
PAPER • OPEN ACCESS

Implementation of non-collinear spin-constrained DFT calculations in
SIESTA with a fully relativistic Hamiltonian
To cite this article: R Cuadrado et al 2018 J. Phys. Mater. 1 015010

 

View the article online for updates and enhancements.

This content was downloaded from IP address 158.109.11.194 on 05/11/2018 at 09:07

https://doi.org/10.1088/2515-7639/aae7db


J. Phys.:Mater. 1 (2018) 015010 https://doi.org/10.1088/2515-7639/aae7db

PAPER

Implementation of non-collinear spin-constrained DFT calculations
in SIESTA with a fully relativistic Hamiltonian

RCuadrado1,2,4 ,MPruneda1 , AGarcía3 andPOrdejón1

1 Catalan Institute of Nanoscience andNanotechnology—ICN2,CSIC andBIST, CampusUAB, E-08193 Bellaterra, Spain
2 Universitat Autonoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Valles), Spain
3 Institut deCiència deMaterials de Barcelona (ICMAB-CSIC), CampusUAB, E-08193 Bellaterra, Spain
4 Author towhomany correspondence should be addressed.

E-mail: ramon.cuadrado@icn2.cat

Keywords: constrainedDFT,magnetic exchange interactions,magneticmaterials, ab initio

Abstract
Anaccurate andefficient generalmethod to constrain themagnetizationof individual atomsor groupsof
atomswithin a fully relativisticnon-collinear spindensity functional theory formalism ispresentedand
implementedwithin theSIESTAcode.This approachcanbeapplied to studyavarietyof complexmagnetic
configurations and tobuild effectivemagneticHamiltonians formultiscalingmicromagnetic simulations.As
anexample, themethod is applied toobtain constrainedmagnetic states for aFe3 structure, and for aS=1/
2kagome layer (vanadiumoxyfluorideV7O6F18).Ofparamount importance in spintronics is the control and
manipulationofmagnetic interactionsbetweenconstituent species, characterizedmainlyby thepair-wise
magnetic exchange tensorij. By constraining theatomicmagnetizationsof an infiniteFe linear chain, the
total selfconsistent energy values aremapped toageneralizedHeisenbergmodel, obtainingnotonly the
diagonal termsofij but also theoff-diagonal contributionsdue to theexplicit presenceof the spin–orbit
coupling in the formalism.Thediagonal valuesofij promote short ranged ferromagnetic alignmentwhilst
thenon-zerooff-diagonal values can lead to the formationof the spiral states in the chain, as expected from
theory.

1. Introduction

Magneticmaterials areofmuch interest for amyriadofpossible applications.Adeepunderstandingof themagnetic
properties is crucial, and requires a combinationof experiments, theory, andmodeling. Inmostmagneticmaterials,
the arrangementof the atomicmagnetizations adopt a collinear(CL) configuration inwhich a commondirection is
sharedby all of them(usually takenas the z axis) [1, 2]. Specifically, each individualmagnetization canbeparallel or
antiparallel to eachother, leading to ferromagnetic(FM)or antiferromagnetic(AFM)phases, respectively.The
magnetic exchange tensor characterizes the strength for theFMorAFMcouplingbetweenneighboring atoms.

In contrast to theCLmagnetic configurations, there are a number of systemswhere themagnetization can
take amore complex structure, and vary its direction at each point in space. This type of noncollinear(NC)
structures have been observed for example in the formof helical spin density waves or spin spirals for the ground
state of γ-Fe [3], and in Fe/MgO sandwiches, [4]metastableNC structures in smallmagnetic clusters, such as in
Fe, [5] or in geometrically frustrated systems such asmagnetic pyrochlore oxides [6].

The spin–orbit coupling(SOC) plays a critical role infixing the directionality of themagnetization, and is
responsible for some importantmagnetic properties such as themagnetic anisotropy energy(MAE), that
determines the tendency of themagnetization to align along some specific axis in solids, surfaces,
nanostructures, and clusters.

