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Summary paragraph 228 
The tundra is warming more rapidly than any other biome on Earth, and the potential 229 
ramifications are far-reaching due to global-scale vegetation-climate feedbacks. A better 230 
understanding of how environmental factors shape plant structure and function is critical to 231 
predicting the consequences of environmental change for ecosystem functioning. Here, we 232 
explore the biome-wide relationships between temperature, moisture, and seven key plant 233 
functional traits both across space and over three decades of warming at 117 tundra 234 
locations. Spatial temperature-trait relationships were generally strong but soil moisture had 235 
a marked influence on the strength and direction of these relationships, highlighting the 236 
potentially important influence of changes in water availability on future plant trait change. 237 
Community height increased with warming across all sites over the past three decades, but 238 
other traits lagged far behind predicted rates of change. Our findings highlight the challenge 239 
of using space-for-time substitution to predict the functional consequences of future warming 240 
and suggest that functions tied closely to plant height will experience the most rapid change. 241 
Our results reveal the strength with which environmental factors shape biotic communities at 242 
the coldest extremes of the planet and will enable improved projections of tundra functional 243 
change with climate warming. 244 
 245 
Main text 246 
Rapid climate warming in Arctic and alpine regions is driving changes in the structure and 247 
composition of tundra ecosystems1,2, with potentially global consequences. Up to 50% of the 248 
world’s belowground carbon stocks are contained in permafrost soils3, and tundra regions 249 
are expected to contribute the majority of warming-induced soil carbon loss over the next 250 
century4. Plant traits strongly impact carbon cycling and energy balance, which can in turn 251 
influence regional and global climates5-7. Traits related to the resource economics 252 
spectrum8, such as specific leaf area, leaf nitrogen content, and leaf dry matter content, 253 
affect primary productivity, litter decomposability, soil carbon storage, and nutrient 254 
cycling5,6,9,10, while size-related traits such as leaf area and plant height influence 255 
aboveground carbon storage, albedo, and hydrology11-13 (Extended Data Table 1). 256 
Quantifying the link between the environment and plant functional traits is therefore critical to 257 
understanding the consequences of climate change, but such studies rarely extend into the 258 
tundra14-16. Thus, the full extent of the relationship between climate and plant traits in the 259 
planet’s coldest ecosystems has never been assessed, and the consequences of climate 260 
warming for tundra functional change are largely unknown. 261 
 262 
Here, we quantify for the first time the biome-wide relationships between temperature, soil 263 
moisture, and key traits that represent the foundation of plant form and function17, using the 264 



largest dataset of tundra plant traits ever assembled (56,048 measured trait observations; 265 
Fig. 1a and Extended Data Fig. 1a, Table S1). We examine five continuously distributed 266 
traits related to plant size (adult plant height and leaf area) and to resource economy 267 
(specific leaf area (SLA), leaf nitrogen content (leaf N), and leaf dry matter content (LDMC)), 268 
as well as two categorical traits related to community-level structure (woodiness) and leaf 269 
phenology/lifespan (evergreenness). Intraspecific trait variability is thought to be especially 270 
important where diversity is low or where species have wide geographic ranges18, as in the 271 
tundra. Thus, we analyze two underlying components of biogeographic patterns in the five 272 
continuous traits: intraspecific variability (phenotypic plasticity or genetic differences among 273 
populations) and community-level variability (species turnover or shifts in species’ 274 
abundances over space). We ask: 1) How do plant traits vary with temperature and soil 275 
moisture across the tundra biome? 2) What is the relative influence of intraspecific trait 276 
variability (ITV) versus community-level trait variation (estimated as community-weighted 277 
trait means, CWM) for spatial temperature-trait relationships? 3) Are spatial temperature-trait 278 
relationships explained by among-site differences in species abundance or species turnover 279 
(presence-absence)?  280 
 281 
A major impetus for quantifying spatial temperature-trait relationships is to provide an 282 
empirical basis for predicting the potential consequences of future warming19-21. Thus, we 283 
also estimate realized rates of community-level trait change over time using nearly three 284 
decades of vegetation survey data at 117 tundra sites (Fig. 1a, Table S2). Focusing on 285 
interspecific trait variation, we ask: 4) How do changes in community traits over three 286 
decades of ambient warming compare to predictions from spatial temperature-trait 287 
relationships? We expect greater temporal trait change when spatial temperature-trait 288 
relationships are a) strong, b) unlimited by moisture availability, and c) due primarily to 289 
abundance shifts instead of species turnover, given that species turnover over time depends 290 
on immigration and is likely to be slow22. Finally, because total realized trait change in 291 
continuous traits is comprised of both community-level variation and intraspecific trait 292 
variation (ITV), we estimated the potential contribution of ITV to overall trait change 293 
(CWM+ITV) using the modeled intraspecific temperature-trait relationships described above 294 
(see Methods and Extended Data Fig. 1b). For all analyses, we used a generalizable 295 
Bayesian modeling approach, which allowed us to account for the hierarchical spatial, 296 
temporal and taxonomic structure of the data as well as multiple sources of uncertainty. 297 
 298 
Environment-trait relationships across the tundra biome 299 
We found strong spatial associations between temperature and community height, SLA, and 300 
LDMC (Fig. 2a, Extended Data Fig. 2, Table S3) across the 117 survey sites. Both height 301 



and SLA increased with summer temperature, but the temperature-trait relationship for SLA 302 
was much stronger at wet than at dry sites. LDMC was negatively related to temperature, 303 
and more strongly so at wet than at dry sites. Community woodiness decreased with 304 
temperature, but the ratio of evergreen to deciduous woody species increased with 305 
temperature, particularly in dry sites (Extended Data Fig. 3). These spatial temperature-trait 306 
relationships suggest that long-term climate warming should cause pronounced shifts toward 307 
communities of taller plants with more resource-acquisitive leaves (high SLA and low 308 
LDMC), particularly where soil moisture is high. 309 
 310 
Our results reveal a substantial moderating influence of soil moisture on community traits 311 
across spatial temperature gradients2,23. Both leaf area and leaf N decreased with warmer 312 
temperatures in dry sites but increased with warmer temperatures in wet sites (Fig. 2a, 313 
Table S4). Soil moisture was important in explaining spatial variation in all seven traits 314 
investigated here, even when temperature alone was not (e.g., leaf area; Fig. 2a and 315 
Extended Data Figure 2), potentially reflecting physiological constraints related to heat 316 
exchange or frost tolerance when water availability is low24. Thus, future warming-driven 317 
changes in traits and associated ecosystem functions (e.g. decomposability) will likely 318 
depend on current soil moisture conditions at a site23. Furthermore, future changes in water 319 
availability (e.g., via changes in precipitation, snow melt timing, permafrost, and hydrology25) 320 
could cause substantial shifts in these traits and their associated functions irrespective of 321 
warming.  322 
 323 
We found consistent intraspecific temperature-trait relationships for all five continuous traits 324 
(Fig. 2b, Table S5). Intraspecific plant height and leaf area showed strong positive 325 
relationships with summer temperature (i.e., individuals were taller and had larger leaves in 326 
warmer locations) while intraspecific LDMC, leaf N and SLA were related to winter but not 327 
summer temperature (Extended Data Fig. 2). The differing responses of intraspecific trait 328 
variation to summer versus winter temperatures may indicate that size-related traits better 329 
reflect summer growth potential while resource economics traits reflect tolerance of cold-330 
stress. These results, although correlative, suggest that trait variation expressed at the 331 
individual or population level is related to the growing environment and that warming will 332 
likely lead to substantial intraspecific trait change in many traits. Thus, the potential for trait 333 
change over time is underestimated by using species-level trait means alone. Future work is 334 
needed to disentangle the role of plasticity and genetic differentiation in explaining the 335 
observed intraspecific temperature-trait relationships26, as this will also influence the rate of 336 
future trait change27. Trait measurements collected over time and under novel (experimental) 337 



