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SUMMARY

This work is based on the comparison of three techniques for analyzing the qualitative behaviour of
nonlinear dynamic systems, including the study of their finite and infinite equilibrium points. The qualitative
techniques used are: the direct method of Lyapunov, The theorems of Dickson and Perko for second
order quadratic differential systems and the linearization around finite equilibrium points. These techniques
provide information about the local or global stability of nonlinear systems. The state feedback controlled
Buck-Boost power converter will be used as a case of study. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is known that some of the inherent qualitative characteristics of dynamic systems have been
specified through rigorous analytic techniques. However in the specific case of nonlinear systems,
there may be examples where there are not explicit solutions for the differential equations that
describe their dynamics, and further, there are systems that exhibit multiple equilibrium points, limit
cycles, bifurcations, among other features. Under these circumstances, the qualitative analysis of
differential equations is a viable alternative to learn about the dynamic behaviour of these systems.

In this sense, the converse theorems are key tools in the stability analysis of dynamic systems.
Some classical references on the subject are the work of [8] and [6]. More recent references are the
work of [7] and [5]. The references mentioned have been developed as a result of the work of [9];
where the local and global equilibrium points in linear systems and in some nonlinear systems are
studied. A concise reference to the concepts of the theory of Lyapunov is the text of [11].

In general, local results do not provide a comprehensive explanation of the behaviour of nonlinear
systems. Therefore it is necessary to use other tools for the study of systems of second order
quadratic differential equations, as the one considered in this paper. For this purpose, two references
that analyze the behaviour of these differential equations are used: the first is [1] aimed at sorting
through the use of inequalities the different behaviours of bounded quadratic systems, and the
second is the work of [2] which, through qualitative analysis of these dynamic systems, seeks to
classify them in terms of an atlas represented in phase portraits. Both references are summarized in
the textbook [3].

This is a preprint of: “Qualitative behaviour analysis of feedback-controlled Buck-Boost power
converters thru three different techniques”, Keiver Sosa, Jaume Llibre, Mario Spinetti-Rivera,
Eliezer Colina-Morles, Revista Politécnica, vol. 42(1), 9 pp., 2018.
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An application to stability analysis through the qualitative techniques referenced above is
presented in the work of [12], where the behaviour of the Boost power converter is discussed. This
article presents a qualitative analysis of a nonlinear closed-loop system, specifically the Buck-Boost
power converter with a state vector feedback. It is a non-linear, quadratic, second order differential
system that has no explicit solution. It is intended to study the behaviour of the trajectories between
finite and infinite equilibrium points, with respect to changes in system and controller parameters.

2. BUCK-BOOST POWER CONVERTER

The main characteristic of the Buck-Boost circuit design is that it can operate as a step up or as a
step down voltage converter, that is, its output voltage may be lower or higher than the power supply.
Fig 1 illustrates its circuit diagram.
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Figure 1. Illustration of the Buck-Boost circuit design.

The paper by [10] shows how the average behaviour of the circuit of Fig. 1 may be represented
by a continuous time model, applying the laws of Kirchhoff and Ohm. This is:

L
di

dt
= (1− u) v + (u)E,

C
dv

dt
= − (1− u) i− v

R
,

(1)

where i is the inductor current, v the voltage on the capacitor, R the resistance of the load, L the
inductance of the coil, C the capacitance, E the power supply and u the DC control input, which is

defined in the range [0, 1] . In order to facilitate the calculations, let τ and Q be defined as τ =
t√
LC

and Q = R

√
C

L
, and let the linear transformation given in equation (2) be applied to system (1)

[
x
y

]
=




1

E

√
C√
L

0

0
1

E



[

i
v

]
. (2)

The normalized system (1) may be represented as

dx

dτ
= ẋ = (1− u) y + u,

dy

dτ
= ẏ = − (1− u)x− y

Q
,

(3)

where the normalized variable x(τ) = x is the coil current, y(τ) = y is the capacitor voltage, Q is
the charge and u ∈ [0, 1] is the control input. The equilibrium points of the open loop system (3) are

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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given as

x̄ =
ȳ (ȳ − 1)

Q
, ū =

ȳ

ȳ − 1
, (4)

wherein the desired value of the output voltage of the capacitor Vd is equilibrium value of the system,
that is, ȳ = Vd < 0.

By moving system (3) to the origin, which is achieved through the change of coordinates defined
by e1 = x− x̄, e2 = y − ȳ, eu = u− ū, the following exact error dynamics is obtained

ė1 = (1− eu − ū) e2 + ȳ (1− eu − ū) + eu + ū,

ė2 = (eu + ū− 1) e1 −
e2
Q

− x̄ (1− eu − ū)− ȳ

Q
.

