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ABSTRACT: We describe solid-gas phase, single-crystal-to-single-crystal, post-synthetic modifications of a 

Metal-Organic Framework (MOF). Using ozone, we quantitatively transformed the olefin groups of a 

UiO-66-type MOF into 1,2,4-trioxolane rings, which we then selectively converted into either aldehydes 

or carboxylic acids. 

Metal-Organic Frameworks (MOFs) are crystalline materials that comprise organic linkers and metal ions/clusters. 

For the past two decades, they have attracted attention for their exceptional porosity and structural diversity.1 Beyond 

their inherent crystallinity and porosity, MOFs are an ideal platform for applications that entail incorporation of target 

chemical functionalities onto their pore walls.2-4 To date, several methodologies have been developed to introduce 

different chemical functionalities into pre-assembled MOFs. These include covalent modification of the organic 

linkers,5 ligand exchange processes6 and post-synthetic metalations.7,8 However, the synthetic conditions of post-

synthetic covalent modifications typically require long reaction times and high temperatures that many MOFs cannot 

sustain; and for those MOFs that can resist such conditions, the yields are only low to moderate. This is partly 

because the methods are based on solid-liquid phase processes, whereby reaction progress is limited by the diffusion 

of reagents inside the porous frameworks to reach the target sites, especially for MOFs whose surfaces are already 

partially tagged, as the surface groups block access to the pores.9   

Solvent-less reactivity—particularly, solid-gas phase reactivity—is a widely explored approach in metallurgy and 

polymer science. Indeed, reactive gases (e.g. fluorine gas in steel industry) have been used to quantitatively passivate, 

cleave, or switch the hydrophobic character of diverse materials.10 However, there is scant precedent on solid-gas 

phase reactions with MOFs.11 We reasoned that such an approach could be used to overcome the aforementioned 

limitations in post-synthetic functionalization of MOF pores. Here, we demonstrate this concept by reporting 

transformation of the olefin groups of a UiO-66-type MOF into 1,2,4-trioxolane rings, which we then selectively 

converted into either aldehydes or carboxylic acids.  

Ozone has proven to be a powerful oxidizing reagent for diverse chemistries under mild conditions.12,13 Of these 

reactions, ozonolysis of alkenes is arguably the most widely studied.14,15 Initially used for routine characterization of 

lipids and natural polymers, it is now employed for selective cleavage of olefinic bonds, as it enables regio-specific 

formation of aldehydes, ketones or carboxylic acids in mere minutes. This reaction involves the metastable 

intermediate 1,2,4-trioxolane. Due to their low stability, trioxolane rings are not easy to isolate; however, those that 

have been are strong antibacterial and therapeutic agents, especially in the form of ozonated oils or triglycerides. 

Moreover, trioxolane rings can be treated under mild reductive or oxidative conditions to form aldehyde moieties16 or 

carboxylic acids,12 respectively. 

Here, we report post-synthetic functionalization of the porous olefin-tagged UiO-66-type MOF, ZrEBDC, using 

controlled, solid-gas phase ozonolysis. We selected it because MOFs of this type exhibit high thermal and chemical 

stability and are resistant to aqueous and acidic conditions. Additionally, we chose 2-ethenylbenzene-2,4-dicarboxylic 



acid (H2EBDC) as the organic ligand because it is a simple and robust linker with no reactive sites other than its 

olefin-tagged pendant arm (Figure 1a). We demonstrate that, by constantly streaming ozone through ZrEBDC, the 

pendant alkene groups can be quantitatively transformed into stable 1,2,4-trioxolane moieties on the pore walls, with 

no loss of single-crystallinity. Moreover, optimized work-up conditions enabled cleavage of these 1,2,4-trioxolane 

rings to selectively form aldehydes or carboxylic acids (Figure 1a). 

Bulk ZrEBDC was synthesized by adding an equimolar mixture of H2EBDC and ZrOCl2·8H2O into a mixture of 

DMF and formic acid, and the resulting slurry was then heated at 120 °C. After 12 h, the crude solid was washed 

twice with DMF and acetone, filtered, and activated under vacuum prior to any ozonolysis test. Colorless octahedral 

crystals of ZrEBDC suitable for Single-Crystal X-Ray Diffraction (SCXRD) were obtained by dissolving the two 

reagents in a 3:1 mixture of DEF/formic acid, and then heating the resulting solution from 25 to 135 °C (heating rate 

= 5 °C/min) for 72 h (Figure S2). The crystal structure of ZrEBDC revealed the formation of the archetypical UiO-

66-like backbone, in which the olefinic side-chains of the EBDC linkers point inwards towards the pores (Figures 

S3,S4). 

