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Abstract 

A non-enzymatic glucose sensor based on carbon/Cu composite materials was developed by 

the in-situ growth and subsequent pyrolysis of metal-organic frameworks (MOFs) on Cu foam. 

After pyrolysis, SEM, HRTEM and STEM-EELS were employed to clarify the hierarchical 

Cu@porous carbon electrode.  It is found that the Cu nanoparticles are uniformly embedded 

in the carbon matrix, attached on the carbon layer closely.  The electrocatalytic activity of the 

Cu@porous carbon matrix electrode for glucose sensing was explored by cyclic voltammetry 

(CV) and chronoamperometry. The resulting Cu@porous carbon matrix electrode displays 

ultrahigh sensitivity (10.1 mA cm−2 mM−1), low detection limit (< 1 μM), short response time 

(less than 2 s) and good stability, indicating that the developed electrode is a promising 

candidate material for glucose sensors. 
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Introduction 

Diabetes has become one of the biggest health problems in the world with more than 370 

million people affected.1 Currently, glucose sensors constitute 85% of the market share of all 

biosensor products for detecting diabetes.  As more and more people are affected by diabetes, 

a safe, efficient and noninvasive ultra-sensitive glucose monitoring biosensor is a way to 

improve patient’s adherence and health.  Therefore, the development of better and cheaper 

glucose sensors has drawn a lot of attention.2−4  Because traditional enzyme-based biosensors 

are easily affected by temperature, pH and humidity, glucose sensors based on transition 

metals (Pt, Au, Ag, Cu, Ni, Fe, Co, Mn, etc.) as well as their oxides and sulfides in alkaline 

solutions have been extensively explored as promising candidates for next-generation glucose 

sensors.5−12  Among these materials, Cu (or CuO) is an interesting material for glucose sensor 

due to the fact that it is inexpensive, non-toxic and environmentally stable.  More importantly, 

the electrochemical glucose oxidation shows fast kinetics on Cu (or CuO).13, 14 

It is well known that the electrocatalytic active surface area plays a critical role in 

enzymeless analysis.  In order to increase the electrocatalytic active surface area, encouraging 

results have been shown by Cu nanomaterials (nanoparticles, nanocluster, nanobelts, 

nanocubes, etc.) for glucose sensors recently.15−19 Moreover, in order to avoid the aggregation 

of nanomaterials and enhance the catalytic activity of Cu materials, great efforts have been 

made to combine copper or copper oxides with carbon-based nanomaterials such as carbon 

nanotubes and graphene.  For example, Ding et al. synthesized copper nanoparticles (NPs) 

decorated nitrogen-doped graphene (Cu-N-G) by thermal treatment.  Compared with pure Cu 

NPs, the Cu-N-G showed enhanced electrocatalytic activity for the glucose oxidation (e.g. the 

oxidation peak current increased a lot).20  Nevertheless, in the typical fabrication process of 

glucose sensor, the polymer binders such as Nafion, polyvinylidene fluoride (PVDF) or 

chitosan are used to immobilize active materials.  These binders have been shown to increase 
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the electrical resistance, hinder the electrolyte diffusion and decrease the effective active 

surface area.21−23Thus, researchers focus on in-situ synthesis of nanostructured Cu directly on 

the substrate.  For instance, Li et al. successfully prepared free-standing porous CuO nanowire 

electrodes on a Cu foil.  The in-situ engineered electrodes show higher sensitivity than 

“reconstituted” electrodes (electroactive materials that are pasted on an electrode with the 

addition of a binder).13  Furthermore, Zhang et al. used Cu foam as the precursor for in-situ 

growth of CuO nanowires by anodic electrodeposition.24  However, the preparation of 

electrodes based on binder-free carbon/Cu composite materials remains challenging. 

