

This is the **submitted version** of the article:

Carabassa, Vicenç; Ortiz Perpiñà, Oriol; Alcañiz, Josep M. Sewage sludge as an organic amendment for quarry restoration : effects on soil and vegetation. DOI 10.1002/ldr.3071

This version is avaible at https://ddd.uab.cat/record/203558

under the terms of the **G** Free Access

⁵ license

This is the **submitted version** of the article:

Carabassa, Vicenç; Ortiz Perpiñà, Oriol; Alcañiz, Josep M. Sewage sludge as an organic amendment for quarry restoration : effects on soil and vegetation. DOI 10.1002/ldr.3071

This version is avaible at https://ddd.uab.cat/record/203558

under the terms of the **G** Free Access

⁵ license

Land Degradation & Development

Sewage sludge as an organic amendment for quarry restoration: effects on soil and vegetation

Journal:	Land Degradation & Development
Manuscript ID	LDD-17-0356.R3
Wiley - Manuscript type:	Short Report
Date Submitted by the Author:	04-Jun-2018
Complete List of Authors:	Carabassa, Vicenç; CREAF, CREAF Alcañiz, Josep M.; Universitat Autonoma de Barcelona Centre de Recerca Ecologica i Aplicacions Forestals, CREAF; Universitat Autonoma de Barcelona, BABVE Ortiz-Perpiñá, Oriol; Universidad de Zaragoza Escuela Politecnica Superior de Huesca, Ciencias Agrarias y del Medio Natural
Keywords:	organic amendment, stability degree, erosion control, soil rehabilitation, quarry restoration

2 3	1	Title: Sewage sludge as an organic amendment for quarry restoration: effects on soil
4 5	2	and vegetation
6 7 8	3	
9 10	4	Authors and addresses: Vicenç Carabassa ^{1*} , Oriol Ortiz ^{1,2} , Josep M. Alcañiz ^{1,3}
11 12	5	
13 14	6	¹ CREAF, Cerdanyola del Vallès 08193, Spain
15 16	7	² Escuela Politécnica Superior, University of Zaragoza, Carretera Cuarte s/n, E-22071
17 18	8	Huesca, Spain
19 20 21	9	³ Universitat Autònoma de Barcelona, Departament de Biologia Animal, Biologia
22 23	10	Vegetal y Ecologia, Cerdanyola del Vallès 08193, Spain
24 25	11	* Address correspondence to V. Carabassa, phone: 0034 93 581 3355, e-mail:
26 27	12	Address correspondence to V. Carabassa, phone: 0034 93 581 3355, e-mail: v.carabassa@creaf.uab.es
28 29	13	
30 31 32	14	
33 34		
35 36		
37 38		
39 40		
41 42		
43 44		
45 46		
40		
48		
49 50		
50		
52		
53		
54		
55		
56 57		
58		
59		1

15	ABSTRACT
10	

16	Quarry restoration in Mediterranean environments usually needs organic amendments to
17	improve the substrates used for technosol construction. Digested sewage sludge from
18	municipal wastewater treatment plants are rich in organic matter, N and P and constitute
19	an available an economically interesting alternative for substrate amendment. However,
20	their pollutant burden and labile organic matter content involve an environmental risk
21	that must be controlled. Moreover, ecological succession in restored areas can be
22	influenced by the use of sludge and should be assessed. To minimize these risks, a new
23	sewage sludge dose criteria relating to its labile organic matter and heavy metal content
24	has been established. Sewage sludge doses currently range between 10 and 50 Mg ha ⁻¹ .
25	In order to verify the suitability of this dose criterion, sixteen areas rehabilitated using
26	sewage sludge located in limestone quarries in a Mediterranean climate in Catalonia
27	(NE Spain) have been assessed. These evaluations focused on physicochemical
28	properties of rehabilitated soils, land degradation processes and ecological succession.
29	In the short term, six months after sludge application, an increment of organic matter
30	content in the restored soils was observed, without significant increases in electrical
31	conductivity or heavy metals content, and with a dense plant cover that contributes to
32	effective soil erosion control. Two years after, ruderal plants were still present but later
33	successional species colonized the restored zones in different degrees. These results
34	suggest that sewage sludge, used as a soil amendment according to the proposed
35	methodology, can safely improve technosol quality without constraints that compromise
36	ecological succession.
37	

KEYWORDS: soil rehabilitation, organic amendment, stability degree, Technosol,

erosion control, quarry restoration

INTRODUCTION

Restoration ecologists have long recognized the role of soil, particularly its physical and chemical properties, in the successful revegetation of degraded sites (Jordan et al., 1987; Heneghan et al., 2008). Starting from this premise, ecological restoration principles applied to quarry restoration implies in many cases the use of their own mine spoils (Tedesco et al., 1999; Ram et al., 2006; Jordán et al., 2008), mainly when topsoil stripping is not possible or does not give a sufficient quantity of soil. However, these materials usually do not meet the minimum fertility requirements for their direct use as soil substitutes in land restoration and have to be improved using organic amendments. In this context, the use of sewage sludge as organic amendment could represent an economically and environmentally effective alternative to create a new fertile substrate, currently named technosol, for plant growth. Sewage sludge contains nutrients and trace elements essential for plant growth (Ortiz & Alcañiz, 2006), and organic matter, which can act as a soil conditioner to improve the physical properties, such as soil aeration and water-holding capacity (Sort & Alcañiz, 1999; Singh & Agrawal, 2008). However, their pollutant burden, comprising heavy metals and a variety of organic compounds, needs to be controlled. In this sense, there are some legislative regulations (European Union, 1986) and proposals (European Union, 2000) that establish maximum levels of heavy metals and organic pollutants in sewage sludge and receiving agricultural soils.