conditions, as yet unavailable, would enable more accurate predictions of future intraspecific 338 
trait change. 339 
 340 
Partitioning the underlying causes of community temperature-trait relationships revealed that 341 
species turnover explained most of the variation in traits across space (Fig. 2c), suggesting 342 
that dispersal and immigration processes will primarily govern the rate of ecosystem 343 
responses to warming. Shifts in species’ abundances and intraspecific trait variation 344 
accounted for a relatively small part of the overall temperature-trait relationship across space 345 
(Fig 2c). Furthermore, the local trait pool in the coldest tundra sites (mean summer 346 
temperature < 3 °C) is constrained relative to the tundra as a whole for many traits 347 
(Extended Data Fig. 4). Together, these results indicate that the magnitude of warming-348 
induced community trait shifts will be limited without the arrival of novel species from warmer 349 
environments. 350 
 351 
Community trait change over time 352 
Plant height was the only trait for which the community weighted mean changed over the 27 353 
years of monitoring; it increased rapidly at nearly every survey site (Fig. 3 a&b, Extended 354 
Data Fig. 3, Table S6). Inter-annual variation in community height was sensitive to summer 355 
temperature (Fig. 3c, Extended Data Fig. 2, Table S7), implying that increases in community 356 
height are responding to warming. However, neither the total rate of temperature change nor 357 
soil moisture predicted the total rate of CWM change in any trait (Extended Data Fig. 5, 358 
Table S8). Incorporating potential intraspecific trait variation (ITV) doubled the average 359 
estimate of plant height change over time (Fig. 3a and 4a, dashed lines). Because spatial 360 
patterns in ITV can be due to both phenotypic plasticity and genetic differences among 361 
populations, this is likely a maximum estimate of the ITV contribution, for example if 362 
intraspecific temperature-trait relationships are due entirely to phenotypic plasticity. The 363 
increase in community height observed here is consistent with previous findings of 364 
increasing vegetation height in response to experimental warming at a subset of these 365 
sites28 and with studies showing increased shrub growth over time11.  366 
 367 
Increasing community height over time was due largely to species turnover (rather than 368 
shifts in abundance of the resident species; Fig 3b) and was driven by the immigration of 369 
taller species rather than the loss of shorter ones (Extended Data Fig. 6, Table S9). This 370 
turnover could reflect the movement of tall species upward in latitude and elevation or from 371 
local species pools in nearby warmer microclimates. The magnitude of temporal change was 372 
comparable to that predicted from the spatial temperature-trait relationship (Fig. 4a, solid 373 
lines), indicating that temporal change in plant height is not currently limited by immigration 374 



rates. The importance of immigration in explaining community height change is surprising 375 
given the relatively short study duration and long lifespan of tundra plants, but is nonetheless 376 
consistent with a previous finding of shifts towards warm-associated species in tundra plant 377 
communities20,29. If the observed rate of trait change continues (e.g., if immigration were 378 
unlimited), community height (excluding potential change due to ITV) could increase by 20-379 
60% by the end of the century, depending on carbon emission, warming and water 380 
availability scenarios (Extended Data Fig. 7).  381 
 382 
Consequences & Implications 383 
Recent (observed) and future (predicted) changes in plant traits, particularly height, are likely 384 
to have important implications for ecosystem functions and feedbacks involving soil 385 
temperature30,31, decomposition5,10, and carbon cycling32, as the potential for soil carbon loss 386 
is particularly great in high-latitude regions4. For example, increasing plant height could 387 
offset warming-driven carbon loss via increased carbon storage due to woody litter 388 
production5 or via reduced decomposition due to lower summer soil temperatures caused by 389 
shading3,30,32 (negative feedbacks). Positive feedbacks are also possible if branches or 390 
leaves above the snowpack reduce albedo11,12 or increase snow accumulation, leading to 391 
warmer winter soil temperatures and increased decomposition rates3,11. The balance of 392 
these feedbacks and thus the net impact of trait change on carbon cycling may depend on 393 
the interaction between warming and changes in snow distribution33 and water availability34, 394 
which remain major unknowns in the tundra biome. 395 
 396 
The lack of an observed temporal trend in SLA and LDMC despite strong temperature-trait 397 
relationships over space highlights the limitations of using space-for-time substitution for 398 
predicting short-term ecological change. This disconnect could reflect the influence of 399 
unmeasured changes in water availability, e.g. due to local-scale variation in the timing of 400 
snowmelt or hydrology, that counter or swamp the effect of static soil moisture estimates. 401 
For example, we would not expect substantial changes in traits demonstrating a spatial 402 
temperature x moisture interaction (LDMC, leaf area, leaf N, and SLA), even in wet sites, if 403 
warming also leads to drier soils. Perhaps tellingly, plant height was the only continuous trait 404 
for which a temperature x moisture interaction was not important, and was predicted to 405 
increase across all areas of the tundra regardless of recent soil moisture trends (Fig. 4c&d). 406 
Spatial-temporal disconnects could also reflect dispersal limitation of potential immigrants 407 
(e.g., with low LDMC and high SLA), or establishment failure due to novel biotic (e.g., 408 
herbivore35) or abiotic (e.g., photoperiod36) conditions other than temperature to which 409 
immigrants are maladapted22,36. Furthermore, community responses to climate warming 410 



could be constrained by soil properties (e.g., organic matter, mineralization) that themselves 411 
respond slowly to warming20. 412 
 413 
The patterns in functional traits described here reveal the extent to which environmental 414 
factors shape biotic communities in the tundra. Strong temperature- and moisture-related 415 
spatial gradients in traits related to competitive ability (e.g., height) and resource capture and 416 
retention (e.g., leaf nitrogen, SLA) reflect tradeoffs in plant ecological strategy9,37 from 417 
benign (warm, wet) to extreme (cold, dry) conditions. Community-level trait syndromes, as 418 
reflected in ordination axes, are also strongly related to both temperature and moisture, 419 
suggesting that environmental drivers structure not only individual traits but also trait 420 
combinations and thus lead to a limited number of successful functional strategies in some 421 
environments (e.g., woody, low-SLA and low-leaf N communities in warm, dry sites; 422 
Extended Data Fig. 8). Thus, warming may lead to a community-level shift toward more 423 
acquisitive plant strategies37 in wet tundra sites, but toward more conservative strategies in 424 
drier sites as moisture becomes more limiting.  425 
 426 
Earth system models are increasingly moving to incorporate trait-environment relationships, 427 
as this can substantially improve estimates of ecosystem change38-40. Our results inform 428 
these projections of future tundra functional change38 by explicitly quantifying the link 429 
between temperature, moisture, and key functional traits across the biome. In particular, our 430 
study highlights the importance of accounting for future changes in water availability, as this 431 
will likely influence both the magnitude and direction of change for many traits. In addition, 432 
we demonstrate that spatial trait-environment relationships are driven largely by species 433 
turnover, suggesting that modeling efforts must account for rates of species immigration 434 
when predicting the speed of future functional shifts. The failure of many traits (e.g. specific 435 
leaf area) to match expected rates of change suggests that space-for-time substitution alone 436 
may inaccurately represent near-term ecosystem change. Nevertheless, the ubiquitous 437 
increase in community plant height reveals that functional change is already occurring in 438 
tundra ecosystems. 439 
  440 
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Figure 1. Geographic distribution of trait and vegetation survey data and climatic 537 
change over the study period. a. Map of all 56,048 tundra trait records and 117 vegetation 538 
survey sites. b-c. Climatic change across the period of monitoring at the 117 vegetation 539 
survey sites, represented as mean winter (coldest quarter) and summer (warmest quarter) 540 
temperature (b) and frost day frequency (c). The size of the colored points on the map 541 
indicates the relative quantity of trait measurements (larger circles = more measurements of 542 
that trait at a given location) and the color indicates which trait was measured. The black 543 
stars indicate the vegetation survey sites used in the community trait analyses (most stars 544 
represent multiple sites). Trait data were included for all species that occur in at least one 545 
tundra vegetation survey site; thus, while not all species are unique to the tundra, all do 546 
occur in the tundra. Temperature change and frost frequency change were estimated for the 547 
interval over which sampling was conducted at each site plus the preceding four years in 548 
order to best reflect the time window over which tundra plant communities respond to 549 
temperature change20,29. 550 
 551 
Figure 2. Strong spatial relationships in traits across temperature and soil moisture 552 
gradients are primarily explained by species turnover. a, Community-level (CWM) 553 
variation in functional traits across space (N = 1520 plots within 117 sites within 72 regions) 554 
as related to mean summer (warmest quarter) temperature and soil moisture, and b, 555 
intraspecific variation (ITV) across space as related to summer temperature (note the log 556 
scale for height and leaf area). c, Standardized effect sizes were estimated for all 557 
temperature-trait relationships both across communities (CWM; solid bars) and within 558 
species (ITV; striped bars). Effect sizes for CWM temperature-trait relationships were further 559 
partitioned into the proportion of the effect driven solely by species turnover (light bars) and 560 
abundance shifts (dark bars) over space. Dashed lines indicate the estimated total 561 
temperature-trait relationship over space if intraspecific trait variability is also accounted for 562 
(CWM: ITV). The contribution of ITV is estimated from the spatial temperature-trait 563 
relationships modeled in (b). Soil moisture in (a) was modeled as continuous but is shown 564 
predicted only at low and high values to improve visualization. Transparent ribbons in (a) 565 
and (b) indicate 95% credible intervals for model mean predictions. Grey lines in (b) 566 
represent intraspecific temperature-trait relationships for each species (height: N = 80 567 
species, LDMC: N = 43, leaf area: N = 85, leaf N: N = 85, SLA: N = 108; N of observations 568 
per trait shown in Table S1). In all panels, asterisks indicate that the 95% credible interval on 569 
the slope of the temperature-trait relationship did not overlap zero. In panel (a), two asterisks 570 
indicate that the temperature x soil moisture interaction term did not overlap zero. Winter 571 
temperature – trait relationships are shown in Extended Data Fig. 2. Community woodiness 572 
and evergreenness are shown in Extended Data Fig. 3. 573 