Metal-organic frameworks (MOFs) are highly porous coordination polymers formed by 

combining organic linkers and metal ions.  Due to their unique structures, nano-scale cavities 

and open channels, MOFs are considered promising candidates for synthesizing porous 

carbon materials and nano-sized metal particles.25−31  Very recently, a new method patented 

by BASF proposed the electrochemical synthesis of MOFs, avoiding the use of salts and 

saving synthesis time.32  Besides, Ameloot et al. reported that densely packed crystalline Cu-

based MOF layers could be synthesized on pure copper electrodes by anodic 

electroprecipitation.33  Furthermore, the of the electrochemical nucleation and growth of 

HKUST-1 layers have been proposed by our group.34 

Taking the above considerations into account, we propose a facile method to prepare 

binder-free electrodes based on carbon/Cu composite materials (Figure 1).  Firstly, the 

archetypal MOF HKUST-1 (Cu-BTC) was directly grown on a copper foam by anodic 

electroprecipitation.  After pyrolysis, the Cu nanoparticles embedded in the porous carbon 

matrix (Cu@porous carbon material) were successfully fabricated on the Cu foam.  The 

resulting Cu@porous carbon matrix electrode was tested as a non-enzymatic electrochemical 

glucose sensor electrode.  The Cu@porous carbon matrix electrode displayed much better 

electrochemical catalytic performance towards glucose than Cu foam and flat copper 

electrodes. 
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2. Results and discussions  

HKUST-1 was successfully deposited on the copper foam substrate, as shown by the XRD 

pattern of materials scratched from the substrate (Figure S1).  The characteristic peaks of Cu-

BTC framework at 2θ ≈ 9.5°, 11.5° and 13.4° can be clearly identified, which agree well with 

previous literature.35  Furthermore, HKUST-1 can be deposited on different copper substrates 

such as plate (Figure 2a), wire (Figure 2b) and foam (Figure 2c).  The HKUST-1 grows 

conformably on the surface of the different copper substrates.  This advantage can meet the 

need of commercial electronic devices.  In this work, we choose copper foam as the substrate 

because the 3D structure of the copper foam provides high surface area (based on same 

geometry area), which will increase the sensitivity.  At higher magnification, the typical 

octahedral morphology of HKUST-1 can be observed (inset of Figure 2c).  The crystal sizes 

range from 2 μm to 8 μm.  The result of EDS is illustrated in Figure. S2, confirming the 

existence of C, O and Cu (from HKUST-1) and Pt (from Pt sputtered for SEM imaging).  

After pyrolysis, the “octahedral unit” remains while the pyrolized MOF still covers the 

surface of the copper foam (Figure 3). The pyrolytic carbon is expected to act as an electron 

pathway between the copper nanoparticles and the copper substrate. According to 

thermogravimetric analysis (TGA) (Figure S3), there are three main weight loss events 

during pyrolysis.  Events A and B probably correspond to the loss of guest molecules of 

ethanol (b.p. = 78 °C) and DMF (b.p. = 153 °C), respectively.  After that, there is a plateau 

(event C) from 210 °C to 250 °C, indicating that the framework of HKUST-1 is stable up to 

250 °C.  Event D starts from 250 °C and is attributed to the thermal decomposition of the 

linker molecules.  After the thermal decomposition, copper particles can be found dispersed 

on the surface.  Most copper particles are below 300 nm (Figure 3c and 3d).  However, there 

are some large Cu particles on the surface of the porous carbon matrix. These particles 

probably arise from outer surface decomposition of MOF units, especially for the overlap of 

MOF units as shown in Figure 2c.  This phenomenon has been observed before by Song et al. 



  

5 
 

as well.28  The EDS measurements (Figure S4) confirm three elements: C from the carbon 

matrix, Cu from nanoparticles and O from the CuO thin layer (oxidized in the air), 

respectively.   These results are in good agreement with the XRD measurement results.  As 

shown in Figure S5, three characteristic peaks for Cu were observed at 2θ = 43.3°, 50.4° and 

74.2°, corresponding to Miller indices (111), (200) and (220), respectively.  Moreover, a 

small peak at 2θ = 36.8° can be clearly observed, which corresponds to (111) reflection peak 

of cubic CuO phase.36,37  In addition, the SEM micrographs of the Cu foam, HKUST-1-

covered and Cu@porous carbon matrix electrodes (Figure S6) show that the Cu@porous 

carbon matrix is in close contact with the Cu foam. 

