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An accurate and efficient general method to constrain the magnetization of individual atoms or groups of
atoms within a fully relativistic non-collinear spin density functional theory formalism is presented and
implemented within the SIESTA code. This approach can be applied to study a variety of complex magnetic
configurations and to build effective magnetic Hamiltonians for multiscaling micromagnetic simulations. As
an example, the method is applied to obtain constrained magnetic states for a Fe; structure, and foraS = 1/
2 kagome layer (vanadium oxyfluoride V;O¢F,g). Of paramount importance in spintronics is the control and
manipulation of magnetic interactions between constituent species, characterized mainly by the pair-wise
magnetic exchange tensor 7;;. By constraining the atomic magnetizations of an infinite Fe linear chain, the
total selfconsistent energy values are mapped to a generalized Heisenberg model, obtaining not only the
diagonal terms of 7;; but also the off-diagonal contributions due to the explicit presence of the spin—orbit
coupling in the formalism. The diagonal values of 7;; promote short ranged ferromagnetic alignment whilst
the non-zero off-diagonal values can lead to the formation of the spiral states in the chain, as expected from
theory.

1. Introduction

Magnetic materials are of much interest for a myriad of possible applications. A deep understanding of the magnetic
properties is crucial, and requires a combination of experiments, theory, and modeling. In most magnetic materials,
the arrangement of the atomic magnetizations adopt a collinear (CL) configuration in which a common direction is
shared by all of them (usually taken as the zaxis) [1, 2]. Specifically, each individual magnetization can be parallel or
antiparallel to each other, leading to ferromagnetic (FM) or antiferromagnetic (AFM) phases, respectively. The
magnetic exchange tensor 7 characterizes the strength for the FM or AFM coupling between neighboring atoms.

In contrast to the CL magnetic configurations, there are a number of systems where the magnetization can
take a more complex structure, and vary its direction at each point in space. This type of noncollinear (NC)
structures have been observed for example in the form of helical spin density waves or spin spirals for the ground
state of y-Fe [3], and in Fe/MgO sandwiches, [4] metastable NC structures in small magnetic clusters, such as in
Fe, [5] or in geometrically frustrated systems such as magnetic pyrochlore oxides [6].

The spin—orbit coupling (SOC) plays a critical role in fixing the directionality of the magnetization, and is
responsible for some important magnetic properties such as the magnetic anisotropy energy (MAE), that
determines the tendency of the magnetization to align along some specific axis in solids, surfaces,
nanostructures, and clusters.

Several theoretical approaches have been developed during the past years to access the CL and NC states
from first—principles calculations, such as the early work by von Barth and Hedin in which the unpolarized
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formulation of density functional theory (DFT) [7, 8] was extended to include the concept of vector-spin
density, treating the magnetization as a vector field [9], or the work by Kiibler et al[10], where the exchange-
correlation functional was explicitly obtained for the NC case. A step forward was the generalization to deal with
arbitrary magnetic configurations, i.e., configurations where the orientations of the local magnetizations are
forced to predefined directions, that are unreachable unless those constraints are explicitly imposed on the self-
consistent (SC) solution. These are part of a wider class of methods in which constraints are imposed on the SC
solution [11], termed constrained density functional theory (CDFT). The constrained-spin DFT was first
developed by Dederichs et al[12]. Over the past two and a half decades a number of interesting problems have
been studied successfully using CDFT, such as the effect of Cerium impurities [12], long-range electron transfer
[13], spin-dynamics [14], and magnetic exchange couplings [15—17] (see [11] for a review). As we will see in the
following, these theoretical developments allow calculations of both s and MAEs.

