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Abstract 

 

Introduction: Optical biosensors and particularly those based on nanoplasmonics 

technology have emerged in the last decades as a potential solution for disease 

diagnostics and therapy follow-up at the point-of-care. These biosensor platforms could 

defeat conventional diagnosis techniques offering label-free assays with immediate 

results and employing small and user-friendly devices.  

 

Areas covered: In this review, we will provide a critical overview of the recent 

advances in the development of nanoplasmonic biosensors for point-of-care 

diagnostics. We focus on those systems with demonstrated capabilities for integration 

in portableplatforms, highlighting some of the most relevant diagnostics applications 

targeting proteins, nucleic acids, and cells as disease biomarkers. 

 

Expert Commentary: Despite the attractive features of label-free nanoplasmonic 

sensors in terms of miniaturization and analytical robustness, the route towards an 

effective clinical implementation necessarily involve the integration of fully automated 

microfluidic systems and the optimization of surface biofunctionalization procedures. 

Along with that, the development of multiplexed sensors for high-throughput analysis 

and including specific neoantigens and novel biomarkers in detection panels, will 

provide the means for delivering a powerful analytical technology for an accurate and 

improved medical diagnosis. 
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1. Exploiting light for better diagnostics 

Light is a natural agent that stimulates sight and makes things visible. But far from that 

fundamental property, light is also a major paradigm for the progress of science and 

technology. The study and manipulation of light electromagnetic radiations, namely 

photonics, have contributed to the development of our daily-use instruments and 

devices, such as smartphones and laptops, television, microwaves, microscopes, and 

even automatic doors and vending machines. Moreover, in the recent years, photonics 

and nanophotonics have been distinguished as one of the key enabling technologies  for 

the next-generation of devices. The ultimate advances in photonics are facilitating 

ultrafast communications and computer processes, the discovery and understanding of 

the Universe laws and facts, together with an extreme boost and improvement of 

medical devices for surgery and diagnosis. Herein, photonic biosensors are positioned 

as powerful candidates to become diagnostic platforms for providing extremely simple, 

fast, and accurate analysis of any disease at the point of care. 

 

Photonic biosensors are systems that seize different light-based phenomena for the fast 

detection and quantification of clinical biomarkers (i.e. molecules or pathogens which 

presence or quantity is an indicator of the onset of a disease). Fundamentally, an optical 

biosensor consists of a physical transducer combined with a specific bioreceptor, able 

to translate the capture of an analyte in a measurable variation of a light property, e.g. 

refractive index, wavelength, resonance, or intensity. Optical sensing can employ 

various physical transduction methods, such as interferometers1, resonators2, gratings3, 

or plasmonic4. The plasmonic based sensors are probably the best known and most 

widely employed.  The Surface Plasmon Resonance (SPR) biosensor is considered the 

landmark in optical and plasmonic biosensors. Since the introduction of the SPR 

biosensing principle more than three decades ago, these optical biosensors have spread 

astonishingly, being commercialized by a high number of companies worldwide and 

routinely used in the pharmaceutical industry and research laboratories for the study of 

any type of biomolecular interactions5. SPR biosensors are able to detect, monitor, and 

quantify molecules attaching to the sensor surface by measuring the change of the 

refractive index (RI) produced at its immediate vicinity, thus skipping the need of 

amplification steps or molecular labeling. Note that the detection principle and 

operation modalities of SPR biosensors are described in Section 2.1. 

 

Certainly, the capability for label-free and real-time molecular analysis is the major 

strength of SPR biosensors. They can provide direct quantification of a diversity of 

analytes in a few minutes, in a non-invasive manner and without interferences from 

tags and labels, extremely reducing the consumption of reagents, and even offering to 

retrieve kinetic information from the biomolecular interaction under study. These 

features defeat the traditional diagnosis methods currently performed at hospitals, such 

as microbiology culture, enzyme-linked immunosorbent assays (ELISA), or 

quantitative polymerase chain reaction (qPCR)tests. In addition, plasmonic optical 

biosensors offer advantages over other biosensing methods as the predominant 

electrochemical ones such as a high robustness to external electromagnetic 

interferences and stability in aggressive environments. This has been vastly 

demonstrated with the  number of exponential publications reporting new and valuable 

applications for SPR biosensors, including not only early disease diagnosis, but also 

therapy monitoring, drug discovery, or food and environmental control5,6. However, 

despite its long-term presence in the market and its demonstrated applicability, the 

conventional SPR biosensor has not yet reached the clinical field expectations. 
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According to the World Health Organization, the ideal diagnostic system should be 

Affordable, Sensitive and Specific to biological agents, User-friendly, Equipment-free, 

and Deployable to the point of care (i.e. ASSURED criteria)7. The actual research in 

plasmonics, nanotechnology, and bioengineering are upgrading the SPR-based sensors 

in order to achieve the envisioned ultra-sensitive point-of-care optical biosensor able to 

accomplish the ASSURED criteria 

 

In this article, we review the last advances in optical plasmonic sensor platforms and 

their implementation as medical instruments. In particular, we will discuss how the 

incorporation of the nanotechnology, or the integration in today’s devices like 

smartphones, can provide new opportunities for building miniaturized and portable 

biosensors, easy to use, and with outstanding sensitivities. The main challenges and 

limitations of plasmonic biosensors are also highlighted, as well as emerging strategies 

and the near-future perspectives. Finally, a revision of some of the more interesting 

biomedical applications will be provided, focusing in novel strategies offering timely 

and highly precise diagnosis of prevailing diseases, such as cancer, immunological 

disorders, or pathogenic infections.  

 

2. Overview of nanoplasmonic technologies for label-free biosensing 

 

Driven by the need of point-of-care (POC) biosensors to improve and promote 

healthcare worldwide, research in plasmonics has mainly focused in the automation and 

integration of SPR biosensors as well as the development of sophisticated optical 

transducers based on metallic nanostructures (i.e. nanoplasmonics) that enhance the 

sensing capabilities and facilitate its miniaturization. Likewise, the study and 

optimization of surface biofunctionalization strategies has been a key factor for their 

real clinical application, providing the necessary sensitivity and selectivity for an 

accurate label-free analysis. In this section, we will briefly describe the most employed 

detection methods in refractometric nanoplasmonic sensing, and the surface chemistry 

procedures for correctly attaching specific biorecognition elements (e.g. antibodies, 

proteins, DNA strands, etc.) to the plasmonic sensor surface.  