Several theoretical approaches have been developed during the past years to access the CL andNC states
fromfirst–principles calculations, such as the early work by vonBarth andHedin inwhich the unpolarized
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formulation of density functional theory(DFT) [7, 8]was extended to include the concept of vector-spin
density, treating themagnetization as a vector field [9], or thework byKübler et al [10], where the exchange-
correlation functional was explicitly obtained for theNC case. A step forwardwas the generalization to deal with
arbitrarymagnetic configurations, i.e., configurationswhere the orientations of the localmagnetizations are
forced to predefined directions, that are unreachable unless those constraints are explicitly imposed on the self-
consistent (SC) solution. These are part of awider class ofmethods inwhich constraints are imposed on the SC
solution [11], termed constrained density functional theory (CDFT). The constrained-spinDFTwasfirst
developed byDederichset al [12]. Over the past two and a half decades a number of interesting problems have
been studied successfully using CDFT, such as the effect of Cerium impurities [12], long-range electron transfer
[13], spin-dynamics [14], andmagnetic exchange couplings [15–17] (see [11] for a review). Aswewill see in the
following, these theoretical developments allow calculations of boths andMAEs.

Basically there are two computational strategies to determine . One is the so-called frozenmagnon
approximation [18], inwhich the spin configuration is constrained to a spinwavewith periodicity determined
by awave vector q and the energy of this spinwave is calculated through the generalized Bloch theorem for a
spin-spiral configuration [19]. In the other approach, the coupling constants are calculated directly from the
change of the total energy associatedwith constrained rotations of the spin-polarization at the sites involved
[16, 17, 20]. The later will be the approach followed in this work. In contrast tomost of the previous calculations
of themagnetic exchange couplings based on constrainedmagnetizationwith a specific orientations, which
relied on a scalar-relativistic formalism (i.e., the SOC is not explicitly included in the formalism), we include here
a fully relativistic treatment for theHamiltonian, including SOC and two component (spinor)wavefunctions. By
overcoming this limitation, both diagonal and off-diagonal contributions to become available. This can
provide access, for example, to the parameters definingDzyaloshinkii–Moriya interactions [21, 22] (among
many others).

The paper is structured as follows. In section 2.1 ourDFT formalism is summarized. Themathematical
structure of theCDFT aswell as its relationshipwith the SIESTA code are detailed in section 2.2. Section 3
focuses on the optimization algorithm. Specific applications of CDFT are shown in sections 4 and 5. Finally,
section 6 summarizes themain results.

2.General formalismof fully relativistic constrainedDFT

2.1.Noncollinear-spinDFT
Within the usual CL-spinDFT, a common arbitrary quantizationmagnetization axis is taken for thewhole
system, and the charge density ρ(r) is definedwith two possible spin components r( )r and r( )r . TheKohn–
Sham(KS) orbitals [8] are y ( )rn

s =  [ ]s , and the charge density spin projections is given by:
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s is the occupation of the electronic state labeled as (n, s). From equation (1) the elements of the density

matrix for theCL case are:
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The total charge density is given by ρ(r)=r(r)+r(r), and the localmagnetization along the quantization
axis (chosen to be z) asM(r)=[r(r)−r(r)]uz.

In theNC case the spin quantization axis varies frompoint to point in space and the localmagnetizationsM
(r) points along different directions, defined by three components:M=(Mx,My,Mz), where each component
has an implicit spatial (r) dependence. TheKS orbitals become two-component spinors:
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and the charge density nowhas four components in the spin space, with the generalization of equation (1) being
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where the equivalentmatrix elements of equation (3) for theNC case are

*år =mn m n
¢ ¢ ( )f c c . 6ss

n
n n

s
n
s

, ,

Aswewill see in section 2.2 it is possible to obtain the components of the localmagnetizationM(r) from the
elements of the densitymatrix rmn

¢ss .

In this work, we use theDFT implemented in the SIESTAmethod and code [23], which includes the
description ofNC spin states [24]. The SOC contribution is included selfconsistently in theKSHamiltonian and
the energy functional r[ ]EKS , following themethod described in  [25]. Hence, a spinor, fully relativistic
treatment of theKSHamiltonian is used. Thematrix formulation of theHamiltonian(and densitymatrix) gives
off-diagonal terms (i.e., non-zero couplings between the two spin components) instead of only the diagonal
parts that one has for theCL case. ForNC calculations, these off-diagonal terms are complex, while the diagonal
ones are complex onlywhen SOC is included in the calculation.