To further explore the structure of single nanoparticles, TEM and STEM-EELS mappings 

have been conducted.  As shown in Figure 4 (a), the nanoparticles are supported by carbon 

sheets.  HRTEM analysis and corresponding reduced FFT (fast Fourier transform) spectra 

(Figure 4b, 4c and 4d) show that the species are a mixture of cubic CuO ([FM3-M]-Space 

group 225, with lattice parameters of a = 0.4245 nm, and α = 90° as visualized along the [112] 

direction), and Cu ([I4/MMM]-Space group 139, with lattice parameters of a = 0.2892 nm, 

and α = 90°), which perfectly agree with the XRD observations (Figure S5).  The RGB 

composition of IFFT (Inverse fast Fourier transform) from CuO and Cu further confirms the 

HRTEM analysis (Figure 4e).  To figure out the chemical composition of Cu@porous carbon 

matrix materials, STEM-EELS has been conducted (Figure 5).  The general view and 

magnified details of the HAADF-STEM images are displayed in Figure 5, which also show 

that the nanoparticles are supported by carbon sheets.  The geometrical shape of the 

nanoparticles is spherical. Moreover, the relative compositions of Cu, O and C elements of 

these nanoparticles have been mapped by means of EELS analysis using Hartree-Slater model 

for signal quantification and power law for background removal.38 Clearly, the nanoparticle is 

embedded in the carbon layer.  Around the outer shell of the nanoparticles, there is a thin 

layer with a relatively high O concentration, which is probably due to the oxidation of the Cu 
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nanoparticles in air.39 In addition, Cu dominates the main region of the nanoparticles.  These 

results are in good agreement with EDS (Figure S4), TEM (Figure 4) and XRD observations 

(Figure S5).  After glucose sensor performance tests, the structure and chemical compositions 

of the Cu@porous carbon matrix materials were analyzed again by TEM and STEM-EELS 

composition maps extracted from the obtained spectrum images (SIs).  It was found that after 

the performance test, the nanoparticles were still attached to the carbon layer (Figure 6a).  

After the tests, the structure of the nanoparticles changed to urchin-like particles, which is 

probably caused by the electrochemical oxidation of Cu into CuO.  A similar change has been 

observed before for the transformation of Cu2O into CuO nanostructures.40 However, the 

hierarchical structure of the nanoparticles embedded in the carbon matrix units remains 

unchanged (Figure S7a).  The HRTEM and corresponding reduced FFT spectra (Figure 6b, 

6c and 6d) indicate that the nanoparticle crystallizes in the form of a cubic CuO phase ([FM3-

M]-Space group 225, with lattice parameters of a = 0.4245 nm, and α = 90° as visualized 

along the [011] direction).  Furthermore, the relative O content of the particles increased 

significantly due to the presence of cubic CuO phase after the sensor test (Figure 6e), which 

is confirmed by EDS results (Figure S7b).  It is worth noting from the relative C content of 

the nanoparticles that each particle is covered by a thin carbon layer and connected by a 

carbon layer to each other.  This unique behavior might be the reason for the transport of 

charge and the protection of the nanoparticles from aggregation and degradation during 

glucose oxidation. Combining XRD patterns (Figure S5), TEM observations (Figure 4, 5 and 

6) and the electrochemical information (as shown in Figures 7 and 8) of Cu@porous carbon 

matrix materials for the glucose sensor  the possible electro-oxidation mechanism of glucose 

on the Cu@porous carbon matrix surface in an alkaline solution can be assumed as follows: 41, 

42 

Cu + 2OHି − 2eି ⇌ Cu(OH)ଶ                                                                                                (1) 

Cu(OH)ଶ + OHି ⇌ CuOOH + HଶO + eି                                                                                 (2) 
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CuOOH + eି + glucose ⟶ CuO + OHି +  gluconic acid                                                      (3) 

CuO + OHି ⇌ CuOOH + eି                                                                                                     (4) 

The reactions (1) and (2) occur in activated process before test. After addition of glucose, the 

oxidative Cu(III) could catalyze glucose oxidation to generate gluconolactone and then 

gluconolactone is further oxidized to glucose acid. The reaction catalyzed by Cu@porous 

carbon matrix electrode was assisted by the Cu(II)/Cu(III) redox couple.  

