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Abstract 21 

Microorganisms are major drivers of elemental cycling in the biosphere. Determining 22 

the abundance of microbial functional traits involved in the transformation of nutrients, 23 

including carbon (C), nitrogen (N), phosphorus (P) and sulfur (S), is critical for 24 

assessing microbial functionality in elemental cycling. We developed a high-throughput 25 

quantitative-PCR-based chip, QMEC (Quantitative Microbial Element Cycling), for 26 

assessing and quantifying the genetic potential of microbiota to mineralize soil organic 27 

matter and to release C, N, P and S. QMEC contains 72 primer pairs targeting 64 28 

microbial functional genes for C, N, P, S and methane metabolism. These primer pairs 29 

were characterized by high coverage (average of 18-20 phyla covered per gene) and 30 

sufficient specificity (>70% match rate) with a relatively low detection limit (7-102 31 

copies per run). QMEC was successfully applied to soil and sediment samples, 32 

identifying significantly different structures, abundances and diversities of the 33 

functional genes (P < 0.05). QMEC was also able to determine absolute gene abundance. 34 

QMEC enabled the simultaneous qualitative and quantitative determination of 72 genes 35 

from 72 samples in one run, which is promising for comprehensively investigating 36 

microbially mediated ecological processes and biogeochemical cycles in various 37 

environmental contexts including those of the current global change. 38 

Key words: 39 

microbial genes, functional potential, high-throughput qPCR, elemental cycling, 40 

biogeochemical cycle, ecological process 41 
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Introduction 42 

Microorganisms are the major drivers of biogeochemical cycles on Earth (van der 43 

Heijden et al., 2008), substantially affecting carbon (C) and sulfur (S) metabolism, 44 

organic-matter degradation, nitrogen (N) efflux and phosphorus (P) mobilization in 45 

the environment (Zarraonaindia et al., 2013; Vanwonterghem et al., 2014). Those 46 

processes may result in CO2 elevation, greenhouse gases release, nutrient loading and 47 

water consumption, which coupled with changes of interacting spheres of the earth 48 

(Chapin et al., 2000; Bardgett and van der Putten, 2014). Comprehensive 49 

investigation of microbial taxonomic composition and functional-gene diversity and 50 

abundance are key for a better understanding of microbially mediated biogeochemical 51 

processes and their current global changes (Stevenson and Cole, 1999; Penuelas et al., 52 

2013; Graham et al., 2016).  53 

Culture-independent molecular technologies have been widely adopted to 54 

investigate microbial phylogenetic and functional diversity and to evaluate their 55 

responses to environmental changes (Zhou et al., 2015; Deng et al., 2016; Feng et al., 56 

2017) . The array-based PhyloChip (a high-density 16S gene oligonucleotide 57 

microarray) and high-throughput sequencing of 16S rRNA gene fragments are two 58 

commonly reported methods for determining the structure of microbial-community 59 

composition (Schmidt et al., 1991; Hazen et al., 2010). Metasequencing, including 60 

shotgun metagenomics, metatranscriptomics or their combination, enables the 61 

functional characterization of novel genes, phylotypes, regulators and metabolic 62 

pathways (Weinstock, 2012). The microarray-based GeoChip is more specific than 63 
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sequencing-based technologies for detecting functional genes of interest, especially 64 

genes involved in elemental biogeochemistry (Tu et al., 2014). 65 

Sequencing-based metagenomics and hybridization-based microarray 66 

technologies have been successfully applied in studies of microbial ecology with high 67 

gene coverage and resolution and can generally determine the relative abundance of 68 

microbial taxa and functional genes in microbial communities, enabling comparison 69 

among environmental samples. Relative abundances are the proportions of specific 70 

taxa or genes in microbial communities, enabling the detection of increases or 71 

decreases; however, relative abundance cannot well evaluate the impact of microbial-72 

community size on the abundance of taxa and genes. Quantification of absolute 73 

abundance, i.e. copy numbers of functional genes or their transcripts, is vital for 74 

evaluating the functional capacities and potentials of microbial communities. The 75 

prediction of N-cycling processes can be improved more using information of 76 

functional-gene abundance than microbial diversity (Graham et al., 2016). 77 

Quantitative PCR (qPCR) is the most adopted method to measure the copy number of 78 

functional genes. For example, an analysis of oceanic nitrification identified the 79 

dominant role of amoA (archaeal ammonia mono-oxygenase alpha subunit for aerobic 80 

ammonia oxidation) in an archaeal community by correlating its gene abundance with 81 

ammonium concentration (Wuchter et al., 2006). The abundances of amoA, nirK/S 82 

and nosZ were used to assess the changes in nitrification and denitrification potential 83 

across a vegetation gradient (Petersen et al., 2012). 84 
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Biogeochemical nutrient cycling is a complex process consisting of numerous 85 

steps, each mediated by various functional genes. For example, N cycling is 86 

composed of several processes, including N fixation, nitrification, denitrification, 87 

ammonification, anaerobic ammonium oxidation, organic N mineralization and 88 

assimilatory and dissimilatory N reduction, with over 20 key microbial functional 89 

genes involved, including different forms of nifH, amoA/B, napA, narG, nirS/K, 90 

nosZ, hzo and hzsA/B (Kuypers et al., 2018). The comprehensive evaluation of 91 

microbial functional potential in CNPS biogeochemical cycling requires obtaining 92 

quantitative data for all these genes, which is extremely laborious when using 93 

conventional qPCR to process many environmental samples. Besides, current 94 

knowledge of functional genes involved in P cycling is more limited than for C, N and 95 