Basically there are two computational strategies to determine 7. One is the so-called frozen magnon
approximation [ 18], in which the spin configuration is constrained to a spin wave with periodicity determined
by a wave vector q and the energy of this spin wave is calculated through the generalized Bloch theorem for a
spin-spiral configuration [19]. In the other approach, the coupling constants are calculated directly from the
change of the total energy associated with constrained rotations of the spin-polarization at the sites involved
[16,17,20]. The later will be the approach followed in this work. In contrast to most of the previous calculations
of the magnetic exchange couplings based on constrained magnetization with a specific orientations, which
relied on a scalar-relativistic formalism (i.e., the SOC is not explicitly included in the formalism), we include here
a fully relativistic treatment for the Hamiltonian, including SOC and two component (spinor) wavefunctions. By
overcoming this limitation, both diagonal and off-diagonal contributions to .7 become available. This can
provide access, for example, to the parameters defining Dzyaloshinkii—Moriya interactions [21, 22] (among
many others).

The paper is structured as follows. In section 2.1 our DFT formalism is summarized. The mathematical
structure of the CDFT as well as its relationship with the SIESTA code are detailed in section 2.2. Section 3
focuses on the optimization algorithm. Specific applications of CDFT are shown in sections 4 and 5. Finally,
section 6 summarizes the main results.

2. General formalism of fully relativistic constrained DFT

2.1. Noncollinear-spin DFT

Within the usual CL-spin DFT, a common arbitrary quantization magnetization axis is taken for the whole
system, and the charge density p(r) is defined with two possible spin components p' (r) and p!(r). The Kohn—
Sham (KS) orbitals [8] are 1/;,(r) [s = T, |]and the charge density spin projections is given by:

P =3 LI @P =323 e, b1 8,0, M
n noopv
where we have expanded each v}, (r) in an atomic basis set { ¢, (M}

P =D ¢, (0 (©))
I

and f, is the occupation of the electronic state labeled as (7, s). From equation (1) the elements of the density
matrix for the CL case are:
P = 2 frcannn 3)
n

The total charge density is given by p(r) = p/(r) + p'(r), and the local magnetization along the quantization
axis (chosen tobe z) as M(r) = [p/(r) — pl(r)]u,.

In the NC case the spin quantization axis varies from point to point in space and the local magnetizations M
(r) points along different directions, defined by three components: M = (M, M”, M*), where each component
has an implicit spatial (r) dependence. The KS orbitals become two-component spinors:

WD)
am =" @
Yy (1)
and the charge density now has four components in the spin space, with the generalization of equation (1) being
P (1) = Y LU @Y = Yo% i 6, (), )
1

v




10P Publishing

J. Phys.: Mater. 1(2018) 015010 R Cuadrado et al

where the equivalent matrix elements of equation (3) for the NC case are
= Zf ConCn (6)

As we will see in section 2.2 it is possible to obtain the components of the local magnetization M(r) from the
elements of the density matrix pif;

In this work, we use the DFT implemented in the SIESTA method and code [23], which includes the
description of NC spin states [24]. The SOC contribution is included selfconsistently in the KS Hamiltonian and
the energy functional EXS[p], following the method described in [25]. Hence, a spinor, fully relativistic
treatment of the KS Hamiltonian is used. The matrix formulation of the Hamiltonian (and density matrix) gives
off-diagonal terms (i.e., non-zero couplings between the two spin components) instead of only the diagonal
parts that one has for the CL case. For NC calculations, these off-diagonal terms are complex, while the diagonal
ones are complex only when SOC is included in the calculation.

2.2.Noncollinear constrained spin-DFT
In general, a given SC solution corresponds to the ground state or a metastable state of the system, with a certain
arrangement of the magnetization vectors. The goal of constrained-spin DFT is to force the system out from its
equilibrium (ground or metastable) magnetic state in order to obtain SC configurations in which the orientation
of the atomic magnetizations M; are arbitrary fixed to specific directions 7;. This task is possible by the use of the
Lagrange multipliers technique in which an additional term is added to the usual KS functional EXS[p(r)]to
force the solution to satisfy the constraints that the atomic magnetizations point at the preset directions. The
solution is then SC but constrained to satisfy those conditions.

