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Plant phenology is a sensitive indicator of climate change1-4, and plays a significant role in 40 

regulating carbon uptake by plants5-7. Previous studies have focused on spring leaf-out by 41 

daytime temperature and the onset of snowmelt time8-9, but the drivers controlling leaf 42 

senescence date (LSD) in autumn remain largely unknown10-12. Using long-term ground 43 

phenological records (14536 time series since the 1900s) and satellite greenness 44 

observations dating back to the 1980s, we show that rising preseason maximum daytime 45 

(Tday) and minimum nighttime (Tnight) temperatures had contrasting effects on the timing of 46 

autumn LSD in the Northern Hemisphere (>20°N). If higher Tday leads to an earlier or later 47 

LSD, an increase in Tnight systematically drives LSD to occur oppositely. Contrasting 48 

impacts of daytime and nighttime warming on drought stress may be the underlying 49 

mechanism. A new LSD model considering these opposite effects improved autumn 50 

phenology modeling, and predicted an overall earlier autumn LSD by the end of this 51 

century compared with traditional projections. These results challenge the notion of 52 

prolonged growth under higher autumn temperatures, suggesting instead that leaf 53 

senescence in the Northern Hemisphere will begin earlier than currently expected, 54 

causing a positive climate feedback. 55 

 56 

Climate change over the last several decades has modified the dates of plant flowering, 57 

leaf emergence, growth stages, and senescence, collectively termed phenology13 with 58 

substantial ecological and environmental consequences4. Both observations and model 59 

simulations have found that air temperature has a positive influence on the onset of plant 60 

growth in the Northern Hemisphere (NH), e.g., higher spring temperature triggers earlier 61 
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leaf-out and flowering dates and hence extends the growing season8,14-15. In contrast to 62 

those extensive research efforts on spring phenology, autumn phenology, particularly leaf 63 

senescence date (LSD), is more challenging to understand, and has not received 64 

sufficient attention16,17, while also serving as an important indicator of changing foliar 65 

physiological properties. Yet, autumn phenology may be as important as spring in 66 

regulating the interannual variability of carbon balance7.  67 

 68 

LSD has been occurring later in most regions over the last few decades18, but providing 69 

an explanation for this change is difficult9. An increase in global temperature is assumed 70 

to be a driver of LSD trends19, but studies indicated that the contribution of temperature to 71 

LSD variability is low, especially compared to spring phenology20,21. We argue that 72 

ignoring the asymmetric effects22 of daytime maximum temperature (Tday) versus 73 

nighttime minimum temperature (Tnight) and their differing impacts on LSD, contributes to 74 

the reported overall low contribution of temperature to LSD variability. To test this, we 75 

used measured and gridded preseason (defined as months from June to LSD) Tday and 76 

Tnight in the NH, together with LSD data from three different datasets: (a) long-term 77 

phenological observations at ground sites from 14536 time series since the 1900s (Fig. 78 

S1), (b) the latest third generation of the Normalized Difference Vegetation Index (NDVI, 79 

GIMMS3g.v1) for 1982-2015, and (c) NDVI and enhanced vegetation index (EVI) from the 80 

Moderate Resolution Imaging Spectroradiometer  (MODIS) products for 2001-2015. 81 

 82 

Preseason forcing had a better predictive strength on LSD than either summer or autumn 83 
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climate forcing alone (Fig. S2). Because preseason Tday and Tnight were highly correlated, 84 

we used a partial correlation to remove the effects of Tnight and of precipitation and 85 

radiation (similarly for Tnight) to investigate the response of LSD to Tday. Correlations were 86 

classified into four types, (A) Tday+Tnight+, (B) Tday-Tnight-, (C) Tday+Tnight- and (D) Tday-Tnight+, 87 

where T+, T- represent positive and negative partial correlation coefficient of T with LSD.  88 

 89 

Overall, all three datasets suggested that the onset of autumn LSD responded oppositely 90 

to Tday and Tnight. The proportions of ground sites of Types A and B were significantly lower 91 

than those of Type C and D (Fig. 1a). More significant R values for both Tday and Tnight 92 

were found within Types C and D, with only two and one records out of 2231 time series 93 

having significant R within Type A and B, respectively. These results from ground sites 94 

are consistent with those for the two satellite greenness products (Fig. 1b, c). Types C and 95 