(5)

Before making the analysis of equilibrium points, the feedback control loop using the state vector
with a gain k = [α β] will be considered. Thus, the equation of the control law is defined by

eu = −k

[
e1
e2

]
= − (αe1 + βe2) . (6)

The dynamics of the closed loop system is obtained replacing the controller (6) in (5) and the
equilibrium values of x̄ and ū given in (4). That is

ė1 = α (ȳ − 1) e1 +

(
β(ȳ − 1)

2 − 1
)

ȳ − 1
e2 + αe1e2 + βe22,

ė2 =

(
Q− αȳ(ȳ − 1)

2
)

(ȳ − 1)Q
e1 −

βȳ (ȳ − 1) + 1

Q
e2 − βe1e2 − αe21.

(7)

Equating to zero the right sides of (7), solving for e1 in the first equation and substituting it into
the second equation, the equilibrium equation based on ē2 is obtained

p (ē2) =


ē22 +

(
β

α
Q+ 3ȳ − 2

)
ē2 +

Q
(
β(ȳ − 1)

2 − 1
)
+ α(ȳ − 1)

2
(2ȳ − 1)

α (ȳ − 1)


 ē2 = 0. (8)

Since (8) is a polynomial of degree three, the Cardano method to characterize its roots will be
used. The discriminant of Cardano ∆C is as follows

∆C =
(
Q
(
β(ȳ − 1)

2 − 1
)
+ α(ȳ − 1)

2
(2ȳ − 1)

)2

(
Q2 (ȳ − 1)β2 + 2αQ (ȳ − 1) ȳβ +α2 (ȳ − 1) ȳ2 + 4Qα

)
.

(9)

• If ∆C > 0, there will be a real root and two complex non-real roots.
• If ∆C = 0, there will be a double real root and a single real root.
• If ∆C < 0, there will be three real roots.

This work will analyze only the case when there is one real equilibrium point; for which
Proposition 1 establishes the range of values for the parameters.

Proposition 1. The existence of a single real equilibrium point is defined by the conditions

α > 0 and − α
ȳ

Q
− 2

√
− α

Q(ȳ − 1)
< β < −α

ȳ

Q
+ 2

√
− α

Q(ȳ − 1)
.

Proof
Restrictions for the parameters are: Q > 0, ȳ < 0, α, β ∈ (−∞,∞). The equation of Cardano states
that if ∆C > 0 then there will be a single real equilibrium point. Thus, from (9) the following set of
inequality solutions is obtained

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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• α > 0,

• β1 < β < β2, where β1,2 = −α
ȳ

Q
∓ 2

√
− α

Q(ȳ − 1)
.

This range is defined as R∆C = {(α, β) ∈ R|α > 0 ∧ β1 < β < β2} .

3. LYAPUNOV STABILITY ANALYSIS

In order to apply the concept of stability in the sense of Lyapunov, under the conditions provided in
Proposition 1, it is necessary to have a single real equilibrium point located at the origin (0, 0).

Theorem 1. System (7) is globally stable if there is a unique equilibrium point.

Proof
Let the positive definite Lyapunov function candidate V (e) be defined as

V (e) =
1

2

[
e1
e2

]T [
1 0
0 1

] [
e1
e2

]
.

According to the direct method of Lyapunov, if the derivative of the Lyapunov function candidate
evaluated in the trajectories of the dynamical system is negative definite, then the system will display
a globally stable behaviour. The derivative V̇ (e) is defined as

V̇ (e) =

[
e1
e2

]T [
1 0
0 1

] [
ė1
ė2

]
. (10)

Substituting equation (7) in (10) yields an error dependent equation, which has the form V̇ (e) =
eTMe+ eTKe, where M is a symmetric matrix and K is an skew symmetric matrix defined as
follow

M =




α(ȳ − 1)
β(ȳ − 1)

2 − 1

ȳ − 1
Q− αȳ(ȳ − 1)

2

(ȳ − 1)Q
−βȳ (ȳ − 1) + 1

Q


 , K =

[
0 αe1 + βe2

−αe1 − βe2 0

]
.

Since V̇ (e) is the sum of two quadratic forms and eTKe = 0, by decomposing the matrix M
in a symmetric matrix plus an skew symmetric matrix, i.e. M = Ms +Ma, the derivative of the
Lyapunov function candidate turns into V̇ (e) = eTMse+ eTMae, where

Ms =




α (ȳ − 1)
1

2

(ȳ − 1) (Qβ − αȳ)

Q
1

2

(ȳ − 1) (Qβ − αȳ)

Q

ȳ (1− ȳ)β − 1

Q


 ,

and Ma is the skew symmetric matrix of Ms. Since the term eTMae = 0, it suffices analyzing the
function V̇ (e) = eTMse.