Organic amendments with high labile organic matter content are not suitable for land rehabilitation as this type of organic matter can be quickly mineralised, releasing large amounts of nutrients, which limits its positive effects to a short time. Moreover, in studies carried out with different types of organic wastes, a negative correlation between the degree of stability of organic matter (the proportion of stable, not labile, organic

65	matter) and toxicity to plants and/or soil fauna has been described (Fuentes et al., 2004;
66	Domene et al., 2007; Ramírez et al., 2008). Furthermore, a strong correlation between
67	the stability degree and total nitrogen, hydrolysable nitrogen and NH ₄ -N content has
68	been found (Ramírez et al., 2008). At the field level, high amounts of available nitrogen
69	in rehabilitated soils promote ruderal plant species predominance (Moreno-Peñaranda et
70	al., 2004), which makes ecological succession difficult, and poses a risk for
71	groundwater contamination (Navarro-Pedreno et al., 2004). Regarding groundwater
72	pollution by heavy metals, these do not pose a real risk because heavy metals mobility
73	in water is very low (Hornburg & Brummer, 1994).
74	
75	In order to limit or avoid these unintended situations, a new dose calculation protocol
76	for organic amendments to be used as soil amendments has been proposed (Alcañiz et
77	al., 2009; Carabassa et al., 2010). Relating to organic amendment characteristics, only
78	stabilised amendments are allowed, with a recommendation for stable organic matter
79	content greater than 30% (i.e. amendments containing a maximum amount of labile
80	organic matter of 70%). In order to prevent heavy metal pollution, the protocol
81	recommends avoiding sewage sludge and soils with metal concentrations above the
82	limits proposed by the draft of the European Commission (2000), and do not reach these
83	limits on the resulting technosols. Moreover, in soils or substrates having more than 20
84	g kg ⁻¹ of organic matter, sewage sludge amendment is not recommended.
85	
86	On the other hand, alongside this dose calculation protocol, a site-aptitude evaluation
87	methodology has been designed with the objective of avoiding applications on
88	unsuitable areas such as sites vulnerable to pollution, protected groundwater recharge
89	areas, etc. The items (topics) included in this evaluation procedure are the proximity of

2	
4	
5	
6	
7	
8	
9 10	
10	
11	
12 13 14 15 16	
13	
14	
15	
16	
17	
18	
19 20	
20	
21	
22	
23 24	
24 25	
26	
20	
28	
29	
30	
31	
32	
33	
34	
34 35 36	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51 52	
52 53	
53 54	
54 55	
55 56	
50 57	
58	
50 59	
60	

90 the zone to be restored to wells or watercourses, the location of a quarry in a zone with 91 aquifers vulnerable to nitrate contamination, the water table depth, the accessibility and 92 the space for storage and mixing of sludge with soil, site visitation frequency, farming 93 utilization and the proximity to inhabited sites. Additionally, if the evaluation procedure 94 determines that a site is suitable for sewage sludge use, a maximum area of 2 happen 95 year may be restored using this amendment. This protocol is currently being used by the 96 Waste Agency of Catalonia (NE Spain) and by waste management companies to 97 calculate sludge doses and sludge application conditions for their use in quarry 98 restoration works (DTS, 2015). 99

101 effects of sewage sludge application as a technosol amendment from an ecological 102 restoration point of view. To do this, soil quality parameters, degradation processes and

The main goal of this paper is to introduce the dose criteria proposed and to evaluate the

103 plant composition, as indicators of ecological succession, have been evaluated. elie

104

100

105 **METHODS**

106 Sludge-dose criteria

107 According to the protocol described in Alcañiz et al. (2009) and Carabassa et al. (2010), 108 sewage sludge is dosed depending on its organic matter stability, determined by weight loss-on-ignition (LOI) at 550°C after acid hydrolysis. The protocol proposes 5 g kg⁻¹ as 109 110 a maximum amount of labile organic matter added by the sludge on the amended soil. 111 Other parameters such as the organic matter content of the sludge, the thickness of the 112 technosol layer to be applied (0.4 m maximum), the bulk density and the percentage of 113 the <2 mm size fraction are considered in the dose-calculation formula: 114

115
$$D_{DM} = T \cdot BD_E \cdot FE \left(5 + \frac{5 \cdot S}{1 - S}\right) \cdot \frac{1}{OM_S} \cdot 10$$

117 Where D_{DM} is the dose of sludge (Mg ha⁻¹, dry weight); *T* is the desired thickness of the 118 substrate layer to be applied (m); BD_E is the bulk density of the mineral substrate (Mg 119 m⁻³); *FE* is the proportion of <2 mm size particles of the mineral substrate (g kg⁻¹); *S* is 120 the degree of stability of the sludge (g kg⁻¹) and OM_S is the proportion of organic matter 121 in the sludge (g kg⁻¹).

Moreover, as a preventative measure, this protocol fixes a maximum dose of sludge (50
Mg ha⁻¹, dry weight), based on earlier experience obtained from ecotoxicological assays
using plants and soil fauna (Domene et al., 2007, Tarrasón et al., 2008).

Restored zones selected

A set of 16 areas located in 11 guarries that were restored using their respective mine spoils and amended with sewage sludge according to the current protocol were selected (table 1). These quarries are located in Mediterranean environments encompassing a climatic gradient from semiarid to sub-humid. Mining activities exploiting diverse calcareous materials that could influence the restoration processes were included. Mine spoils were the main substrate used to create a technosol for topsoil rehabilitation. All the substrates were calcareous (30% to 70% of carbonate content) and stony, but with more than 30% of <2 mm particle-size fraction and a loamy texture.