S cycling. As far as we know, ppx (exopolyphosphatase), ppk (polyphosphate kinase) 96 

and phytase genes are the most reported P-cycling genes (He et al., 2010). Primers for 97 

genes responsible for inorganic-P solubilization, alkaline phosphatase (hydrolysis of 98 

phosphoric monoesters) and C-P lyase, are not available, which hinders the 99 

quantitative evaluation of microbially mediated P cycling. To address these 100 

limitations, this study 1) designed a set of primer pairs targeting functional genes 101 

involved in P cycling and 2) developed a high-throughput qPCR-based functional-102 

gene chip detection method, QMEC, for the simultaneous quantification of CNPS-103 

cycling genes and further assessment of microbial potentials in CNPS biogeochemical 104 

dynamics and microbial responses to environmental changes. QMEC contains 36 105 

reported and 36 novel primer pairs involved in C, N, P and S cycles. The coverage, 106 
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specificity and efficiency of the designed primers were validated, and the performance 107 

of QMEC was evaluated, by analyzing the functional-gene abundance and diversity of 108 

soil and sediment samples.  109 
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Results 110 

Specificity and coverage of the designed primers 111 

We designed 36 primer pairs that could potentially amplify genes involved in C, N, P 112 

and S cycling (Table S1). These primers annealed to conserved regions of the target 113 

genes and produced amplicons averaging 332 bp (ranging from 240 bp for gdhA to 114 

464 bp for xylA). 115 

    Matched sequences of each gene (434 335 sequences) were phylogenetically 116 

analyzed. A total of 42 phyla were represented, with an average of 18 ± 12 phyla and 117 

a range of two to 30 phyla per gene. The dominant matched taxa were 118 

Alphaproteobacteria (18.4%), Gammaproteobacteria (16.5%) and Actinobacteria 119 

(11.4%). 120 

Assessment of QMEC  121 

The HT-qPCR QMEC results were validated by the quantification of the 18 selected 122 

genes using conventional real-time qPCR under optimal PCR conditions (Figure 1c). 123 

The accuracy for all 18 genes averaged 101.25 ± 8.27%. The abundances of apsA, 124 

dsrB, hzsB, mcrA, nirK1, nirS1, phnK, pqqC and ureC quantified by HT-qPCR were 125 

very similar (nearly 100% accuracy) to those quantified by conventional qPCR. The 126 

average SD and CV of CT from the replicate samples were 0.22 ± 0.17 and 1.06 ± 127 

0.74%, respectively (Table S2). SD was largest for gcd in Q1 at 0.99%, with a CV of 128 



 

8 
 

4.90%. Average LOD estimated from the 18 genes (Table S3) was 78.43 ± 27.08 129 

copies per well. 130 

Application of QMEC to environmental samples 131 

QMEC was then applied to the soil and sediment samples to illustrate the patterns of 132 

microbial functional-gene structures. Nearly all of the 72 genes were detected; only 133 

hzo and hzsA in soil and ipu in sediment were not detected (Table S2). The NMDS 134 

analysis identified significantly different functional-gene structures between the soil 135 

and sediment, where replicates of each sample clustered together and the soil and 136 

sediment samples were well separated along the first axis (Figure 2a). Three replicates 137 

of each gene were gathered and many genes were well separated from each other 138 

(Figure 2b). 139 

Bacterial populations (16S rRNA gene) and the absolute quantities of the 140 

functional genes were significantly larger in all three soil samples than the sediment 141 

samples, but the relative abundances of all functional genes were significantly higher 142 

in the sediment samples (Figure S1, P < 0.05). The clustering analysis of relative gene 143 

abundance found that the soils and sediments were well separated into two clusters 144 

(Figure 2c, P < 0.01). The abundance of functional genes is summarized in Table 1 145 

based on their functions. Nearly all functional genes were significantly more abundant 146 

in soil than sediment except for the genes involved in lignin hydrolysis, anaerobic 147 

ammonium oxidation and S oxidation (Figure S2, P < 0.05), and mcrA abundance 148 

was also higher in sediment. 149 
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The relative abundances of the detected genes were analyzed to determine the 150 

differences between the soil and sediment samples. Gene abundance was generally 151 

lower in the wheat (H1) than the maize (H2) and soybean (H3) soils, and the 152 

abundances of most of the functional genes in H2 and H3 soil differed significantly 153 

from those in the sediments (P < 0.05). The potentials for starch (amyX) and pectin 154 