The magnetization of the system at each point r, defined as

M) = Y VoW, @)
neocc
where o = (0y, 0y, o) are the Pauli matrices, can be partitioned into local magnetization vectors by defining
weight functions W, (r), which can be rather arbitrary, as long as the sum of the atomic magnetizations coincides
with the actual total magnetization of the system (integral of equation (7)). This allows us to define atomic
magnetization vectors M; by:

M, = f dPr Wi(r) M(r). 8)

One possible definition for Wi (r) is based on Mulliken partitioning, which in alocalized basis description
can be easily obtained from the overlap integrals S, = (4),|4,). In this case, the matrix elements for the weight
function are defined as (W}),,, = S, if pand v € 5 (W), = S, /2if por v € iand 0 otherwise. The
components of M;are given by:

=Trlp- ol = Z(pj,i, + ol ) (W,

My = Tr[p Uy] = IZ(PW - Pl“,)(W)W

1%

Mlz . Tr[P coy] = Z(p;w - p;w)(w)l“’ ©)
v

More generally, we can partition the magnetization on orbitals, atoms, or group of atoms. From now on, let
us assume that we have N magnetic centers and their local magnetizations are M; [i = 1,2, ..., N]. Following the
same procedure as in the usual DFT formalism to obtain the stationary state by means of the minimization of the
KS functional EX® [p], we can construct a new functional L that includes EKS[p] and additional terms that account
for the directional constraints of each local magnetization:

Lip; {Xi» My, 7} = ESS[p] — Z Ai - (Milp] x 1) (10)

with 7; = sin 6; cos ¢, X + sin 6; sin ¢;§ + cos 0;Z the unitary vector that defines each local target magnetization
directionand A; = A\ X + A, ¥ + A;,Z the Lagrange multipliers. Apart from being simple, the constraint
terms in equation (10) are linear in the density, thus avoiding multiple stationary solutions and/or energy
discontinuities [26].
Stationary solutions of equation (10) for a given set of fixed 7; orientations imply:
oL

ViL:—:M,‘XT,‘:O, izl, vy N (11)
OAi
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that together with

ST §Ui(r)

S N
o _ [Zw,m i+ (0 x n)]wﬂ(r) =0 (12)

i=1
and the orthonormality condition for the spinors W(r) yields a set of modified fully relativistic NC constrained-
spin KS equations for the system:

N
[HKS — > W@ Ai - (o X Ti)]\l’n(l') = €, Yy(x). (13)
i=1

The value of L at the stationary solutions for each set of { 7}, obtained by the SC solution of equations (11)
and (13) is the KS energy of the system in the presence of the constraints, E“ ({7;}).

SIESTA expands the KS orbitals (equation (4)) as aalinear combination of numerical strictly localized
atomic orbitals as in equation (2). The matrix elements of the fully relativistic constrained-spin DFT
Hamiltonian are given by:

N
ES = HS® — ST (W), [Ai - (0 x 7)1 (14)
i=1

where we can rename the components of 7; by 7, = sin 6 cos ¢, 7, = sin §); sin ¢;and 7, = cos ); to perform
explicitly the vectorial operations bracketed in the second terms on the right hand side of equation (14):

[Ai (0 X T = 8 (=D (N — AiyTy)
+ (1 - é‘55’)[)\1‘,27} - )\i,yTz + (_1)(275“,)1'()\1',27}/ - )\i,xTz)]: (15)

where s, s’ = 1, |.Itis worth to mention that the matrix elements (W;),,, of the weight functions W (r) only
depend on the atoms or group of atoms 7 for which their spin magnetization has been constrained and hence
they do not depend on the spin components that have to be updated when a new set Lagrange multipliers is
obtained. So they can be calculated at the beginning of the calculation once for all.