137 The average sewage sludge dose was 40 ± 13 Mg ha⁻¹ (mean \pm SD, dry weight basis).

- 138 All sludge applied came from municipal wastewater treatment plants close to the
- 139 mining areas, having been subjected to an anaerobic digestion process and partially

2 3	140	dehydrated (table 2). The organic matter content of these sludges and their stability
4 5	141	degree was relatively high. They had high concentrations of nitrogen and phosphorous,
6 7 8	142	similar to those currently applied to agricultural soils. The heavy metals content was
9 10	143	low and always met the requirements of the European Union (2000).
11 12	144	
13 14	145	Steep slopes (60-75%) are the predominant restored surfaces in the mine sites selected,
15 16	146	with some exceeding 100%. On these slopes, a layer of about 20 cm of amended
17 18	147	substrates (mainly mine spoils mixed with sewage sludge) was spread on top. The
19 20	148	average area of restored slopes per site is 4,500 m ² .
21 22	149	
23 24	150	Evaluation parameters
25 26 27	151	The parameters evaluated in the restored zones are related to soil quality, degradation
27 28 29	152	processes and vegetation. Soil samples were taken 4-6 months after sludge application
30 31	153	but degradation processes and vegetation data were assessed after 24 months. Soil
32 33	154	sampling involved taking a composite sample of cores (n =12-20, d=0-20 cm) for each
34 35	155	restored zone. The analysed parameters in soil samples were: particle size determined
36 37	156	by sedimentation-Robinson pipette (Gee & Or, 2002), equivalent CaCO ₃ by CO ₂
38 39	157	volume released after HCl addition -Bernard calcimeter method (Nelson, 1982),
40 41 42	158	electrical conductivity of 1:5 water extract (Rhoades, 1982), organic carbon content by
43 44	159	acid dichromate oxidation (Nelson & Sommers, 1982), total nitrogen using the Kjeldahl
45 46	160	method (Bremner & Mulvaney, 1982), available phosphorous-Olsen phosphorous
47 48	161	(Olsen & Sommers, 1982) and potassium (Knudsen et al., 1982), and heavy metals by
49 50	162	ICP-MS analysis (Thomas, 2004). Geotechnical and soil degradation processes were
51 52	163	estimated through direct measures and observations in the field, and erosion losses were
53 54	164	estimated by measuring the rill volume. Vegetation measures were taken by establishing
55 56 57 58	165	transects and sampling plots (10m transects, 100m ² plots, 3 per area).

166

RESULTS AND DISCUSSION

168	Soil quality indicators of technosols were evaluated after one growing season (spring or
169	autumn) (table 3). The electrical conductivity of amended soils remained low, with the
170	only exception of two cases that were greater than 2 dS m ⁻¹ . Organic C contents were
171	almost always higher than 10 g kg ⁻¹ , with an average increment of 11.2 ± 7.8 g kg ⁻¹
172	(mean \pm SD) caused by the addition of the sludge to the mineral substrate that
173	constitutes the mineral fraction of the technosol. Phosphorous content tended to be high
174	and correlated with the amount of sewage sludge added. Total nitrogen concentrations
175	were balanced to the organic matter content, having a C/N ratio close to 10, and relating
176	to the sludge dose applied. Available potassium content tended to be low, especially in
177	very rich calcium soils. Heavy metals content was low in the amended soils. Minor
178	increases in the concentrations of these elements were observed after the addition of
179	sewage sludge, all below the European upper limits for agricultural soils (table 4).
180	
	Soil quality parameters indicate that sewage sludge application causes a substantial
180	
180 181	Soil quality parameters indicate that sewage sludge application causes a substantial
180 181 182	Soil quality parameters indicate that sewage sludge application causes a substantial improvement of organic matter and nutrient content in the amended technosols, as
180 181 182 183	Soil quality parameters indicate that sewage sludge application causes a substantial improvement of organic matter and nutrient content in the amended technosols, as reported in other works (Albiach et al., 2001; Heras et al., 2005). Despite the noticeable
180 181 182 183 184	Soil quality parameters indicate that sewage sludge application causes a substantial improvement of organic matter and nutrient content in the amended technosols, as reported in other works (Albiach et al., 2001; Heras et al., 2005). Despite the noticeable increase in the soil nutrients due to sludge mineralisation, electrical conductivity did not
180 181 182 183 184 185	Soil quality parameters indicate that sewage sludge application causes a substantial improvement of organic matter and nutrient content in the amended technosols, as reported in other works (Albiach et al., 2001; Heras et al., 2005). Despite the noticeable increase in the soil nutrients due to sludge mineralisation, electrical conductivity did not rise greatly. Available phosphorous levels were increased by sludge addition but were in
180 181 182 183 184 185 186	Soil quality parameters indicate that sewage sludge application causes a substantial improvement of organic matter and nutrient content in the amended technosols, as reported in other works (Albiach et al., 2001; Heras et al., 2005). Despite the noticeable increase in the soil nutrients due to sludge mineralisation, electrical conductivity did not rise greatly. Available phosphorous levels were increased by sludge addition but were in a high-medium range compared with agricultural soils of the region (Peñuelas et al.,
180 181 182 183 184 185 186 187	Soil quality parameters indicate that sewage sludge application causes a substantial improvement of organic matter and nutrient content in the amended technosols, as reported in other works (Albiach et al., 2001; Heras et al., 2005). Despite the noticeable increase in the soil nutrients due to sludge mineralisation, electrical conductivity did not rise greatly. Available phosphorous levels were increased by sludge addition but were in a high-medium range compared with agricultural soils of the region (Peñuelas et al., 2009). However, partial immobilization could take place due to the alkaline pH of these
180 181 182 183 184 185 186 187 188	Soil quality parameters indicate that sewage sludge application causes a substantial improvement of organic matter and nutrient content in the amended technosols, as reported in other works (Albiach et al., 2001; Heras et al., 2005). Despite the noticeable increase in the soil nutrients due to sludge mineralisation, electrical conductivity did not rise greatly. Available phosphorous levels were increased by sludge addition but were in a high-medium range compared with agricultural soils of the region (Peñuelas et al., 2009). However, partial immobilization could take place due to the alkaline pH of these highly calcareous soils. According to sludge composition, mineral nitrogen levels may

2
3
4 5
5 6
0
/ 8
-
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
00

191	calcareous soils (Kleber et al., 2000), which could then leach from the soil and
192	contaminate aquifers. However, nitrogen leaching, if it occurs, should take place mainly
193	in the first four months after sludge application due to the high mineralization rates of
194	organic-N from sludge. After this, leaching risk should decrease quickly due to nitrate
195	absorption by roots of the growing plants, reducing the risk of aquifer eutrophication
196	(Tarrassón et al., 2008; Jordán et al., 2017). Moreover, it has to be taken into account
197	that this risk is relatively low due to the small surface restored (<2 ha in a quarry per
198	year) and because sludge is applied only once, compared to agricultural applications
199	where sludge is applied recurrently at the same plot. On the other hand, a fraction of
200	organic matter from sewage sludge persists in soil due to its recalcitrant composition
201	(e.g. some lipids and aromatic hydrocarbons), and a labile organic matter fraction could
202	also remain in soil protected as aggregates or by sorption on mineral surfaces (Ojeda et
203	al., 2015).
204	

The total amount of heavy metals in the amended technosols never exceeded the concentrations fixed by the European Union proposal (2000), which is stricter than the current European Directive that regulates the agricultural use of sewage sludge. This is due to the relatively low concentration of these elements in the sewage sludge but also to the moderate doses applied. Moreover, the metal bioavailability in the studied technosols is expected to be low, according its pH and lime content (Ortiz & Alcañiz,

211 2006).

