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ABSTRACT.  

A screen-printed electroluminescent display with different sensing capabilities is presented. The 

sensing principle is based on the direct relationship between the light intensity of the lamp and 

the conductivity of the external layers. The proposed device is able to detect the ionic 

concentration of any conductive species. Using both top and bottom emission architectures, for 

the first time, a humidity sensor based on electroluminescent display functionalized by graphene 

oxide nanocomposite is introduced. In this regard, just by coupling the display to a smartphone 

camera sensor, its potential was expanded for automatically monitoring human respiration in real 

time. Besides, the research includes a responsive display in which the light is spatially turned on 

in response to pencil drawing or any other conductive media. The above-mentioned features 

together with the easiness of manufacturing and cost-effectiveness of this electroluminescent 

display can open up great opportunities to exploit it in sensing applications and point of care 

diagnosis. 

 

INTRODUCTION 

The growing and continuous demand for flexible optoelectronics1-8 together with the evolution 

of wearable/portable electronics accessories have made possible that devices with good 

mechanical manipulation as folding, bending or rolling open up new opportunities for diverse 

applications9-17. In this perspective, alternating current electroluminescent (ACEL) displays are 

very promising due to their intrinsic ability of uniform light emission, low heat generation, 

flexible architecture and low power consumption18-21. Also, this type of devices can be easily 

fabricated by inexpensive screen-printing methods. So far, ACEL has been extensively used in 
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commercial applications such as black lighting, decorative lighting, panel display or even large-

scale billboard19, 22-24. Nevertheless, the expansion of ACEL display technology toward the 

sensing field is still rather limited and have been barely exploited25-26 representing, therefore, a 

big challenge for the scientific community.  

Usually, to build a conventional ACEL display, transparent conductive materials on a 

transparent substrate are strictly required as a rear electrode in which the emitted light goes 

through the substrate located at the bottom20, 27-29. The transparent electrode produced from 

indium tin oxide (ITO) is typically used for this purpose. Alternatively, top-emission structure 

(TES) has been explored19. In TES architecture, the light from the phosphor layer is emitted 

directly through a top transparent conductive material, while the substrate is at the bottom (see 

Figure 1a). In contrast to bottom-emission structure (BES), this reversed architecture usually 

yields a higher brightness (under the same applied voltage) due to the shorter light path19. 

Besides, various substrates (e.g. paper, plastic or textile) can be chosen since there is no requisite 

for the substrate to be transparent30-31. By taking advantage of the different configurations, we 

envisioned that an ACEL display would be useful to create a versatile sensing platform. The light 

emission of an ACEL display mainly relies on the conductivities of the top conductive layer32. 

Hence, the change in conductance in the top layer of the ACEL display coming from an exposure 

of ions/charge carriers could alter the intensity of the emitted light. The direct relationship 

between the luminance and the conductivity could lead to sensing of a variety of conductive 

species, through the electroluminescence monitoring.  

In this study, we engineered a powerful sensor based on ACEL display architecture lacking in 

the top electrode. This sensor is capable to detect and directly visualize the target analyte. To 

demonstrate its sensing ability, the ionic concentration of various water samples was monitored 
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as proof of concept. In addition, we took advantages of graphene oxide (GO) and its interesting 

properties in devices applications33-35. Using both TES and BES architectures, for the first time, a 

humidity sensor based on ACEL display functionalized by GO nanocomposite is introduced. 

Furthermore, we demonstrated the high-performance of the developed sensor as point-of-care 

(POC) device to monitor human breath which may be interesting for further applications. 