Rewriting V̇ (e), the derivative of the Lyapunov function candidate takes the form V̇ (e) =
−eT (−Ms)e, namely

V̇ (e) = −
[

e1
e2

]T



−α (ȳ − 1) −1

2

(ȳ − 1) (Qβ − αȳ)

Q

−1

2

(ȳ − 1) (Qβ − αȳ)

Q
− ȳ (1− ȳ)β − 1

Q



[

e1
e2

]
,
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where the sign of V̇ (e) depends on the sign of the matrix −Ms.
According to Sylvester criterion it suffices that −Ms > 0, so that V̇ (e) < 0. In order to satisfy

that −Ms > 0, the minors of the matrix −Ms must have positive determinants. These determinants
are defined as:

• The determinant of the first minor is ∆1 = −α(ȳ − 1).

• The determinant of the matrix −Ms is given as

∆2 = β2 (ȳ − 1)Q2 + 2α
(
βȳ2 − βȳ + 2

)
Q+ α2ȳ2 (ȳ − 1) .

To ensure compliance of ∆1 > 0, it is necessary that −α(ȳ − 1) > 0, which is true if and only if
α > 0, because by definition ȳ < 0. For ∆2 > 0, it is necessary to write it in terms of a quadratic
polynomial defined as

p(β) = β2
(
Q2(ȳ − 1)

)
+ β (2αQȳ(ȳ − 1)) +

(
4αQ+ α2ȳ2(ȳ − 1)

)
> 0, (11)

since the term that accompanies β2 is negative definite (Q2(ȳ − 1) < 0), then the polynomial p(β)
is positive definite within the interval of its solutions

−α
ȳ

Q
− 2

√
− α

Q(ȳ − 1)
< β < −α

ȳ

Q
+ 2

√
− α

Q(ȳ − 1)
.

Note that since of Q > 0, α > 0 and ȳ < 0, then the determinant of (11) satisfies ∆p(β) =

− α

Q(ȳ − 1)
> 0; implying that β1,2 ∈ R and there will always exist an interval (β1, β2) in which

p(β) > 0 and therefore, the interval where V̇ (e) < 0 is defined by the set RL, given by

RL = {(α, β) ∈ R|α > 0 ∧ β1 < β < β2} . (12)

From the above analysis it is shown that V̇ (e) < 0 on RL defined by (12). Also, RL = R∆C
when

there is a unique point of equilibrium and therefore this equilibrium point is globally stable.

Corollary 1. In the boundary conditions for the system (7) stability in the sense of Lyapunov does
not apply.

Proof
If the discriminant of Cardano ∆C is analyzed using equation (9), it may be appreciated that if
β = β1 or β = β2 then ∆C = 0, which implies that there are two equilibrium points, and therefore
the concept of global stability in the sense of Lyapunov cannot be applied.

4. ANALYSIS VIA THEOREMS OF DICKSON AND PERKO

Theorems of [2], see Appendix A, allow qualitative analysis of quadratic second order systems.
Theorem 5 is formulated to analyze Bounded Quadratic Systems (BQS), while Theorem 6
facilitates studying the qualitative behaviour of systems with a unique real equilibrium point
(BQS1).

4.1. Bounded Quadratic Systems (BQS)

According to Theorem 5 of Appendix A, after applying a linear transformation, system (7) must be
affine and equivalent to one of the following systems (23), (24) or (25).

Theorem 2. The quadratic system described by (7) is bounded.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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Proof
Consider system (7) and the linear matrix transformation defined by e = θz

[
e1
e2

]
=

[
θ11 θ12
θ21 θ22

] [
z1
z2

]
, (13)

where θ11, θ12, θ21 and θ22 are constants. Substituting (13) into (7) the following system of
differential equations is obtained

ż1 = Θ1z
2
1 +Θ2z1z2 +Θ3z

2
2 +Θ4z1 +Θ5z2,

ż2 = Θ6z
2
1 +Θ7z1z2 +Θ8z

2
2 +Θ9z1 +Θ10z2.

(14)

Where Θ1,...,Θ10 are parameters which depend on θ11, θ12, θ21, θ22, Q, ȳ, α and β. Equation (14)
may be rewritten in the form of the system of equations (25). This is

ż1 = a11z1 + a12z2 + z2
2,

ż2 = a21z1 + a22z2 − z1z2 + cz2
2.