212

No noticeable water erosion or other soil degradation processes were observed 24
months after sludge application. Only in two cases, stability issues (landslides and fallen

215 rocks) were reported due to the excessive slope (greater than 100% in some sites). Rill

Land Degradation & Development

3
4
5
6
6 7 8
, 8
9
9 10
11 12
12
13
14
15
16 17
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
50 59

60

1 2

erosion was detected in seven restored zones although the estimated erosion rates were always below 6 Mg ha⁻¹ y⁻¹, which can be considered an acceptable rate in slopes and surfaces of recently restored areas (Verheijen et al., 2009), with the one exception of Las Cuevas quarry, where the Z1 zone was severely affected (table 5). Dense plant cover was observed in the evaluated zones two years after sludge application. The average plant cover was 70 ± 24 % and herbaceous plant height $0.45 \pm$ 0.30 m. Concerning species richness, more than 20 plant species were identified in the

evaluated zones. Regarding herbaceous vegetation (see figure 1), grasses were the most

225 frequent functional group of plants (P < 0.015). However, some reported herbaceous

species can be considered as ruderal plants that grow in nutrient-rich and disturbed

habitats, usually resulting from human activity. Legumes are also well represented in

sewage sludge revegetated zones at a similar frequency to Asteraceae and ruderals. No

229 exotic or invasive species were observed in the evaluated zones, despite the presence of

230 some individuals of Arundo donax in one zone (Falconera quarry) before sludge

application.

232

The observation of vegetation succession showed that native species started to colonize the amended zones two years after sludge amendment. Herbaceous species were the main colonizers, being found in half of the amended zones. Shrub species appeared in four restored zones, especially *Santolina chamaecyparissus* and *Rosmarinus officinalis*. Moreover, in approximately 60% of the rehabilitated zones where shrubs were planted, spontaneous reproduction of these species was observed.

239

1 2 4 5 6 7 8	
9 10 11 12 13 14 15 16 17	
17 18 19 20 21 22 23 24 25	
26 27 28 29 30 31 32 33	
 34 35 36 37 38 39 40 41 42 	
42 43 44 45 46 47 48 49 50	
51 52 53 54 55 56 57 58 59	
60	

240	Vegetation cover is a key parameter for soil stabilization and erosion control (Merlin et
241	al., 1999; Bochet et al., 2010; Espigares et al., 2011), mainly in major civil works such
242	as the construction of motorways, the rehabilitation of quarries or dumps, and even the
243	creation of ski slopes. Several authors (Albiach et al., 2001; Pond et al., 2005) have
244	demonstrated that soils amended with sewage sludge favor a fast vegetal recovery and
245	plant growth, especially for herbaceous vegetation, which is the best way to control soil
246	erosion in steep slopes. Moreover, sewage sludge promotes soil aggregation (Sort &
247	Alcañiz, 1996; Sort & Alcañiz, 1999; Ojeda et al., 2008), reducing soil erodibility.
248	These combined beneficial effects of sewage sludge on vegetation development and soil
249	structure are probably the main reasons explaining the reduced erosion rates found on
250	steep slopes that are especially vulnerable to soil erosion, in the studied quarries.
251	
252	The relatively lower frequency of ruderal species found in this work (see figure 1)
253	compared with a previous study of the same team (Moreno-Peñaranda et al., 2004) that
254	showed a dominance of ruderal plants on sewage sludge amended zones must be
255	discussed. This apparent discrepancy may be explained by the different doses of sludge
256	applied, which were lower in the present work (calculated following the protocol
257	reported in Carabassa et al., 2010) compared to other previous studies (Sopper, 1993;
258	Alcañiz et al., 1996; Barnhisel et al., 2000; Jorba & Andrés, 2000; Morera et al., 2002;
259	Moreno-Peñaranda et al., 2004). Therefore, the main difference is the quantity and
260	quality of the organic matter added to the mineral substrate. As explained in the
261	methods section, the new procedure calculates the dose of sludge according to its
262	concentration of stable organic matter (stability degree), and fixes the maximum dose at
263	50 Mg ha ⁻¹ . These criteria imply an addition of a limited proportion of labile organic
264	matter and a relatively low addition of total organic matter associated with sludge

4	
-	
5	
07	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
∠ I วา	
22	
23	
$5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 39 \\ 40 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
10	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50 57	
59	
60	

3

265	application, which contribute to reduce the development of ruderal plants currently
266	associated with over-fertilized soils. However, the presence of ruderal plants in restored
267	areas may be common also when organic amendments are not used (Hobbs & Adkins,
268	1988; Alpert et al., 2000; Moreno-Peñaranda et al., 2004). Therefore, the use of sewage
269	sludge in appropriate doses should not be considered as a barrier regarding plant
270	community succession towards the natural surrounding vegetation. Furthermore, the
271	noticeable recruitment of native shrub species may suggest a plant community
272	convergence with adjacent undisturbed habitats in the medium term. However, this
273	process should be monitored in the long term, as it is one of the main objectives of
274	ecological restoration (SER, 2004). Moreover, an increasing emphasis will be focused
275	on the proper ecological functionality of a restored site, and to a lesser extent on
276	returning a restored site back to previous conditions based on species composition
277	(Harris et al., 2006).
278	

279 CONCLUSIONS

280 For the range of climatic and soil conditions tested in this work, the use of sewage 281 sludge for vegetation recovery purposes in restoration works is a good alternative that 282 allows the valorization of sewage sludge and increases the quality and stability of 283 restored areas, reducing the risk of soil erosion. One of the most important parameters 284 to take into account for sewage sludge dosage is the amount of labile organic matter, in 285 order to avoid compromising encroachment and reduce the risk of nitrate contamination. 286 Moreover, an aptitude evaluation of sludge, mineral substrates and location is 287 mandatory before sludge application in order to prevent contamination and detrimental 288 impacts on inhabited zones.