In a typical ozonolysis experiment, activated ZrEBDC (50 mg) was packed inside a 3.4 mm diameter Pyrex tube 

(Figure 1b, Figure S1). Two cotton stoppers were added around the sample, and the tube was bent into a U-shape 

using a flame torch. One end was directly attached to an ozone generator, whereas the other was connected to 

vacuum. Before the reaction was started, the tube was immersed into a dry-ice/acetone bath at –78 °C and purged 

under vacuum for 10 min. Under these conditions, ozone presents a moderate half-life and selectively reacts with 

unsaturated moieties. Excessive generation of ozone was avoided by adding an aqueous KI detector to the end of the 

setup. Once the sample had reached the proper temperature, a constant stream of O3/air (10 mmol O3/h, dried through 

CaCl2) was blown into the reaction from one end of the tube. The stream was maintained until the KI solution 

changed from colorless to bright yellow (after  30 min), which indicated that all the olefins had been transformed. 

The ozone stream was then stopped immediately. The sample, which showed a blue color, was left under vacuum for 

an additional 10 min to ensure that all the residual unreacted ozone was evacuated from inside the tube; after this, the 

sample became white again.  

We characterized the ozonolyzed crystals (hereafter called ozo-ZrBDC) by SCXRD, which confirmed that they 

had retained the crystallinity and the UiO-66 framework of the starting MOF (Figure 2a). Analysis of the difference 

Fourier maps revealed high electron-density within the pores of the framework, which we attributed to the 1,2,4-

trioxolane. Due to the high symmetry of the framework, the positions of the 1,2,4-trioxolane groups were statistically 

disordered, which prevented us from refining their position in the cubic Fm3-m space group of ozo-ZrBDC. 

Nonetheless, upon refining the framework atoms (including the defect sites and adsorbed species),17 we calculated a 

residual electron-density within the pores of 657 e- per unit cell, using the program Squeeze.18 This value is in good 

agreement with the calculated number of electrons corresponding to the presence of one 1,2,4-trioxolane per organic 

linker within the unit cell (653 e-), which is the value obtained when 15% of the linker sites are considered to be 

defective (as suggested by our single-crystal refinement). To determine the orientation of the 1,2,4-trioxolane groups, 

we performed an additional single-crystal refinement in the monoclinic C2-space group. Due to the low partial 

occupancies of the 1,2,4-trioxolane and their positional disorder, rigid body restraints were employed, whereby the 

conformation of the 1,2,4-trioxolane moiety was obtained from DFT based calculations. The 1,2,4-trioxolane rings 

appeared to be rotated relative to the plane of their corresponding linker phenyl ring, and in all cases oriented towards 

the inorganic SBUs, at short-contact distances (range: 2.3 Å to 3.1 Å) between the 1,2,4-trioxolane atoms and the 

carboxylic groups of the adjacent linkers, in good agreement with DFT calculations (Figure 2a).  

To further confirm the presence of the 1,2,4-trioxolane groups, we compared solid-state 13C NMR spectra, recorded 

in Cross-Polarization under Magic-Angle Spinning (CPMAS), of the starting ZrEBDC and the ozo-ZrBDC. The two 
13C-peaks of the ethenyl group in ZrEBDC appear at 115.6 and 131.0 ppm (Figure 2b, red spectrum). As expected, 

the spectrum of ozo-ZrBDC lacks these two peaks and shows two new ones, at 93.6 and 101.8 ppm (Figure 2b, blue 

spectrum), which indicated successful conversion of all the olefinic moieties. We then recorded CPMAS-NMR 

spectra of each product under Polarization Inversion (CPPI),19 in order to differenciate between carbon sites coupled 

to protons with contrasted dipolar interaction. In the CPPI spectrum of ozo-ZrBDC (Figure 2b, orange spectrum), the 

resonance at 93.6 ppm is present, whereas that at 101.8 ppm is absent. These observations confirmed the formation of 

the 1,2,4-trioxalane ring, with the CH2 peak located at 93.6 ppm and the CH peak, at 101.8 ppm; in agreement with 

literature data20 and the solution study shown in the Supporting Information.  We further confirmed this formation by 

performing a soft-ligand exchange experiment (Supporting Information), from which two peaks corresponding to the 

CH and CH2 groups of the 1,2,4-trioxolane ring (δ = 5.61 and δ = 4.65 ppm, integrating in a 1:2 ratio) were identified 

(Figure 2c). 