The CV curves of the Cu@porous carbon matrix electrode in 0.1 M NaOH with different 

concentrations of glucose at a scan rate of 50 mV s−1 is shown in Figure 7a.  In the absence of 

glucose (curve A), there is no obvious oxidation peak.  When glucose was added to the 0.1 M 

NaOH solution, a clear increase of the oxidative peak current was observed in the potential 

range between +0.4 V and +0.7 V (vs. Hg/HgO), corresponding to the irreversible oxidation 

of glucose.  The optimal detection potential was determined from the amperometric responses 

of the Cu@porous carbon matrix electrode at different potentials from +0.45 to +0.65 V with 

the addition of 1 mM glucose (Figure 7b).  The Cu@porous carbon matrix electrode shows 

only a  slightly lower current response at +0.55 V than +0.6 V.  However, at higher potentials 

the influence of interferences and polarization of the oxygen evolution are larger.  Therefore, 

the potential is subsequently fixed at +0.55 V for amperometric i-t tests. The amperometric 

responses of the Cu plate, Cu foam and Cu@porous carbon matrix electrode to 1 mM glucose 

at +0.55 V in 0.1 M NaOH are shown in Figure 7c.  The copper foam shows a 100% increase 

in current compared to the copper plate due to its larger surface area. The current response of 

the Cu@porous carbon matrix decorated copper foam is in turn 70% larger compared to the 

bare copper foam. 

Figure 8a displays an amperometric i-t test measured in 0.1 M NaOH at +0.55 V under 

stepwise addition of glucose.  When the current was stable, different concentrations of 

glucose solutions were successively injected into the solution under stirring, which induced an 

increase in the current within 2 s.  The low-concentration part is magnified and shown in the 
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inset above the amperometric i-t curve.  Another inset is the amperometric response of the 

Cu@porous carbon matrix electrode to the addition of 1 μM and 2.5 μM glucose solutions.  

An increase of current can be clearly identified even for 1 μM glucose.  Moreover, as shown 

in Figure S8, the Cu@porous carbon matrix decorated copper foam shown much larger 

current response for 10 μM glucose than bare copper foam or copper plate.  Besides, we 

cannot observe an increase in current for the bare copper foam or copper plate electrode with 

the addition of 1 μM of glucose.  The calibration curves based on the results of the 

amperometric i-t test is presented in Figure 8b. The current (i) is correlated with the glucose 

concentration (c) in the range of 1 μM − 6000 μM with a correlation coefficient of 0.9998 

using the following equation: 43 

12.1c

928.9
i

c



                                                                                                                     (5) 

Between 1 μM and 300 μM glucose, the response is linear (R2 = 0.9947) as shown in the inset 

of Figure 8b.  In this concentration range (linear part), the sensitivity is 10.1 mA cm−2 mM−1 

in term of geometrical area.  To our best knowledge, this current response is the highest 

among all reported non-enzymatic glucose sensors as indicated in Figure 9. 

As there are various oxidizable species present in human blood, such as uric acid (UA), 

ascorbic acid (AA), sucrose, fructose, the ability to discriminate these interferences is an 

important factor for glucose sensors.  Under stepwise addition of the same amount (0.1 mM) 

of glucose, UA, AA, sucrose, fructose, the interferences showed obvious current responses as 

shown in curve A (Figure 10a).  However, when the concentration of the interferences was 

decreased from 0.1 mM to 0.01 mM, almost no current response can be observed for species 

other than glucose (curve B, Figure 10a). In human blood, the concentration of these 

interferences are much smaller (< 1/30) than the concentration of glucose.43, 44  Therefore, 

when adding the interferences in biologically relevant concentrations, after the addition of 0.1 

mM glucose, there is no current response from the interferences (curve C, Figure 10a).  
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These results suggest that the Cu@porous carbon matrix electrode could be a good sensing 

material for blood samples.  Furthermore, the stability of the Cu@porous carbon matrix 

electrode was investigated by recording the continuous or intermittent amperometric 

responses to 0.1 mM glucose.  The longtime current response of the Cu@porous carbon 

matrix electrode indicates that around 89% can be retained during a period of 1800 s (Figure 

10b).  Furthermore, after storage at room temperature in ambient atmosphere for 25 days, the 

sensitivity of the electrode decreased only slightly compared with its initial response as shown 

in the inset of Figure 10b. 