289

2 3	290	ACKNOWLEDGEMENT
4 5	291	The work described in this paper was funded by the Department of Territory and
6 7	292	Sustainability of the Government of Catalonia (Spain).
8 9	293	
10 11	294	LITERATURE CITED
12 13	295	Albiach, R., R. Canet, F. Pomares and F. Ingelmo. 2001. Organic matter components
14 15	293 296	and aggregate stability after the application different amendments to a horticultural soil.
16	290 297	Bioresource Technology 76 :125–129. DOI: 10.1016/S0960-8524(00)00166-8
17 18	297	<i>Dioresource Technology</i> 10 .125–129. DOI: 10.1010/30900-8524(00)00100-8
19 20		Alessie J. M. J. Consultational M. Deistle 1006 Manual de mateurs sid d'activitate
20	299	Alcañiz, J. M., L. Comellas and M. Pujolà. 1996. Manual de restauració d'activitats
22 23	300	extractives amb fangs de depuradora. Barcelona: Junta de Sanejament, Generalitat de
23	301	Catalunya.
25 26	302	
20	303	Alcañiz, J.M., O. Ortiz and V. Carabassa. 2009. Utilización de lodos de depuradora en
28	304	restauración. Manual de aplicación en actividades extractivas y terrenos marginales.
29 30	305	Barcelona: Agència Catalana de l'Aigua, Generalitat de Catalunya.
31	306	
32 33	307	Alpert, P., E. Bone, and C. Holzapfet. 2000. Invasiveness, invasibility and the role of
34 35	308	environmental stress in the spread of non-native plants. Perspectives in Plant Ecology,
36	309	Evolution and Systematics 3:52-66. DOI: 10.1078/1433-8319-00004
37 38	310	
39 40	311	Barnhisel, R. I., R. G. Darmody and W.L. Daniels. 2000. Reclamation of drastically
41	312	disturbed lands. Agronomy series n.º 41. Madison: Am. Soc. Agronomy, SSSA.
42 43	313	
44 45	314	Bochet, E., P. García-Fayos and J. Tormo. 2010. Can we control erosion of roadslopes
46	315	in semiarid mediterranean areas? Soil improvement and native plant establishment.
47 48	316	Land Degradation and Development 21:110-121. DOI: 10.1002/ldr.911
49	317	
50 51	318	Bremner, J.M., Mulvaney, C.S., 1982. Nitrogen-total. In: Page, A.L. (Ed.), Methods of
52	319	soil analysis. Part 2, second ed., Agron. Monogr., 9. Madison: American Society of
53 54	320	Agronomy and Soil Science Society of America.
55	321	
56 57	541	
58		
59 60		http://mc.manuscriptcentral.com/ldd 13

322	Carabassa V., E. Serra, O. Ortiz and J.M. Alcañiz. 2010. Sewage Sludge Application
323	Protocol for Quarry Restoration (Catalonia). Ecological Restoration 28:420-422. DOI:
324	10.1353/ecr.2010.0047
325	
326	Domene, X., J.M. Alcaniz and P. Andres. 2007. Ecotoxicological assessment of organic
327	wastes using the soil collembolan Folsomia candida. Applied Soil Ecology 35 (3), 461-
328	472. DOI: 10.1016/j.apsoil.2006.10.004
329	
330	Department of Territory and Sustainability, 2015. RESTOFANGS. La restauració
331	superficial edàfica amb fangs de depuradora (available in
332	http://mediambient.gencat.cat/ca/05_ambits_dactuacio/empresa_i_produccio_sostenible
333	/restauracio_dactivitats_extractives/productes-emprats-a-la-restauracio-
334	ambiental/restofangs/index.html)
335	
336	Espigares, T., M. Moreno-de las Heras and J.M. Nicolau. 2011. Performance of
337	Vegetation in Reclaimed Slopes Affected by Soil Erosion. Restoration Ecology 19:35-
338	44
339	
340	European Union. 1986. COUNCIL DIRECTIVE of 12 June 1986 on the protection of
341	the environment, and in particular of the soil, when sewage sludge is used in agriculture
342	(86/278/EEC) (available in http://eur-lex.europa.eu/legal-content/EN
343	/TXT/?uri=CELEX:31986L0278)
344	
345	European Union. 2000. Working document on sludge (3 rd draft) (available in
346	http://ec.europa.eu)
347	
348	Fuentes, A., M. Llorens, J. Saez, M.I. Aguilar, J.F. Ortuno and V.F. Meseguer. 2004.
349	Phytotoxicity and heavy metals speciation of stabilised sewage sludges. Journal of
350	Hazardous Materials 108:161-169. DOI: 10.1016/j.jhazmat.2004.02.014
351	
352	Gee, GW, Or, D. 2002. Particle Size Analysis in: Dane, JH, Topp, GC (ed.), Methods of
353	Soil Analysis. Part 4-Physical Methods. Madison: Soil Science Society of America