 

2.1 Nanoplasmonic-based detection methods 

 

SPR refers to the collective oscillation of free electrons of a metal (e.g. gold, silver in 

visible frequencies) at the interface with a dielectric, which propagates along the 

surface as an electromagnetic resonance. This resonance exhibits an electromagnetic 

field that evanescently penetrates into the adjacent dielectric medium and serves as a 

sensing probe, extremely sensitive to changes in the refractive index (RI) like those 

caused by biomolecular interactions. For SPR excitation, an incident light needs to be 

coupled to a thin layer of metal – typically 50 nm of gold – obeying certain conditions, 

such as polarization, angle, and wavelength. For efficient light coupling, usually a 

prism-based scheme is employed (i.e. Kretschmann configuration) although other 

methods such as waveguide coupling, diffraction grating, or optical fibers can also be 

used (see Figure 1a)4,8. 

 

In prism-coupled systems, the SPR phenomenon is characterized by the appearance of 

an intensity dip in the reflected light, which is monitored to track biomolecular 

interactions occurring at the sensor surface. For that, three operation modes are 

commonly employed: angle, wavelength, or intensity interrogation. For angular 
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interrogation, the SPR is excited with a monochromatic light and the incident angle is 

continuously scanned over a certain range. The reflected light shows the SPR dip that 

will shift upon a change of the RI, providing real-time sensorgrams with a signal 

increase for the analyte capture and signal decrease for detachment. On the other hand, 

in wavelength interrogation, the SPR system employs a polarized broadband light 

source and a spectrometer to analyze the reflected light (i.e. SPR spectroscopy). The 

spectrum shows the dip located at the specific SPR wavelength (SPR), which will also 

vary directly proportional to the number of molecules attaching to the surface. Both 

techniques are widely employed, and offer high sensitivities (limit of detection of 10-6 

– 10-5 refractive index units, RIU)5. They can also be fully automatized and integrated 

in relatively compact systems as bench-top instruments, so a number of commercial 

devices are already available. Finally, intensity measurements are performed at a fixed 

incident angle and wavelength of the light source, with the RI variations being 

monitored as changes of the SPR dip intensity, for example with a CCD camera. This 

is the general principle employed for SPR imaging (SPRi)9. The main advantage of 

such plasmonic imaging systems is the possibility to visualize the whole SPR chip, 

therefore it allows for real-time detection in a multiplexed array format. However, it 

also suffers from important limitations in terms of noise background and resolution. 

Overall, the robustness and large versatility of SPR biosensor keeps motivating 

researchers to miniaturize and integrate it in small and portable platforms for POC 

applications. Some examples are underlined in Section 3.  

 
Figure 1. Illustrations of the different plasmonic and nanoplasmonic biosensor schemes: (A) 

Surface Plasmon Resonance (SPR) biosensor in prism-coupling configuration, waveguide, 

grating, and optical fiber, respectively and (B) localized SPR (LSPR) biosensor through 

extinction measurement, darkfield microscopy and prism-coupling scheme, respectively. 

 

In a parallel effort, with the progress of nanotechnology in the last decade, the SPR 

biosensor has evolved by incorporating novel metallic nanostructures. Nanoplasmonic 

structures can be precisely fabricated with an excellent control of size and shape, 

including nanodisks, nanorods, nanopillars, nanoholes, nanoslits, nanostars, 

nanopyramids, etc. The coupling of light to plasmonic nanostructures smaller than the 
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wavelength generates a non-propagating collective oscillation of the free electrons that 

results in a significantly confined electromagnetic field (i.e. localized surface plasmon 

resonance, LSPR)10. The LSPR resonance is characterized by its extinction wavelength 

peak (maximum light absorption and scattering), which can be spectrally monitored to 

detect RI changes occurring at the surface of the nanoparticles. The superiority of LSPR 

sensing is primarily explained as a consequence of both a simpler coupling of the light 

and the new operation modalities that facilitate device miniaturization or enable a high-

resolution analysis (Figure 1b)11. For high nanostructure densities, extinction 

measurements are the easiest way. In this case, light is normally shed on the 

nanoplasmonic sensor and the transmitted light is analyzed with a spectrometer, a CCD 

camera or a CMOS sensor. The acquired LSPR peak can therefore be monitored 

through wavelength displacements or changes in the peak intensity. This modality 

offers advantages for POC biosensors, such as the elimination of optical components 

for light coupling and the use of low-cost and tiny light sources (e.g. light-emitting 

diodes, LEDs), which maximize its capabilities for multiplexing and high-throughput 

analysis. On the other hand, the LSPR principle has also demonstrated a significant 

enhancement of the analytical sensitivity, even achieving single-molecule detection. 

For that, either dark-field (DF) or total internal reflection (TIR) microscopies are 

employed. However,  both of them are difficult of being integrated in portable devices 

for clinical applications. Finally, nanoplasmonic sensors can also be incorporated into 

traditional prism-coupled systems working in wavelength interrogation. This approach 

not only offers benefits in terms of robustness and versatility, but also its nanostructured 

surface provides interesting opportunities for selective functionalization and sensitivity 

improvement. 

 

2.2 Surface functionalization strategies 

 

One of the main challenges in label-free nanoplasmonic biosensing is to assure the high 

sensitivity and specificity for the detection of the biomarker of interest directly in a real 

sample. Clinical samples are usually body fluids like blood, serum or plasma, urine, or 

saliva that contain large amounts of different compounds and with a large variability 

among individuals. The selective capture and quantification of minute amounts of the 

target molecule contained in such complex matrices, without any amplification or 

secondary step, can become an arduous task in the development of a functional 

plasmonic biosensor. 

 

The surface of the sensor need  to be previously functionalized to attach the specific 

bioreceptor for selective analyte capture while preventing non-specific adsorptions of 

other molecules present in the complex sample matrix12. The most employed 

biorecognition elements are antibodies, nucleic acids, or cell membrane receptors. 

These biomolecules show an extraordinary affinity and specificity towards their 

corresponding antigen, ligand, or complementary oligonucleotide strand, and most of 

them are commercially available. Alternatively, the use of aptamers – single-stranded 

nucleotide chains that specifically bind proteins via secondary-structure formation – 

has emerged in the recent years as an attractive strategy, showing affinities comparable 

to antibodies, although they are still not available for most of the biomarkers13. The 

immobilization of the bioreceptor onto the metal transducer is not advised to be done 

by simple physical adsorption as in the case of ELISA plates. This strategy arises 

drawbacks in label-free detection, such as low reproducibility, false positive signals due 

to non-specific binding, or even denaturation or unfolding of the biological receptors. 
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An optimum immobilization must consider the packing density and orientation, the 

activity and stability during the analysis time, and, in the case of nanostructured 

substrates, the selective tethering solely onto the active sensing areas. In addition, since 

the sensing field of nanoplasmonic devices rapidly decays into the dielectric medium, 

it is important to immobilize the receptors relatively close to the surface ( 100 nm).  