(15)

In order to accomplish this transformation, it is necessary to select Θ1 = 0, Θ2 = 0, Θ3 = 1, Θ6 = 0,
Θ7 = −1 and to solve the system of algebraic equations which result in

θ11 =
β

α2 + β2
, θ12 = θ21 =

−α

α2 + β2
, θ22 =

−β

α2 + β2
. (16)

By replacing the coefficients (16) in (14), the parameters of system (15) are

a11 = Θ4 = − α2

(α2 + β2)Q
,

a12 = Θ5 =

(
α2 + β2

) (
β(ȳ − 1)

2 − 1
)
Q+ α3(ȳ − 1)

2
ȳ

(α2 + β2) (1− ȳ)Q
+

αβ (ȳ − 1) (1 + β (ȳ − 1) ȳ)

(α2 + β2) (1− ȳ)Q
,

a21 = Θ9 = −
(
Q
(
α2 + β2

)
+ αβ (ȳ − 1)

)

(α2 + β2) (ȳ − 1)Q
,

a22 = Θ10 = −
(

β2

(α2 + β2)Q
+ α (ȳ − 1)− β (ȳ − 1) ȳ

Q

)
,

c = Θ8 = 0.
(17)

Since Q > 0 then a11 < 0 and therefore, according to Theorem 5, systems (15) and (7) are
bounded.

It should be noted that Theorem 2 ensures that system (7) is bounded for any configuration of
finite and infinite equilibrium points. Fig. 2 shows the equilibrium points at infinity in a saddle–
node configuration, where the circle corresponds to the neighborhood of infinite.

Figure 2. Phase Portraits of a Bounded Quadratic Systems (BQS).

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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4.2. Bounded quadratic systems with a unique real equilibrium point (BQS1)

Theorem 6 of the appendix allows analyzing the different qualitative behaviours when there is a
unique finite equilibrium point in a system of the type (25); and does so by means of phase diagrams,
including both the finite equilibrium point as those at infinity. According to Theorem 6 there are
four configurations, of which (a) and (b) cannot be used because system (7) is affine to a (25) type
system, and these are mutually exclusive. Thus, system (7) may be of type (c) or (d). It will be
shown that the only feasible configuration for (7) is (c).

Theorem 3. Given the following parameters restrictions: Q > 0, ȳ < 0, α > 0 and −α
ȳ

Q
−

2

√
− α

Q(ȳ − 1)
< β < −α

ȳ

Q
+ 2

√
− α

Q(ȳ − 1)
, then system (7) has the configuration type (c) of

Fig. 3.

Proof
According to Theorem 6(c) of the appendix, system (25) will have a unique equilibrium point if the
following conditions are satisfied:

(i) a11 < 0, (ii) (a12 − a21 + ca11)
2 < 4(a11a22 − a21a12), (iii) a11 + a22 ≤ 0. (18)

In Theorem 2 is proved that condition (18)(i) is satisfied. For the second condition, substituting
parameters (17) in (18)(ii) results

f = β2 + 2
α

Q
ȳβ +

(
α

Q
ȳ

)2

+ 4
α

Q (ȳ − 1)
< 0. (19)

Equation (19) is valid in the interval (β1, β2) where β1,2 = −α
ȳ

Q
∓ 2

√
− α

Q(ȳ − 1)
, i.e.,

− α
ȳ

Q
− 2

√
− α

Q(ȳ − 1)
< β < −α

ȳ

Q
+ 2

√
− α

Q(ȳ − 1)
. (20)

The discriminant of f is ∆f = − α

Q(ȳ − 1)
and β1,2 ∈ R if and only if α > 0.

For the third condition, parameters (17) are substituted into (18)(iii) which results in β ≥
Q(ȳ − 1)α− 1

(ȳ − 1)ȳ
. This defines an interval [βa,∞) where βa =

Q(ȳ − 1)α− 1

(ȳ − 1)ȳ
.