D together accounted for 83.7 and 80.0% for GIMMS3g and MODIS pixels, respectively. 96 

Only 0.8 and 1.5% of the pixels had the same sign of response of LSD to Tday or Tnight (i.e. 97 

significant pixels for Types A+B) for GIMMS3g and MODIS, respectively. The GIMMS3g 98 

dataset contained different fractions of Types C and D (45.6% vs. 38.1%), but the 99 

compositions of Type C and D in GIMMS3g (i.e., contrasting effects of night and day 100 

temperatures) became more consistent with the MODIS results when the overlapping 101 

periods between the two sensors is considered (Figs. S3-4). More details on the fractions 102 

of the four correlation types for different vegetation types are provided in Figs. S5-6.  103 

 104 

Figure 1 Frequency of the partial correlation coefficient (R) between leaf senescence date 105 
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(LSD) and daytime (Tday), nighttime (Tnight) temperatures. (a) Data for 14536 time series of 106 

ground sites, (b) the GIMMS3g dataset for 1982-2015, and (c) the MODIS product for 107 

2001-2015. T+, T- represent positive and negative partial correlation coefficient of T with 108 

LSD. Significance was set at P < 0.05. 109 

 110 

The satellite greenness products also allowed us to evaluate spatial patterns of LSD 111 

changes in response to variations in Tday and Tnight (Fig. 2). For the GIMMS3g data, higher 112 

Tday was associated with a delayed LSD for 10.7% of the pixels (mostly boreal regions) 113 

and with an earlier LSD for 7.5% of the pixels (central North America, borders of Eurasia 114 

and central China). Tnight had evident opposite influences on LSD than Tday. The patterns 115 

of opposite effects from Tday and Tnight on LSD were highly spatially consistent in all 116 

regions where Tday and Tnight were significantly correlated with LSD. Similar results were 117 

obtained with MODIS observations (Fig. 2b, d). LSD for approximately 20% all pixels was 118 

significantly correlated with Tday, of which 60.1 and 39.9% were negatively and positively 119 

correlated, respectively. The area where LSD was positively correlated with Tnight was 120 

larger (9.4%) than the area with negative correlations (6.5%).  121 

 122 

Vegetation grouped into Köppen-Geiger zones showed contrasting patterns between the 123 

effects of Tday and Tnight on LSD (Fig. 2e, f). Type D was more widely distributed, while 124 

Type C was more common for continental climates. Monsoon-influenced but not 125 

extremely cold regions and mild climates also had higher proportions of Type C. Grouping 126 

these correlation types by vegetation types lead to similar results (Fig. 2g, h). In theory, 127 
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we would expect to find Type C more in wet vegetation types and Type D in dry types. The 128 

real world seems to show the same thing but still there could be many locations that do 129 

not neatly fall into that continuum and suggests additional mechanisms may work, 130 

probably adaption. 131 

 132 

Figure 2 Spatial distributions of the partial correlation coefficient (R) between leaf 133 

senescence date (LSD) and daytime (Tday), nighttime (Tnight) temperatures. R+, R- 134 

represent positive and negative partial correlation coefficient of T with LSD. (a) LSD vs. 135 

Tday for GIMMS3g, (b) LSD vs. Tday for MODIS, (c) LSD vs. Tnight for GIMMS3g, and (d) 136 

LSD vs. Tnight for MODIS. (e), (f), represent distributions of correlation types in 137 

Köppen-Geiger climatic classification using GIMMS3g and MODIS, respectively. (g) and 138 

(h) represent distributions of correlation types for vegetation types (see Methods) using 139 

GIMMS3g and MODIS, respectively. Significance was set at P < 0.05. 140 

  141 

Our results suggest that ecological trade-offs, particularly those driven by regional 142 

differences in water stress, may underlie the contrasting relationships between LSD and 143 

Tday and Tnight. Type C was mostly found in humid regions where water is a less limiting 144 

factor for plant growth. In these cases, a higher Tday, in the likely absence of severe water 145 

stress, benefits photosynthesis while elevated Tnight increases nighttime leaf respiration. 146 