 

RESULTS AND DISCUSSION 

An ACEL lamp was fabricated using a screen-printing technique. The overall schematic of a 

lamp structure (5 x 5 cm) is shown in Figure 1a. For full fabrication of ACEL lamp with TES 

configuration, the process began with coating a layer of silver paste ink onto the substrate as the 

rear electrode, followed by a sequential coating of the dielectric layer. The phosphor was then 

coated on top of the dielectric layer. Finally, another layer of clear conductive ink was coated as 

the top electrode. As was mentioned above, in TES structure, the range of substrates is not 

limited to a transparent substrate; opaque flexible substrates varying from papers to commercial 

fabric can be used. As illustrated in Figure S1, the screen-printed electroluminescent lamp was 

fully achieved with the subsequent white light emission on different substrates (paper and 

plastic). Such a wide range of substrate selection may tune the resulting electroluminescence as 

well as the elasticity of the device platform. 
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Figure 1. (a) Schematic image of alternating-current electroluminescent (ACEL) display with BES 

and TES architectures. (b) Schematic illustration of the ACEL display working concept to sense 

(i) ionic concentration, (ii) writable conductance (responsive display), (iii) relative humidity level, 

and (iv) human breathing. (v) Photographs of the ACEL display on exposure of NaCl solution 

having different ionic concentrations/conductivities. (vi) Photographs of the ACEL display under 

bending/rolling conditions. 
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Other than being just a simple light panel, this ACEL display offers promising applications. As 

proof of concept, various sensing platforms based on flexible ACEL display are developed and 

proposed (Figure 1b). Using the dependence between light emission and conductivity of ACEL 

display as a primary tool, a variety of sensing approaches were designed and applied. For 

instance, the sense of (i) ionic concentration/conductance allowing water sample analysis, (ii) 

writable conductance (responsive board), (iii) relative humidity level, and (iv) human breathing 

using a smartphone will be demonstrated in this work. 

Fabrication of a multilayered ACEL display with TES configuration was further corroborated 

by scanning electron microscopy (SEM) cross-sectional image. As depicted in Figure 2a, the 

thickness of the silver paste electrode, dielectric layer, and phosphor layer are about 18 µm, 89 

µm and 71 µm, respectively.  Energy dispersive X-ray (SEM/EDX) analysis in line-scan mode 

was also performed to analyze the elemental constituent of each layer (Figure S2). A major 

component of phosphor layer was substantiated to be ZnS particles, while the subsequence layer 

of dielectric is made of BaTiO3 particles. The individual layer surface morphology was also 

characterized by SEM (Figure S3).  Illustrating in figure S3a is an irregular shape of silver 

particles, which is extensively deposited over the whole substrate surface. As displayed in figure 

S3b, the dielectric layer exhibited a very rough surface, consisting of dense BaTIO3 particles. In 

addition, in Figure S3c, together with the cross-sectional image, the light emitting phosphor layer 

appeared as a smoother surface compared to the underlying dielectric layer. The large grain 

phosphor particles distributed evenly over the surface. 
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Figure 2. (a) Schematic representation and scanning electron microscopy (SEM) cross-sectional 

image of an ACEL display structure. (b) Normalized light intensity as a function of the number 

of bends (bending measurement procedure is shown). (c) Images of ACEL display (TES) with 

clear conductive ink fabricated on PET substrate under different mechanical deformation 

conditions. 

 

To investigate the flexible and bendable ability of the electroluminescent display, the 

performance of the lamp in the presence of clear conductive ink electrode under bending 

condition was examined. The result from figure 2b shows that the emitted light intensity 

negligibly changed even after 1000 cycles of bending. The display could also be bent 180˚ or 
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rolled meanwhile maintaining the functionality (figure 2c). This demonstrates that the ACEL 

display held an excellent flexibility and durability to mechanical deformation. 

Using the aforementioned TES ACEL lamp, a straightforward sensing platform based on 

electroluminescence was then sought to fabricate. In fact, the light emitted on an ACEL display 

is strongly affected by the conductivity of the materials over the phosphor layer. Hence, different 

conductivities would yield different electroluminescent intensities.  To further investigate the 

relationship between conductivity and light emission, a solution of NaCl was carefully 

introduced on top of the phosphor layer of the ACEL display lacking in the top electrode. When 

the liquid solution spread over two electrodes that have the opposing phase of AC voltage (silver 

bus bar and underlying rear electrode), the light emission appears instantly (Figure S4, Movie 

S1).  This phenomenon occurs because ions in the electrolyte solution can interconnect the 

electronic circuit, and then turns the light on. The light intensity as a function of solution 

conductivity was further studied. Various NaCl solutions having different ionic conductivities 

