3.1. 

 

Fig. 5. Relative expression of UV-B regulated genes by RT-qPCR in WT, cbs3 and lut2 

plants. Transcript levels of the UVR8 photoreceptor (A), the UV-B regulated transcription 

factor HY5 (B), the flavonoid metabolism enzymes chalcone synthase (CHS; C) and 

flavanone 3-hydroxylase (F3H; D) and the DNA repair photolyase UVR2 (E) and the DNA 

repair endonuclease UVR7 (F) were analyzed under control conditions and after UV-B 

exposure. Data are represented as the means obtained from biological triplicates; the error 

bars indicate the S.E. of the samples. Statistical significance was analyzed using a two-way 

ANOVA test, Tukey test with P<0.05; differences are marked with different letters. 

 

Fig. 6. Analysis of membrane injury, lipid peroxidation and singlet oxygen-responsive genes 

in WT, cbs3 and lut2 mutants under control condition or after UV-B treatment. Electrolyte 

leakage (A) and TBARS content (B) were analyzed under control condition (Control) and after 

a UV-B treatment (UV-B). Results represent averages ± SE of three independent biological 

replicates. Statistical significance was analyzed using a two-way ANOVA test at P  0.05; 

differences are marked with different letters. (C-E) Relative expression of transcripts of singlet 

oxygen-responsive genes by RT-qPCR. Transcript levels of the AAA-ATPase (C), BAP1 (D) 

and FLOT3 (C) were analyzed under control conditions and after UV-B exposure. Data are 

represented as the means obtained from biological triplicates; the error bars indicate the S.E. 
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of the samples. Statistical significance was analyzed using ANOVA, Tukey test with P<0.05; 

differences from the control are marked with different letters. 

 

Fig. 7. Violaxanthin prevents UV-B radiation induced CPDs formation in in vitro assays. CPD 

levels in DNA under control conditions (UV-B 0.02 W m-2 for 15 min, C) and after a UV-B 

treatment (UVB 0.5 W m-2) for 5, 10 and 15 min. The DNA was irradiated in the presence of 

rutin (quercetin 3-O-rutinoside, 100 µg mL-1), a flavonol that absorbs UV-B as a positive 

control, or violaxanthin (14 µg mL-1) or in the absence of any compound. 2 g of DNA was 

loaded in each well. Measurements are the average of six samples. Error bars represent 

SEM. Different letters denote statistical differences (Tukey test; P  0.05) applying a two-way 

ANOVA tests using Sigma Stat 3.1. 
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