 574 
Figure 3. A tundra-wide increase in community height over time is related to warming. 575 
a, Observed community trait change per year (transformed units). Solid lines indicate the 576 
distribution of community-weighted mean (CWM) model slopes (trait change per site) while 577 
dashed lines indicate the community-weighted mean plus potential intraspecific trait variation 578 
modelled from spatial temperature-trait relationships (CWM+ITV). Circles (CWM), triangles 579 
(CWM+ITV) and error bars indicate the mean and 95% credible interval for the overall rate of 580 
trait change across all sites (N = 4575 plot-years within 117 sites within 38 regions). The 581 
vertical black dashed line indicates 0 (no change over time). b, Standardized effect sizes for 582 
CWM change over time were further partitioned into the proportion of the effect driven solely 583 
by species turnover (light bars) or shifts in abundance of resident species (dark bars) over 584 
time. Dashed lines indicate the estimated total trait change over time if predicted 585 
intraspecific trait variability is also included (CWM+ITV). Stars indicate that the 95% CI on 586 
the mean hyperparameter for CWM trait change over time did not overlap zero. c, 587 
Temperature sensitivity of each trait as related to summer temperature (i.e., correspondence 588 
between interannual variation in CWM trait values and interannual variation in temperature). 589 
Temperatures associated with each survey year were estimated as five-year means 590 
(temperature of the survey year and four preceding years) because this interval has been 591 
shown to be most relevant to vegetation change in tundra20 and alpine29 plant communities. 592 
Circles represent the mean temperature sensitivity across all 117 sites, error bars are 95% 593 
credible intervals on the mean. Changes in community woodiness and evergreenness are 594 
shown in Extended Data Fig. 3. 595 
 596 
Figure 4. Community height increases in line with space-for-time predictions but 597 
other traits lag. a, Observed community (CWM) trait change over time (colored lines) 598 
across all 117 sites vs. expected CWM change over the duration of vegetation monitoring 599 
(1989-2015) based on the spatial temperature-trait (CWM) relationship and the average rate 600 
of recent summer warming across all sites (solid black lines). Colored dashed lines indicate 601 
the estimated total change over time if predicted intraspecific trait variability is also included 602 
(CWM+ITV). Values on the y-axis represent the magnitude of change relative to 0 (i.e., trait 603 
anomaly), with 0 representing the trait value at t0. b-c, Total recent temperature change (b) 604 
and soil moisture change (c) across the Arctic tundra (1979-2016). Temperature change 605 
estimates are derived from CRU gridded temperature data, soil moisture change estimates 606 
are derived from downscaled ERA-Interim soil moisture data. Circles in (b) represent the 607 
sensitivity (cm per °C) of CWM plant height to summer temperature at each site (see Fig. 608 
3c). Areas of high temperature sensitivity are expected to experience the greatest increases 609 
in height with warming. d-e, Spatial trait-temperature-moisture relationships (Fig. 2a) were 610 



used to predict total changes in height (d) and leaf N (e) over the entire 1979-2016 period 611 
based on concurrent changes in temperature and soil moisture. Note that (d) and (e) reflect 612 
the magnitude of expected change between 1979 and 2016, not observed trait change. See 613 
methods for details of temperature change and soil moisture change estimates. The outline 614 
of Arctic areas is based on the Circumpolar Arctic Vegetation Map 615 
(http://www.geobotany.uaf.edu/cavm). 616 
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METHODS 702 
 703 
Below we describe the data, workflow (Extended Data Fig. 1b) and detailed methods used to 704 
conduct all analyses.  705 
 706 
COMMUNITY COMPOSITION DATA 707 
Community composition data used for calculating community-weighted trait means were 708 
compiled from a previous synthesis of tundra vegetation resurveys2 (including many 709 
International Tundra Experiment (ITEX) sites) and expanded with additional sites (e.g., 710 
Gavia Pass in the Italian Alps and three sites in Sweden) and years (e.g., 2015 survey data 711 
added for Iceland sites, QHI, and Alexandra Fiord; Table S2). We included only sites for 712 
which community composition data were roughly equivalent to percent cover (i.e., excluding 713 
estimates approximating biomass), for a total of 117 sites (defined as plots in a single 714 
contiguous vegetation type) within 38 regions (defined as a CRU41 grid cell). Plot-level 715 
surveys of species composition and cover were conducted at each of these sites between 716 
1989 and 2015 (see2 for more details of data collection and processing). On average, there 717 
were 15.2 plots per site. Repeat surveys were conducted over a minimum duration of 5 and 718 
up to 21 years between 1989 and 2015 (mean duration = 13.6 years), for a total of 1,781 719 
unique plots and 5,507 plot-year combinations. Plots were either permanent (i.e., staked; 720 
62% of sites) or semi-permanent (38%), such that the approximate but not exact location 721 
was resurveyed. The vegetation monitoring sites were located in tree-less Arctic or alpine 722 
tundra and ranged in latitude from 40° (Colorado Rockies) to 80° (Ellesmere Island, Canada) 723 
and were circumpolar in distribution (Fig. 1a, Table S2). Our analyses only include vascular 724 
plants because there was insufficient trait data for non-vascular species. Changes in 725 
bryophytes and other cryptogams are an important part of the trait and function change in 726 
tundra ecosystems42,43, thus the incorporation of non-vascular plants and their traits is a 727 
future research priority. 728 
 729 
Temperature extraction for community composition observations 730 
We extracted summer (warmest quarter) and winter (coldest quarter) temperature estimates 731 
for each of the vegetation survey sites from both the WorldClim44 (for long-term averages; 732 
http://www.worldclim.org/) and CRU41 (for temporal trends; http://www.cru.uea.ac.uk/) 733 
gridded climate datasets. WorldClim temperatures were further corrected for elevation 734 
(based on the difference between the recorded elevation of a site and the mean elevation of 735 
the WorldClim grid cell) according to a correction factor of -0.005 °C per meter increase in 736 
elevation. This correction factor was calculated by extracting the mean temperature and 737 
elevation (WorldClim 30s resolution maps) of all cells falling in a 2.5 km radius buffer around 738 