To gain further insight into the ozonolysis reaction, we systematically studied it using various reaction times (5, 10, 

15 and 30 min). To this end, the degree of conversion of the olefinic groups into 1,2,4-trioxolane rings was monitored 

by measuring the 1H NMR spectra of the digested samples (5% HF/DMSO-d6), and then compared to that of the 

starting ZrEBDC (Section S4). The spectrum of the digested ZrEBDC showed the characteristic peaks of three non-

equivalent olefinic protons at δ = 7.29, 5.77 and 5.41 ppm, integrating in a 1:1:1 ratio. In contrast, the spectrum of the 

fully converted ozo-ZrBDC confirmed a quantitative fading of these olefinic signals in approximately 30 min of 

solid-gas interaction. Italso confirmed the formation of four byproducts (two sym-metric trioxolane-metathesis 

products, 1,2,4-benzenetricarboxylate, and formic acid; Scheme S1) in solu-tion coming from exposing the released 

1,2,4-trioxolane-containing linker under aggressive acidic conditions.14 The results at intermediate reaction times 

confirmed a direct correlation between the disappearance of the olefinic signals and the appearance of the new ones: 

with conversions of 33% at 5 min; 52% at 10 min; 78% at 15 min; and 100% at 30 min (as previously confirmed by 

CPMAS-13C NMR). 



Samples exposed to different ozonation times were also subjected to standard conditions of MOF-activation (120 °C, 

12 h), and their inner surface area was subsequently meas-ured (Figure S25). Compared to the initial SBET value for 

ZrEBDC (1300 m2/g; Figure S24), the ozonated samples exhibited decreasingly lower SBET values in function of 

increasing ozonation time; the value for the fully converted ozo-ZrBDC was 685 m2/g. Remarkably, this surface area 

is consistent with a previously reported value for a UiO-66-like MOF with imidazole moieties as pendant groups 

(SBET = 538 m2/g).21  

Having demonstrated that ozonide rings can be stabi-lized inside a robust MOF, we next sought to explore the 

amenability of such rings in ozo-ZrBDC to be selectively reduced into aldehydes or oxidized into carboxylic acids 

(Figure 1a). For the former, ozo-ZrBDC was soaked over-night, with stirring, in an acidic aq. solution of dimethyl 

sulfide (Me2S) as reducing agent, to convert the 1,2,4-trioxolane rings into aldehyde groups in a yield of 40% (Fig-

ure S20). The mild conditions of the work-up did not allow for quantitative conversion of the stabilized trioxolanes, 

and all attempts to make the reduction more aggressive resulted in undesired formation of carboxylate byproduct. The 

SBET of this ozo-ZrBDC partially functionalized with aldehyde moieties was 960 m2/g (Figure S26). Alternatively, 

soaking ozo-ZrBDC overnight, with stirring, in aq. hydrogen peroxide (H2O2) drove oxidative cleavage of the 1,2,4-

trioxolane rings to the corresponding carboxylic acids. This transformation was quantitative, as confirmed by 1H 

NMR analysis (Figure S21). In both the aldehyde and carboxylic acid products, the UiO-66 type framework was 

preserved, as confirmed by powder XRD (Figure S23). Furthermore, SCXRD analysis of the crystals resulting from 

the aggressive oxidation confirmed that they also retained their single-crystal character. Remarkably, the position of 

the newly formed carboxylic acid groups could be determined through the refinement of the SCXRD data (Figure 3). 

In this case, the SBET was found to be 301 m2/g (Figure S27), which is in good agreement with those reported for 

this UiO-66-COOH (SBET = 350-400 m2/g).22  

In summary, we have reported a solvent-less, solid-gas, single-crystal to single-crystal, post-synthetic 

functionaliza-tion of a MOF using ozone. Streaming of ozone gas through an olefin-tagged UiO-66-type MOF at -78 

°C provided quan-titative transformation of the olefins into 1,2,4-trioxolane rings inside the robust MOF framework. 

When confined inside the MOF pores, this ring proved to be stable under standard heat and vacuum conditions for 

MOF activation, unlike in solution. Finally, an optimized work-up enabled further single-crystal to single-crystal 

chemistry on these 1,2,4-trioxolane rings: reduction into the corresponding aldehyde or oxidation to the 

corresponding carboxylic acids, the latter in quantitative yield. We are confident that our methodology will offer new 

insight into how gas molecules might be exploited for MOF chemistry that transcends common physisorption 

phenomena. 
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FIGURES 

 



 

Figure 1. a) Scheme of the post-synthetic modifications performed with ZrEBDC. b) Scheme of the set-up used for 

the ozonolysis of ZrEBDC. Bottom: photo of the tube containing the crystals. 

  



 

Figure 2. a) Illustration of the single-crystal structure of ozo-ZrBDC across the [110] direction, highlighting the 

disordered 1,2,4-trioxolane moieties (yellow). b) Solid-state 13C NMR spectra of ZrEBDC (red: CPMAS) and ozo-

ZrBDC (blue: CPMAS; orange: CPPI-MAS). c) 1H NMR spectra after the ligand-exchange experiment (blue) and 

H2EBDC (red). 

  



 

Figure 3. Illustration based on the single-crystal structure of ZrBDC-COOH across the [110] direction, highlighting 

the disor-dered -COOH moieties (blue). 

 