(pgu) hydrolysis were significantly higher in H2 than H1 and H3 (P < 0.05, Figure 155 

3a), and the abundances of genes for hemicellulose (abfA) and cellulose (cex) 156 

hydrolysis were highest in H3. The abundance of the gene for C fixation (accA) was 157 

significantly higher in soil than sediment (P < 0.05, Figure 3b). The abundances of 158 

pccA, smtA, frdA, mct, rbcL and acsA were significantly higher in H2 and H3 than 159 

H1 (P < 0.05). The genes involved in N fixation were 20-fold more abundant in H3 160 

than H1 and H2 (Figure 3c). The ureC and napA abundances were significantly higher 161 

in soil than sediment, and the genes involved in anaerobic ammonia oxidation (hzo, 162 

hzsA and hzsB) were significantly more abundant in sediment (P < 0.05). The 163 

potentials of organic N mineralization (gdhA) and nitrification (amoA and amoB) 164 

were significantly higher in H2 and H3 than H1 (P < 0.05). Gene abundance (bpp, 165 

cphy, phoD and phoX) for organic-P mineralization was significantly higher in soil 166 

than sediment, and genes for solubilizing inorganic P (gcd and pqqC) were 167 

significantly more abundant in H2 and H3 than H1 (P < 0.05, Figure 3d). The 168 

abundances of some genes for S and methane cycling (dsrA, pmoA and pqq-mdh) 169 

were highest in H1, but others (soxY, apsA and mxaF) were significantly higher in H2 170 

and H3 (P < 0.05 Figure 3e). 171 
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Discussion 172 

Design and assessment of QMEC 173 

This study developed QMEC based on HT-qPCR for comprehensively profiling 174 

functional genes involved in C, N, P, S and methane cycling. Many genes are critical 175 

to CNPS cycling, but the lack of appropriate primers hinders the quantification of 176 

these genes and the further assessment of microbial potential in CNPS cycling. We 177 

successfully designed and introduced 36 new primer pairs targeting these genes to 178 

supplement the missing genetic tools for analyzing microbially mediated 179 

biogeochemical processes. These genes are involved in C hydrolysis, C fixation, 180 

methane metabolism and N, P and S cycling. Previous studies of P cycling have 181 

focused on a limited set of functional genes, e.g. only three genes were targeted by 182 

GeoChip 4.0 (ppx, ppk and phytase) (Tu et al., 2014), which may be inadequate for 183 

the comprehensive evaluation of microbial potentials of organic- or inorganic-P use. 184 

We designed and introduced seven new primer pairs to amplify genes involved in P 185 

cycling: including two acid phosphatase genes (bpp, β-propeller phytase, which is the 186 

dominant phytase in water and soil (Lim et al., 2007), and cphy, ruminal cysteine 187 

phytase (Sebastian and Ammerman, 2009; Ragot et al., 2017)), two alkaline 188 

phosphatase genes for phosphate use (phoD, which has been identified in 13 bacterial 189 

phyla and 71 families in soil (Ragot et al., 2015; Ragot et al., 2017), and phoX, which 190 

is widely distributed in aquatic systems) and phnK, which hydrolyzes 191 

organophosphorus compounds (C-P bonds). The organic acid 2-keto-D-gluconic acid 192 
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has a high ability to solubilize inorganic P (Hwangbo et al., 2003), which requires a 193 

pyrroloquinoline quinone (PQQ) co-factor. We thus designed primer pairs for a PQQ-194 

dependent glucose dehydrogenase gene (gcd) and its cofactor gene pqqC for assessing 195 

the potential for inorganic-P solubilization. 196 

Primer pairs targeting genes with the same function but covering extended taxa 197 

were also designed and introduced in QMEC. Conventional nirK and nirS primers 198 

(nirK1 and nirS1 in this study) typically cover denitrifiers from Alpha-, Beta- and 199 

Gammaproteobacteria (Katsuyama et al., 2008; Yoshida et al., 2012). The recently 200 

reported nirK and nirS primers (nirK2, nirK3, nirS2 and nirS3 in this study) with a 201 

greater diversity of targets, including Actinobacteria, Bacteroidetes, Chloroflexi and 202 

Euryarchaeota, were also introduced for comprehensively estimating denitrifying 203 

potential (Wei et al., 2015). 204 

The specificity and phylogenetic coverage of the primers designed in this study 205 

were assessed by BLAST searches against the NCBI database and the analysis of 206 

amplicon sequences. These primers covered an average of 18 ± 5 phyla. All newly 207 

designed primers had >70% specificity, and 20 primers had >80% specificity (Figure 208 