our sites and fitting a linear mixed model (with site as a random effect) to estimate the rate of 739 
temperature change with elevation.  740 
 741 
The average long-term (1960-present) temperature trend across all sites was 0.26 (range -742 
0.06 to 0.49) and 0.43 (range -0.15 to 1.32) °C/decade for summer and winter temperature, 743 
respectively. 744 
 745 
Soil moisture for community composition observations 746 
A categorical measure of soil moisture at each site was provided by every site PI according 747 
to the methods described in Elmendorf et al. 2012 and Myers-Smith et al. 2015 (2,45). Soil 748 
moisture was considered to be 1) dry when during the warmest month of the year the top 2 749 
cm of the soil was dry to the touch, 2) moist when soils were moist year round, but standing 750 
water was not present, and 3) wet when standing water was present during the warmest 751 
month of the year.  752 
 753 
Soil moisture change for maps of environmental and trait change (Fig. 4b-e) 754 
We used high-resolution soil moisture observations from ESA CCI SM v04.2. To calculate 755 
the mean distribution of soil moisture, we averaged the observations from 1979-2016. 756 
Because the ESA CCI SM temporal coverage is poor for our sites, temporal data were 757 
instead taken from ERA-Interim (Volumetric soil water layer 1) for the same time period. We 758 
downscaled the ERA-Interim data to the 0.05° resolution of ESA CCI SM v04.2 using 759 
climatologically aided interpolation (delta change method)46. The change in soil water 760 
content was then calculated separately for each grid cell using linear regression with month 761 
as a predictor variable. To classify the soil moisture data into three categories (wet, mesic, 762 
dry) to match the community composition dataset, we used a quantile approach on the mean 763 
soil moisture within the extent of the Arctic. We assigned the lowest quantile to dry and the 764 
highest to wet conditions. For the trends in soil moisture between 1979-2016 we calculated 765 
the percentage in change in relation to the mean first, and then calculated the change based 766 
on the categorical data (e.g. 5% change from category 1 (dry) to category 2 (mesic)).  767 
 768 
Changes in water availability for analysis 769 
Although the strong effect of soil moisture on spatial temperature-trait relationships suggests 770 
that change in water availability over time will play an important role in mediating trait 771 
change, we did not use the CRU estimates of precipitation change over time because of 772 
issues with precipitation records at high latitudes and the inability of gridded datasets to 773 
capture localized precipitation patterns (e.g., 47,48). The CRU precipitation trends at our sites 774 
included many data gaps filled by long-term mean values, especially at the high-latitude 775 



sites45. As a purely exploratory analysis, we used the downscaled ERA-Interim data 776 
described above to investigate whether trait change is related to summer soil moisture 777 
change (June, July, and August; Extended Data Fig. 5b). However, we caution that soil 778 
moisture change in our tundra sites is primarily controlled by snow melt timing, soil drainage, 779 
the permafrost table and local hydrology25, and as such precipitation records and coarse-780 
grain remotely sensed soil moisture change data are unlikely to accurately represent local 781 
changes in soil water availability. For this same reason we did not use the ERA-Interim data 782 
to explore spatial relationships between temperature, moisture and community traits, as the 783 
categorical soil moisture data (described above) were collected specifically within each 784 
community composition site and are therefore a more accurate representation of long-term 785 
mean soil moisture conditions in that specific location. 786 
 787 
TRAIT DATA 788 
Continuous trait data (adult plant height, leaf area (average one-sided area of a single leaf), 789 
specific leaf area (leaf area per unit of leaf dry mass; SLA), leaf nitrogen content (per unit of 790 
leaf dry mass; leaf N), and leaf dry matter content (leaf dry mass per unit of leaf fresh mass; 791 
LDMC); Fig. 1a & Extended Data Fig. 1a, Table S1) were extracted from the TRY49 3.0 792 
database (available at www.try-db.org). We also ran a field & data campaign in 2014-15 to 793 
collect additional in-situ tundra trait data (the “Tundra Trait Team” (TTT) dataset50) to 794 
supplement existing TRY records. All species names from the vegetation monitoring sites, 795 
TRY and TTT were matched to accepted names in The Plant List using the R package 796 
Taxonstand51 (v. 1.8) before merging the datasets. Community-level traits (woodiness and 797 
evergreenness) were derived from functional group classifications for each species2. 798 
Woodiness is estimated as the proportion (abundance) of woody species in the plot, while 799 
evergreenness is the proportion of evergreen woody species abundance out of all woody 800 
species (evergreen plus deciduous) in a plot. Because some sites did not contain any woody 801 
species (and thus the proportion of evergreen woody species could not be calculated), this 802 
trait is estimated only for 98 of the 117 total sites.  803 
 804 
Data cleaning - TRY 805 
TRY trait data were subjected to a multi-step cleaning process. First, all values that did not 806 
represent individual measurements or approximate species means were excluded. When a 807 
dataset within TRY contained only coarse plant height estimates (e.g., estimated to the 808 
nearest foot), we removed these values unless no other estimate of height for that species 809 
was available. We then identified overlapping datasets within TRY and removed duplicate 810 
observations whenever possible. The following datasets were identified as having partially 811 
overlapping observations: GLOPNET – Global Plant Trait Network Database, The LEDA 812 



Traitbase, Abisko & Sheffield Database, Tundra Plant Traits Database, and KEW Seed 813 
Information Database (SID). 814 
 815 
We then removed duplicates within each TRY dataset (e.g., if a value is listed once as 816 
“mean” and again as “best estimate”) by first calculating the ratio of duplicated values within 817 
each dataset, and then removing duplicates from datasets with more than 30% duplicated 818 
values. This cutoff was determined by manual evaluation of datasets at a range of 819 
thresholds. Datasets with fewer than 30% duplicated values were not cleaned in this way as 820 
any internally duplicate values were assumed to be true duplicates (i.e., two different 821 
individuals were measured and happened to have the same measurement value). 822 
 823 
We also removed all species mean observations from the “Niwot Alpine Plant Traits” 824 
database and replaced it with the original individual observations as provided by M.J. 825 
Spasojevic. 826 
 827 
Data cleaning – TRY & TTT combined 828 
Both datasets were checked for improbable values, with the goal of excluding likely errors or 829 
measurements with incorrect units but without excluding true extreme values. We followed a 830 
series of data-cleaning steps, in each case identifying whether a given observation (x) was 831 
likely to be erroneous (i.e. “error risk”) by calculating the difference between x and the mean 832 
(excluding x) of the taxon and then dividing by the standard deviation of the taxon. 833 
 834 
We employed a hierarchical data cleaning method, because the standard deviation of a trait 835 
value is related to the mean and sample size. First, we checked individual records against 836 
the entire distribution of observations of that trait and removed any records with an error risk 837 
greater than 8 (i.e., a value more than 8 standard deviations away from the trait mean). For 838 
species that occurred in four or more unique datasets with TRY or TTT (i.e., different data 839 
contributors), we estimated a species mean per dataset and removed observations for which 840 
the species mean error risk was greater than 3 (i.e., the species mean of that dataset was 841 
more than 3 SD’s away from the species mean across all datasets). For species that 842 
occurred in fewer than 4 unique datasets, we estimated a genus mean per dataset and 843 
removed observations in datasets for which the error risk based on the genus mean was 844 
greater than 3.5. Finally, we compared individual records directly to the distribution of values 845 
for that species. For species with more than 4 records, we excluded values above an error 846 
risk Y, where Y was dependent on the number of records of that species and ranged from an 847 
error risk of 2.25 for species with fewer than 10 records to an error risk of 4 for species with 848 
more than 30 records. For species with four or fewer records, we manually checked trait 849 



values and excluded only those that were obviously erroneous, based on our expert 850 
knowledge of these species. 851 
 852 
This procedure was performed on the complete tundra trait database – including species 853 
and traits not presented here. In total 2,056 observations (1.6%) were removed. In all cases, 854 
we visually checked the excluded values against the distribution of all observations for each 855 
species to ensure that our trait cleaning protocol was reasonable. 856 
 857 
Trait data were distributed across latitudes within the tundra biome (Extended Data Fig. 1a). 858 
All trait observations with latitude/longitude information were mapped and checked for 859 
implausible values (e.g., falling in the ocean). These values were corrected from the original 860 
publications or by contacting the data contributor whenever possible. 861 
 862 
Final trait database 863 
After cleaning out duplicates and outliers as described above, we retained 56,048 unique 864 
trait observations (of which 18,613 are contained in TRY and 37,435 were newly contributed 865 
by the Tundra Trait Team50 field campaign) across the five traits of interest. Of the 447 866 
identified species in the ITEX dataset, 386 (86%) had trait data available from TRY or TTT 867 
for at least one trait (range 52-100% per site). Those species without trait data generally 868 
represent rare or uncommon species unique to each site; on average, trait data were 869 
available for 97% of total plant cover across all sites (range 39-100% per site; Table S1). 870 
 871 
Temperature extraction for trait observations 872 
WorldClim climate variables were extracted for all trait observations with latitude/longitude 873 
values recorded (53,123 records in total, of which 12,380 were from TRY and 33,621 from 874 
TTT). Because most observations did not include information about elevation, temperature 875 
estimates for individual trait observations were not corrected for elevation and thus represent 876 
the temperature at the mean elevation of the WorldClim grid cell. 877 
 878 
ANALYSES 879 
 880 
Terminology 881 
Here we provide a brief description of acronyms and symbols used in the methods and 882 
model equations. 883 
 884 
ITV – intraspecific trait variation: variation in trait values within the same species 885 