2.2. Noncollinear constrained spin-DFT
In general, a given SC solution corresponds to the ground state or ametastable state of the system,with a certain
arrangement of themagnetization vectors. The goal of constrained-spinDFT is to force the systemout from its
equilibrium (ground ormetastable)magnetic state in order to obtain SC configurations inwhich the orientation
of the atomicmagnetizationsMi are arbitrary fixed to specific directions ti. This task is possible by the use of the
Lagrangemultipliers technique inwhich an additional term is added to the usual KS functional r[ ( )]E rKS to
force the solution to satisfy the constraints that the atomicmagnetizations point at the preset directions. The
solution is then SC but constrained to satisfy those conditions.

Themagnetization of the system at each point r, defined as

å s= Y Y
Î

( ) ( ) ( ) ( )†M r r r , 7
n occ

n n

where s s s s= ( ), ,x y z are the Paulimatrices, can be partitioned into localmagnetization vectors by defining
weight functions ( )W ri , which can be rather arbitrary, as long as the sumof the atomicmagnetizations coincides
with the actual totalmagnetization of the system (integral of equation (7)). This allows us to define atomic
magnetization vectorsMi by:

ò= ( ) ( ) ( )d WM r r M r . 8i i
3

One possible definition for ( )W ri is based onMulliken partitioning, which in a localized basis description
can be easily obtained from the overlap integrals f f= á ñmn m n∣S . In this case, thematrix elements for theweight
function are defined as =mn mn( )W Si ifμ and n Î i; =mn mn( )W S 2i ifμ or n Î i and 0 otherwise. The
components ofMi are given by:
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More generally, we can partition themagnetization on orbitals, atoms, or group of atoms. Fromnowon, let
us assume that we haveNmagnetic centers and their localmagnetizations areMi[i=1, 2,K,N]. Following the
same procedure as in the usual DFT formalism to obtain the stationary state bymeans of theminimization of the
KS functionalEKS[ρ], we can construct a new functional L that includes EKS[ρ] and additional terms that account
for the directional constraints of each localmagnetization:

ål t l tr r r= - ´
=

[ { }] [ ] · ( [ ] ) ( )L EM M; , , 10i i i
i

N

i i i
KS

1

with t q j q j q= + +ˆ ˆ ˆx y zsin cos sin sin cosi i i i i i the unitary vector that defines each local targetmagnetization
direction andl i = l l l+ +ˆ ˆ ˆx y zi x i y i z, , , the Lagrangemultipliers. Apart frombeing simple, the constraint
terms in equation (10) are linear in the density, thus avoidingmultiple stationary solutions and/or energy
discontinuities [26].

Stationary solutions of equation (10) for a given set offixed ti orientations imply:

l
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¶
¶
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that together with
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and the orthonormality condition for the spinors Y ( )rl yields a set ofmodified fully relativistic NC constrained-
spinKS equations for the system:
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The value of L at the stationary solutions for each set of t{ }i , obtained by the SC solution of equations (11)
and (13) is the KS energy of the system in the presence of the constraints, t({ })Ect

i .
SIESTA expands theKS orbitals(equation (4)) as a a linear combination of numerical strictly localized

atomic orbitals as in equation (2). Thematrix elements of the fully relativistic constrained-spinDFT
Hamiltonian are given by:
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wherewe can rename the components of ti by t q j= sin cosx i i, t q j= sin siny i i and t q= cosz i to perform
explicitly the vectorial operations bracketed in the second terms on the right hand side of equation (14):
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where ¢ =  s s, , . It is worth tomention that thematrix elements mn( )Wi of theweight functions ( )W ri only
depend on the atoms or group of atoms i for which their spinmagnetization has been constrained and hence
they do not depend on the spin components that have to be updatedwhen a new set Lagrangemultipliers is
obtained. So they can be calculated at the beginning of the calculation once for all.