1a), suggesting that the designed primers were applicable in functional-gene 209 

detection. The 20-30% mismatch rate may have been due to the unified HT-qPCR 210 

protocol to ensure the simultaneous detection of multiple functional genes rather than 211 

to suboptimal amplifying conditions of primer pairs. The phylogenetic analysis 212 

identified distinct taxonomic compositions of functional genes between the soil- and 213 
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sediment-derived sequences, (Figure 1b), suggesting that the coverage of the designed 214 

primers was sufficient to identify various taxa under different environment contexts. 215 

Annealing temperature is critical for accurate amplification since diverse 216 

annealing temperatures may alter primer-binding kinetics and result in quantification 217 

bias, especially in using primers with degenerate positions (Lueders and Friedrich, 218 

2003; Gaby and Buckley, 2017). One benefit of HT-qPCR based on SmartChip Reat-219 

time PCR system was one-time amplifying of numerous genes with one PCR 220 

protocol, which has been extensively proved to be efficient in antibiotic resistance 221 

gene amplification (Chen et al., 2016; Zhu et al., 2017). For further confirm, the 222 

accuracy and precision of QMEC were tested by comparing the results for 18 223 

randomly selected genes to those using conventional qPCR. The amplification 224 

accuracies of QMEC were similar to those for conventional qPCR (Figure 1c, nearly 225 

100%), suggesting that the QMEC protocol could simultaneously detect multiple 226 

genes. The CV was low (1.06 ± 0.74%, Table S2), indicating that QMEC 227 

amplification was stable and precise. This finding was in accordance with a previous 228 

report that WaferGen SmartChip were capable of CT standard deviations <0.2 or CVs 229 

<3% (Saunders, 2013). 230 

Application of QMEC 231 

QMEC was further applied for profiling functional genes in soils and estuary 232 

sediments. Functional-gene structure, gene abundance and gene diversity (Figures 2c, 233 

3, S3 & S4) differed significantly between soil and sediment. Interestingly, the 234 
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relative and absolute abundances of most of the functional genes were reversed 235 

between the soil and sediment samples (Figure 2c). For example, the absolute 236 

abundance of acsA was highest in H2, but its relative abundance was highest in Q3. 237 

Absolute gene abundance in pooled replicate samples from one site were well 238 

separated from the abundance in samples from different sites (Figure 2a), and 239 

absolute gene abundance differed significantly (P < 0.05) between soil and sediment 240 

and between different soils (Figure 3), suggesting that QMEC could successfully 241 

differentiate between functional-gene profiles of different environments. QMEC can 242 

quantify absolute gene abundance (copy number), unlike metagenomic sequencing 243 

and microarrays (Figure S2). Gene copy number of functional gene reflects the 244 

absolute quantities of functional genes in one environmental sample based on qPCR 245 

technology. This technology is commonly applied in ecological studies and believed 246 

to be precise, high-sensitive, reproducible and easy-to-interpret. Previous studies have 247 

found that key biochemical processes were strongly associated with absolute 248 

functional-gene copy numbers. For example, the absolute abundances of various N-249 

cycling genes, including nifH, amoA, nirS, nirK and nosZ, were sensitive to long-250 

term N enrichment in a steppe ecosystem (Zhang et al., 2013). The absolute 251 

abundances of nirS, nirK and other N functional genes were able to account for 252 

differences in denitrifying rate, ammonia availability and rate of nitrate transformation 253 

in different wastewater-treatment systems (Wang et al., 2015; Wang et al., 2016). 254 

Although currently GeoChip and metagenomics are used to acquire microbial 255 

functional genes and their structures and to relate them to biogeochemical processes, 256 
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the gene copy number obtained by qPCR is still of vital importance. For example, 257 

GeoChip was applied in a deep-sea hydrothermal vent to determine the differences of 258 

metabolic function between samples; however, the qPCR method was also used to 259 

quantify the gene copy number of 16S rRNA, mcrA, cbbL and cbbM gene, 260 

interpreting the abundance difference between bacterial and archaea community, 261 

uncovering the potentials of predominant biogeochemical process (methane 262 

metabolism and CO2 fixation) and making relations with functional community 263 

(Wang et al., 2009). A report in Antarctic area used GeoChip to detect the variation of 264 

functional genes with different chemical and biogeochemical properties; however, the 265 

most highly detected N- and C-cycles genes were also precisely quantified by qPCR 266 

to evaluate the functional redundancy (ammonia oxidation, C-fixation, methane 267 

oxidation and generation, etc.) among the dominant microbial community members 268 