CWM – community weighted trait mean: the mean trait value of all species in a plot, 886 
weighted by their abundance in the plot 887 
CWM + ITV – community weighted trait mean, adjusted with the estimated contribution of 888 
intraspecific trait variation based on the intraspecific temperature-trait relationship of each 889 
species 890 
α – alpha, used to designate lower-level model intercepts 891 
β – beta, used to designate lower-level model slopes 892 
γ – gamma, used to designate the model parameters of interest (e.g. the temperature-trait 893 
relationship) 894 
 895 
Models 896 
All analyses were conducted in JAGS and/or Stan through R (v. 3.3.3) using packages 897 
rjags52 (v. 4.6) and rstan53 (v. 2.14.1). In all cases, models were run until convergence was 898 
reached, as assessed both visually in traceplots and by ensuring that all Gelman-Rubin 899 
convergence diagnostic (Rhat54) values were less than 1.1. 900 
 901 
A major limitation of the species mean trait approach often employed in analyses of 902 
environment-trait relationships has been the failure to account for intraspecific trait variation 903 
(ITV) that could be as or more important than interspecific variation55,56. We addressed this 904 
issue by employing a hierarchical analysis that incorporates both within-species and 905 
community-level trait variation across climate gradients to estimate trait change over space 906 
and time at the biome scale. We used a Bayesian approach that accounts for the 907 
hierarchical spatial (plots within sites within regions) and taxonomic (intra- and inter-specific 908 
variation) structure of the data as well as uncertainty in estimated parameters introduced 909 
through absences in trait records for some species, and taxa that were identified to genus or 910 
functional group (rather than species) in vegetation surveys. 911 
 912 
Intraspecific trait variation 913 
We subsetted the trait dataset to just those species for which traits had been measured in at 914 
least four unique locations spanning a temperature range of at least 10% of the entire 915 
temperature range (2.6°C and 5.0 °C for summer and winter temperature, respectively), and 916 
for which the latitude and longitude of the measured individual or group of individuals was 917 
recorded. The number of species meeting these criteria varied by trait and temperature 918 
variable: 108-109 for SLA, 80-86 for plant height, 74-72 for leaf nitrogen, 85-76 for leaf area, 919 
and 43-52 for LDMC, for summer and winter temperature, respectively. These species 920 
counts correspond to 53-73% of community abundance. The relationship between each trait 921 
and temperature (Fig. 2b) was estimated from a Bayesian hierarchical model, with 922 



temperature as the predictor variable and species (s) and dataset-by-location (d) modeled 923 
as random effects: 924 
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 926 
where ݅ represents each trait observation and Α and Β are the intercept and slope 927 
hyperparameters, respectively. Because LDMC represents a ratio and is thus bound 928 
between 0 and 1, we used a beta error distribution for this trait. Temperature values were 929 
mean-centered within each species. We used non-informative priors for all coefficients. 930 
 931 
We further explored whether the strength of intraspecific temperature-height relationships 932 
varied by functional group. We find that all functional groups (including dwarf shrubs, which 933 
are genetically limited in their ability to grow upright) show similar temperature-trait 934 
relationships (Extended Data Fig. 9a). These results suggest that the intraspecific 935 
temperature-trait relationships may not only be a response of individual growth changes, and 936 
are not restricted to particular functional groups with greater capacity for vertical growth 937 
(e.g., tall shrubs and graminoids versus dwarf shrubs and certain forb species). 938 
 939 
Calculation of community weighted mean (CWM) values 940 
We calculated the community-weighted trait mean (i.e., the mean trait value of all species in 941 
a plot, weighted by the abundance of each species), for all plots within a site. We employed 942 
a Bayesian approach to calculate trait means for every species (s) using an intercept-only 943 
model (such that the intercept per species (αs) is equivalent to the mean trait value of the 944 
species) and variation per species (σs) with a lognormal error distribution.  945 
,௦ߙ)݈ܽ݉ݎ݋ܰ݃݋݈	~	௜ݏܾ݋ݐ݅ܽݎݐ 946   (௦ߪ
 947 
Because LDMC represents a ratio and is thus bound between 0 and 1, we used a beta error 948 
distribution instead of lognormal for this trait. When a species was measured multiple times 949 
in several different locations, we additionally included a random effect of dataset-by-location 950 
(d) to reduce the influence of a single dataset with many observations at one site when 951 
calculating the mean per species: 952 
 953 
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 954 
We used non-informative priors for all species intercept parameters for which there were 955 
four or more unique trait observations, so that the species-level intercept and variance 956 
around the intercept per species were estimated from the data. In order to avoid removing 957 
species with little or no trait data from the analyses, we additionally employed a “gap-filling” 958 
approach that allowed us to estimate a species’ trait mean while accounting for uncertainty 959 
in the estimation of this mean. For species with fewer than four but more than one trait 960 
observation, we used a normal prior with the mean equal to the mean of the observation(s) 961 
and variance estimated based on the mean mean-variance ratio across all species. In other 962 
words, we calculated the ratio of mean trait values to the standard deviation of those trait 963 
values per species for all species with greater than four observations, then took the mean of 964 
these ratios across all species and multiplied this number by the mean of species X (where 965 
X is a species with 1-4 observations) to get the prior for σ. For species with no observations 966 
(see Table S1), we used a prior mean equal to the mean of all species in the same genus 967 
and a prior variance estimated based on the mean mean-variance ratio of all species in that 968 
genus or 1.5 times the mean, whichever was lower. If there were no other species in the 969 
same genus, then we used a prior mean equal to the mean of all other species in the family 970 
and a prior variance estimated based on the mean mean-variance ratio of all species in the 971 
family or 1.5 times the mean, whichever was lower.  972 
 973 
Calculation of CWM values: incorporating uncertainty in species traits 974 
In order to include uncertainty about species trait means (due to intraspecific trait variation, 975 
missing trait information for some species, or when taxa were identified to genus or 976 
functional group rather than species) in subsequent analyses, we estimated community-level 977 
trait values per plot by sampling from the posterior distribution (mean +/- SD) of each 978 
species intercept estimate and multiplying this distribution by the relative abundance of each 979 
species in the plot to get a community-weighted mean (CWM) distribution per plot (݌): 980 
,௣݊ܽ݁݉ܯܹܥ)݈ܽ݉ݎ݋ܰ 981   (௣݀ݏܯܹܥ
 982 
This approach generates a distribution of CWM values per plot that propagates the 983 
uncertainty in each species’ trait mean estimate into the plot-level (CWM) estimate. By using 984 
a Bayesian approach, we are able to carry through uncertainty in trait mean estimates to all 985 



subsequent analyses and reduce the potential for biased or deceptively precise estimates 986 
due to missing trait observations.  987 
 988 
Calculation of CWM values: partitioning turnover and estimating contribution of ITV 989 
To assess the degree to which the spatial temperature-trait relationships are caused by 990 
species turnover versus shifts in abundance among sites, we repeated each analysis using 991 
the non-weighted community mean (all species weighted equally) of each plot. Temperature-992 
trait relationships estimated with non-weighted community means are due solely to species 993 
turnover across sites. Finally, we assessed the potential contribution of intraspecific trait 994 
variation (ITV) to the community-level temperature-trait relationship by using the modeled 995 
intraspecific temperature-trait relationship (described above) to predict trait “anomaly” values 996 
for each species at each site based on the temperature of that site in a given year relative to 997 
its long-term average. 998 
 999 
An intraspecific temperature-trait relationship could not be estimated for every species due 1000 
to an insufficient number of observations for some species. Therefore, we used the mean 1001 
intraspecific temperature-trait slope across all species to predict trait anomalies for species 1002 
without intraspecific temperature-trait relationships. These site- and year-specific species 1003 
trait estimates were then used to calculate “ITV-adjusted” community-weighted means 1004 
(CWM+ITV) for each plot in each year measured, and modeled as for CWM alone. As these 1005 
“adjusted” values are estimated relative to each species’ mean value, the spatial 1006 
temperature-trait relationship that includes this adjustment does not remove any bias in the 1007 
underlying species mean data. For example, if southern tundra species tend to be measured 1008 
at the southern edge of their range while northern tundra species tend to be measured at the 1009 
northern edge of their range, the overall spatial temperature-trait relationship could appear 1010 
stronger than it really is for species with temperature-related intraspecific variation. This is a 1011 
limitation of any species-mean approach.  1012 
 1013 
Estimates of temporal CWM+ITV temperature-trait relationships are not prone to this same 1014 
limitation as they represent relative change, but should also be interpreted with caution as 1015 
intraspecific temperature-trait relationships may be due to genetic differences among 1016 
populations rather than plasticity, thus suggesting that trait change would not occur 1017 
immediately with warming. We therefore caution that the CWM+ITV analyses presented 1018 
here represent estimates of the potential contribution of ITV to overall CWM temperature-1019 
trait relationships over space and time, but should not be interpreted as measured 1020 
responses. 1021 
 1022 