2 3	355	Harris, J.A., R.J. Hobbs, E. Higgs and J. Aronson. 2006. Ecological restoration and
4	356	global climate change. <i>Restoration Ecology</i> 14 :170-176. DOI: 10.1111/j.1526-
5 6	357	100X.2006.00136.x
7 8	358	
9	359	Heneghan, L., S.P. Miller, S. Baer, M.A. Callahan Jr., J. Montgomery, M. Pavao-
10 11	360	Zuckerman, C.C. Rhoades and S. Richardson. 2008. Integrating soil ecological
12 13	361	knowledge into restoration management. Restoration Ecology 16:608-617. DOI:
14	362	10.1111/j.1526-100X.2008.00477.x
15 16	363	
17 18	364	Heras, J., P. Manas and Labrador, J. 2005. Effects of several applications of digested
19	365	sewage sludge on soil and plants. Journal of Environmental Science Health 40:437-451.
20 21	366	DOI: 10.1081/ESE-200045646
22	367	
23 24	368	Hobbs, R. J., and L. Atkins. 1988. Effect of disturbance and nutrient addition on native
25 26	369	and introduced annuals in plant communities in the western Australia wheat belt.
27	370	Australian Journal of Ecology 13:171-179. DOI: 10.1111/j.1442-9993.1988.tb00966.x
28 29	371	
30 31	372	Hornburg V., G. W. Brummer. 1993. Behavior of Heavy-Metals in Soils. Zeitschrift Fur
32	373	Pflanzenernahrung Und Bodenkunde 156 :467-477.
33 34	374	
35 36	375	Jorba, M., and P. Andrés. 2000. Effects of sewage sludge on the establishment of the
37	376	herbaceous ground cover after soil restoration. Journal of Soil and Water Conservation
38 39	377	55:322-327.
40	378	
41 42	379	Jordan, W., M. E. Giplin, and J. D. Aber (Ed.). 1987. Restoration ecology: a synthetic
43 44	380	approach to ecological research. Cambridge: Cambridge University Press.
45	381	
46 47	382	Jordán, M.M., E. García-Sánchez, M.B. Almendro-Candel, F. Pardo, B. Vicente, T.
48 49	383	Sanfeliu, J. Bech. 2017. Technosols designed for rehabilitation of mining activities
50	384	using mine spoils and biosolids. Ion mobility and correlations using percolation
51 52	385	columns. Catena 148:74-80. DOI: 10.1016/j.catena.2016.02.027.
53	386	
54 55	387	Jordán, M.M., S. Pina, F. García-Orenes, M.B. Almendro-Candel and E. García-
56 57	388	Sánchez. 2008. Environmental risk evaluation of the use of mine spoils and treated
58 59		
57		15

389	sewage sludge in the ecological restoration of limestone quarries. Environmental
390	Geology 55:453-462. DOI: 10.1007/s00254-007-0991-4
391	
392	Kleber, M., P. Nikolaus, Y. Kuzyakov and K. Stahr. 2000. Formation of mineral N
393	(NH ₄ ⁺ , NO ₃ ⁻) during mineralization of organic matter from coal refuse material and
394	municipal sludge. Journal of Plant Nutrition Soil Science 163:73-80. DOI:
395	10.1002/(SICI)1522-2624(200002)163:1<73::AID-JPLN73>3.0.CO;2-S
396	
397	Knudsen, D, Peterson, GA, Pratt, PF. 1982. Lithium, Sodium, and Potassium in: Page,
398	AL (ed.), Methods of soil analysis. Part 2. Chemical and microbiological properties.
399	Madison: American Society of Agronomy, Soil Science Society of America. DOI:
400	10.2134/agronmonogr9.2.2ed.c13
401	
402	Merlin, G., L. di Gioia, and C. Goddon. 1999. Comparative study of the capacity of
403	germination and adhesion of various hydrocolloids used for revegetalization by
404	hydroseeding. Land Degradation and Development 10:21–34. DOI:
405	10.1002/(SICI)1099-145X(199901/02)10:1<21::AID-LDR318>3.0.CO;2-M
406	
407	Moreno-Peñaranda, R., F. Lloret and J.M. Alcañiz. 2004. Effects of sewage sludge on
408	plant community composition in restored limestone quarries. Restoration Ecology
409	12 :290-296. DOI: 10.1111/j.1061-2971.2004.00310.x
410	
411	Morera, M.T., J. Echeverria, and J. Garrido. 2002. Bioavailability of heavy metals in
412	soils amended with sewage sludge. Canadian Journal of Soil Science 82:433-438.
413	DOI: 10.4141/S01-072
414	
415	Navarro-Pedreno, J, M. B. Almendro Candel, M. M. Jordán Vidal, J. Mataix-Solera and
416	E. García-Sánchez. 2004. Risk areas in the application of sewage sludge on degraded
417	soils in the province of Alicante (Spain). Geo-Environment 293-302
418	
419	Nelson, DW. 1982. Carbonate and Gypsum in: Page, AL (ed.), Methods of soil analysis.
420	Part 2. Chemical and microbiological properties. Madison: American Society of
421	
421	Agronomy, Soil Science Society of America. DOI:10.2134/agronmonogr9.2.2ed.c11
421	Agronomy, Soil Science Society of America. DOI:10.2134/agronmonogr9.2.2ed.c11