 

 
Figure 2. Schematics of different surface functionalization strategies: (A) Functional 

alkanethiol self-assembled monolayer (SAM) on gold; (B) Site-selective SAM formation on 

gold nanostructured surface; (C) Supported lipid bilayer (SLB) on gold nanostructured surface; 

(D) DNA probe immobilized on a SAM; (E) antibodies immobilized on a SAM by covalent 

binding; (F) antibodies immobilized on a SAM by biotin-streptavidin interaction; (G) 

antibodies immobilized on a SAM by Protein A/G interaction. Inset illustrates the structure of 

common biorecognition elements: DNA probe, aptamer, and antibody. 
 

The basic methodology for surface functionalization is to chemically modify the 

substrate with certain organic molecules carrying one or more reactive groups. For gold 

surfaces, the thiol (-SH) chemistry is the most popular and efficient procedure. Alkane 

chain molecules with a thiol group at one end are known to firmly attach to gold by 

chemisorption, and due to hydrophobic and electrostatic interactions between the 

carbon chains, they spontaneously assemble forming a well-ordered chemical matrix 

(i.e. self-assembled monolayer, SAM) (Figure 2a)14. The other end of the molecules is 

available to covalently bind proteins, peptides, or oligonucleotides through different 

functional groups (e.g. COOH, NH2, etc.). Detailed examples of these procedures are 

explained below. An improved version of the conventional SAM strategy incorporates 

polyethylene glycol (PEG) monomers or oligomers within the carbon chain. Such 

molecules are highly hydrophilic, so that they attract water molecules to the chemical 

matrix that will help repealing proteins or other compounds present in the sample15. 

The antifouling character of these PEGylated SAMs has demonstrated to be very useful 

for minimizing nonspecific adsorptions. Nanoplasmonic substrates offer further 

benefits in this regard, allowing for site-selective surface modification (Figure 2b). Due 

to the combination of different materials (e.g. gold particles on a glass substrate), it is 

possible to functionalize specifically the active areas via thiol chemistry and coat the 

substrate with an inert blocking agent (e.g. polymers, silanes). This strategy assures that 

target biointeractions occur only at the sensing spots. Another advantage of the 

nanostructured surfaces has been the easy implementation of more sophisticated 

functionalization methodologies, like the supported lipid bilayers (SLB). The formation 

of planar lipid bilayers on solid substrates (e.g. glass) has been exploited in 

bioengineering as artificial cell membranes, for the study of cell proteins, interactions 

A B C

Functional

group SH Lipid bilayer

Streptavidin

Biotin Protein A/G

DNA Aptamer Antibody

D E F G

Biorecognition elements
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and signaling, mainly using fluorescent techniques. The transfer to label-free plasmonic 

sensors has not been straightforward, since these lipid membranes are not stable on 

metals like gold. However, the use of low-density nanoparticle arrays made on glass 

substrates has demonstrated to mimic the conventional surfaces and provide enough 

stability for the formation of SLB (Figure 2c). This approach has demonstrated to be 

very useful for the analysis of membrane proteins in a biomimetic environment, and it 

could boost the development of new therapies and diagnosis16. 

 

Once the chemical matrix is formed on the sensor substrate, the biorecognition elements 

are to be immobilized. In the case of nucleic acids, the versatility of DNA artificial 

synthesis allows the direct incorporation of the desired functional groups at the end of 

the sequence. Therefore, capture probes can be designed for any particular surface 

chemistry. Yet, smart considerations need to be taken, such as controlling the pH and 

ionic strength of the buffer, or adding a vertical spacer to the bottom-end of the probe 

to facilitate verticality and target accessibility (Figure 2d)17. Far more complex can 

result the immobilization of proteins, and especially antibodies. The particular structure 

of antibodies, with the antigen binding sites exclusively located on the Fab regions, 

makes the orientation control essential to maximize capture efficiency and sensitivity. 

Besides, since these molecules are biologically produced, they are relatively weak 

under aggressive conditions (e.g., heat, pH, etc.) and they can lose their recognition 

activity. Most commonly employed strategies for antibody immobilization consist in 

either covalent binding to a SAM through a crosslinker or using affinity molecules as 

intermediates. Covalent binding usually exploits functional groups in the antibodies, 

like amine (-NH2) groups of terminal lysine residues or the carbohydrate moieties in 

the Fc region. Amine groups are easily accessible and can readily react with carboxylic-

functional SAM via carbodiimide chemistry (i.e. EDC/NHS), but this strategy results 

in random orientation of the antibodies (Figure 2e). Instead, carbohydrate chains can 

provide a better control of the orientation, although it requires a partial oxidation 

process to activate them and it might risk antibodies integrity and activity. On the other 

hand, the prime example of affinity-mediated immobilization employs the 

biotin/streptavidin system. Biotinylated antibodies –with the biotin tag ideally 

conjugated to the carbohydrate groups – bind with an extreme affinity to streptavidin 

molecules, which have been previously attached onto the sensor surface (Figure 2f). 

This method provides a highly stable and oriented layer of antibodies. Another 

approach makes use of affinity proteins like Protein A or G, which are produced in 

bacteria and naturally capture antibodies through their Fc region, therefore in an 

oriented manner (Figure 2g). With the advances in bioengineering and molecular 

chemistry, other immobilization strategies have been proposed (e.g. recombinant 

antibody fragments with histidine or cysteine tags, calixarenes, DNA-mediated 

coupling, etc.). As this is out of the scope of this article, we refer to other specialized 

reviews for more details18–20.  

 

Finally, it is worth mentioning that the surface functionalization procedure must 

optimize the receptor density to minimize possible steric hindrance issues, for example 

when capturing large analytes. Additional blocking steps with proteins or hydrophilic 

polymers should also be considered to avoid non-specific adsorptions. Also, it must 

ensure stability and reproducibility over long peridos, and the biosensor chip packaging 

and transport. Altogether, the sensor biofunctionalization is a key factor and crucial 

challenge for the development of label-free plasmonic biosensors and its application to 

the biomedical field. Despite the extensive research and the myriad of strategies 
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developed over the years, it is undoubtedly a main limitation to be solved for the final 

implementation of optical POC biosensors as medical instruments. 

 

3. Integration in portable devices 

In order to integrate plasmonic sensors into user-friendly, automatized, and portable 

instruments for POC applications, the engineering of two main modules are critical: 

microfluidics and optical components. Here, we will provide a brief overview of the 

current state-of-the-art in terms of integration, showing some examples of the latest 

advances in the field. 