In sum, we incorporate intraspecific variation into our analyses in three ways. First, by using 1023 
the posterior distribution (rather than a single mean value) of species trait mean estimates in 1024 
our calculations of CWM values per plot, so that information about the amount of variation 1025 
within species is incorporated into all the analyses in our study. Second, by explicitly 1026 
estimating intraspecific temperature-trait relationships based on the spatial variation in 1027 
individual trait observations. And finally, by using these modeled temperature-trait 1028 
relationships to inform estimates of the potential contribution of ITV to overall (CWM+ITV) 1029 
temperature-trait relationships over space and time. 1030 
 1031 
Spatial community trait models (Fig. 2 a&c) 1032 
To investigate spatial relationships in plant traits with summer and winter temperature and 1033 
soil moisture we used a Bayesian hierarchical modeling approach in which soil moisture and 1034 
soil moisture x temperature vary at the site level while temperature varies by WorldClim 1035 
region (unique WorldClim grid x elevation groups). In total, there were 117 sites (s) nested 1036 
within 73 WorldClim regions (r). We used only the first year of survey data at each site to 1037 
estimate spatial relationships in community traits. 1038 
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 1040 
Where ݊ܽ݁݉ܯܹܥ௣ is the mean of the posterior distribution of the community-weighted 1041 

mean (CWM) estimate per plot (p) and ݀ݏܯܹܥ௣ is the standard deviation of the posterior 1042 

distribution of the CWM estimate per plot, as described in the “Calculation of CWM values: 1043 
incorporating uncertainty in species traits” section. See supplementary information for 1044 
complete STAN code. 1045 
 1046 
As woodiness and evergreenness represent proportional data (bounded between 0 and 1, 1047 
inclusive), we used a beta-Bernoulli mixture model of the same structure as above to 1048 
estimate trait-temperature-moisture relationships for these traits (Extended Data Fig. 3 a&b). 1049 
The discrete and continuous components of the data were modeled separately, with mixing 1050 
occurring at the site- and region-level estimates (αs and αr).  1051 
 1052 
Because Arctic and alpine tundra sites might differ in their trait-environment relationships 1053 
due to environmental differences in e.g. soil drainage, we also performed a version of the 1054 
spatial community trait analyses in which the elevation of each site is visually indicated (not 1055 



modeled; Extended Data Fig. 9b). We did not attempt to separately analyze trait-1056 
environment relationships for Arctic and alpine sites due to the ambiguity in defining this cut-1057 
off (i.e., many sites can be categorized as both Arctic and alpine, particularly in Scandinavia 1058 
and Iceland) and because of the small number of southern, high-alpine sites (European Alps 1059 
and Colorado Rockies). 1060 
 1061 
For estimation of the overall temperature-trait relationship, we used a model structure similar 1062 
to that above but with only temperature as a predictor (i.e., without soil moisture). This model 1063 
was used for both community-weighted mean (CWM) and non-weighted mean estimates in 1064 
order to determine the degree to which temperature-trait relationships over space are due to 1065 
species turnover alone (non-weighted mean) and for CWM+ITV plot-level estimates to 1066 
determine the likely additional contribution of intraspecific trait variation to the overall 1067 
temperature-trait relationship, as described above. 1068 
 1069 
Standardized effect sizes for CWM temperature-trait relationships (Fig. 2c) were obtained by 1070 
dividing the slope of the temperature-trait relationship by the standard deviation of the CWM 1071 
model residuals. Effect sizes for ITV, turnover only, and CWM: ITV were estimated relative 1072 
to the CWM value for that same trait based on the slope values of each temperature-trait 1073 
relationship. 1074 
 1075 
Trait change over time (Fig. 3 a&b) 1076 
Change over time was modeled at the CRU grid cell (region) level (r), with site (s) as a 1077 
random effect when there was more than one site per region (to account for non-1078 
independence of sites within a region) and plot (p) as a random effect for those sites with 1079 
permanent (repeating) plots (to account for repeated measures on the same plot over time). 1080 
We did not account for temporal autocorrelation as most plots were not measured annually 1081 
(average survey interval = 7.2 years) and did not have more than 3 observations over the 1082 
study period (average number of survey years per plot = 3.1). Year (ݕ) was centered within 1083 
each region. 1084 
௣ߙ)݈ܽ݉ݎ݋ܰ	~	௣,௬݊ܽ݁݉ܯܹܥ 1085  + ௦ߙ + ,	௥,௬ߙ  (௣,௬݀ݏܯܹܥ
 1086 
Where ݊ܽ݁݉ܯܹܥ௣ is the mean of the posterior distribution of the community-weighted 1087 

mean (CWM) estimate per plot (p) and ݀ݏܯܹܥ௣ is the standard deviation of the posterior 1088 

distribution of the CWM estimate per plot, as described in the “Calculation of CWM values: 1089 
incorporating uncertainty in species traits” section. For non-permanent plots and for sites 1090 



that were the only site within a region, αp or αs, respectively, were set to 0. Region-level 1091 
slopes were then used to fit an average trend of community trait values over time: 1092 
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 1094 
where Α and Β are the intercept and slope hyperparameters, respectively. See 1095 
supplementary information for complete STAN code. This model was used for both 1096 
community-weighted mean (CWM) and non-weighted mean plot-level estimates in order to 1097 
determine the degree to which temporal trait change is due to species turnover alone (non-1098 
weighted mean) and for CWM+ITV plot-level estimates to determine the potential additional 1099 
contribution of intraspecific trait variation to overall trait change. 1100 
 1101 
Standardized effect sizes for CWM change over time (Fig. 3b) were obtained by dividing the 1102 
slope of overall trait change over time (mean hyperparameter across 117 sites) by the 1103 
standard deviation of the slope estimates per site. Effect sizes for turnover-only and 1104 
CWM+ITV change are estimated relative to the CWM change value for that trait based on 1105 
the slope values of each. 1106 
 1107 
To estimate change in the proportion of woody and evergreen species over time (CWM 1108 
change only; Extended Data Fig. 3 c&d) we used a beta-Bernoulli mixture model of the 1109 
same form described above. The discrete and continuous components of the data were 1110 
modeled separately, with mixing occurring at the region x year effect (αr,y). We additionally 1111 
assessed whether the rate of observed trait change over time was related to the duration of 1112 
vegetation monitoring at each site. There was no influence of monitoring duration for any 1113 
trait (not shown). 1114 
 1115 
Temperature sensitivity (Fig. 3c) 1116 
Temperature sensitivity was modeled as the variation in CWM trait values with variation in 1117 
the five-year mean temperature (i.e., the mean temperature of the survey year and the four 1118 
preceding years). A four-year lag was chosen because this interval has been shown to best 1119 
explain vegetation change in tundra20 and alpine29 plant communities. The model specifics 1120 
are exactly as shown above for “Trait change over time”, but with temperature in the place of 1121 
year. Temperatures were centered within each region.  1122 
 1123 