(Yergeau et al., 2007). Similar examples could be found in previous studies (Zhou et 269 

al., 2008; Trivedi et al., 2012).  270 

The RNA-level measurements could provide information about microbial 271 

community dynamics because the RNA could directly relate to the specific function of 272 

protein synthesis (Blazewicz et al., 2013). Elser, et al. also indicated the RNA, 273 

especially ribosomal RNA (rRNA) as rapid protein synthesis, directly or indirectly 274 

related with evolutionary processes and consequently ecological dynamics (Elser et 275 

al., 2000). However, the RNA abundance may not always be a greater biogeochemical 276 

indicator than DNA. For instance, a survey of planktonic Crenarchaea in the Pacific 277 

Ocean indicated that the gene abundance (copy number) of amoA, which expressed 278 
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ammonia monooxygenase subunit A for aerobic oxidation of ammonia, strongly 279 

correlated with ocean depth while the transcript of amoA gene (RNA level) showed 280 

non-significant relevance (Church et al., 2010). The meta-transcriptome analysis or 281 

high-throughput sequencing of RNA genes may comprehensively give a functional 282 

profiles of gene expression. For example, a pyrosequencing analysis of microbial 283 

community RNA in ocean surface waters, which produces large amounts of cDNA 284 

fragments, proved that the genes of key metabolic pathway could be obtained and the 285 

abundance of key genes favorably compared to independent qPCR assessments of 286 

individual gene expression (Frias-Lopez et al., 2008). However, the pyrosequencing-287 

based technology, no matter in DNA or RNA level, is prone to artifacts where single 288 

DNA fragments are duplicately sequenced, which limited its application to relate with 289 

biogeochemical potentials. As Gifford, et al. have indicated that qPCR approaches can 290 

provide absolute numbers with greater sensitivity, the actual limitation is 291 

simultaneous detection of a handful of functional genes (Gifford et al., 2011).  292 

The idea of QMEC provides an effective solution to both accurate quantification and 293 

simultaneous detection. However, as all the degenerate primer designer may face, 294 

there existed a non-target amplification of our designed and cited primers. The best 295 

way to avoid this problem is to massively expand testing samples and their types, 296 

which is far more than easy to achieve in this study. The best usage of QMEC is to 297 

make choices of really needed primers rather than using all of them.298 
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Materials and Methods 299 

    QMEC is a qPCR-based chip containing 71 microbial CNPS primers and 1 300 

bacterial taxa primer, which could parallel quantify 72 DNA samples or 24 samples 301 

with 3 replicates in one time. 302 

QMEC primers 303 

QMEC contained a total of 72 primer pairs: 36 designed pairs, 35 published pairs and 304 

one pair targeting the bacterial 16S rRNA gene as the reference gene (Table S1). Most 305 

published primer pairs originated from previous studies, including those targeting a 306 

new functional gene (pqqC) from a recent study (Zheng et al., 2017) or genes with 307 

extended phylogenies such as nirK2, nirK3, nirS2 and nirS3. We designed 36 novel 308 

primer pairs, in which primers specific for acsA, korA, lig, mmoX, phnK, pqq-mdh, 309 

ppx, soxY and yedZ genes were designed based on the conserved regions of amino 310 

acid sequences aligned using ClustalW2 (Larkin et al., 2007). Degenerate primers for 311 

abfA, accA, acsE, amyA, amyX, apu, cdaR, cdh, cex, chiA, exo-chi, frdA, gcd, gdhA, 312 

glx, ipu, manB, mct, mnp, naglu, pccA, pgu, pox, ppk, sga, smtA and xylA were 313 

designed using Primer Premier 5.0 (Lalitha, 2000).  314 

Soil and sediment sampling 315 

Samples of surface soils (0-15 cm) from wheat (Triticum aestivum L.) (H1), maize 316 

(Zea mays L.) (H2) and soybean (Glycine max L.) (H3) fields were collected after 317 

harvest in June 2014 from a long-term cropped site in Hailun, Heilongjiang, China 318 
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(47°26'N, 126°38'E). The samples were lyophilized, sieved (2.0 mm) and stored at -319 

20 °C for further analysis. Sediment samples (top 15 cm) (Q1, Q2 and Q3) were 320 

collected using a grab sampler from the estuary of the Qiantang River in Hangzhou, 321 

Zhejiang, China (30°39'N, 120°52'E) during summer 2013 (Figure S3) (Zhu et al., 322 