 

Microfluidic systems intended for point-of-care plasmonic devices must employ simple 

and ideally automated operational principles, be compatible with light pathways (i.e. 

optically transparent), be fabricated with low-cost and scalable techniques, and should 

enhance the biosensing performance. The latter can be attempted by ensuring an 

efficient sample delivery, minimizing reagent and sample consumption, and enabling 

high-throughput and multiplexed analyses. Conventional microfluidics are usually 

fabricated as multilayered polymeric devices with input and transport channels – of 

several micrometers of size – and an output to a waste reservoir21. These systems 

generally are operated with the help of syringe or peristaltic pumps that provide a 

continuous and regular flow of the sample over the sensor. The simplicity of such 

design allows for including multiple channels, which can be further controlled with 

pneumatic or mechanic valves, for parallel multiplexed analysis. In this regard, Chen 

et al. developed a microfluidic patterning technique with 10 segments of 6 collocating 

parallel detection spots for the detection of inflammatory cytokines in serum (Figure 3a 

and 4a)22. Acimovic et al. reported an LSPR-based multiplexed detection platform with 

up to 32 sensing sites on a single sensor23. In their latest article, this system has been 

employed for the direct detection of different cancer biomarkers in human serum, 

proving the potential for disease diagnostics24. However, these biosensors still require 

bulky equipment (e.g. microscopes, spectrometers, etc.) not appropriate for POC 

settings. Another microfluidic approach to improve the biosensing performance is to 

exploit the nanoplasmonic structures for fluid manipulation. It is the case of flow-

through schemes utilizing plasmonic nanoapertures as nanochannels (Figure 3b), which 

has been employed for capturing pathogens specifically around the detection hot 

spots25. Finally, on the road towards full automation of microfluidics, numerous 

strategies are continuously developing including microreactors, droplet-based 

techniques, digital microfluidics, etc26–28. Although the integration of these advanced 

fluid-control methodologies with plasmonic biosensors does not seem to be easy, on-

going research and future perspectives can anticipate an enormous boost of lab-on-a-

chip POC diagnostics with the synergy of both technologies. 

 

On the other hand, the miniaturization and integration of all optical components is 

essential for building compact and portable sensing devices. The use of light emitting 

diodes (LEDs) for illumination and CMOS detectors have allowed the development of 

small footprint devices and even handheld biosensors that could be deployed to the 

point of care. Tokel et al. have fabricated a portable SPR platform by integrating the 

plasmonic sensor with microfluidics, LEDs and CMOS detector that was able to detect 

different bacteria (E. coli and S. aureous) with sensitivities in the order of 105 cells/mL 

(Figure 3c)29. Cetin et al. presented a handheld device based on plasmonic nanohole 

arrays, also using dual-LED illumination and a CMOS detector in transmission 

configuration30. Later, Coskun et al. demonstrated the applicability of the device for 
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label-free detection of proteins with an integrated microfluidic system (Figure 3d)31. A 

similar nanoplasmonic device has been recently employed by Gomez-Cruz et al. for 

bacteria detection, achieving a limit of detection of 100 cells/mL25. Current steps in this 

field are seeking further integration taking advantage of our daily optical devices, like 

smartphones. Guner et al. mounted a SPRi platform by attaching an accessory that 

includes LED illumination and the nanoplasmonic sensor chip to the camera of a 

smartphone, which was used for intensity interrogation32. The plasmonic surface was 

fabricated by coating a Blu-ray storage disk with metals (silver and gold), resulting in 

a grating-coupling SPR sensor thanks to the periodic corrugations of the disk. Wang et 

al. developed a standalone smartphone-based system for LSPR sensing. In this case, 

they employed the LED source from the smartphone flashlight and the CMOS detector 

from the camera33. The plasmonic sensor chip was fabricated also taking advantage of 

the gratings of a compact disk. This platform was tested for the detection of human 

cardiac troponin I (cTnI), a biomarker for myocardial infarction, achieving limits of 

detection comparable to conventional benchtop SPR systems (approximately 50 

ng/mL).  

 

 
Figure 3. Examples of nanoplasmonic biosensors integrated in lab-on-a-chip and portable 

devices: (A) Multichannel microfluidics for multiplexed analysis (adapted with permission 

from [22] – Copyright 2015, American Chemical Society). (B) Flow-through microfluidics 

with plasmonic nanohole array biosensor (adapted with permission from [25] – Copyright 2009, 

American Chemical Society). (C) Portable SPR biosensor for detection of bacteria (adapted 

with permission from [29] – Creative Commons License Deed). (D) Handheld nanohole array 

biosensor for protein detection (adapted with permission from [31] – Creative Commons 

License Deed). 
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With no doubts, optical nanoplasmonic biosensors demonstrate remarkable capabilities 

for miniaturization and integration in compact lab-on-a-chip systems. Nevertheless, the 

real implementation of such devices for POC diagnostics critically requires the 

development and optimization of clinically relevant biomedical applications that move 

beyond the current proof-of-concept tests.   

 

 

4. Bioanalytical applications for improved medical diagnostics 

The simplicity, robustness, and versatility of SPR and LSPR biosensors have 

encouraged their use for novel biomedical assays that enable a more accurate, early, 

and informative diagnosis of human diseases in a non-invasive manner (e.g. without 

surgery). Plasmonic-based analysis can target almost any type of biomarker, including 

proteins and peptides, nucleic acids, and cells, covering therefore a vast range of 

applications. In this section, we will describe some of the most relevant and recent 

studies with clinical prospective performed with nanoplasmonic biosensors. Figure 4 

illustrates some of these applications. 

 

 4.1 Analysis of Proteins and Peptides 

 

Circulating proteins are the gold standard biomarkers for disease detection and 

identification in most in vitro diagnosis techniques. The overexpression, deregulation, 

or simply the appearance of certain proteins in human tissues and fluids is closely 

related to a malfunctioning of cells, organs, or inflammation processes. Therefore, the 

rapid and precise quantification of these biomolecules is a key factor not only for 

detecting a particular disorder but also for determining the stage and prognosis of a 

disease. Furthermore, a POC biosensor able to easily monitor the levels of proteins can 

be extremely effective for the evaluation of therapies and monitoring the post-treatment 

progress. Nonetheless, plasmonic biosensors still face important challenges, such as the 

high sensitivity required for detecting minute amounts of proteins and to quantify them 

directly in complex clinical samples. 