3. Implementation

Following the work of Dederichs et al [12], instead of solving the coupled equations for the stationary points of
the constrained functional (equations (11)and (13)), we cast the problem in terms of a variational one, which we
can solve using minimization techniques. [11] The constraint process begins with an initial set of N atomic
magnetization vectors { M"} and a set of initial Lagrange multipliers { A"}, and results in a set of spinors and
multipliers { \;} such that equations (13) and (11) are satisfied selfconsistently. These are found by maximizing
the constrained functional in equation (10) only as a function of the Lagrange multipliers { \;}, while the KS
spinors are obtained solving selfconsistently the KS equations in equation (13) for each set of values { A;}. At the
end of the process, a set of { A"} is obtained such that the total constrained KS energy E ({7;}) corresponds to
a stationary value of the functional given by the equation (10) in which each one of the atomic desired
magnetization orientation 7; has been reached.

To perform the numerical optimization of the Lagrangian Fﬂ, we follow a simple steepest descent method
in which each optimization step n,, consists of a one-dimensional (1D) maximization along the opposite
steepest direction VL. The line maximization is done by first bracketing the line maximum, and then by
searching it using the golden section search method [27]. For these line maximizations, a tolerance in the energy
of §1p ~ 107 eV is used.

The whole optimization process finishes when each atomic magnetization lies along the target orientations.
In practice, the target orientation of each atomic magnetization i is given by its azimuthal and polar angles, 6;and
©;, respectively. As convergence criteria we can use the conditions: (i) that |6; — chf | = lyp; — gafcf | < Oang>and,
(ii) that the torque M;[p] X T; < Oy. The first convergence condition accounts for the difference between the
target angles and the ones obtained selfconsistently, and the second for how close the atomic magnetization
M;[p]is with respect to the target orientation. The motivation to decide what tolerance criterium will be the best
to achieve an accurate result depends on how the total SC energy varies between two different angular values and
how close the torque is to zero. In principle, just one of these parameters can control the whole constraint
process, but we have implemented both criteria in SIESTA, making it possible to use only one or both of them.

The additional complexity of the constraint method compared to an unconstrained calculation is that the
selfconsistent solution of the constrained KS Hamiltonian must be repeated for all the values of the Lagrange
multipliers during the maximization process. Fortunately once one has the first guess for the Hamiltonian or the
density matrix, the number of SC steps for each maximization point is usually small, resulting in a workload
which is not prohibitive with respect to unconstrained DFT calculations.

4
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Figure 1. (a) Schematic representation of the linear Fej; structure. The atoms are placed along the z axis and their magnetization
vectors are oriented with respect to this axis. Beside to each magnetization vector is written the SC total magnetic moment; (b) SC
energy difference as a function of the orientation of the magnetization of the atoms at the edges. The metastable state is given by the
minimum of the curve (red arrow). The orientation of the central atom is always along the x axis. The dashed line is a guide to the eye.

4. Noncollinear magnetic systems

In the following, we illustrate the use of our constrained noncollinear spin-DFT implementation to obtain non-
accessible magnetic configurations of a linear Fes cluster, extending previous work by Oda et al [5] (section 4.1),
and study magnetic couplings in V;O4F; g, a spin—1,/2 kagome layered structure [28], (section 4.2).

4.1. Linear Fe; cluster

The lowest energy structure for Fes is an equilateral triangle with a collinear spin. However, a metastable linear
configuration (see figure 1(a)) was shown by Oda et al [5] to have a NC ground state where the atomic
magnetizations for edge atoms are slightly tilted, while for the central Fe atom it points in the direction
perpendicular to the molecular axis (figure 1(a)). This NC solution is obtained even without SOC.

Using unconstrained calculations one cannot access magnetic configurations in which the orientations of
the local magnetizations deviate from this NC state, since self-consistency will align the magnetic moments
according to the NC ground state solution. However, using CDFT we can fix the orientations for each M;
allowing studies of magnetic excitations around this point. In the following, we illustrate this approach.