2017). All samples were transferred to the laboratory on dry ice and stored at -20 °C 323 

before analysis. 324 

DNA extraction and quantification 325 

DNA was extracted from the soil and sediment samples using the FastDNA Spin Kit 326 

for Soil (MP Biomedicals, Santa Ana, USA) following the manufacturer’s 327 

instructions. DNA quality was checked by ultraviolet absorbance (ND1000, 328 

NanoDrop, Thermo Fisher Scientific, Waltham, USA). DNA concentration was 329 

determined using the QuantiFluor dsDNA kit (Promega, Fitchburg, USA). DNA 330 

extracts were diluted to 50 ng μL-1 with sterilized water and stored at -20 °C before 331 

use. 332 

Validation of primers 333 

The specificity and taxonomic coverage of the 36 designed primer pairs were assessed 334 

by sequence analysis of the corresponding amplicons from the environmental 335 

samples. The DNA extracts from the soil (H1-H3) and sediment (Q1-Q3) samples 336 

were equally mixed as soil- and sediment-derived DNA templates (HD and QD, 337 

respectively). Each 50-μL PCR reaction contained 25 μL of Premix Ex Taq 338 

(TAKARA, Dalian, China), 0.2 μM each primer, 1 ng μL-1 DNA template and 0.1 mg 339 
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mL-1 bovine serum albumin. The samples were amplified with an initial denaturation 340 

at 95 °C for 5 min and 35 cycles of denaturation at 95 °C for 30 s, annealing at 58 °C 341 

for 30 s and extension at 72 °C for30 s, followed by a final extension at 72 °C for 5 342 

min. The PCR products were purified (Universal DNA purification kit, TIANGEN, 343 

Beijing, China), quantified (QuantiFluor dsDNA kit, Promega), pooled at equal molar 344 

concentrations and sequenced using an Illumina Hiseq2500 platform (Novogen, 345 

Tianjin, China). The raw reads were filtered and aligned with bacterial sequences in 346 

the Reference Sequence (RefSeq) database (ftp://ftp.ncbi.nlm.nih.gov/refseq/release) 347 

using Local Blast 2.2.27+ (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.27/). 348 

The e-value of the alignments was set at 10-5, and the highest score was accepted. The 349 

aligned result with hypothetical protein was excluded. All sequences were submitted 350 

to the National Center for Biotechnology Information Sequence Read Archive with 351 

the accession numbers SRP107153 and SRP107154. 352 

HT-qPCR 353 

The H1-H3 soil and Q1-Q3 sediment samples were used as examples for QMEC 354 

detection quantified by HT-qPCR (SmartChip Real-time PCR system, WaferGen 355 

Biosystems, Fremont, USA) using the 16S rRNA gene (F525/R907) as the reference 356 

gene (Su et al., 2015). The chip reaction systems were prepared following manual 357 

instructions. The qPCR protocol was an initial denaturation at 95 °C for 10 min with 358 

40 cycles of denaturation at 95 °C for 30 s, annealing at 58 °C for 30 s and extension 359 

at 72 °C for 30 s. The melting curve was automatically generated by the WaferGen 360 

ftp://ftp.ncbi.nlm.nih.gov/refseq/release
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.27/
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software. Three replicates of each sample were amplified to analyze the 361 

reproducibility of QMEC. Results with multiple melting peaks or amplification 362 

efficiencies <80% and >120% were excluded by the SmartChip qPCR software. The 363 

results with a threshold cycle (CT) <31 were used for further analysis. Relative copy 364 

number was calculated as described by (Looft et al., 2012). Relative gene abundance 365 

was defined as the proportion of the abundance of a functional gene to the abundance 366 

of the 16S rRNA gene (equation 1). Absolute gene abundance was calculated based on 367 

the absolute 16S rRNA gene copy number quantified by conventional qPCR where 368 

Fun and 16S indicate the functional and 16S rRNA genes, respectively (equation 2) 369 

(Zhu et al., 2017). 370 

Gene relative copy number 𝐺𝑅 = (31 − 𝐶𝑇)/(
10

3⁄ )                      (1) 371 

Gene absolute copy number 𝐺𝐴𝐹𝑢𝑛 =
𝐺𝐴16𝑆∙𝐺𝑅𝐹𝑢𝑛

𝐺𝑅16𝑆
                         (2) 372 

Assessment of QMEC 373 

We randomly selected 18 genes (the 16S rRNA gene, apsA, cdaR, chiA, dsrB, frdA, 374 

hzsB, manB, mcrA, nifH, nirK1, nirS1, phnK, phoD, pqqC, rbcL, smtA and ureC) for 375 

quantification by conventional real-time qPCR (LightCycler 480, Hoffmann-La 376 

Roche, Basel, Switzerland) for comparison with the results from the HT-qPCR. The 377 

16S rRNA gene was used as the reference gene (Zheng et al., 2017). DNA from the 378 

HD and QD samples was prepared (n=3) and used for quantification in the 379 

LightCycler 480 System. The reaction mixture consisted of 0.2 μM each primer, 10 ng 380 
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of template DNA and 1× SYBR premix Ex Taq. The protocols for the various genes 381 

are listed in Table S4. Standard plasmids of each genes were prepared by amplifying 382 

the 18 genes in 50-μL volumes containing 1 μL of Premix Ex Taq (TAKARA), 0.2 μM 383 

each primer and 1 ng μL-1 DNA template. The amplicons were then inserted into pMD 384 