 

As the paramount disease in our days, the majority of the applications focus on the early 

diagnosis of cancer, and some works have already demonstrated feasibility for clinical 

studies. Ertuk et al. have developed a SPR biosensor able to detect the prostate specific 

antigen (PSA) – a biomarker for prostate cancer – in human serum, achieving an 

outstanding limit of detection (91 pg/mL)34. The platform was further tested with 

clinical samples from prostate cancer patients showing an excellent accuracy. Sahu et 

al. employed a SPR biosensor for quantification of specific proteins involved in tumor 

genesis – Rac1 and Rac1b –. By analyzing clinical samples from different healthy 

individuals and cancer patients before and after treatment, they demonstrated that the 

monitoring of these proteins could be validated as a biomarker for non-small cell lung 

cancer diagnosis35. In another work, Soler et al. proposed a nanoplasmonic biosensor 

for the detection of novel tumor autoantibodies in serum for diagnosis of colorectal 

cancer at early stages, which could reduce the necessity of colonoscopies and be 

implemented as POC testing for population screening36. Inflammatory processes are 

also a major disorder that affects most of the population and might be caused by 

numerous malignancies. Here, determining the deregulation of different cytokines in 

blood can be utilized for diagnosis. Chen et al. demonstrated a multiplexed detection 

and quantification of cytokines in serum using a microfluidics-integrated LSPR 
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biosensor that employs less than 1 L of sample and completes the assay in 40 

minutes22. Chronic conditions, autoimmune disorders, or neurodegenerative diseases 

could also benefit from nanoplasmonic POC devices. For example, a plasmonic sensor 

was developed for quantifying gluten peptides in the urine of celiac patients as therapy 

follow-up test37. In recent works, SPR-based biosensors have also been used for 

diagnosis of Alzheimer disease, targeting fibrinogen or Tau protein38,39. In addition, 

these studies have further improved the understanding of this neurodegenerative 

disease, enabling simpler and clear comparison of analysis results. 

 

4.2 Analysis of Nucleic acids 

 

New molecular insights in biology research have placed nucleic acids (NA) in the front 

line as competitive biomarkers for early diagnosis, prognosis and therapy efficacy 

assessment for complex diseases40,41. The origin of many diseases and, especially 

cancer, has been primarily linked to genetic mutations that accumulate stepwise, and 

trigger a network of processes responsible for carcinogenesis42. However, in recent 

years, epigenetics has also attracted the field of diagnosis, being highlighted as a 

promising alternative for early cancer prediction. The study of epigenetic mechanisms, 

such as DNA methylation, microRNAs or the regulation of mRNAs, has contributed to 

gain a comprehensive knowledge of the different pathways taken by cancer cells for 

their outliving and proliferation over normal cells43. Most epigenetic changes occur in 

early stages and prior to histopathological changes, constituting outstanding biomarkers 

for cancer diagnosis and risk assessment44. In addition, the specific reversion of these 

routes represents a promising solution for cancer therapy and patient follow-up, 

promoting the development of personalized medicine. Frequent monitoring of genetic 

and epigenetics alterations is thus requested for an effective patient treatment plan.  

 

Plasmonic and nanoplasmonic biosensors have emerged as promising platforms for 

advanced nucleic acids detection45. However, challenges arise from the employment of 

NA as biomarkers, such as low concentration and relatively small size in most of the 

cases, as well as sequence similarities, which in some cases are close to the mismatch 

level46,47. SPR biosensors have been developed for the detection of single point-

mutations in non-amplified human genomic DNA, reaching sometimes the attomolar 

concentrations48. Also, an LSPR biosensor for single nucleotide mismatch detection 

relevant to KRAS-related pathologies has been developed based on the rapid DNA 

hybridization process in binary solution49. They identified single-point mutations by 

the different kinetics between perfect matching sequences compared to mismatched 

ones. Other methodology benefits of the use of surface immobilized peptide nucleic 

acid (PNA) probes to improve the selectivity of the hybridization reaction with the 

target complementary sequence50. Additionally, a PNA-based nanoplasmonic 

biosensor has been also employed for the detection of not only tumor-specific 

mutations, but also epigenetic marks of circulating DNA of PIK3CA gene51. Several 

plasmonic biosensors have been developed for the accurate detection of DNA-methyl 

groups, involving different approaches for the specific detection of these particular 

epigenetic marks, such as bisulfite conversion52, or DNA methyl-specific antibodies53. 

The study of mRNA has been barely exploited through plasmonic biosensors for 

diagnostic purposes, probably due to the long RNA sequences and the similarity 

between mRNA isoforms that critically complicate the differentiation between the 

isoforms54. In order to solve this problem, Huertas et al. incorporated a fragmentation 

process to adapt the mRNA length to the biosensor convenience and standardize the 
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detection procedure17. The amplification-free methodology performed an isoform-

specific, accurate and efficient analysis of the alternative splicing alterations in HeLa 

cells for different genes. 

 

Other epigenetic biomarkers extensively studied by plasmonic sensors are microRNAs. 

These short and single-stranded RNAs constitute a complex network of cellular 

regulation and an excellent source of valuable information regarding cancer diagnosis. 

Expression levels of specific miRNAs have been correlated with the outcome of serious 

diseases, such as heart diseases and various types of cancers55. Due to their small size, 

they are difficult to amplify through conventional methods and their homologous 

sequences can distort the analysis with false positive signals. In order to achieve wider 

dynamic ranges and appropriate sensitivity levels, some recent plasmonic approaches 

have made use of amplification steps by employing different strategies such as gold-

nanorods56 and gold nanoparticles57, or specially designed probes to promote a better 

target capture58. They have shown fast time to results and, in most cases, LODs in the 

low pM and fM concentrations. In contrast, Joshi et al. quantified miRNAs at the 

attomolar concentration without the need of signal amplification by a LSPR biosensor 

based on highly sensitive gold nanoprisms59. They demonstrated an ultrasensitive 

detection of miRNA-10b in purified exosomes isolated from patients with pancreatic 

cancer or chronic pancreatitis at the attomolar level in complex media.  

 

4.3 Analysis of Cells and Pathogens 

 

Using plasmonic biosensors for the direct capture and detection of whole cells and 

pathogens in human fluids is inherently a challenge due to the large size of such analytes 

and the issues related to their fluidic mass transport, but it is also a must for the 

implementation of POC biosensors in infections diagnosis. Infections are usually 

caused by the invasion of a pathogenic organism (e.g. bacteria, virus), that rapidly 

multiply and produce toxins, triggering the immune system reaction. The consequences 

can vary from a simple fever, stomachache or headache, to fatal outputs, as in the case 

of sepsis. Moreover, pathogen infections can be easily transmitted among individuals, 

spreading to whole populations and becoming epidemics. Therefore, the sensitive, 

selective, and early detection of pathogens is crucial to defeat the significant burden of 

infectious diseases worldwide. Numerous articles in the literature report the application 

of plasmonic biosensors for detection of virus or bacteria60. For example, Inci et al. 

demonstrated the direct detection of intact viruses (HIV) from unprocessed blood with 

a nanoplasmonic biosensor61. A multiplexed nanoplasmonic biosensor has been 

developed for the rapid diagnosis of two common sexually transmitted infections (C. 