3. Conclusions 

In summary, HKUST-1 can be easily synthesized on the different kinds of copper 

substrates.  After pyrolysis, carbon-Cu composite materials can be grown in-situ on the Cu 

foam.  The resulting electrode shows high sensitivity, low detection limit and good stability 

for the non-enzymatic detection of glucose.  The excellent electrochemical performance of the 

Cu@porous carbon matrix electrode can be attributed to the multidimensional hierarchical 

structure of the electrode and the synergistic effect between Cu and carbon.  These results 

indicate that the Cu@porous carbon matrix electrode could be a promising candidate for the 

construction of non-enzymatic glucose sensors, especially for saliva-based glucose sensors 

due to the very high sensitivity. 

4. Experimental section 

Electrodeposited MOF: All reagents were of analytical purity and used as received without 

further purification.  Three kinds of copper substrates were used to prepared MOF-covered 

electrodes: copper plate (thickness: 1 mm, 99% purity, Testas, Belgium), copper wire 

(diameter: 1.5 mm) and copper foam (thickness: 1 mm, pore density: 90 ppi, Cu>99.5%, 

Changsha LYRUN New Material China Co., Ltd.).  Before electrodeposition, the copper 

substrate was carefully cleaned with dilute hydrochloric acid, acetone and ultrapure water 

several times, respectively.  Unless stated otherwise, the anodic MOF deposition was 
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performed on different kinds of copper substrates under the same conditions.  Copper plates 

were used as the cathode, and different copper substrates were used as the anode.  The 

electrodeposition was performed in a solution containing 1 g 1,3,5-benzenetricarboxylic acid 

(H3BTC) and 0.5 g methyltributylammonium methyl sulfate (MTBS) per 100 mL solvent (67 

mL ethanol and 33 mL Milli-Q® water).  By applying a current density of 4 mA cm−2 at room 

temperature until the total passed charge reached 36 C cm−2, MOFs were grown on the copper 

substrates.  The current densities were determined by geometric area.  After MOF growth, the 

MOF-covered electrode was washed with ethanol and dimethylformamide (DMF) to remove 

excess ligand and MTBS.   

Preparation of Cu@porous carbon matrix electrode: The MOF-covered copper foam 

electrodes were pyrolized at 850 °C in flowing argon gas (99.998%) with a flow rate of 300 

cm3 min−1.  The temperature inside the furnace was gradually increased from room 

temperature to the target temperature at a heating rate of 3 °C min−1.  After the target 

temperature was reached, the MOF-covered copper foam electrode was annealed for 8 h and 

then cooled down to room temperature at a rate of 5 °C min−1.  The as-prepared electrode was 

denoted as Cu@porous carbon matrix electrode.  For comparison, a copper plate and a copper 

foam were used as control samples. 

Material characterizations: X-ray diffraction (XRD) data of the samples were collected on a 

Bruker AXS D8 diffractometer using Cu Kα radiation (wavenumber λ = 0.15405 nm) and Ni 

filter from 5° to 50° in 2θ with a step of 0.02° (2 s per step).  TGA was performed in an argon 

atmosphere on a thermogravimetric analyzer (AutoTGA 2950HR V5.4A, TA Instruments) 

using platinum pans at a heating rate of 3 °C min−1.  For the XRD and TGA tests, the sample 

was scratched off from the copper substrate.  The morphology of the samples and energy 

dispersive spectroscopy (EDS) were observed on a FEI/Philips XL30 FEG microscope (SEM).  

In order to improve the electronic conductivity of the MOF samples, a 5 nm layer of Pt was 

sputtered on top of the samples.  The onset temperature of the weight loss in the TGA was 
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used as the decomposition temperature (Td).  High resolution transmission electron 

microscopy (HRTEM) and scanning transmission electron microscopy (STEM) images were 

obtained by using an FEI Tecnai F20 field emission gun microscope operated at 200 kV with 

a point-to-point resolution of 0.19 nm, which is equipped with high angle annular dark field 

(HAADF) and electron energy loss spectroscopy (EELS) detectors The obtained images and 

spectra have been analyzed by means of Gatan Digital Micrograph software. 