(MilliQ water ≈ 3.32 µS cm-1; 1 mg L-1 ≈ 4.72 µS cm-1; 5 mg L-1 ≈ 14.08 µS cm-1; 10 mg L-1 ≈ 

24.0 µS cm-1; 100 mg L-1 ≈ 180.1 µS cm-1; 1000 mg L-1 ≈ 1789 µS cm-1) were tested. It should 

be noticed that printed-wax circles were used to define the sensing area onto the display in order 

to reduce large volume solution usage (Figure S5). Under the same applied voltage, the light 

intensity was proportional to the ionic concentration/conductivity of a saline solution (Figure 3a). 

This result indicates that the device can determine the ionic concentration/conductivity. 

Furthermore, using the light sensor embedded in a smartphone camera as an optical detection 

tool, the linear calibration between light intensity (lux) and logarithmic concentration of NaCl 

was established in the range of 1-100 mg L-1 (Figure 3b-c). It allows the quantitative evaluation 

of the ionic concentration. As proof of concept, water samples including milli-Q, distilled, and 
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tap water were inquired with the ACEL display. As expected, it was evident in the Figure 3d that 

tap and distilled water emit higher luminescence than milli-Q water owing to their larger 

dissolved ions concentration in the water. 

As a result of this unique conductance-based light emission property, any conductive material 

could be visualized on this display. Thus, a simple responsive ACEL display with TES 

architecture has been exemplified in this work. Tap water or office pencil, for example, can be 

used as a conductive stylus to draw onto the surface of an ACEL panel. As indicated in Figure 3e 

and Movie S2, the light turns on instantaneously when this conductive media touched the 

electrode bar. Even though the electrode bar is inevitable, minimizing the bar size can make it 

invisible. 

 

Figure 3. (a) Photographs of the ACEL display on exposure of NaCl solution having different 

ionic concentrations/conductivities. (b) The linear calibration of a plot between light intensity 

(lux) and log concentration of NaCl; and inset depicting the dependence of the light intensity vs. 
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concentration of NaCl. (c) The linear calibration of a plot between light intensity (lux) and log 

conductivity of NaCl; and inset depicting the dependence of the light intensity vs. conductivity 

of NaCl. (d) Photographs of the ACEL display testing with milli-Q, distilled, and tap water under 

ambient light (left) and light control box (right). (e) Photograph of alphabets on the responsive 

ACEL display written by tap water and graphite pencil. 

We further broaden the potential of the electroluminescent platform to humidity sensing 

application which is of prime importance in various fields. Numerous publications for humidity 

monitoring have been reported over years. Most of them are based on capacitive and resistive 

change36-43. However, to the best of our knowledge, there is no report for humidity sensor based 

on electroluminescence. Therefore, a humidity sensor based on ACEL lamp using BES and TES 

structure functionalized by graphene oxide (GO)/Nafion nanocomposite as a sensitive material 

was applied here for the first time. 

In this application, the sensing mechanism for an ACEL-based humidity sensor could be 

attributed to the proton conduction of nanocomposite formed between the 2D material (GO) and 

Nafion under a hydrated environment. In particular, GO derivative with oxygen-containing 

functional groups (−O−, −OH, and −COOH) possesses super-permeability to water molecules44. 

At low relative humidity (RH), the physisorbed water molecules on active site of GO (oxygen-

containing functional groups) cannot move freely because of the restriction from double 

H−bond. For this reason, large energy is required for the hopping transfer of protons between 

adjacent active site, and therefore, results in strong electrical resistance. However, as %RH 

increases, the physisorbed water layer becomes mobile and behaves like a bulk liquid. Thus, the 

proton hopping mechanism between water molecules occurs in GO with charge transport taking 

place via the conductivity generated by a Grotthuss chain reaction, which in turn yields in an 
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increase of conductance45-46. Correspondingly, Nafion, a sulfonated fluoropolymer is also used to 

synergistically enhance ultrahigh proton conductivity in hydrated conditions47-49. This sulfonic 

acid hydrophilic group attached to the hydrophobic backbone in Nafion enables proton transport 

through hydrated ionic clusters and varies influentially with the humidity48. Moreover, the 

microstructures especially the percolated channel formed by these ionic clusters which may be 

sculptured by phase separation or colloidal packing is the key factor related to the proton 

conductivity of Nafion membrane48, 50.  