 147 

Explanations for the prevalence of Type D relations in dry regions are more complicated. 148 

The Standardized Precipitation Evapotranspiration Index (SPEI)23, an indicator of drought 149 
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stress, accounted for the contrasting effects of increases in Tday and Tnight on LSD for Type 150 

D (Fig. 3). Partial correlation data indicate that increased Tday is negatively correlated with 151 

SPEI (Fig. 3a), a stronger sensitivity to drought in dry regions that negatively affects plant 152 

growth and consequently leads to an earlier LSD. In contrast, we found that an increase in 153 

Tnight is associated with a higher SPEI, that is, wetter conditions, and arguably reduced 154 

water stress, which could extend the duration of photosynthesisand lead to delayed LSD 155 

(Fig. 3b). The latter mechanism is consistent with the generally positive partial correlation 156 

values between evapotranspiration (ET) and Tnight, that is, more soil moisture being 157 

available for ET in the lateseason, and sustaining delayed LSD (Fig. 3f), and with studies 158 

showing that water stress accelerates leaf drop in dry ecosystems more so than in humid 159 

ecosystems24. The responses of radiation to Tday and Tnight may also be viewed as a 160 

further evidence for the linkage between leaf senescence and plant water status to 161 

support the contrasting patterns (Fig. S7), given that a higher Tday was associated with 162 

stronger radiation and potentially a higher chance of water stress. These findings suggest 163 

that dry regions, in which Type D dominates, may be especially vulnerable to earlier onset 164 

of LSD if climate change reduces local precipitation and increases daytime evaporation 165 

with rising Tday. 166 

 167 

Apart from physiological mechanisms relating to water stress, ecological processes may 168 

also contribute to these patterns. Warmer daytime versus nighttime temperature may 169 

have contrasting effects on different species since species adaptations lead to intrinsic 170 

differences in their timing of leaf emergence and senescence that are optimized to 171 
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maximize carbon gain and minimize water losses25-27. The ecosystem-scale responses of 172 

phenology reflects the scaled responses of ecological dynamics of multiple individual 173 

species gaining or losing a competitive advantage in a changing climate, or presenting an 174 

induced advantage as a result of land-use change and planting17,26. Recent results 175 

suggest that the magnitude of phenological change to effects by shifts in plant species 176 

composition may be similar as that by climate change27, and the autumn phenology may 177 

thus change accordingly. 178 

 179 

Figure 3 Partial correlation coefficient (R) between the Standardized Precipitation 180 

Evapotranspiration Index (SPEI), evapotranspiration (ET), and daytime (Tday), nighttime 181 

(Tnight) temperatures. (a) SPEI vs. Tday for GIMMS3g, (b) SPEI vs. Tnight for GIMMS3g, (c) 182 

SPEI vs. Tday for MODIS, (d) SPEI vs. Tnight for MODIS, (e) ET vs. Tday for MODIS, and (f) 183 

ET vs. Tnight for MODIS. Significance was set at P < 0.05. 184 

 185 

We tested the implications of the observation analysis on future trends in autumn LSD by 186 

developing a weighted day-night-temperature growing-degree-day (DNGDD) algorithm 187 

incorporating these opposite changes in LSD to Tday and Tnight (see Methods). The new 188 

model substantially improved LSD modeling (in terms of R (Figs. S8-10), RMSE (Figs. 189 

S11-13) and percentage of significant pixels (Figs. S14-15)) compared with the currently 190 

used threshold or GDD methods both for the overall dataset and for vegetation types.  191 

 192 

Spatial patterns of improvements using MODIS and GIMMS3g were also investigated 193 
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(Figs. S16-17). The results from MODIS and the ground sites (Fig. S18) were more 194 

consistent with the new model, and the accuracy of the threshold method was much lower, 195 

so we used the coefficients from the MODIS data to predict LSD variability by the end of 196 

this century using traditional GDD and DNGDD algorithms under two Representative 197 

Concentration Pathways (RCP) scenarios (RCP 4.5 and RCP 8.5) (Fig. S19, and Fig. 4). 198 

 199 

LSD from the DNGDD method was overall earlier than conventional predictions across 200 