Following Oda et al [5] our calculations are based on the local density approximation under the Ceperley—
Alder [29] parametrization for the exchange-correlation functional. Pseudopotentials with nonlinear core
correction and a doubled zeta polarized strictly localized basis set are used to describe the valence electrons. The
cluster, with an optimized bond value of 1.965 Ais placed in a cubic unit cell of 20 A which is sufficient to avoid
interactions with neighboring cluster images. Our results are in good agreement with Oda’s work, and the NC
ground state is obtained by means of unconstrained DFT calculation. The components of M; of the atoms at the
edgeare3.17 pugand 0.24 pp for zand x, respectively (compared to 2.88 pgand 0.29 1p). Regarding the
magnetization of the central atom we obtained 1.42 pp(1.27 ppin Oda’s work). Figure 1(b) shows the results for
the total SC energy of the system, obtained by modifying the tilt angle for the edge atoms, 6, from 0° up to 10°.
Any deviation from the NC ground state configuration results in higher values of the energy, as expected.

4.2. Vanadium oxyfluoride kagome slab

We have used the CDFT formalism to study possible metastable frustrated magnetic states ofa V** kagome slab
by comparison of the total SC energy between different states. The kagome lattice is a two-dimensional network
of corner-sharing triangles that is known to host exotic quantum magnetic states [30]. We have built a simplified
model for the experimentally synthesized [NH 4], [C;H14N ][ V;O4F 15] hybrid organic—inorganic compound,
which has a double-layered structure, where two kagome V** layers are coupled through an intermediate V+?
site [28] (figure 2(A) shows a scheme of the V atoms arrangement in the kagome structure). This spin—1,/2
network is a candidate for quantum spin liquid, and the compound exhibits a high degree of magnetic
frustration. Different bi-layers in the bulk are decoupled by the large organic cations, and in our model only one
inorganic double-layer is considered, with compensating charges to ensure the correct number of electrons in
the system.

Experimentally, it has been observed that this compound presents an alternating kagome network, with two
types of triangles (one with short edges, and the other one with slightly longer edges). We have found that the
orientation of the magnetization vectors of the V3 determines whether the V™ points towards the center of the
large, or the small triangles, and induces a small canting out-of-plane for the kagome spins. Figure 2(B) plots the
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Figure 2. (A) Schematic view of the kagome structure in which only the V atoms (green filled spheres) and their magnetizations have
been shown. (B) SC evolution of the # angle of one of the V atoms with the number of the SC steps for V;O¢F 5 slab. The left part of the
figure (blue points) correspond to the unconstrained SC calculation and on the right (red points), it is depicted same angular
dependency but now 6y4,ger = 90° constrained. The dashed blue line depicts the angle at which the V magnetizations promote the
ground state and the red the target angle for the CDFT calculation. The solid lines join the points are guides for the eye.

evolution of the out-of-plane vanadium V** magnetization orientation # with the number of SC steps for
V;OgF 15 slab. The initial magnetization was taken in the xy plane (6 = 90°) for each of the double kagome
planes (left (blue) panel), and as the SC runs it freely evolves to its ground magnetic state that it is achieved after
105 SC steps. The final arrangement for the V4 magnetization is tilted 5° out of the xy plane, due to a magnetic
interaction with the inter—layered V3*, aligned along the z axis. To parametrize the magnetic interactions with a
Heisenberg Hamiltonian for the in-plane kagome magnetic moments, a coplanar configuration can be enforced
by performing a constrained SC calculation. On the right (red) panel of the figure, the V4* magnetization is
constrained to lay in-plane, i.e., the final magnetic configuration corresponds to a target 6 angle of 90°. Starting
from the ground state achieved in the unconstrained SC calculation the magnetization evolves until it reaches
the target 0 value, at around 140 SC additional steps. It is worth mentioning that although not depicted in the
figure 2(B), several Lagrange multipliers optimization steps were performed up to achieve the desired target
angle of 90°. The difference between both energies is AE = 5 meV which means that the configuration with in-
plane magnetization represents a metastable magnetic state of the system, and cannot be obtained without a
constraint formalism.