3. Implementation

Following thework ofDederichs et al [12], instead of solving the coupled equations for the stationary points of
the constrained functional(equations (11) and (13)), we cast the problem in terms of a variational one, whichwe
can solve usingminimization techniques. [11]The constraint process begins with an initial set ofN atomic
magnetization vectors {Mi

in} and a set of initial Lagrangemultipliers {l i
in}, and results in a set of spinors and

multipliers {li} such that equations (13) and (11) are satisfied selfconsistently. These are found bymaximizing
the constrained functional in equation (10) only as a function of the Lagrangemultipliers {λi}, while the KS
spinors are obtained solving selfconsistently theKS equations in equation (13) for each set of values {λi}. At the
end of the process, a set of {l i

out} is obtained such that the total constrainedKS energy t({ })Ect
i corresponds to

a stationary value of the functional given by the equation (10) inwhich each one of the atomic desired
magnetization orientation ti has been reached.

To perform the numerical optimization of the Lagrangian mn
¢Fss , we follow a simple steepest descentmethod

inwhich each optimization step nct consists of a one-dimensional(1D)maximization along the opposite
steepest direction Li . The linemaximization is done by first bracketing the linemaximum, and then by
searching it using the golden section searchmethod [27]. For these linemaximizations, a tolerance in the energy
of d » -10D1

5 eV is used.
Thewhole optimization process finishes when each atomicmagnetization lies along the target orientations.

In practice, the target orientation of each atomicmagnetization i is given by its azimuthal and polar angles, θi and
ji, respectively. As convergence criteria we can use the conditions: (i) that q q j j d- = - <∣ ∣ ∣ ∣i i

scf
i i

scf
ang , and,

(ii) that the torque tr d´ < [ ]Mi i . Thefirst convergence condition accounts for the difference between the
target angles and the ones obtained selfconsistently, and the second for how close the atomicmagnetization

r[ ]Mi is with respect to the target orientation. Themotivation to decide what tolerance criteriumwill be the best
to achieve an accurate result depends on how the total SC energy varies between twodifferent angular values and
how close the torque is to zero. In principle, just one of these parameters can control thewhole constraint
process, butwe have implemented both criteria in SIESTA,making it possible to use only one or both of them.

The additional complexity of the constraintmethod compared to an unconstrained calculation is that the
selfconsistent solution of the constrainedKSHamiltonianmust be repeated for all the values of the Lagrange
multipliers during themaximization process. Fortunately once one has thefirst guess for theHamiltonian or the
densitymatrix, the number of SC steps for eachmaximization point is usually small, resulting in aworkload
which is not prohibitive with respect to unconstrainedDFT calculations.

4
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4.Noncollinearmagnetic systems

In the following, we illustrate the use of our constrained noncollinear spin-DFT implementation to obtain non-
accessiblemagnetic configurations of a linear Fe3 cluster, extending previouswork byOda et al [5] (section 4.1),
and studymagnetic couplings inV7O6F18, a spin–1/2 kagome layered structure [28], (section 4.2).

4.1. Linear Fe3 cluster
The lowest energy structure for Fe3 is an equilateral triangle with a collinear spin.However, ametastable linear
configuration (see figure 1(a))was shown byOda et al [5] to have aNC ground state where the atomic
magnetizations for edge atoms are slightly tilted, while for the central Fe atom it points in the direction
perpendicular to themolecular axis (figure 1(a)). ThisNC solution is obtained evenwithout SOC.

Using unconstrained calculations one cannot accessmagnetic configurations inwhich the orientations of
the localmagnetizations deviate from thisNC state, since self-consistencywill align themagneticmoments
according to theNCground state solution.However, usingCDFTwe can fix the orientations for eachMi

allowing studies ofmagnetic excitations around this point. In the following, we illustrate this approach.
FollowingOda et al [5] our calculations are based on the local density approximation under theCeperley–

Alder [29] parametrization for the exchange-correlation functional. Pseudopotentials with nonlinear core
correction and a doubled zeta polarized strictly localized basis set are used to describe the valence electrons. The
cluster, with an optimized bond value of 1.965Å is placed in a cubic unit cell of 20Åwhich is sufficient to avoid
interactionswith neighboring cluster images. Our results are in good agreement withOda’s work, and theNC
ground state is obtained bymeans of unconstrainedDFT calculation. The components of Mi of the atoms at the
edge are 3.17 μB and 0.24 μB for z and x, respectively (compared to 2.88 μB and 0.29 μB). Regarding the
magnetization of the central atomwe obtained 1.42 μB (1.27 μB inOda’s work). Figure 1(b) shows the results for
the total SC energy of the system, obtained bymodifying the tilt angle for the edge atoms, θ, from0°up to 10°.
Any deviation from theNC ground state configuration results in higher values of the energy, as expected.