Köppen-Geiger climatic classification types. Globally, LSD was earlier for about 68% of 201 

the terrestrial biosphere under RCP 4.5 and for about 70% under RCP 8.5. LSD was 202 

mostly later for central North America, western Russia, and southwestern China. Most 203 

vegetation types showed earlier LSD estimates under two RCP scenarios while the 204 

temperate grasslands were expected to have later senescence dates. 205 

 206 

 207 

Figure 4 Leaf senescence date (LSD) differences from the weighted 208 

day-night-temperature growing-degree-day (DNGDD) and traditional GDD 209 

(LSDDNGDD-LSDGDD) models under two RCP scenarios. (a), (b), (c) represent 210 

LSDDNGDD-LSDGDD under RCP 4.5, and averages of differences for the Köppen-Geiger 211 

climatic classification, and vegetation types, respectively. (d), (e), (f) represent 212 

LSDDNGDD-LSDGDD under RCP 8.5, and averages of differences for the Köppen-Geiger 213 

climatic classification, and vegetation types, respectively.  214 

 215 
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Climatic variability, particularly temperature, has driven phenological changes over the 216 

last several decades but has been challenging to predict. Our ability to predict autumn 217 

LSD is particularly limited. We are the first to report, using14536 ground time series and 218 

more than 30 years of remotely sensed observations, the opposite responses of LSD to 219 

daytime and nighttime warming, providing a new perspective to account for the previous 220 

low estimation accuracy of autumn LSD when relying solely on mean temperature. A 221 

model based on mean temperature cannot correctly predict LSD changes, because LSD 222 

responds to Tday and Tnight in opposite directions. Our results also provide a perspective to 223 

account for the carry-over effects between spring and autumn phenology, i.e. the start and 224 

end of a growing season always move in the same direction28. An earlier start of a season 225 

is mainly triggered by higher spring temperatures, with increased growth depleting soil 226 

water29, which is then associated with autumn drought, inducing a reduction in growth and 227 

consequently leading to an earlier end to the growing season30.  228 

 229 

Our improvement in modeling autumn phenology is a strong and convincing evidence for 230 

the value of incorporating daytime and nighttime temperatures in terrestrial models, rather 231 

than mean temperature alone. The application of this model projects an overall earlier 232 

than currently expected start of autumn senescence in the NH by the end of this century, 233 

particularly in dry regions. The earlier data of autumn senescence may be a potentially 234 

unrecognized positive feedback to climate change and consequently a weakening in the 235 

capability of terrestrial carbon uptake. 236 

 237 
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 331 

Methods 332 

1. Phenological observation data 333 

    We used observations of leaf senescence date (LSD) from three independent 334 

phenological datasets.  335 

1) The Pan European Phenological Database (PEP725; http://www.pep725.eu/), an 336 

open-access database with long term plant phenological observations (since 1868) 337 

from 19608 sites and 78 species across 25 European countries.  338 

2) The China Phenological Observation Network (CPON), with data since 1963 for >100 339 

species at 42 sites across China.  340 

3) LSD data for two tree species (Acer palmatum and Ginkgo biloba) at 54 meteorological 341 

stations in South Korea for 1989-200731.  342 

    The definitions of LSD notably differ among the datasets. LSD for the PEP725, CPON, 343 

and Korean datasets is defined as the date when 50, 90, and 20% of the tree leaves, 344 

respectively, change color from green to red or yellow. We removed outliers using the 345 

methods32 to exclude potential biases and inadequate degrees of freedom and focused on 346 

time series with at least 15 years of records for1900-2015. We thus analyzed 14536 LSD 347 
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time series for 24 species (Table S1). 348 

 349 

2. LSD derived from satellite data 350 

LSD in the Northern Hemisphere was determined using two satellite-derived 351 

vegetation indices, the Normalized Difference Vegetation Index (NDVI) and the Enhanced 352 

Vegetation Index (EVI)33. Both NDVI and EVI are direct indictors of vegetation growth and 353 

have been widely applied for investigating vegetation phenology34. We used two datasets 354 

to reduce the uncertainties caused by a single data source: GIMMS NDVI third-generation 355 

(NDVI3g) data derived from the Advanced Very High Resolution Radiometer (AVHRR) 356 

and NDVI and EVI derived from the Moderate Resolution Imaging Spectroradiometer 357 