423	Nelson, DW, Sommers, LE. 1982. Total carbon, organic carbon, and organic matter. in:
424	Page, AL (ed.), Methods of soil analysis. Part 2. Chemical and microbiological
425	properties. Madison: American Society of Agronomy, Soil Science Society of America.
426	DOI:10.2134/agronmonogr9.2.2ed.c29
427	20110.215 hdgronnonogry.2.200.029
428	Ojeda, G, Alcañiz, JM, le Bissonnais, Y. 2008. Differences in aggregate stability due to
429	various sewage sludge treatments on a Mediterranean calcareous soil. <i>Agriculture</i> ,
430	<i>Ecosystems and Environment</i> 125 :48–56. DOI: 10.1016/j.agee.2007.11.005
431	<i>Deosystems and Environment</i> 12 5.10 ⁻⁵⁰ . DOI: 10.1010/j. 1 200.2007.11.005
432	Ojeda, G., O. Ortiz, C. R. Medina, I. Perera & J. M. Alcañiz. 2015. Carbon
433	sequestration in a limestone quarry mine soil amended with sewage sludge. Soil Use
434	and Management 31 :270-278. DOI: 10.1111/sum.12179
435	
436	Olsen, SR, Sommers, LE. 1982. Phosphorous in: Page, AL (ed.), Methods of soil
437	analysis. Part 2. Chemical and microbiological properties. Madison: American Society
438	of Agronomy, Soil Science Society of America. DOI: 10.2134/agronmonogr9.2.2ed.c24
439	
440	Ortiz, O., and J. M. Alcañiz. 2006. Bioaccumulation of heavy metals in Dactylis
441	glomerata L. growing in a calcareous soil amended with sewage sludge. Bioresource
442	<i>Technology</i> 97 : 545-552. DOI: 10.1016/j.biortech.2005.04.014
443	
444	Peñuelas, J., Sardans, J., Alcañiz, J.M., Poch, J.M. 2009. Increased eutrophication and
445	nutrient imbalances in the agricultural soils of NE Catalonia (Spain) during the last four
446	decades. Journal of Environmental Biology 30: 841-846.
447	
448	Pond, A.P., S.A. White, M. Milczarek and T.L. Thompson. 2005. Accelerated
449	weathering of biosolid-amended copper mine tailings. Journal of Environmental
450	Quality 34:1293–1301. DOI: 10.2134/jeq2004.0405
451	
452	Ram, LC, Srivasta, NK, Tripathi, RC, Jha, SK, Sinha, AK, Singh, G, Manoharan, V.
453	2006. Management of mine spoils for crop productivity with lignite fly ash and
454	biological amendments. Journal of Environmental Management 79:173-187. DOI:
455	10.1016/j.jenvman.2005.06.008
456	
	17

457	Ramírez, WA, Domene, X, Ortiz, O, Alcañiz, JM. 2008. Toxic effects of digested,
458	composted and thermally-dried sewage sludge on three plants. Bioresource Technology
459	99:7168-7175. DOI: 10.1016/j.biortech.2007.12.072
460	
461	Rhoades, JD. 1982. Soluble Salts in: Page, AL (ed.), Methods of soil analysis. Part 2.
462	Chemical and microbiological properties. Madison: American Society of Agronomy,
463	Soil Science Society of America. DOI: 10.2134/agronmonogr9.2.2ed.c8
464	
465	Singh RP, Agrawal, M. 2008. Potential benefits and risks of land application of sewage
466	sludge. Waste Management 28:347-358. DOI: 10.1016/j.wasman.2006.12.010
467	
468	SOCIETY FOR ECOLOGICAL RESTORATION INTERNATIONAL SCIENCE &
469	POLICY WORKING GROUP. 2004. The SER International Primer on Ecological
470	Restoration. Tucson: Society for Ecological Restoration International.
471	
472	Sopper, WE. 1993. Municipal Sludge Use in Land Reclamation. Boca Raton: Lewis.
473	
474	Sort, X, Alcañiz, JM. 1996. Contribution of sewage sludge to erosion control in the
475	rehabilitation of limestone quarries. Land Degradation and Development 7:69-76. DOI:
476	10.1002/(SICI)1099-145X(199603)7:1<69::AID-LDR217>3.0.CO;2-2
477	
478	Sort, X, Alcañiz, JM. 1999. Effects of sewage sludge amendment on soil aggregation.
479	Land Degradation and Development 10:3-12. DOI: 10.1002/(SICI)1099-
480	145X(199901/02)10:1<3::AID-LDR305>3.0.CO;2-0
481	
482	Tarrasón, D., G. Ojeda, O. Ortiz and J.M. Alcañiz. 2008. Differences on nitrogen
483	availability in a soil amended with fresh, composted and thermally-dried sewage sludge.
484	Bioresource Technology 99:252-259. DOI: 10.1016/j.biortech.2006.12.023
485	
486	Tedesco, M.J., E.C. Teixeira, C. Medina and A. Bugin. 1999. Reclamation of spoil and
487	refuse material produced by coal mining using bottom ash and lime. Environmental
488	Technology 20:523–529. DOI: 10.1080/09593332008616848
489	
490	Thomas, R. 2004. Practical Guide to ICP-MS. Maryland: Scientific Solutions
	18

2 3	491										
4 5	492	Verh	eijen, F.	G.A., R.	J.A. J	ones, R.J.	Rickson, C.J. Sm	ith. 2009.	Foleral	ole versus	actual
6	493	soil	erosior	n rates	in	Europe.	Earth-Science	Reviews	94 :	23-38.	DOI:
7 8	494	10.10	016/j.ear	scirev.20	009.02	2.003					
9	495										
10 11											
12											
13 14											
15											
16 17											
18											
19 20											
21											
22 23											
24											
25 26											
27											
28 29											
30											
31 32											
33											
34 35											
36											
37 38											
39											
40 41											
42											
43 44											
45											
46 47											
48											
49 50											
51											
52 53											
54											
55 56											
56 57											
58 50											
59 60						http://mc.m	anuscriptcentral.co	om/ldd			19

Tables

Table 1. General description of the mine sites located in the NE Iberian Peninsula

Quarry	Latitude (N)	Longitude (E)	Mean annual rainfall (mm)	Mean annual temperature (°C)	Previous vegetation	Parent material		
Aiguamolls	41° 28′ 31′′	0° 49′ 39′′	450-500	14-15	Shrubland dominated by <i>Thymus vulgaris</i> and <i>Rosmarinus officinalis</i> as dominant shrubs	Marl		
Calvari	41° 30′ 26′′	0° 57′58′′	350-400	14-15	Rainfed tall fruit trees	Marl		
Ponderosa	41° 15′ 41′′	1° 09′ 27′′	550-600	15-16	Pinus halepensis forest	Limestone		
Antonieta	42° 16′ 06′′	1° 22′ 11′′	750-800	11-12	Pinus nigra forest	Limestone		
Lázaro	41° 12′ 07′′	1° 28′ 57′′	500-550	15-16	Pinus halepensis forest	Limestone		
Orpí	41° 31′ 22″	1° 36′ 15′′	600-650	13-14	Pinus halepensis forest	Limestone		
Montlleó	41° 41′ 35′′	1° 49′ 39′′	600-650	13-14	<i>Thymus vulgaris</i> and <i>Rosmarinus officinalis</i> shrubs	Sandstone		
Vallcarca	41° 15′ 13′′	1° 52′ 25′′	500-550	15-16	Mixed forest: Quercus ilex and Pinus halepensis	Marl and limestone		
Falconera	41° 15′ 40′′	1° 53′ 12′′	500-550	15-16	Pinus halepensis forest	Limestone		
Cubetas	41° 20′ 24′′	1° 53′ 33′′	600-650	13-14	Pinus halepensis forest	Dolostone		
Cuevas	41° 16′ 16′′	1° 54′ 13′′	500-550	15-16	Quercus coccifera shrubs	Limestone		

500 Table 2. Analytical characterization of sewage sludges applied on the selected mine

501 sites.