4.2. Vanadiumoxyfluoride kagome slab
Wehave used theCDFT formalism to study possiblemetastable frustratedmagnetic states of a V4+ kagome slab
by comparison of the total SC energy between different states. The kagome lattice is a two-dimensional network
of corner-sharing triangles that is known to host exotic quantummagnetic states [30].We have built a simplified
model for the experimentally synthesized [ ] [NH4 2 C7H14N ][V7O6F ]18 hybrid organic–inorganic compound,
which has a double-layered structure, where two kagomeV4+ layers are coupled through an intermediate +V 3

site [28] (figure 2(A) shows a scheme of theV atoms arrangement in the kagome structure). This spin–1/2
network is a candidate for quantum spin liquid, and the compound exhibits a high degree ofmagnetic
frustration. Different bi-layers in the bulk are decoupled by the large organic cations, and in ourmodel only one
inorganic double-layer is considered, with compensating charges to ensure the correct number of electrons in
the system.

Experimentally, it has been observed that this compound presents an alternating kagome network, with two
types of triangles (onewith short edges, and the other onewith slightly longer edges).We have found that the
orientation of themagnetization vectors of the +V 3 determines whether the +V 4 points towards the center of the
large, or the small triangles, and induces a small canting out-of-plane for the kagome spins. Figure 2(B) plots the

Figure 1. (a) Schematic representation of the linear Fe3 structure. The atoms are placed along the z axis and theirmagnetization
vectors are orientedwith respect to this axis. Beside to eachmagnetization vector is written the SC totalmagneticmoment; (b) SC
energy difference as a function of the orientation of themagnetization of the atoms at the edges. Themetastable state is given by the
minimumof the curve(red arrow). The orientation of the central atom is always along the x axis. The dashed line is a guide to the eye.
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evolution of the out-of-plane vanadium +V4 magnetization orientation θwith the number of SC steps for
V7O6F18 slab. The initialmagnetizationwas taken in the xy plane(θ=90°) for each of the double kagome
planes (left (blue) panel), and as the SC runs it freely evolves to its groundmagnetic state that it is achieved after
105 SC steps. Thefinal arrangement for the +V4 magnetization is tilted 5° out of the xy plane, due to amagnetic
interactionwith the inter–layered +V3 , aligned along the z axis. To parametrize themagnetic interactionswith a
HeisenbergHamiltonian for the in-plane kagomemagneticmoments, a coplanar configuration can be enforced
by performing a constrained SC calculation. On the right(red) panel of thefigure, the +V4 magnetization is
constrained to lay in-plane, i.e., thefinalmagnetic configuration corresponds to a target θ angle of 90°. Starting
from the ground state achieved in the unconstrained SC calculation themagnetization evolves until it reaches
the target θ value, at around 140 SC additional steps. It is worthmentioning that although not depicted in the
figure 2(B), several Lagrangemultipliers optimization steps were performed up to achieve the desired target
angle of 90°. The difference between both energies isΔE≈5meVwhichmeans that the configurationwith in-
planemagnetization represents ametastablemagnetic state of the system, and cannot be obtainedwithout a
constraint formalism.

5. Application tomagnetic exchange coupling

In this sectionwewill showhow to use our fully relativistic implementation tomap the total SC ab initio energy
to a generalizedHeisenbergmodel. ForN interacting spins, it has the following form:

å å= -
= ¹

( )
( )

H S S
1

2
, 16

i

N

j i
i
T

ij j
1

where Si are unitary vectors in the direction of themagnetization for each site i, andij are 3×3 real and
symmetricmatrices, usually known as themagnetic exchange tensor between spins at sites i and j. Including the
full spinor formalism allows the calculation of the off-diagonal terms ofij , which vanish for non-relativistic or
scalar-relativistic calculations, since in the absence of spin–orbit interaction there is no preferred orientation of
themagnetization(see thework ofUdvardi et al for further [15]). In general, for an arbitrary pair ofmagnetic
moments the six elements of the exchange tensorij will be different. However, symmetry considerations can
frequently be employed to reduce the number of independent elements to calculate.