19-T vectors (TAKARA). The concentration of plasmid DNA was measured using a 385 

QuantiFluor dsDNA kit (Promega). qPCR Standard curves were generated using 10-386 

fold serially diluted plasmid DNA with 90-110% amplification efficiency. The copy 387 

numbers of the target genes were calculated based on the standard curve and were 388 

compared with those generated from the QMEC results. 389 

    The limit of detection (LOD) of QMEC was determined using 10-fold serial 390 

dilutions of the standard plasmids of the 18 genes from 106 to 1012 copies μL-1, with at 391 

least three replicates for quantification. The reaction system and protocol were the 392 

same as for the HT-qPCR described above. Replicates with CT standard deviations <1 393 

were included in the calculation of LOD.  394 

Statistical Analysis 395 

Mean, standard deviation (SD) and coefficient of variation (CV, the ratio of SD to 396 

mean) were calculated using Office 365. Correlation and variance (ANOVA) analyses 397 

used SPSS Statistics 21.0. Bar plotting and cluster figure generation, nonmetric 398 

multidimensional scaling (NMDS), an analysis of similarity (ANOSIM) and a 399 

heatmap analysis were conducted using the ggplot2 (Ito and Murphy, 2013), plotly 400 
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(Sievert et al., 2016), vegan (Oksanen et al., 2013) and pheatmap (Kolde and Kolde, 401 

2015) packages of RStudio version 3.4.2, respectively. 402 

 403 
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Figure Legends 413 

Figure 1. Assessment of QMEC. (a) Specificity of the 36 designed primer pairs. The 414 

specificities are based on alignment with the Reference Sequence (RefSeq) database. 415 

(b) Relative abundances of the dominant bacterial phyla in the soil and sediment 416 

samples using the 36 pairs. (c) Accuracy of QMEC for the 18 randomly selected 417 

genes. The accuracy indicates the ratio of HT-qPCR copy number to conventional 418 

qPCR copy number. Relative abundances are based on the proportions of DNA 419 

sequences classified at the phylum level. 420 

Figure 2. Nonmetric multidimensional scaling (NMDS) analyses of (a) all replicates 421 

of the six soil and sediment samples and (b) functional genes with three replicates 422 

based on their abundance and diversity. (c) Heatmap analysis of absolute functional-423 

gene abundances (left) and relative abundances (right). The plotted values were 424 

natural-logarithm transformed. 425 

Figure 3. Analysis of functional-gene differences between soil and sediment. 426 

Three soils with different plant hosts (H1-H3) were compared to sediment samples 427 

(Q). (a) Differences in abundance of C-hydrolysis genes. The genes are arranged by 428 

the biodegradability of their target substrates, from labile to recalcitrant. Differences 429 

in the abundances of genes involved in (b) C fixation, (c) N processes and (d) P 430 

cycling. (e) Differences in the abundances of genes involved in methane metabolism 431 

and S cycling. Error bars represent standard errors. Different letters indicate 432 
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significant differences between soil samples at P < 0.05. ** indicates significant 433 

differences between soil and sediment samples at P < 0.05. 434 
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Table 1. Summary of functional-gene abundance. 640 

Gene category 
Gene 

number 
Gene names 

Gene abundance (copies × 107 g-1 soil) 

H1 H2 H3 Q1 Q2 Q3 

C cycling 35        

  Carbon hydrolysis 18        

    Starch 5 amyA, amyX, apu, sga, ipu 43.93 ± 15.15 bc 135.3 ± 38.43 a 13.01 ± 4.573 d 20.13 ± 1.388 cd 31.01 ± 3.056 cd 64.03 ± 9.818 b 

    Hemicellulose 3 abfA, manB, xylA 27.01 ± 3.920 cd 88.37 ± 10.64 a 71.09 ± 10.30 b 9.228 ± 0.465 e 14.34 ± 0.696 de 31.87 ± 2.906 c 

    Cellulose 3 cdh, cex, naglu 7.147 ± 1.278 cd 21.03 ± 5.546 a 15.73 ± 2.155 b 3.218 ± 0.144 d 4.897 ± 0.413 d 9.239 ± 1.507 c 

    Chitin 2 chiA, exo-chi 3.319 ± 1.629 bc 8.546 ± 1.532 a 7.251 ± 1.937 a 1.852 ± 0.216 c 2.497 ± 1.132 c 4.752 ± 0.676 b 

    Pectin 1 pgu 1.640 ± 0.236 cd 5.341 ± 0.356 b 7.023 ± 0.852 a 0.408 ± 0.102 e 1.032 ± 0.183 de 2.279 ± 0.289 c 

    Lignin 4 glx, lig, mnp, pox 26.50 ± 12.49 b 77.38 ± 13.47 a 17.33 ± 3.776 bc 11.67 ± 1.571 c 24.43 ± 1.941 bc 71.69 ± 8.096 a 