trachomatis and N. gonorrhoeae) in urine samples62. And Yoo et al. also developed a 

LSPR biosensor for multiplexed bacteria detection that could identify up to four 

different species (L. acidophilus, S. typhimurium, P. aeruginosa, and E. coli) in a single 

assay63. 
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Figure 4. Examples of biomedical applications of nanoplasmonic biosensors: (A) Detection of 

tumor-associated autoantibodies for colorectal cancer diagnosis (adapted from 36, Copyright 

(2016), with permission from Elsevier). (B) Multiplexed detection of inflammatory cytokines 

(adapted with permission from [22] – Copyright 2015, American Chemical Society). (C) 

Analysis of DNA methylation (adapted with permission from 64 – Copyright 2015 American 

Chemical Society). (D) Detection of microRNA by triplex formation (adapted by permission 

from Springer Nature Analytical and Bioanalytical Chemistry 65, Copyright (2015). (E) Direct 

detection of intact viruses from blood (adapted with permission from [61] – Copyright 2013 

American Chemical Society). (F) Detection of circulating tumor cells (CTCs) from blood 

(adapted with permission from [64] – Creative Commons License). 
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Cell detection can also be utilized for cancer diagnostics. Quantification and analysis 

of circulating tumor cells (CTCs) is a new type of liquid biopsy that can be employed 

for metastasis diagnostic. As an example, Mousavi et al. used a gold nanoslit SPR 

biosensor for the detection of CTCs from whole blood66. However, they required a pre-

concentration and separation step with magnetic nanoparticles in order to be able to 

achieve 13 cells/mL of detection limit. To improve the biosensing application for rare 

cell detection, nanoplasmonics definitely needs to be combined with advanced and 

more sophisticated microfluidic systems, which could enable control and manipulation 

of cells, separating and trapping them according to the size, shape, or other 

physiological features. Finally, another interesting application for cancer diagnostics 

addresses the detection and analysis of cell exosomes. Exosomes are extracellular 

vesicles that the cells shed to body fluids for communication and signaling purposes. 

Since they carry the same proteomic and genomic information than the cell source, 

tumor exosomes can be a valuable biomarker for early diagnosis while providing 

accurate insights into cancer characteristics without the need of surgery. Im et al. 

reported a microfluidics-integrated nanohole-based biosensor for detecting and 

profiling exosomes in ovarian cancer samples67. Recently, Yang et al. have employed 

a similar nanoplasmonic system for profiling specific pancreatic cancer exosomes over 

100 clinical samples68. This study showed the importance and significance of exosomes 

detection for the early cancer diagnosis. 

 

5. Conclusions 

 

As this review reflects, optical biosensors and especially those based on plasmonics 

nanotechnology demonstrate a strong potential to become the next-generation 

diagnostic tools. By exploiting the ultimate light-matter interactions, we can fabricate 

highly sensitive detection platforms that enable real-time and label-free analysis of 

almost any type of molecule. Furthermore, thanks to the progress of nanotechnology, 

the miniaturization and integration of plasmonic biosensors is now a reality, illustrated 

with numerous portable devices or sensor accessories that directly work with the 

common smartphone components. The exceptional versatility of nanoplasmonics has 

also motivated the development of a myriad of biomedical applications. 

Nanoplasmonic biosensors can be used for a simple and rapid quantification of 

circulating protein and nucleic acid biomarkers, for the evaluation and follow-up of 

therapies and treatments, for the discovery and establishment of new and more accurate 

disease indicators, and for the rapid detection of pathogens in human fluids. The 

implementation of such assays in small and user-friendly platforms for point-of-care 

analysis will significantly improve healthcare and life quality of the population around 

the world.  

 

 

5. Expert commentary 

 

Plasmonic and nanoplasmonic biosensors are today a relatively mature technology, 

with demonstrated applicability in diagnostics and potential for integration into small 

and portable devices. But the definitive boost and admission in the clinical field seems 

to be more complicated than expected. Medical instruments for point-of-care 

diagnostics need to be extremely simple to use, with a high degree of automation, and 

not requiring complex sample manipulation procedures. The analysis must be highly 

accurate, without false-positives or false-negatives, and sensitive enough to detect and 
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identify a disease at the early stages. To meet these demands, the full development of 

optical POC biosensors urgently requires a multidisciplinary vision and synergy 

between different areas. 

 

We are almost reaching out the limits for optical detection sensitivity in terms of 

plasmonic transducers. A myriad of different nanostructures, composites, and 

arrangements can be manufactured nowadays with the highest precision and 

outstanding sensitivities. Thereby, the focus is to be placed in combining this innovative 

photonics nanotechnology with advanced microfluidic systems – already widely 

employed in other fields – and further focused in bioanalytical applications that truly 

defeat conventional techniques, enabling multiplexed, label-free, and real-time assays. 

Introducing new bioreceptors and optimal surface functionalization strategies could 

enhance the biosensor performance and maximize sensitivity, selectivity, and 

reproducibility of the assays. Employing automatized microfluidics components that 

include separation membranes, pre-concentration chambers, or micro-reactors might 

facilitate the direct analysis of crude samples (e.g. blood). On the other hand, the 

miniaturization and integration of nanoplasmonic transducers with low cost and 

common optical components, like LEDs and CMOS detectors, has proven to be 

feasible, even working directly with the smartphone flashlight and camera. 

Unfortunately, most of the publications only demonstrate the feasibility as a proof-of-

concept at laboratory level. A more comprehensive use of this technology for 

biomedical applications extending further to relevant clinical problems may be the 

imminent steps for the fully implementation of the so-called next-generation POC 

biosensors. 

 

Fortunately, though, optical nanoplasmonic biosensors are already filling the 

biomedical field with new insights and prospects for an improved disease diagnosis. 

The versatility, simplicity, and robustness of plasmonic sensing together with their 

label-free and real-time capabilities have motivated the investigation of new 

bioanalytical strategies to provide a more accurate, informative, and timely diagnosis. 