Prior to expanding theHeisenberg equation (16), one has to determine the range of themagnetic
interactions, or in other words howmany neighbours, j, of site iwill be relevant. Formostmagneticmaterials,
micromagnetic calculations have shown that nearest-neighbour (NN)magnetic interactions are one order of
magnitude higher than for next nearest neighbours [4]. Consequently, effectivemodels in the literature consider
nomore than second neighbour interactions, and in few exceptional cases up to the third neighbours. InDFT
this decision can be of paramount practical importance because the number of atoms involved in the calculation
can dramatically increase the computational cost. Although SIESTA is particularly well suited toworkwith
relatively large systems, due to the use of strictly localized numerical atomic orbitals, here wewill only take into

Figure 2. (A) Schematic view of the kagome structure inwhich only theV atoms(green filled spheres) and theirmagnetizations have
been shown. (B) SC evolution of the θ angle of one of theV atomswith the number of the SC steps for V7O6F18 slab. The left part of the
figure (blue points) correspond to the unconstrained SC calculation and on the right(red points), it is depicted same angular
dependency but now q = 90target constrained. The dashed blue line depicts the angle at which theVmagnetizations promote the
ground state and the red the target angle for theCDFT calculation. The solid lines join the points are guides for the eye.
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account the interaction of each atomwith itsNN to showwith a simple example (an infinite linear Fe chain) how
the fully relativistic CDFT formalism can be applied to studymagnetic interactions.

5.1. Infinite linear Fe chain
As an illustrative example of how to calculate the complete set ofij elements for a specific atomic arrangement
herewe obtain themagnetic exchange tensor for a free standing infinite Fe linear chain, placed along z axis.

As previouslymentioned, the presence of the SOC termwithin theDFTHamiltonianwill bring us the
possibility to calculate not only the J J J, ,ij

xx
ij
yy

ij
zz terms but the fullij tensor. Themagnetic exchange tensor that

characterizes themagnetic alignment between Fe atoms of an infinite linear chain is:

 =

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )

J J J

J J J

J J J

, 17ij

ij
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ij
xy

ij
xz

ij
yx

ij
yy

ij
yz

ij
zx

ij
zy

ij
zz

where the (i, j) subscripts represent pair of Fe atoms of the atomic chain. To deal withmagnetic interaction
between pairs of atoms under periodic boundary conditions, we need to include a sufficiently large number of
atoms in the simulation cell. Herewewill only considerNN interactions, with a supercell that includes four
atoms. In the followingwewill simplify the notation by removing the subscript (i, j). Inspecting the atomic
configuration in the figure 3(a), we observe that = ¹J J Jxx yy zz and = ¹J J Jxz yz xy due to the symmetry of the
linear chain, reducing the total number of elements to four.

Prior to the calculationof the elementsweoptimized the geometry (interatomicdistances)witha conjugate
gradientmethodunder theGGAexchange-correlation functionalusing thePBEparametrization [31].Weused
Troullier–Martins [32]norm-conservingpseudopotentials in the separableKleinman–Bylander [33] form, and for a
better descriptionof themagnetic behavior, nonlinear core correctionswere included in the exchange-correlation
terms [34].Weusedadouble-zetapolarizedbasis set todescribe thepseudo-valence electronic levels. Themeshcutoff
toperformaccurate real space integralswasfixed to800Ry, the electronic temperaturewas set to10meVandSCF
convergence tolerance for thedensitymatrixwas set to10−6. The simulationbox included20Åof vacuumaround the
1Dchain to avoid any interactionwithneighboringperiodic replicas.The structural relaxationwasperformedat the
scalar-relativistic level until the forces on the atomswerebelow0.01eVÅ–1,without anygeometric constrainton the
atomicpositionsnor theunit cell vectors. In agreementwithprevious theoreticalworks [35]out relaxed structure shows
adimerizationwithbonddistances of 2.53and2.12Å. In this case, there are twodifferentmagnetic exchange tensors at
NN,intra andinter , corresponding to the intra-dimer and inter-dimermagnetic interactions, respectively.