(MODIS). The GIMMS NDVI3g data have a spatial resolution of 1/12°, a half-month 358 

interval, and a 34-year time span (1982-2015). The MODIS 16-day composite product 359 

MOD13C1 (Collection 6) includes both NDVI and EVI with a 0.05° resolution for 360 

2001-2015.  361 

We eliminated the impacts of areas with sparse vegetation on the results by first 362 

excluding pixels with annual NDVI <0.1 or annual EVI <0.0835. A Savitzky-Golay filter was 363 

then used to smooth the NDVI (EVI) time series36. We then estimated LSD using two 364 

methods.  365 

The first method was a dynamic-threshold approach, which uses an annually defined 366 

threshold for each pixel based on the NDVI ratio: 367 

    )/()( minmaxmin NDVINDVINDVINDVINDVI ratio −−=    (1) 368 

where NDVI is the daily NDVI and NDVImax and NDVImin are the annual daily maximum 369 
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and minimum of NDVIs. The NDVIratio ranges from 0 to 1. LSD is determined when 370 

NDVIratio decreases to 0.5 in autumn37,38.  371 

The second method was based on a series of piecewise logistic functions. The NDVI 372 

time series were first divided into two sections by the maximum daily NDVI in each year, 373 

and a double logistic function was applied to fit each section39: 374 

    

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LSD was then defined as the time when the curvature changing rate reached its last 376 

local maximum value. 377 

For GIMMS3g data, we calculated LSD using NDVI from both the dynamic-threshold 378 

approach and the piecewise logistic function method. Since MODIS sensor provides EVI, 379 

we further used EVI-based logistic function method to derive LSD. To sum up, for 380 

GIMMS3g data, average LSD from threshold and logistic function method were used, and 381 

for MODIS, an additional LSD from EVI-based logistic function method was used (not for 382 

MODIS NDVI data).  383 

At high latitudes (or elevations), snow cover is important for regional climate and 384 

arrives early in autumn and potentially masking evergreen vegetation. However, we 385 

suggested that using a Savitzky-Golay filter could solve the noise from a "sudden" change 386 

in the time series of NDVI due to snow36. In particular, a study showed that snowfall had 387 

little influence on determining EOS in western Arctic Russia41. For high elevations, our 388 

previous analysis on Tibetan Plateau showed that for more than 98% of regions snow 389 

happened later than LSD42. 390 

 391 
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3. Climatic data 392 

We used the CRU-TS 4.00 dataset with a spatial resolution of 0.5°×0.5° for 393 

1901-2015. We extracted monthly data for Tmax, Tmin, Tmean, precipitation, and cloud cover 394 

from this dataset for analyzing LSD from in-situ observations and the two remote sensing 395 

data. We modeled past and future LSD by temperature by acquiring daily gridded data for 396 

maximum and minimum temperature with a spatial resolution of 0.5° from NOAA Earth 397 

System Research Laboratory Physical Sciences Division for 1982-2015. We used daily 398 

Tmax and Tmin simulated by the CCSM 4 model under two climatic scenarios (RCP4.5 and 399 

RCP8.5) for future climatic data (2081-2100). These data were from an open-access 400 

database of the Coupled Model Intercomparison Project Phase 5. 401 

 402 

4. Analyses 403 

We used partial correlation analyses to determine the responses of LSD to Tday and 404 

Tnight. The reason is that directly correlating LSD to Tday would give misleading results 405 

since Tnight is a confounding variable that is numerically related to both LSD and Tday, 406 

violating independence of variables in multiple correlation tests. Thus, using the partial 407 

correlation between LSD and Tday will measure the degree of association with the effect of 408 

a set of controlling random variables removed (e.g., Tnight, precipitation, radiation), given 409 

that these factors have shown strong influences on LSD10, 20. Since Echer and Silva (2014) 410 

demonstrated that clouds are the main atmospheric factor modulating the surface 411 

incidence of solar radiation43, cloud cover data was used to model the effect of radiation 412 

on LSD, as similarly conducted in previous analyses8. Correlations were classified into 413 
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four types, (A) Tday+Tnight+, (B) Tday-Tnight-, (C) Tday+Tnight- and (D) Tday-Tnight+, where T+, T- 414 