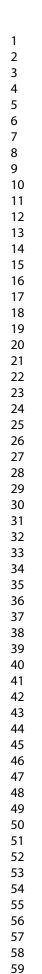
Dry matter (%) Organic matter (%)	Average	Max.	Min.	SD		
Organic matter (%)	24.5	26.8	22.5	12.6		
Organic matter (70)	57.7	70.7	39.2	27.1		
Stability degree (%)	48.1	60.1	31.8	17.2		
Conductivity (dS m ⁻¹ 25°C)	2.0	3.0	1.0	0.7		
pH (water 1:10 w:v)	7.7	8.5	6.9	0.6		
N-Kjeldhal (g kg ⁻¹)	36.8	63.4	11.5	19.8		
N-ammonia (g kg ⁻¹)	10.7	21.5	1.8	7.3		
P- total (g kg ⁻¹)	38.3	64.4	24.5	23.5		
$K (g kg^{-1})$	2.8	5.7	1.0	1.5		
$Cu (mg kg^{-1})$	322.3	580.0	102.0	170.6		
Ni $(mg kg^{-1})$	23.0	43.3	15.5	13.9		
Cr (mg kg ⁻¹)	56.6	85.6	12.5	35.7		
Pb $(mg kg^{-1})$	54.3	64.2	29.5	28.1		
Hg (mg kg ⁻¹)	2.0	4.2	0.2	1.3		
Cd (mg kg ⁻¹)	3.7	10.0	0.9	3.6		
$Zn (mg kg^{-1})$	1037.6	2199.0	375.0	512.6		

- 504 Table 3. Summary of physical and chemical parameters of amended substrates
 - 505 (technosols). N=28. Data relate to the fine fraction (<2 mm), except coarse particle size
- 506 fractions that are reported as percent of whole soil sample (ws).

Parameter	Average	Max.	Min.	SD
Fraction >5 cm (% ws)	3	10	0	3.5
Fraction 5-1 cm (% ws)	23	40	8	9.1
Fraction 1-0.2 cm (% ws)	21	42	8	8.1
Fine earth <0.2 cm (% ws)	53	87	31	15.7
Sand (%)	35	60	16	12.9
Silt (%)	41	63	25	11.3
Clay (%)	23	28	14	4.4
CaCO ₃ eq. (%)	52	80	29	14.7
pH water (1:2.5 w:v)	8.1	8.5	7.9	0.2
Electrical conductivity (1:5 extract				
w:v, dS/m 25°C)	1.02	2.94	0.3	0.8
Organic carbon (g kg ⁻¹)	11.3	23.4	2.1	4.1
N-Kjeldhal (g kg ⁻¹)	1.1	1.9	4.0	3.0
P-Olsen (mg kg ⁻¹)	66	103	13	25.4
K-available (mg kg ⁻¹)	116	244	76	41.0
	66 116			

http://mc.manuscriptcentral.com/ldd

Land Degradation & Development


Table 4. Heavy metals concentration on amended soils and average and maximum

- increments relating to original mine spoils (nd: no detected; units: mg kg⁻¹). Z1, Z2 and
- Z3 refers to diverse slopes or zones in the same quarry. N=28.

Zone code	Cd	Cu	Cr	Hg	Ni	Pb	Zn
Average	0.100	20.8	25.1	0.062	19.1	27.2	77.5
Max.	0.500	50.0	40.0	0.097	29.0	55.0	190.0
Min.	0.100	6.0	7.0	0.041	11.0	11.0	18.0
SD	0.005	10.7	9.4	0.024	5.7	14.9	39.9
Limits proposed by EU (2000) for alkaline soils	1.5	100	100	1	70	100	200
Average increase	nd	0.3	1.8	nd	2.1	2.1	4.4
Maximum increase 512	nd	2.1	11.5	nd	12.0	11.5	14.5

- 514 Table 5. Surface of soil affected by water erosion, erosion rates and soil loss on the
- 515 evaluated zones of quarries where soil erosion has been detected (Z1, Z2 and Z3 refer to
- 516 diverse slopes or zones in the same quarry).

Zone code	Affected area (m ²)	Erosion rate (Mg ha ⁻¹ year ⁻¹)	Soil loss (Mg ha ⁻¹)
Aiguamolls Z1	1,225	2.3	5.3
Aiguamolls Z2	1,870	0.3	0.7
Aiguamolls Z3	1,950	2.2	5.0
Lázaro	1,800	0.4	0.9
Cubetas	8,040	1.9	4.5
Cuevas Z1	2,000	17.3	55.4
Cuevas Z2	4,400	3.2	10.0

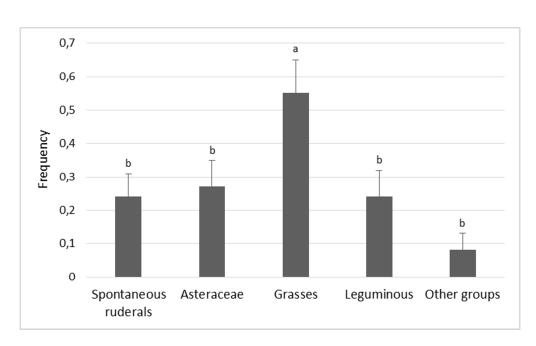


Figure 1. Frequency of different herbaceous plant functional groups in the evaluated zones of quarries. Error bars indicate standard error (P < 0.02).

1200x724mm (96 x 96 DPI) Perez.