A set of convenientmagnetic configurations is chosen tomap the SC total energy values q j({ })E ,n
i
n

i
n

to aHeisenbergmodel, equation (16). Subscript i represents a specific atomic label andn eachmagnetic configuration
considered.Theusualway toproceed is to start fromametastablemagnetic state and calculate several out-of-
equilibriumstates that correspond todifferentmagnetizationorientations q j{ },i

n
i
n . Forpractical purposes in our

Figure 3. Schematic side(a) and top(b) view of the infinite Fe chain placed along the z axis. Only the four atoms of the unit cell have
been depicted by filled blue spheres. The black arrows represent the oriented atomicmagnetizations within the xz and xy planes.
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example, the calculationof equation (17) is divided in twoparts. First, themagnetization is constrained to layon the
xzplane (j = 0i ), and themapping canbedoneusing the set q q({ } ({ }))E,i

n n
i
n . The reference (metastable) state is

taken as thatwith all the localmagneticmomentspointing along z. This allows calculationof J zz and J xz. Similarly,
using a reference statewithmagneticmoments pointing alongx, anddefining the set of j j({ } ({ }))E,i

n n
i
n pairs by

constraining themagnetizationvectors on thexyplane (q = 90i ) gives access to J xx and J yx.
To focus onourmethod toobtain the exchangemagnetic tensor and avoid complicating the set ofmagnetic

configurationsused,wewill illustrate themethodby considering the arrangements for Fe atoms in the simulation
cell schematically shown in thefigures 3(a), (b), which is repeated periodically along z. Themagnetic configurations
considered here to calculate eachEn are obtained formagnetizationorientations defined by angles q j{ },n n ) for
sites 2 and4, keepingfixed theorientations at sites 1 and 3. Theorientationof the localmagnetization vectors is
defined as a functionof the azimuthal andpolar angles by q j q j q j q=( ) ( )S , sin cos , sin sin , cosi i i i i i i i .With this
particular arrangementwehave access to (intra+inter)/2. In the followingwewill refer to this tensor as .
Considering an alternativemagnetic configurationwhere atoms 1 and2 arefixed and atoms 3 and4have a
differentmagnetic orientationwe couldobtain each of theNNexchange tensors (intraor inter), separately.

For periodic systems, and to obtain the correctHeisenberg description of the total energy, one has to take
into account the neighbours of the atoms on the edges of the unit cell, i.e., the Fe atoms on the edges will interact
with those replicated in the adjacent cells. For instance, atom1has two neighbours, one in the unit cell(atom2)
and other belonging to the upper cell replica located in the positive sense of x that would correspond to atom4.
The same rule is followed for all the atoms in the unit cell. Equation (16) for the FMalignments along z, Si

z=(0,
0, 1) for any i gives:

= - ( )E J4 . 18z zz,FM

On the other hand, when themagnetization of atoms 1 and 3 are kept aligned to the z axis, but those of 2 and 4
havej=0° and an arbitrary θ angle, i.e. q q q=( ) (( )S sin , 0, cos2,4 ), our generalizedHeisenbergmodel gives:

q q q= - ´ +( ) [ ( )] ( )/E J J1 2 8 sin cos . 19xz zz

Subtracting Ez,FM from (19)wehave

q q q- = + - -( ) ( ) ( )E E J J4 1 cos 4 sin 20z zz xz,FM

J zz and J xz can be obtained bymapping this function to the set of (qn, q( )En n )pairs obtained bymeans of CDFT
calculations.

Figure 4 plots the results. A least squares fit gives »J zz 196meV and »J xz –26.5meV(solid line in the
figure).