In this study, a larger light emission sensing area with surrounding square electrode was 

designed for both TES and BES to obtain maximum light intensity for humidity measurement. A 

simple drop-casting of the nanocomposite between GO and Nafion onto the phosphor layer of 

ACEL display raises interesting sensing applications. The nanocomposite based ACEL sensor 

was then characterized by SEM. SEM image of the composite device was then compared with 

those made with individual GO and Nafion. The formed GO film (figure S6a) exhibited a 

crumpled surface of nanosheet whereas Nafion film (figure S6b) displayed a smooth surface with 

several pores in the films. By contrast, the pore was not observed on the nanocomposite film 

covering ACEL display (figure S6c). The mixing of the Nafion with GO was responsible for the 

increase in the smooth surface with random nanoflakes of GO. The fabrication of the GO/Nafion 

nanocomposite was also confirmed by SEM/EDX analysis (figure S7), the F peak verified the 

presence of Nafion in GO films. It should be noted that the peaks of Zn, Al, S, Ba, and Ti could 

be ascribed to the elemental constituent of underlying layer of ACEL display. X-ray photon 

emission spectroscopy (XPS) was further used to confirm the surface of the sensor which 

corresponds only to the nanocomposite film. An overview of the XPS spectra is showed in figure 

S8A, where the characteristic peaks of GO and Nafion are identified. Moreover, it can be 
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observed at higher resolution (figure S8B) the typical peaks of C-C and C-O of the GO and the 

C-F peak of the Nafion. In addition, the thickness of the drop-casted film was found to be 1.488 

µm in average, measured with stylus profilometer (figure S9). 

To obtain the best sensitivity towards humidity, different proportions of GO and Nafion (1:9, 

3:7, 5:5, 7:3 and 9:1) were then investigated at different relative humidity (RH), where RH was 

controlled in a custom-made chamber (figure 4a (i)) using vapor pressure from a set of saturated 

salt solution. As illustrated in Figure 4b, the light intensity response was inferior when GO was 

the major component (proportion) in the composite. The coverage of a phosphor layer with a 

brownish solution of GO can lead to a poor response.  In contrast, when Nafion was in major 

proportion in the nanocomposite, higher sensitivity was achieved owing to its ultrahigh proton 

conductivity, especially for 3:7 ratio which exhibited maximum response. It is important to 

remark that the synergistic effect between GO and Nafion also resulted in higher light intensity 

response regarding humidity compared to the role of Nafion alone. The GO:Nafion composition 

of 3:7 was finally selected to obtain maximum efficiency for both TES and BES. 

The performance of the sensor with TES configuration was firstly studied. It was obvious that 

no light is emitted at low RH. However, the light is automatically turned on in high humidity 

conditions (inset of Figure 4c (lower)). The exponential behavior of light intensity (lux) on the 

humidity is observed within studied range (inset of Figure 4c (upper)). This exponentially-

sensitive behavior has been reported in several GO-based humidity sensors elsewhere, which 

might arise from mass loading effect of water adsorption at high RH51-52. Figure 4c shows the 

dependence of the logarithmic conductance-related light intensity (lux) on different RH values at 

room temperature. It is obvious that the logarithmic light intensity response increases linearly 

with the increment of %RH.  Additionally, the humidity sensing capability of the ACEL display 
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with BES architecture was further investigated. In this way, an ACEL light panel was fabricated 

on a transparent electrode of ITO, following BES structure (see Figure 1a). However, a silver 

top-electrode was replaced by a sensitive layer of GO nanocomposite as is schematically shown 

in figure 4d. With this modified architecture, the direct feedback from humidity on 

nanocomposite layer would allow the phosphor layer on the opposite side to emit light. A light 

intensity response to different RH degrees is shown in Figure S10. A similar trend can be clearly 

observed, as in case of TES, whereby the light intensity increases exponentially with %RH. An 

enhanced sensitivity might be caused by the protective phosphor layer which is not hindered by 

the layer of GO nanocomposite. This humidity related light emission response holds a great 

promise to develop an innovative ACEL based humidity sensor for practical applications. 