Observed vs. expected trait change (Fig. 4a) 1124 
We first calculated the mean rate of temperature change across the 38 regions in our study, 1125 
and then estimated the expected degree of change in each trait over the same period based 1126 
on this temperature change and the spatial relationship between temperature and CWM trait 1127 
values (described in the “Spatial community trait models” section). We then compared this 1128 
expected trait change to actual trait change over time (described in the “Trait change over 1129 
time” section). To create Fig. 4a we used the overall predicted mean value of each trait in 1130 
the first year of survey (1989) as an intercept, and then used the expected and observed 1131 
rates of trait change (+/- uncertainty) to predict community trait values in each year 1132 
thereafter. We subtracted the intercept from all predicted values in order to show trait 1133 
change as an anomaly (difference from 0). The difference between the expected (black) and 1134 
observed (colored) lines in Fig. 4a represents a deviation from expected. To calculate total 1135 
trait change including the estimated contribution of intraspecific change (colored dashed 1136 
lines), we followed the same procedure as described for “observed” trait change but where 1137 
this observed change was based on plot-level CWM+ITV estimates that varied by year 1138 
based on the temperature in that year and the temperature-trait relationship per species 1139 
(described in the “Calculation of CWM values: partitioning turnover and estimating 1140 
contribution of ITV” section). 1141 
 1142 
Trait change vs. temperature change and soil moisture (Extended Data Fig. 5) 1143 
To determine whether the rate of trait change can be explained by the rate of temperature 1144 
change at a site, the (static) level of soil moisture of a site, or their interaction, we modeled 1145 
the rate of trait change as described above (“Trait change over time”) and compared it to the 1146 
rate of temperature change over the same time interval (with a lag of four years) and soil 1147 
moisture: 1148 
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where βr is the rate of trait change per region (Extended Data Fig. 5a). When sites within a 1151 
region were measured over different intervals or contained different soil moisture estimates 1152 
they were modeled separately in order to match with temperature change estimates over the 1153 
same interval and soil moisture estimates, which vary at the site level. 1154 
 1155 
We also conducted this analysis using estimates of soil moisture change (with a lag of four 1156 
years) from downscaled ERA-Interim (volumetric soil water layer 1). This model took the 1157 
same form as above, but with moisture change in place of static soil moisture estimates 1158 
(Extended Data Fig. 5b). Trait change was modeled at the site (rather than region) level 1159 



because estimates of soil moisture change vary at the site level. Because ERA-Interim data 1160 
were not available for every site, this analysis was conducted with a total of 101 rather than 1161 
117 sites. We note that the results of this analysis should be interpreted cautiously, as local 1162 
changes in soil moisture may not be well represented by coarse-scale remotely sensed data, 1163 
as described previously. 1164 
 1165 
Species gains and losses as a function of traits (Extended Data Fig. 6) 1166 
We estimated species gains and losses at the site (rather than plot) level to reduce the effect 1167 
of random fluctuations in species presences/absences due to observer error. Thus, sites 1168 
with repeating and non-repeating plots were treated the same. A “gain” was defined as a 1169 
species that did not occur in a site in the first survey year but did in the last survey year, 1170 
while a “loss” was the reverse. We then modeled the probability of gain or loss separately as 1171 
a function of the mean trait value of each species. For example, for “gains,” all newly 1172 
observed species received a response type of 1 while all other species in the site received a 1173 
response type of 0: 1174 
௦ߙ)݈݈݅ݑ݋݊ݎ݁ܤ	~	௜݁ݏ݊݋݌ݏ݁ݎ 1175  + ௥ߙ + ௥ߚ ∙ ,ܣ)݈ܽ݉ݎ݋ܰ	~	௥ߙ (௜ݐ݅ܽݎݐ ,ܤ)݈ܽ݉ݎ݋ܰ	~	௥ߚ (ଵߪ ,0)݈ܽ݉ݎ݋ܰ	~	௦ߙ (ଶߪ  (௥ߪ
 1176 
We included a random effect for site (ݏ) only when there were multiple sites within the same 1177 
region (ݎ), otherwise ߙ௦ was set to 0. We considered species’ responses to be related to a 1178 
given trait when the 95% credible interval on the slope hyperparameter (ܤ) did not overlap 1179 
zero. 1180 
 1181 
Trait projections with warming (Extended Data Fig. 7) 1182 
We projected trait change for the minimum (RCP2.6) and maximum (RCP8.5) IPCC carbon 1183 
emission scenarios from the NIMR HadGEM2-AO Global Circulation Model. We used the 1184 
midpoint years of the WorldClim (1975) and HadGem2 (2090) estimates to calculate the 1185 
expected rate of temperature change over this time period. We then predicted trait values for 1186 
each year into the future based on the projected rate of temperature change and the spatial 1187 
relationship between temperature and community trait values (described in the “Spatial 1188 
community trait models” section). 1189 
 1190 



These projections are not intended to predict actual expected trait change over the next 1191 
century, as many other factors not accounted for here will also influence this change. In 1192 
particular, future changes in functional traits will likely depend on concurrent changes in 1193 
moisture availability, which are less well understood than temperature change. Recent 1194 
modeling efforts predict increases in precipitation across much of the Arctic57, but it is 1195 
unknown whether increasing precipitation will also lead to an increase in soil moisture/water 1196 
availability for plants, as the drying effect of warmer temperatures (e.g. due to increased 1197 
evaporation and/or decreased duration of snow cover58) may outweigh the impact of 1198 
increased precipitation. Instead, these projections are an attempt to explore theoretical trait 1199 
change over the long-term when using a space-for-time substitution approach. 1200 
 1201 
Principal component analysis (PCA; Extended Data Fig. 8) 1202 
We performed an ordination of community-weighted trait mean values per plot on all seven 1203 
traits. Because community evergreenness could only be estimated for plots with at least one 1204 
woody species, the total number of plots included in this analysis is reduced compared to 1205 
the entire dataset (1098 plots out of 1520 in total). We used the R package vegan59 (v. 2.4.6) 1206 
to conduct a principal component analysis of these data. This analysis uses only trait means 1207 
per plot, and therefore information about CWM uncertainty due to intraspecific trait variation 1208 
and/or missing species is lost. The analysis was performed on log-transformed trait values49. 1209 
We extracted the axis coordinates of each plot from the PCA and used the spatial trait-1210 
temperature-moisture model described above (section “Spatial community trait models”) to 1211 
determine whether plot positions along both PCA axes varied with temperature, moisture, 1212 
and their interaction. 1213 
 1214 
Trends in species abundance (Supplementary Information, Table S10) 1215 
In order to provide more insight into the species-specific changes occurring over time in 1216 
tundra ecosystems, we calculated trends in abundance for the most common (widespread 1217 
and abundant) species in the community composition dataset. We estimated trends for all 1218 
species that occurred in at least 5 sites at a minimum abundance of 5% cover (mean of all 1219 
plots within a site) across all years. We additionally included species that occurred at low 1220 
abundance (1% or more) but were widespread (at least 10 sites). This technique yielded a 1221 
total of 79 species. Abundance changes were modeled as described for trait change over 1222 
time, but because abundance (proportion of plot cover) is bounded between 0 and 1, 1223 
inclusive, we used a beta-Bernoulli mixture model. Abundance change was then estimated 1224 
per species (݌ݏ) across all regions (ݎ): 1225 
௦௣,௥ߙ)݈ܽ݉ݎ݋ܰ	~	௦௣,௥,௬ߙ 1226  ௦௣,௥ߚ	+ ∙ ,௦௣,௥,௬ݎܽ݁ݕ  (௦௣ߪ



,Β௦௣)݈ܽ݉ݎ݋ܰ	~	௦௣,௥ߚ ,Α௦௣)݈ܽ݉ݎ݋ܰ	~	௦௣,௥ߙ 	(ଵߪ  	(ଶߪ
 1227 
We additionally extracted region-specific slopes per species (ߚ௦௣,௥) in order to calculate a 1228 

proportion of regions in which a given species was increasing or decreasing (“Prop. 1229 
Increase” and “Prop. Decrease” in Table S10). Because regional slopes are modeled as 1230 
random effects, these estimates are not entirely independent (i.e., they will be pulled toward 1231 
the overall species mean slope), but provide an approximate estimate of whether directional 1232 
trends in abundance are consistent across a species’ range. 1233 
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DATA AVAILABILITY 1354 
 1355 
Trait data 1356 
Data compiled through the Tundra Trait Team are publicly accessible50 (data paper 1357 
published in Global Ecology & Biogeography). The public TTT database includes traits not 1358 
considered in this study as well as tundra species that do not occur in our vegetation survey 1359 
plots, for a total of nearly 92,000 trait observations on 978 species. Additional trait data from 1360 
the TRY trait database can be requested at try-db.org.  1361 
 1362 
Composition data 1363 
Most sites and years of the vegetation survey data included in this study are available in the 1364 
Polar Data Catalogue (ID # 10786_iso). Much of the individual site-level data has 1365 
additionally been made available in the BioTIME database90 (https://synergy.st-1366 
andrews.ac.uk/biotime/biotime-database/). 1367 
 1368 
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 1376 
CODE AVAILABILITY 1377 
 1378 
STAN code for the two main models (spatial temperature-moisture-trait relationships and 1379 
community trait change over time) is provided in the Supplementary Information associated 1380 
with this study (available online).  1381 