A similar strategy is followed for the calculation of J xx and J xy. For a FMalignment along x, Si
x=(1, 0, 0) for

any i:

= - ( )E J4 . 21x xx,FM

Figure 4.Total SC energy variation as a function of θ angle for the infinite linear Fe chain. The zero of energy is set to theminimum
value E0. Empty blue squares represent En valueswhen the constraint formalism is used. The blue solid line is the least squares fit of
(qn,En) to equation (20).
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When atoms 2 and 4 change theirj angle, and θ=90° , i.e. j j j=( ) (( )S cos , sin , 02,4 ), the angular
dependence becomes:

j j j= - ´ +( ) [ ( )] ( )E J J1 2 8 sin cos . 22xy xx

Subtracting Ex,FM the following expression is obtained:

j j j- = + - -( ) ( ) ( )E E J J4 1 cos 4 sin 23x xx xy,FM

which give access to J xx and J xybyfitting (jn, j( )En n ). Figure 5 shows the energydependencywithj forθ=90°.
The correspondingfitting gives J xx≈192meVand J xy≈−100meV.

Alternatively, the diagonal elements for themagnetic exchange tensor can be obtained through the
difference between FMand antiferromagnetic (AFM) configurations, along x or z. TheAFMconfiguration
corresponds to antiparallel orientations among neighbouring sites, -

( )S z
2,4 =(0, 0,−1) and = -- ( )( )S 1, 0, 0x

2,4 ,
keeping = ( )( )S 0, 0, 1z

1,3 or ( )Sx
1,3 =(1, 0, 0). Following the same steps utilized to achieve equation (21)we

have:

= = ( )E J E J4 ; 4 . 24x xx z zz,AFM ,AFM

Finally, the equations thatwill provide the diagonal terms of the fullmagnetic exchange tensorwill be:

= - ( )( ) ( ) ( )J E E8 . 25xx zz x z x z,AFM ,FM

The values obtained, »J 188 meVxx and »J 192 meVzz , are in good agreement (within numerical errors),
with those coming from the fitting procedure. The number of points in both graphs is theminimal necessary to
obtain an accurate value ofmagnetic exchange tensor terms inwhich the fitting error is below 8%.Notice that
the diagonal terms are around one order ofmagnitude larger than the off-diagonal ones and favor the FMorder
withNN. The off-diagonal terms contribute to the emergence of spiral states along the chain.

6. Conclusions

Wehave developed and implemented the fully relativistic constrained noncollinear spin-DFT formalism in the
SIESTA code using the Lagrangemultipliers technique. An additional term is added to the totalHamiltonian
that accounts for a penalty energy contributionwhen an out-of-equilibriummagnetic configuration is
computed self-consistently. Themethod has been validated first by obtainingmagnetic configurations that are
not accessible in conventional, unconstrainedDFT calculations: (1)The linear Fe3 cluster presents a non-
collinear ground statewhich can be obtained by conventional selfconsistent calculations. In this configuration,
themagnetization of the edges atoms are tilted by∼4° from themolecular axis and themagnetization of the
central atompoints perpendicular to the linear structure [5]. Spin excitations can be explored by applying the
constrainedDFT to access differentmagnetic states where the tilt angle of the edge atoms is changed. (2)The
vanadiumoxyfluoride kagome slab has also been studied andwe found that one of its possiblemagnetic state
corresponds to the +V4 atomicmagnetizations slightly tilted out-of-plane. Forcing theVmagnetizations to lie
inplane through theCDFT formalismwe obtained an increased total energy of 5meV.

Figure 5.Total SC energy variation as a function ofj angle for the infinite linear Fe chain. The zero of energy is set to theminimum
value E0. Empty blue squares represent En valueswhen the constraint formalism is used. The blue solid line is the least squares fit of
(jn, En) to equation (23).
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The fully relativistic constrained spin-DFT formalism can further be used to parametrize effective spin
Hamiltonians. By including the SOC in the total Kohn–ShamHamiltonian, the off-diagonal terms of the
magnetic exchange tensorij can be directly accessed through amapping of the ab initio total energy to a
generalizedHeisenbergmodel. As an illustrative example, the full NN exchange tensorij of an infinite linear
chain of Fe atoms has been obtained. For theNNatoms themagnetic order corresponds to a FM state and the
non-zero values of the J xy and J zx can trigger spin-spiral phases.
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