Novel protein biomarkers are tested with SPR or LSPR biosensors for both determining 

molecular affinities and evaluating their relevance as disease indicators in clinical 

studies. Others take advantage of the potential of plasmonic sensors for POC testing 

and suggest new strategies detecting peptides or proteins directly in urine or saliva for 

therapy follow-up. In the field of genomics, the innovation can be groundbreaking. The 

direct and label-free detection of circulating DNA or RNA markers without pre-

amplification steps or even the analysis of complex genomic and epigenomic pathways 

in a simple and rapid manner are pushing forward new diagnosis routes able to identify 

the disease onset before the appearance of physiological disorders. Furthermore, a 

clearer understanding of the cause (e.g. mutations, deregulations in gene translation 

pathways, etc.) can notably facilitate the development of new and more personalized 

therapies against malignant diseases. Finally, plasmonic biosensor capabilities also 

enable the direct detection and quantification of whole cell entities. This is of great 

importance for offering rapid and multiplexed biosensors that detect and identify a 

pathogenic infection in a few minutes, without the need of long time-consuming 

microbiology cultures or specialized genomic extraction and detection tests. One can 

imagine the breakthrough and healthcare promotion worldwide if being able to rapidly 

detect and stop transmission of infections like HIV and other sexually transmitted 

diseases, Ebola or Zika viruses, tuberculosis, malaria, etc. 
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To our opinion, these ambitious goals are not that far. Optical biosensors have emerged 

as a powerful tool with the intrinsic benefits of light-based technologies: an extreme 

speed, robustness, tunability, and integration in miniaturized devices. The intensive 

research in the area will soon accomplish the strict demands for clinical diagnostics, 

and start delivering small and simple devices able to detect diseases in a few minutes, 

providing accurate prognosis or treatment evaluation, and all of it at the point of care.  

 

 

6. Five-years view 

 

Given the accelerated progress of nanophotonics in the last years, it is adventurous to 

predict the state-of-the-art in optical biosensors at five-year view. With the existent 

technologies, the next steps may be directed to demonstrate the multiplexing and high-

throughput potential of nanoplasmonic sensors. The label-free and real-time analysis of 

numerous biomarkers in several samples simultaneously will be a key breakthrough for 

POC diagnostics. Along with that, including more specific biomarkers and novel 

diagnosis strategies based on genomic or cell analysis, could provide the means for 

detecting a disease at early stages and facilitate the administration of more personalized 

and efficient therapies, aiming in the route to a real precision medicine.  

 

On the other hand, the new trends investigating innovative nanostructured materials 

(e.g. dielectric semiconductors like Si or Ge) with electromagnetic features that mimic 

those of conventional plasmonic metals could afford better performances. These 

dielectric nanostructures could offer important advantages for POC testing, such as 

direct integration in CMOS detectors, and even improve the biosensing performance 

with narrower resonant peaks that enhance the signal-to-noise ratio. One other aspect 

that could invade the biosensor field is the machine learning methodology. 

Implementing smarter algorithms that learn from the acquired data and that are able to 

make accurate decisions, could greatly help in the diagnosis process and motivate the 

development of novel systems that enable an in situ evaluation and regulation of 

treatments and therapies.  
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Key issues: 

 Plasmonic and nanoplasmonic biosensors offer label-free and real-time 

detection of clinical biomarkers with high sensitivity and reliability. 

 Optical transducers based on metallic nanostructures enable simple and low-

cost detection methods and allow for sensor miniaturization. 

 Plasmonic biosensors can be implemented in handheld portable systems or 

directly employ common smartphone components. 

 The versatility of nanoplasmonic sensing has motivated the development of 

numerous bioanalytical applications targeting proteins, nucleic acids, and cells 

directly in body fluids 

 Point-of-care biosensors could facilitate an early, accurate and more 

informative disease diagnosis. 

 Next-generation plasmonic biosensors involve full automation and 

multiplexing for high-throughput analysis in real time. 
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23. Acímović, S. S. et al. LSPR Chip for Parallel, Rapid, and Sensitive Detection 

of Cancer Markers in Serum. J. Am. Chem. Soc 126, 9 (2004). 

24. Yavas, O. et al. Self-calibrating on-a-chip LSPR sensing for quantitative and 

multiplexed detection of cancer markers in human serum. (2018). 

doi:10.1021/acssensors.8b00305 

25. Gomez-Cruz, J. et al. Cost-effective flow-through nanohole array-based 

biosensing platform for the label-free detection of uropathogenic E. coli in real 

time. Biosens. Bioelectron. 106, 105–110 (2018). 

26. Becker, H. & Gärtner, C. Microfluidics-Enabled Diagnostic Systems: Markets, 

Challenges, and Examples. in 3–21 (Humana Press, New York, NY, 2017). 

doi:10.1007/978-1-4939-6734-6_1 

27. Millington, D. et al. Digital microfluidics comes of age: high-throughput 

screening to bedside diagnostic testing for genetic disorders in newborns. 

Expert Rev. Mol. Diagn. 1–12 (2018). doi:10.1080/14737159.2018.1495076 

28. Zhang, Y. & Nguyen, N.-T. Magnetic digital microfluidics – a review. Lab 

Chip 17, 994–1008 (2017). 

29. Tokel, O. et al. Portable Microfluidic Integrated Plasmonic Platform for 

Pathogen Detection. doi:10.1038/srep09152 

30. Cetin, A. E. et al. Handheld high-throughput plasmonic biosensor using 

computational on-chip imaging. Light Sci. Appl. 3, e122–e122 (2014). 

31. Coskun, A. F. et al. Lensfree optofluidic plasmonic sensor for real-time and 

label-free monitoring of molecular binding events over a wide field-of-view. 

Sci. Rep. 4, 6789 (2015). 

32. Guner, H. et al. A smartphone based surface plasmon resonance imaging 



 21 

(SPRi) platform for on-site biodetection. Sensors Actuators B Chem. 239, 571–

577 (2017). 

33. Wang, X., Chang, T.-W., Lin, G., Gartia, R. & Liu, G. L. Self-Referenced 

Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric 

Biochemical Sensing. doi:10.1021/acs.analchem.6b02484 

34. Ertürk, G., Özen, H., Tümer, M. A., Mattiasson, B. & Denizli, A. Microcontact 

imprinting based surface plasmon resonance (SPR) biosensor for real-time and 

ultrasensitive detection of prostate specific antigen (PSA) from clinical 

samples. Sensors Actuators B Chem. 224, 823–832 (2016). 

35. Sahu, V. et al. Quantification of Rac1 and Rac1b in serum of non small cell 

lung cancer by label free real time assay. Clin. Chim. Acta 460, 231–235 

(2016). 

36. Soler, M., Estevez, M.-C., Villar-Vazquez, R., Casal, J. I. & Lechuga, L. M. 

Label-free nanoplasmonic sensing of tumor-associate autoantibodies for early 

diagnosis of colorectal cancer. Anal. Chim. Acta 930, (2016). 

37. Soler, M., Estevez, M.-C., Moreno, M. D. L., Cebolla, A. & Lechuga, L. M. 

Label-free SPR detection of gluten peptides in urine for non-invasive celiac 

disease follow-up. Biosens. Bioelectron. 79, (2016). 