Electrochemical characterizations: The electrochemical performance of the samples was 

characterized by chronoamperometry (i-t) and cyclic voltammetry (CV) techniques with an 

Autolab electrochemical workstation at room temperature in a three-electrode system.  The 

as-prepared electrode, platinum gauze and an Hg/HgO electrode were used as the working 

electrode, the counter electrode and the reference electrode, respectively.  The working 

electrode was used after being activated for several cycles of cyclic voltammetry form 0 to 

0.65V at a scan rate of 50 mV s−1 until CV curves are stable. The supporting electrolyte in all 

electrochemical experiments is 0.1 M NaOH.   
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Figure 1. Schematic illustration of the synthesis of Cu@porous carbon matrix on the copper 
foam substrates. 
  



  

16 
 

 
Figure 2. SEM images of different MOF-covered copper substrates: (a) copper plate; (b) 
copper wire and (c) copper foam.  Insets are the corresponding magnifications with a scale bar 
of 4 μm. 
  



  

17 
 

 
Figure 3. SEM images of the Cu@porous carbon matrix electrode at different magnifications.  
The scale bars are (a) 80 μm (b) 10 μm, (c) 2 μm and (d) 200 nm, respectively. 
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Figure 4. TEM images of Cu@porous carbon matrix materials (removed from the Cu foam) 
at the resolution of 50 nm (a) and 5 nm (b), respectively. (c) Details of the region squared in 
yellow and (d) the corresponding indexed power spectrum. (e) The RGB composition of IFFT 
from CuO (red) and Cu (green). 
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Figure 5. EELS chemical composition maps of Cu@porous carbon matrix materials 
(removed from the Cu foam) obtained from the area squared in red on the ADF-STEM 
micrograph. Right top and right middle: Individual Cu (red), O (green), C (yellow) maps and 
their composites; Right bottom: the relative composition map of C, O and Cu elements. 
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Figure 6. (a) and (b) TEM images of Cu@porous carbon matrix materials after sensor test 
(removed from the Cu foam). (c) details of the squared region in red line and (d) their 
corresponding indexed power spectrum. (e) EELS chemical composition maps of Cu@porous 
carbon matrix materials after glucose sensor test (scratched from Cu foam) obtained from the 
area squared in indigo on the ADF-STEM micrograph. Right top and right middle: Individual 
Cu (red), O (green), C (yellow) maps and their composites; Right bottom: the relative 
composition map of C, O and Cu elements. 
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Figure 7. (a) CV curves of Cu@porous carbon matrix electrode in the absence (A) and 
presence of glucose (B: 1 mM glucose; C: 2 mM glucose) at a scan rate of 50 mV s−1, 
respectively.  (b) Amperometric responses of Cu@porous carbon matrix electrode at 
potentials from +0.45 V to +0.6 V vs. Hg/HgO to the addition of 1 mM glucose (normalized 
by the amperometric response at +0.55 V vs. Hg/HgO).  (c) Amperometric responses of the 
copper plate electrode (A), copper foam electrode (B) and Cu@porous carbon matrix 
electrode (C) to the addition of 1 mM glucose at +0.55 V vs. Hg/HgO. 
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Figure 8. (a) Amperometric response of the Cu@porous carbon matrix electrode to 
successive additions of increased concentrations of glucose solutions to 0.1 M NaOH solution 
at an applied potential of +0.55 V (vs. Hg/HgO). The low-concentration part is magnified and 
shown in the inset in the upper left corner. The inset curve in the lower right corner is 
amperometric response of Cu@porous carbon matrix electrode to successive addition of 
glucose solution with smaller concentrations. (b) Corresponding calibration curve for Figure 
8 (a).   
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Figure 9. Comparison of the sensitivity of Cu@porous carbon matrix electrode with other 
electrodes reported in the literature (the related references S1~S38 are listed in the 
supplementary information). 
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Figure 10. (a) The selectivity study of Cu@porous carbon matrix electrode with addition of 
different concentrations of UA, AA, sucrose, fructose and glucose at an applied potential of 
+0.55 V. (b) Long term stability of Cu@porous carbon matrix electrode at +0.55 V for 1800 s.  
Inset shows the normalized sensitivity of Cu@porous carbon matrix electrode to glucose 
tested every two days by amperometric measurement over 25 consecutive days. 