Extended Data Fig. 1. Overview of trait data and analyses. a, Count of traits per latitude 1382 
(rounded to the nearest degree) for all georeferenced observations in TRY and TTT that 1383 
correspond to species in the vegetation survey dataset. b, Work flow and analyses of 1384 
temperature-trait relationships. Intraspecific temperature-trait relationships over space were used to 1385 
estimate the potential contribution of ITV to overall temperature-trait relationships over space and time 1386 
(CWM + ITV) as trait measurements on individuals over time are not available. 1387 
 1388 
Extended Data Fig. 2. All temperature-trait relationships. Slope of temperature-trait 1389 
relationship over space (within-species (ITV) and across communities (CWM)) and with 1390 
interannual variation in temperature (community temperature sensitivity). Spatial – ITV is the 1391 
average intraspecific trait variation as related to temperature over space, Spatial – CWM is 1392 
the relationship between community-weighted trait means and summer temperature, and 1393 
Temporal sensitivity – CWM is the temperature sensitivity of community-weighted trait 1394 
means (i.e., correspondence between interannual variation in CWM values with interannual 1395 
variation in temperature). Error bars represent 95% credible intervals on the slope estimate. 1396 
We used five-year mean temperatures (temperature of the survey year and four previous 1397 
years) to estimate temperature sensitivity because this interval has been shown to explain 1398 
vegetation change in tundra20 and alpine29 plant communities. All slope estimates are in 1399 
transformed units (height = log cm, LDMC = logit g/g, leaf area = log cm2, leaf nitrogen = log 1400 
mg/g, SLA = log mm2/mg). Community (CWM) temperature-trait relationships are estimated 1401 
across all 117 sites; intraspecific temperature-trait relationships are estimated as the mean 1402 
of 108-109 species for SLA, 80-86 species for plant height, 74-72 species for leaf nitrogen, 1403 
85-76 species for leaf area, and 43-52 species for LDMC, for summer and winter 1404 
temperature, respectively (see Methods: Analyses: Intraspecific Trait Variation for details). 1405 
 1406 
Extended Data Fig. 3. Community woodiness and evergreenness over space and time. 1407 
a-b, Variation in community woodiness (a) and evergreenness (b) across space with 1408 
summer temperature and soil moisture. Community woodiness is the abundance-weighted 1409 
proportion of woody species versus all other plant species in the community. Community 1410 
evergreenness is the abundance-weighted proportion of evergreen shrubs versus all shrub 1411 
species (deciduous and evergreen). The evergreen model was conducted on a reduced 1412 
number of sites (98 instead of 117) because some sites did not have any woody species 1413 
(and it was thus not possible to calculate a proportion evergreen). Both temperature and 1414 
moisture were important predictors of community woodiness and evergreenness. The 95% 1415 
credible interval for a temperature * moisture interaction term overlapped zero in both 1416 
models (-0.100 to 0.114 and -0.201 to 0.069 for woodiness and evergreenness, 1417 
respectively). c-d, There was no change over time in woodiness (c) or evergreenness (d). 1418 



Thin lines represent slopes per site (woodiness: n = 117 sites, evergreenness, n = 98 sites). 1419 
In all panels, bold lines indicate overall model predictions and shaded ribbons designate 1420 
95% credible intervals on these model predictions. 1421 
 1422 
Extended Data Fig. 4. Range in species mean values of each trait by summer 1423 
temperature. Black dashed lines represent quantile regression estimates for 1% and 99% 1424 
quantiles. Species mean values are estimated from intercept-only Bayesian models using 1425 
the estimation technique described in Methods: Analyses: Calculation of community 1426 
weighted mean (CWM) values. Species locations are based on species in the 117 1427 
vegetation survey sites. All values are back-transformed into their original units (height = cm, 1428 
LDMC = g/g, leaf area = cm2, leaf nitrogen = mg/g, SLA = mm2/mg). 1429 
 1430 
Extended Data Fig. 5. The rate of community trait change is not related to the rate of 1431 
temperature change or soil moisture for any trait. a-b, Rate of community-weighted 1432 
mean change over time per site (N = 117 sites) as related to temperature change and long-1433 
term mean soil moisture (a) or soil moisture change (b) at a site. Points represent mean trait 1434 
change values for each site, lines represent the predicted relationship between trait change, 1435 
temperature change and soil moisture/soil moisture change, and transparent ribbons are the 1436 
95% CI’s on these predictions. Both mean soil moisture and soil moisture change were 1437 
modeled as a continuous variables, but are shown as predictions for minimum and 1438 
maximum values/rates of change. Trait change estimates are in transformed units (log for 1439 
height, leaf area, leaf nitrogen, and SLA, and logit for LDMC). Soil moisture change was 1440 
estimated from downscaled ERA Interim data and may not accurately represent local 1441 
changes in moisture availability at each site. 1442 
 1443 
Extended Data Fig. 6. Increasing community height is driven by the immigration of 1444 
taller species, not the loss of shorter ones. Probability that a species newly arrived in a 1445 
site (“gained”) or disappeared from a site (“lost”) as a function of its traits (N = 117 sites). 1446 
Lines and ribbons represent overall model predictions and the 95% credible intervals on 1447 
these predictions, respectively. Dark ribbons and solid lines represent species gains while 1448 
pale ribbons and dashed lines represent species losses. Only for plant height was the trait-1449 
probability relationship different for gains and losses.  1450 
 1451 
Extended Data Fig. 7. Comparison of actual (colored lines), expected (solid black 1452 
lines), and projected (dotted/dashed black lines) CWM trait change over time. 1453 
Expected trait change is calculated using the observed spatial temperature-trait relationship 1454 
and the average rate of recent summer warming across all sites. Note that these projections 1455 



assume no change in soil moisture conditions. The dotted/dashed black lines after 2015 1456 
show the projected trait change for the maximum (8.5) and minimum (2.6) IPCC carbon 1457 
emission scenarios, respectively, from the HadGEM2 AO Global Circulation Model given the 1458 
expected temperature change associated with those scenarios. Points along the left axis of 1459 
each panel show the distribution of present-day community-weighted trait means per site (N 1460 
= 117 sites) to better demonstrate the magnitude of projected change. Values are in original 1461 
units (height = cm, LDMC = g/g, leaf area = cm2, leaf nitrogen = mg/g, SLA = mm2/mg). 1462 
 1463 
Extended Data Fig. 8. Community trait co-variation is structured by temperature and 1464 
moisture. a, Principal component analysis of plot-level community-weighted traits for seven 1465 
key functional traits demonstrating how communities vary in multidimensional trait space. 1466 
Trait correlations are highest between SLA and leaf nitrogen, and evergreenness and 1467 
woodiness.  Variation in SLA, leaf nitrogen, evergreenness and woodiness (PC1) are 1468 
orthogonal to variation in height (PC2).  Variation in leaf area and LDMC are explained by 1469 
both PC 1 and 2. The color of the points indicates the soil moisture status of each plot at the 1470 
site-level. b-c, Plot scores along PC axis 1, related to plant resource economy, vary with 1471 
summer temperature, soil moisture, and their interaction (b) while plot scores along PC axis 1472 
2 vary only with soil moisture (c). The color of the points indicates the soil moisture of each 1473 
site. Because not all plots and sites had woody species (and thus proportion evergreen 1474 
could not be calculated) this analysis was conducted on a subset of 1098 (out of 1520) plots 1475 
in 98 (out of 117) different sites. 1476 
 1477 
Extended Data Figure 9. Temperature–trait relationships by growth form and site 1478 
elevation. a, Mean (+/- SD) intraspecific temperature-height relationships (N = 80 species) 1479 
per functional group. Dwarf shrubs are defined as those that do not grow above 30 cm in 1480 
height (as estimated by regional floras: Flora of North America, USDA, Royal Horticultural 1481 
Society, etc.) and are generally genetically limited in their ability to grow upright. There are 1482 
no differences among functional groups in the magnitude of mean intraspecific temperature-1483 
height relationships. b, Relationship between community-weighted trait values, summer 1484 
temperature, and soil moisture across biogeographic gradients, as in Fig. 2a. Points 1485 
represent mean estimates per site (N = 117 sites) and are sized by the elevation of the site 1486 
(larger circles = higher elevation). Ribbons represent the overall trait-temperature-moisture 1487 
relationship (95% credible intervals on predictions at minimum and maximum soil moisture) 1488 
across all sites. 1489 
 1490 
Extended Data Table 1. Ecosystem functions influenced by each of the seven plant 1491 
traits investigated.  1492 
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THIS IS WHAT IT SHOULD LOOK LIKE (with transparencies) 
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