5. Application to magnetic exchange coupling

In this section we will show how to use our fully relativistic implementation to map the total SC ab initio energy
to a generalized Heisenberg model. For Ninteracting spins, it has the following form:

N
H=-13"% s'gs, (16)

1

2351 (=)
where §; are unitary vectors in the direction of the magnetization for each site 7, and Jj; are 3 X 3realand
symmetric matrices, usually known as the magnetic exchange tensor between spins at sites i and j. Including the
full spinor formalism allows the calculation of the off-diagonal terms of 7;;, which vanish for non-relativistic or
scalar-relativistic calculations, since in the absence of spin—orbit interaction there is no preferred orientation of
the magnetization (see the work of Udvardi et al for further [15]). In general, for an arbitrary pair of magnetic
moments the six elements of the exchange tensor J; will be different. However, symmetry considerations can
frequently be employed to reduce the number of independent elements to calculate.

Prior to expanding the Heisenberg equation (16), one has to determine the range of the magnetic
interactions, or in other words how many neighbours, j, of site i will be relevant. For most magnetic materials,
micromagnetic calculations have shown that nearest-neighbour (NN) magnetic interactions are one order of
magnitude higher than for next nearest neighbours [4]. Consequently, effective models in the literature consider
no more than second neighbour interactions, and in few exceptional cases up to the third neighbours. In DFT
this decision can be of paramount practical importance because the number of atoms involved in the calculation
can dramatically increase the computational cost. Although SIESTA is particularly well suited to work with
relatively large systems, due to the use of strictly localized numerical atomic orbitals, here we will only take into

6
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(a) Side view (¥=10°)

(b) Top view (6=90°)

Figure 3. Schematic side (a) and top (b) view of the infinite Fe chain placed along the z axis. Only the four atoms of the unit cell have
been depicted by filled blue spheres. The black arrows represent the oriented atomic magnetizations within the xzand xy planes.

account the interaction of each atom with its NN to show with a simple example (an infinite linear Fe chain) how
the fully relativistic CDFT formalism can be applied to study magnetic interactions.

5.1.Infinite linear Fe chain
As anillustrative example of how to calculate the complete set of J; elements for a specific atomic arrangement
here we obtain the magnetic exchange tensor for a free standing infinite Fe linear chain, placed along z axis.

As previously mentioned, the presence of the SOC term within the DFT Hamiltonian will bring us the
possibility to calculate not only the J;*, J2, Ji* terms but the full 7 tensor. The magnetic exchange tensor that
characterizes the magnetic alignment between Fe atoms of an infinite linear chain is:

XX X Xz
g Ji i
woyoqE
Ji=\Ti Ji Ji | (17)

zx zy 2z
A

where the (4, j) subscripts represent pair of Fe atoms of the atomic chain. To deal with magnetic interaction
between pairs of atoms under periodic boundary conditions, we need to include a sufficiently large number of
atoms in the simulation cell. Here we will only consider NN interactions, with a supercell that includes four
atoms. In the following we will simplify the notation by removing the subscript (i, ). Inspecting the atomic
configuration in the figure 3(a), we observe that J** = ] = J¥and J** = J’* = ]J¥ due to the symmetry of the
linear chain, reducing the total number of elements to four.

Prior to the calculation of the 7 elements we optimized the geometry (interatomic distances) with a conjugate
gradient method under the GGA exchange-correlation functional using the PBE parametrization [31]. We used
Troullier-Martins [32] norm-conserving pseudopotentials in the separable Kleinman—Bylander [33] form, and for a
better description of the magnetic behavior, nonlinear core corrections were included in the exchange-correlation
terms [34]. We used a double-zeta polarized basis set to describe the pseudo-valence electronic levels. The mesh cutoff
to perform accurate real space integrals was fixed to 800 Ry, the electronic temperature was set to 10 meV and SCF
convergence tolerance for the density matrix was set to 10~°. The simulation box included 20 A of vacuum around the
1D chain to avoid any interaction with neighboring periodic replicas. The structural relaxation was performed at the
scalar-relativistic level until the forces on the atoms were below 0.01 eV A~ without any geometric constraint on the
atomic positions nor the unit cell vectors. In agreement with previous theoretical works [35] out relaxed structure shows
adimerization with bond distances of 2.53 and 2.12 A. In this case, there are two different magnetic exchange tensors at
NN, Jintra and Finter, corresponding to the intra-dimer and inter-dimer magnetic interactions, respectively.