The capability of ACEL humidity sensor can be extended to further uses as point-of-care 

(POC) sensing device. Such a humidity-dependence light emission enables monitoring of human 

breathing through the moisture content in the exhaled air. The physical characteristics of the 

breath, such as breath frequency can provide helpful health condition information about 

pulmonary and cardiac symptoms53-55. 

In this experiment, the air exhaled was introduced using cylindrical mouthpiece connected to 

the custom-made chamber as illustrated in the experimental setup in the Figure 4a (ii). The 

response was then monitored through the light emission from ACEL sensor with TES 

architecture. The breath sensor performance of repeated exhale/inhale cycles is displayed in 

Figure S11.  Once the breath was blown, the substantial response from light emission is rapidly 

detected. After the breath is off, the light emission was then gradually decreased. Different 

exhaled patterns including normal, deep and shallow breath were also reflected in different light 

intensity responses (dashed circle). 
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Figure 4. (a) Schematic illustration of a custom-made chamber for (i) controlling humidity and 

(ii) breath monitoring measurements. (b) Responses obtained for different GO / Nafion ratios 
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using ACEL with TES configuration. (c) A linear calibration plot between the logarithmic light 

intensity (lux) and %RH; and inset (upper) showing the exponential behavior between the light 

intensity response under different RH, (lower) real image results of an ACEL sensor upon 

exposure to different humidity levels. (d) Schematic image showing an ACEL sensor with BES 

architecture functionalized with GO nanocomposite. (e) Schematic illustration of the back view 

of ACEL sensor with BES and inset showing device arrangement with a smartphone. (f) The 

performance of an ACEL sensor with BES architecture for human breath monitoring. 

 

The response and recovery times were further evaluated from single exhale/inhale cycles. As is 

observed in Figure S12, the sensor response to a breath could be as fast as 1s (time interval of the 

light sensor was limited at 1s), while the recovery time (defined as the time required to recover 

up to 90% of initial baseline) was varied depending on breathing patterns. For shallow and 

normal breathing, the recovery time was around 7s. However, in the case of deep breathing, the 

recovery time may take up to 12.5s (without applying any heat treatment). A huge difference 

between response and recovery time could be assigned to the generous hydrophilic functional 

moiety in GO and Nafion which required a longer time to desorb water molecules56. This 

experiment suggests that the developed breath monitoring sensor is capable to track the breathing 

frequency by a sensitive ACEL display. 

To allow portability and simplicity for on-field POC testing, an ACEL humidity sensor 

integrated with the smartphone was then developed and demonstrated. Taking advantages of the 

BES configuration, the light emitted from the bottom of the ACEL sensor can be directly 

monitored through the light sensor embedded in a digital camera. As represented in Figure 4e, 

the back side of the ACEL display (1.3 × 1.3 cm) was attached to the front light sensor of a 
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smartphone. Clearly, the smartphone-based sensor exhibits a notable response towards human 

breathing (Figure 4f). Interestingly, both response and recovery time were estimated to be less 

than 1s. This ultrafast response/recovery time facilitates the detection of a broad range of 

respiratory rate in the patient. Although a clear electrode is mandatory for this architecture, an 

immediate and straightforward analysis was achieved without the need to use advanced 

equipment. A simple operation together with real-time monitoring enables it to use even by the 

untrained user. Based on this result, the smartphone-based ACEL sensor for human breath 

monitoring offers an excellent performance to become a smart tool for clinical diagnosis. 