  C fixation 13 accA, aclB, acsA, acsB, acsE, frdA, cdaR, 

korA, mcrA, mct, pccA, rbcL, smtA 

282.3 ± 76.16 c 757.6 ± 136.5 a 769.8 ± 115.4 a 132.5 ± 7.144 d 224.0 ± 18.81 cd 464.5 ± 62.61 b 

  Methane metabolism 4        

    Methane production 2 mxaF, pqq-mdh 14.64 ± 5.961 d 43.15 ± 5.451 b 71.21 ± 15.72 a 11.01 ± 1.067 e 14.94 ± 1.445 d 22.52 ± 0.564 c 

    Methane oxidation 2 mmoX, pmoA 7.704 ± 2.294 c 25.66 ± 6.044 a 27.59 ± 6.419 a 6.135 ± 0.358 c 9.343 ± 0.661 c 16.02 ± 2.108 b 

N cycling 22        

  N fixation 1 nifH 0.791 ± 0.297 b 2.623 ± 0.292 b 31.70 ± 4.262 a 1.394 ± 0.046 b 1.360 ± 0.093 b 1.022 ± 0.252 b 

  Nitrification 4 amoA1, amoA2, amoB, hao, nxrA 23.53 ± 9.141 d 105.7 ± 16.26 a 66.05 ± 10.75 b 13.70 ± 3.023 d 26.14 ± 2.589 cd 40.76 ± 4.386 c 

  Denitrification 9 narG, nirK1, nirK2, nirK3, nirS1, nirS2, nirS3, 

nosZ1, nosZ2 

97.36 ± 23.98 bc 304.7 ± 55.08 a 357.2 ± 73.10 a 60.71 ± 10.04 c 104.0 ± 8.829 bc 126.9 ± 17.32 b 

  Ammonification 1 ureC 34.53 ± 8.571 b 86.40 ± 21.53 a 81.10 ± 10.91 a 3.718 ± 0.284 c 5.058 ± 0.236 c 7.049 ± 1.215 c 

  Anaerobic ammonium oxidation 3 hzo, hzsA, hzsB 0.039 ± 0.027 b 0.087 ± 0.009 b 0.093 ± 0.013 b 0.080 ± 0.022 b 0.139 ± 0.015 b 0.786 ± 0.177 a 

  Assimilatory N reduction 1 nasA 0.035 ± 0.007 c 0.267 ± 0.048 b 0.793 ± 0.106 a 0.032 ± 0.004 c 0.091 ± 0.029 c 0.108 ± 0.018 c 

  Dissimilatory N reduction 1 napA 1.857 ± 0.397 c 5.317 ± 0.716 a 2.748 ± 0.370 b 0.547 ± 0.069 d 0.637 ± 0.079 d 0.671 ± 0.079 d 

  Organic N mineralization 1 gdhA 14.31 ± 3.632 bc 44.77 ± 6.415 a 52.52 ± 11.62 a 8.270 ± 2.268 c 14.12 ± 2.306 bc 21.98 ± 1.712 b 

P cycling 9        

  Organic P mineralization 5 bpp, cphy, phnK, phoD, phoX 67.47 ± 29.84 bc 181.9 ± 35.04 a 120.1 ± 33.62 b 20.04 ± 1.751 c 33.51 ± 2.430 c 79.20 ± 60.76 bc 

  Inorganic P solubilization 3 gcd, pqqC 17.87 ± 3.411 b 70.94 ± 20.22 a 46.66 ± 37.61 ab 3.891 ± 0.332 e 6.484 ± 0.285 d 8.810 ± 1.108 c 

  Inorganic P biosynthesis 1 ppk 0.185 ± 0.085 c 0.471 ± 0.119 b 0.782 ± 0.105 a 0.178 ± 0.029 c 0.297 ± 0.063 c 0.489 ± 0.086 b 

  Inorganic P hydrolysis 1 ppx 104.4 ± 52.52 cd 286.9 ± 38.77 b 359.4 ± 60.22 a 67.81 ± 11.96 d 93.15 ± 13.82 cd 153.8 ± 23.04 c 

S cycling 5        

  S reduction 3 apsA, dsrA, dsrB 23.75 ± 8.191 d 80.17 ± 12.81 b 109.2 ± 16.01 a 17.28 ± 1.275 d 24.97 ± 4.329 d 43.06 ± 5.872 c 

  S oxidation 2 soxY, yedZ 16.39 ± 2.048 c 54.00 ± 11.53 a 46.83 ± 16.40 a 16.73 ± 3.162 c 27.87 ± 2.802 bc 39.77 ± 8.108 ab 

Phylogenetic marker 1 16S rRNA gene 312.7 ± 68.49 b 519.2 ± 66.00 a 576.8 ± 77.56 a 60.66 ± 3.062 c 71.81 ± 3.857 c 86.20 ± 12.14 c 

Means ± standard errors. Different letters within a row indicate significant differences at P < 0.05. 641 
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Figure 3 648 