A set of convenient magnetic configurations is chosen to map the SC total energy values E" ({0}, ¢'})
to a Heisenberg model, equation (16). Subscript i represents a specific atomic label and 1 each magnetic configuration
considered. The usual way to proceed is to start from a metastable magnetic state and calculate several out-of-
equilibrium states that correspond to different magnetization orientations {6/}, ''}. For practical purposes in our

7
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Constrained noncollinear spin-DFT []
Least squares fitting —

0 20 40 60 80 100 120 140 160 180
0 [degrees]
Figure 4. Total SC energy variation as a function of § angle for the infinite linear Fe chain. The zero of energy is set to the minimum

value E,. Empty blue squares represent E" values when the constraint formalism is used. The blue solid line is the least squares fit of
(0", E") to equation (20).

example, the calculation of equation (17) is divided in two parts. First, the magnetization is constrained to lay on the
xzplane (p; = 0°), and the mapping can be done using the set ({67}, E"({607})). The reference (metastable) state is
taken as that with all the local magnetic moments pointing along z. This allows calculation of J* and J**. Similarly,
using a reference state with magnetic moments pointing along x, and defining the set of ({ ¢7'}, E"({0!'})) pairs by
constraining the magnetization vectors on the xy plane (6; = 90°) gives access to J**and J>*.

To focus on our method to obtain the exchange magnetic tensor and avoid complicating the set of magnetic
configurations used, we will illustrate the method by considering the arrangements for Fe atoms in the simulation
cell schematically shown in the figures 3(a), (b), which is repeated periodically along z. The magnetic configurations
considered here to calculate each E" are obtained for magnetization orientations defined by angles { 0", ©"}) for
sites 2 and 4, keeping fixed the orientations at sites 1 and 3. The orientation of the local magnetization vectors is
defined as a function of the azimuthal and polar angles by S;(6;, ;) = (sin 8; cos ;, sin §; sin ¢, cos ;). With this
particular arrangement we have access to (Jyra+ Jinter)/2. In the following we will refer to this tensor as .7 .
Considering an alternative magnetic configuration where atoms 1 and 2 are fixed and atoms 3 and 4 have a
different magnetic orientation we could obtain each of the NN exchange tensors (intra or inter), separately.

For periodic systems, and to obtain the correct Heisenberg description of the total energy, one has to take
into account the neighbours of the atoms on the edges of the unit cell, i.e., the Fe atoms on the edges will interact
with those replicated in the adjacent cells. For instance, atom 1 has two neighbours, one in the unit cell (atom 2)
and other belonging to the upper cell replica located in the positive sense of x that would correspond to atom 4.
The same rule is followed for all the atoms in the unit cell. Equation (16) for the FM alignments along z, S7 = (0,
0, 1) for any i gives:

Eo™ = 4=, (18)

On the other hand, when the magnetization of atoms 1 and 3 are kept aligned to the z axis, but those of 2 and 4
have ¢ = 0°and an arbitrary § angle, i.e. Sp.4)(f) = (sin 6, 0, cos §), our generalized Heisenberg model gives:

E@) = —1/2[8 x (J*sinf + J# cos0)]. (19)

Subtracting E>™ from (19) we have

E(0) — E*™ = 1.4J%(1 — cosf) — 4]**sinf (20)

J#and ] can be obtained by mapping this function to the set of (9", E"(6")) pairs obtained by means of CDFT
calculations.