38. Kim, J. et al. Label-Free Quantitative Immunoassay of Fibrinogen in 

Alzheimer Disease Patient Plasma Using Fiber Optical Surface Plasmon 

Resonance. doi:10.1007/s11664-015-4292-5 

39. Shekhar, S. et al. Estimation of Tau and Phosphorylated Tau181 in Serum of 

Alzheimer’s Disease and Mild Cognitive Impairment Patients. PLoS One 11, 

e0159099 (2016). 

40. Schwarzenbach, H., Hoon, D. S. B. & Pantel, K. Cell-free nucleic acids as 

biomarkers in cancer patients. Nat Rev Cancer 11, 426–437 (2011). 

41. del Sol, A., Balling, R., Hood, L. & Galas, D. Diseases as network 

perturbations. Curr. Opin. Biotechnol. 21, 566–571 (2010). 

42. Ortmann, C. A. et al. Effect of Mutation Order on Myeloproliferative 

Neoplasms. N. Engl. J. Med. 372, 601–612 (2015). 

43. Chatterjee, S. K. & Zetter, B. R. Cancer biomarkers: knowing the present and 

predicting the future. Futur. Oncol. 1, 37–50 (2005). 

44. Veenstra, T. D. et al. Biomarkers: mining the biofluid proteome. Mol. Cell. 

Proteomics 4, 409–18 (2005). 



 22 

45. Bellassai, N. & Spoto, G. Biosensors for liquid biopsy: circulating nucleic 

acids to diagnose and treat cancer. Anal. Bioanal. Chem. 408, 7255–7264 

(2016). 

46. Carrascosa, L. G., Huertas, C. S. & Lechuga, L. M. Prospects of optical 

biosensors for emerging label-free RNA analysis. TrAC - Trends in Analytical 

Chemistry 80, 177–189 (2016). 

47. Chang, K., Deng, S. & Chen, M. Novel biosensing methodologies for 

improving the detection of single nucleotide polymorphism. Biosens. 

Bioelectron. 66, 297–307 (2015). 

48. D’Agata, R. et al. Direct Detection of Point Mutations in Nonamplified Human 

Genomic DNA. Anal. Chem. 83, 8711–8717 (2011). 

49. Rapisarda, A., Giamblanco, N. & Marletta, G. Kinetic discrimination of DNA 

single-base mutations by localized surface plasmon resonance. J. Colloid 

Interface Sci. 487, 141–148 (2017). 

50. Bertucci, A. et al. Detection of unamplified genomic DNA by a PNA-based 

microstructured optical fiber (MOF) Bragg-grating optofluidic system. Biosens. 

Bioelectron. 63, 248–254 (2015). 

51. Nguyen, A. H. & Sim, S. J. Nanoplasmonic biosensor: Detection and 

amplification of dual bio-signatures of circulating tumor DNA. Biosens. 

Bioelectron. 67, 443–449 (2015). 

52. Shiddiky, M. J. A. et al. Methylsorb: A simple method for quantifying DNA 

methylation using DNA-gold affinity interactions. in 8th International 

Conference on Electrical and Computer Engineering: Advancing Technology 

for a Better Tomorrow, ICECE 2014 17–20 (2015). 

doi:10.1109/ICECE.2014.7027002 

53. Kurita, R., Yanagisawa, H., Yoshioka, K. & Niwa, O. On-Chip Sequence-

Specific Immunochemical Epigenomic Analysis Utilizing Outward-Turned 

Cytosine in a DNA Bulge with Handheld Surface Plasmon Resonance 

Equipment. Anal. Chem. 87, 11581–11586 (2015). 

54. Carrascosa, L. G., Huertas, C. S. & Lechuga, L. M. Prospects of optical 

biosensors for emerging label-free RNA analysis. TrAC - Trends in Analytical 

Chemistry 80, 177–189 (2016). 

55. Šípová, H. et al. Surface plasmon resonance biosensor for rapid label-free 

detection of microribonucleic acid at subfemtomole level. Anal. Chem. 82, 



 23 

10110–10115 (2010). 

56. Hao, K. et al. High-sensitive surface plasmon resonance microRNA biosensor 

based on streptavidin functionalized gold nanorods-assisted signal 

amplification. Anal. Chim. Acta 954, 114–120 (2017). 

57. Wang, Q. et al. Graphene oxide-gold nanoparticles hybrids-based surface 

plasmon resonance for sensitive detection of microRNA. Biosens. Bioelectron. 

77, 1001–1007 (2016). 

58. Aviñó, A., Huertas, C. S., Lechuga, L. M. & Eritja, R. Sensitive and label-free 

detection of miRNA-145 by triplex formation. Anal. Bioanal. Chem. 408, 885–

893 (2016). 

59. Joshi, G. K. et al. Label-Free Nanoplasmonic-Based Short Noncoding RNA 

Sensing at Attomolar Concentrations Allows for Quantitative and Highly 

Specific Assay of MicroRNA-10b in Biological Fluids and Circulating 

Exosomes. ACS Nano 9, 11075–89 (2015). 

60. Yoo, S. M. & Lee, S. Y. Optical Biosensors for the Detection of Pathogenic 

Microorganisms. Trends Biotechnol. 34, 7–25 (2016). 

61. Inci, F. et al. Nanoplasmonic Quantitative Detection of Intact Viruses from 

Unprocessed Whole Blood. ACS Nano 7, 4733–4745 (2013). 

62. Soler, M. et al. Multiplexed nanoplasmonic biosensor for one-step 

simultaneous detection of Chlamydia trachomatis and Neisseria gonorrhoeae in 

urine. Biosens. Bioelectron. 94, (2017). 

63. Yoo, S. M., Kim, D.-K. & Lee, S. Y. Aptamer-functionalized localized surface 

plasmon resonance sensor for the multiplexed detection of different bacterial 

species. Talanta 132, 112–117 (2015). 

64. Kurita, R. & Niwa, O. DNA methylation analysis triggered by bulge specific 

immuno-recognition. Anal. Chem. 84, 7533–7538 (2012). 

65. Aviñó, A., Huertas, C. S., Lechuga, L. M. & Eritja, R. Sensitive and label-free 

detection of miRNA-145 by triplex formation. Anal. Bioanal. Chem. 408, 885–

893 (2016). 

66. Mousavi, M. et al. Label-Free Detection of Rare Cell in Human Blood Using 

Gold Nano Slit Surface Plasmon Resonance. Biosensors 5, 98–117 (2015). 

67. Im, H. et al. Label-free detection and molecular profiling of exosomes with a 

nano-plasmonic sensor. (2014). doi:10.1038/nbt.2886 

68. Yang, K. S. et al. Multiparametric plasma EV profiling facilitates diagnosis of 



 24 

pancreatic malignancy. Sci. Transl. Med. 9, (2017). 

 