 

CONCLUSIONS 

In summary, we have demonstrated the performance of a flexible ACEL display in sensing 

applications. The proposed device can be simply fabricated by a screen-printing method. In this 

platform, light emission occurs when conductive materials touched the sensing area of the 

phosphor layer, without requiring any top-transparent electrode. This conductance-dependence 

light emission enables the display to sense and visualize different water samples with various 

ionic concentrations. The direct response from pencil writing on ACEL display is also illustrated 

in this platform.  For the first time, GO nanocomposite is integrated within an ACEL sensor and 

used to measure humidity. This innovative sensor can also be applied to human breath 

monitoring, where the light is automatically turned on when the exhaled air is in contact with the 

device. This flexible ACEL sensor holds a great potential for future advancement in wearable 

sensor technology in addition to other applications with interest for diagnostics as well as 

environmental monitoring, safety and security. 
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METHODS 

All commercial reagents were of analytical grade and handled according to the material safety 

data sheets suggested by the suppliers. A flexible silver paste (C2131014D3), dielectric ink 

(D2070209P6), phosphor paste (C2150213D5), and clear conductive ink (C2100629D1) were 

purchased from Gwent group/SunChemical (Pontypool, UK). A water-based dispersion of single 

layer GO sheets (5 mg mL−1) was purchased from Angstron Materials (OH, USA). 5% of Nafion 

117 solution, NaCl, K2CO3, and KNO3 were purchased from Sigma-Aldrich (Madrid, Spain). 

CH3CO2K and KCl were purchased from Panreac (Barcelona, Spain). All aqueous solutions were 

freshly prepared in ultrapure water produced using a Milli-Q system (>18.2 MΩ cm−1) purchased 

from Millipore. SEM was performed through a Magellan 400L SEM High-Resolution SEM 

(FEI, Hillsboro, OR, USA). Cross-sectional SEM and EDX analysis were investigated by Quanta 

650F Environmental SEM (FEI, Hillsboro, OR, USA). X-ray photoelectron spectroscopy (XPS) 

measurement was performed using a Phoibos 150 analyser (SPECS GmbH, Berlin, Germany). 

The thickness of the GO nanocomposite film was characterized by profilometer (Alpha Step D-

500 Stylus Profiler, KLA-Tencor). A semi-automatic screen-printing machine DEK 248 (DEK 

International, Switzerland) was used for the screen-printing process. A wax printing was 

patterned with a Xerox ColorQube 8580 (Connecticut, USA) wax printer. 

Fabrication of ACEL display: A polyethylene terephthalate (PET) film was used as the 

substrate; unless stated otherwise. Firstly, a flexible silver paste was printed directly onto PET 

substrate as the rear electrode and front bus-bar. Then, two layers of dielectric ink, a single layer 

of phosphor and clear conductor were sequentially printed onto the printed electrode. After each 

screen-printing layer, the screen-printed film was cured at 130℃ in a box oven for 10 minutes. 

For the use of ACEL in sensing applications, the prepared film was used without a clear 
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conductor screen-printing. A wax printing method was used to define circular sensing spots 

(diameter of 8 mm). The device was completed by drawing a straight line to connect the bus-bar 

and sensing area with a clear conductor. An AC voltage was powered by an EL inverter build in 

battery model UTF-EB900-4E (for DC 9.0V input). 

Fabrication of GO/Nafion based humidity sensor: A 4-rectangular pattern was screen printed 

through a polyester screen directly on top of the ACEL display using flexible silver paste. To 

prepare the composite, 2.5 mg mL–1 GO solution (average lateral (x,y) and through-plane (z) 

dimension range of ≈ 500 nm and 1–1.2 nm, respectively, and C/O ratio about one unit 

(supplier’s data)) was mixed with Nafion and sonicated for 1 hr. The prepared composite was 

carefully drop-casted onto an ACEL device and allowed to dry in the oven at 60℃ for 5 minutes. 

The humidity measurement was conducted in a custom-made chamber consisting of an 

adaptable closed chamber, light sensor, and mouthpiece (Figure 4a). To achieve a certain level of 

humidity, RH was controlled by a series of saturated salt solution ranging low to high humidity 

level (CH3CO2K, K2CO3, NaCl, KCl, KNO3) at room temperature. Each humidity level is kept 

constant for 30 min to obtain steady RH. The solution chamber was removed from the setup 

when a human breath is monitored. The breath was then blown directly to an ACEL sensor 

through a mouthpiece while the light emission is recorded. 
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