Figure 4 plots the results. A least squares fit gives % ~ 196 meV and J** ~ -26.5 meV (solid line in the
figure).

A similar strategy is followed for the calculation of J** and J*”. For a FM alignment along x, ST = (1,0, 0) for
any i:

EXEM — gy, (21)
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Figure 5. Total SC energy variation as a function of ¢ angle for the infinite linear Fe chain. The zero of energy is set to the minimum

value E,. Empty blue squares represent E” values when the constraint formalism is used. The blue solid line is the least squares fit of
(", E") to equation (23).

When atoms 2 and 4 change their pangle,and 0 = 90°, i.e. S2,4)(¢) = (cos , sin ¢, 0), the angular
dependence becomes:

E(p) = —1/2[8 x (J¥sing + J* cos p)]. (22)
Subtracting E*™ the following expression is obtained:
E(p) — E*™ = +4]%(1 — cos ) — 4]¥ sin @ (23)

which give access to ] and J* by fitting (", E"(")). Figure 5 shows the energy dependency with ¢ for = 90°.
The corresponding fitting gives ] &~ 192 meVand ™ =~ —100 meV.

Alternatively, the diagonal elements for the magnetic exchange tensor can be obtained through the
difference between FM and antiferromagnetic (AFM) configurations, along x or z. The AFM configuration
corresponds to antiparallel orientations among neighbouring sites, S(_2f4) = (0,0,—1)and S(_z’f@ =(-1,0,0),
keeping S(, 5y = (0, 0, 1) or §; 5y = (1,0, 0). Following the same steps utilized to achieve equation (21) we
have:

Ex,AFM — 4]xx, Ez,AFM — 4]22. (24)

Finally, the equations that will provide the diagonal terms of the full magnetic exchange tensor will be:

8]xx(zz) — Ex(z),AFM _ Ex(z),FM. (25)

The values obtained, J** ~ 188 meV and /% & 192 meV, are in good agreement (within numerical errors),
with those coming from the fitting procedure. The number of points in both graphs is the minimal necessary to
obtain an accurate value of magnetic exchange tensor terms in which the fitting error is below 8%. Notice that
the diagonal terms are around one order of magnitude larger than the off-diagonal ones and favor the FM order
with NN. The off-diagonal terms contribute to the emergence of spiral states along the chain.

6. Conclusions

We have developed and implemented the fully relativistic constrained noncollinear spin-DFT formalism in the
SIESTA code using the Lagrange multipliers technique. An additional term is added to the total Hamiltonian
that accounts for a penalty energy contribution when an out-of-equilibrium magnetic configuration is
computed self-consistently. The method has been validated first by obtaining magnetic configurations that are
not accessible in conventional, unconstrained DFT calculations: (1) The linear Fes cluster presents a non-
collinear ground state which can be obtained by conventional selfconsistent calculations. In this configuration,
the magnetization of the edges atoms are tilted by ~4° from the molecular axis and the magnetization of the
central atom points perpendicular to the linear structure [5]. Spin excitations can be explored by applying the
constrained DFT to access different magnetic states where the tilt angle of the edge atoms is changed. (2) The
vanadium oxyfluoride kagome slab has also been studied and we found that one of its possible magnetic state
corresponds to the V4T atomic magnetizations slightly tilted out-of-plane. Forcing the V magnetizations to lie
inplane through the CDFT formalism we obtained an increased total energy of 5 meV.

9
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The fully relativistic constrained spin-DFT formalism can further be used to parametrize effective spin
Hamiltonians. By including the SOC in the total Kohn—Sham Hamiltonian, the off-diagonal terms of the
magnetic exchange tensor 7;; can be directly accessed through a mapping of the ab initio total energy toa
generalized Heisenberg model. As an illustrative example, the full NN exchange tensor Jj; of an infinite linear
chain of Fe atoms has been obtained. For the NN atoms the magnetic order corresponds to a FM state and the
non-zero values of the J*” and J** can trigger spin-spiral phases.
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