represent positive and negative partial correlation coefficient of T with LSD. An R of at 415 

least 0.514 for MODIS is required for the significance test (p = 0.05), but this value 416 

decreases to 0.339 for the longer GIMMS3g data. These analyses were investigated for 417 

both Köppen-Geiger climatic classifications and vegetation types (Table S240). Crops 418 

were excluded because their signal may result from changes in cropping or harvest cycles, 419 

rather than from climate change. Furthermore, since at low latitudes plant phenology of 420 

tropical and subtropical areas responds to other factors than temperature, regions with 421 

latitudes < 20° N were also excluded. 422 

Current phenology algorithms in most terrestrial-biosphere models are solely based 423 

on temperatures in the preceding months44-45. We determined the length of the preseason 424 

whose average Tday had the most influence on LSD by calculating the partial correlation 425 

coefficients between LSD and mean Tday during 0, 1, 2, … n months prior to LSD, 426 

controlling for corresponding mean Tnight, total precipitation, and radiation. The maximum 427 

range (n) of the preseason is generally from June to the multiyear mean date of LSD (see 428 

Fig. S20 for example). The partial correlation coefficients with the highest absolute values 429 

were then used in the following analysis. We obtained the relationship between LSD and 430 

Tnight the same way but replacing Tday with Tnight. This analytical procedure was applied for 431 

observed LSD from ground sites and derived LSD from the MODIS and GIMMS NDVI3g 432 

data. 433 

 434 

5. Models for predicting LSD 435 
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Our results indicated that LSD responded oppositely to Tday and Tnight, so we 436 

developed a weighted day-night-temperature growing-degree-day (DNGDD) algorithm from 437 

observations to model LSD, and compared the algorithm with currently used threshold 438 

and GDD models based on Tmean46. 439 

The threshold model was the simplest method. We calculated average Tmean for five 440 

days before LSD in each year and used the multiyear mean value as the threshold to 441 

model LSD. If Tmean was lower than the threshold for five consecutive days from 1st July, 442 

the last date was considered the LSD.  443 

GDD was calculated as: 444 

)0),(max()( dTTdGDD meanb −=                                           (3) 445 


=

=
LCD

dd
threshold dGDDGDD

0

)(                                                 (4) 446 

where Tb is the base temperature set to 15, 20, 25, and 30 °C, Tmean (d) is the mean 447 

daily temperature, and d0 is the date on which the calculation begins (1st July in this 448 

study). LSD is the observed or derived date of leaf coloring in each year. The date when 449 

GDD(d) exceeded the multiyear average GDD threshold was defined as LSD. 450 

Our DNGDD model improved upon the original GDD model and was calculated by: 451 

)0),(max()1()0),(max()( dTTkdTTkdGDD nightbdayb −⋅−+−⋅=        (5) 452 

where Tday(d) is the daily maximum temperature, Tnight(d) is the daily minimum 453 

temperature, and k is the weighting factor. When 0<k<1, the effects of Tday and Tnight on 454 

LSD are consistently positive; When k>1 or k<0, the effects of Tday and Tnight on LSD are 455 

opposite. In order to determine the value of k, we first calculated the ratio of Rday and Rnight 456 

for each station or pixel, and found 99.9% of the ratio values were between -10 and 10 for 457 
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both ground and satellite data (Figure S21). In other words, the level of Tday(Tnight) effect 458 

could be 1 to 10 times than the level of Tnight(Tday) effect (note that Tday represents Tday with 459 

the effects of Tnight removed). Therefore, the values of k ranged from –1 to 2 (see Table 460 

S3). In addition, when k tends to infinity, the effects of Tday and Tnight on LSD are opposite 461 

with same level. 462 

We evaluated the accuracy and obtained the most appropriate parameters of the 463 

models by calculating the correlation coefficient (R) and the root mean square error 464 

(RMSE) between modeled and observed LSD. Tb and k with the lowest RMSE were 465 

considered the most appropriate values for each site or pixel. 466 

 467 

Data Availability 468 

The data that support the findings of this study are available from the corresponding 469 

author upon request. 470 

 471 
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