Note that (β1, β2) ∩ [βa,∞) = (β1, β2), so the range in which (18)(iii) is fulfilled is (20), with
α > 0, which shows that (7) is a type (c) system. According to Theorem 5, (7) will be a type (d)
system if it satisfies the following conditions:

(i) a11 < 0, (ii) (a12 − a21 + ca11)
2 < 4(a11a22 − a21a12), (iii) a11 + a22 > 0. (21)

Analogously, Theorem 2 proves that (21)(i) is valid; and the above analysis, in the interval
(β1, β2), shows that (21)(ii) =(18)(ii). For the third condition, parameters (17) are substituted

into (21)(iii) and β <
Q(ȳ − 1)α− 1

(ȳ − 1)ȳ
is obtained, which defines an interval (−∞, βb), where

βb =
Q(ȳ − 1)α− 1

(ȳ − 1)ȳ
. The intervals are such that (β1, β2) ∩ (−∞, βb) = ∅ and therefore, since

condition (21)(iii) is not satisfied, (7) cannot be a type (d) system.
In summary, the set RL given in (12) defines the range within which system (7) is BQS1.

Corollary 2. Since (7) is a BQS1 type (c) system, it is globally stable.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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Proof
Since (7) is BQS1 type (c), then there is a unique real equilibrium point to which all trajectories
converge; that is, the system is globally stable.

Corollary 3. Since (7) is BQS1 type (c) system, then it has no limit cycles.

Proof
Since (7) is BQS1 type (c) and it cannot be represented as type (d), then there is no limit cycle or
periodic solution.

5. QUALITATIVE ANALYSIS AROUND FINITE EQUILIBRIUM POINTS

System (7) will be analyzed locally with respect to its finite equilibrium points using the
linearization method that is described in [4], section 1.5.

The procedure consists of two steps; first the finite equilibrium point is obtained. Next, the
Jacobian matrix associated with (8) at this equilibrium point is evaluated. Thus the linearized version
of the original nonlinear system is obtained. (8) and (9) define the equilibrium equation and the
determinant of Cardano ∆C , respectively. The Jacobian matrix A is given as

A =




α (ȳ − 1)
β(ȳ − 1)

2 − 1

(ȳ − 1)
Q− α(ȳ − 1)

2
ȳ

Q (ȳ − 1)
−β (ȳ − 1) ȳ + 1

Q


 .

On the other hand, the eigenvalues of A are defined as

λ1,2 = − 1

2Q
+ α

(ȳ − 1)

2
− β

(ȳ − 1)

2Q
ȳ

±

√
4Q

(
(ȳ − 1)

2
(2ȳ − 1)α+Q

(
(ȳ − 1)

2
β − 1

))
+ (ȳ − 1)

2
(1 + (ȳ − 1) (ȳβ −Qα))

2

2Q (ȳ − 1)
.

(22)
The local behaviour at the origin of coordinates may be interpreted using the following theorem.

Theorem 4. The origin of coordinates is an attractor.

Proof
The origin of the linearized system is an attractor, if the system possesses a unique equilibrium point
and its eigenvalues are negative. This is accomplished with the following restrictions:

(i) ∆C > 0,

(ii) λ1λ2 =
Q− (ȳ − 1)

2
(2ȳ − 1)α−Q(ȳ − 1)

2
β

Q(ȳ − 1)
2 > 0,

(iii) λ1 + λ2 =
(ȳ − 1) (Qα− ȳβ)− 1

Q
< 0.

The above restrictions are satisfied for the following conditions on the parameter

α > 0, −α
ȳ

Q
− 2

√
− α

Q(ȳ − 1)
< β < −α

ȳ

Q
+ 2

√
− α

Q(ȳ − 1)
.

These conditions are the same that define the set RL given in (12).
In order to verify if the origin is a repeller, restriction (i) in addition to the following restrictions

are used

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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(iv) λ1λ2 =
Q− (ȳ − 1)

2
(2ȳ − 1)α−Q(ȳ − 1)

2
β

Q(ȳ − 1)
2 > 0,

(v) λ1 + λ2 =
(ȳ − 1) (Qα− ȳβ)− 1

Q
> 0.

It is easy to verify that there are not values of parameters that would make the origin to behave as
a repeller.

To check if the origin of coordinates is a saddle, the restriction (i) and the following restriction
are taken into account

(vii) λ1λ2 =
Q− (ȳ − 1)

2
(2ȳ − 1)α−Q(ȳ − 1)

2
β

Q(ȳ − 1)
2 < 0.

There are not values of parameters that would make the origin to behave as a saddle.
To verify if the origin of coordinates is a center, the restriction (i) and the following restrictions

are considered

(viii) Re{λ1, λ2} = 0,

(ix) Im{λ1, λ2} 6= 0.

From (viii) and (22) results Re{λ1, λ2} = 0 ⇒ − 1

2Q
+ α

(ȳ − 1)

2
− β

(ȳ − 1)

2Q
ȳ = 0. Also,

from (ix) and (22) results Im{λ1, λ2} 6= 0 ⇒ 4Q
(
(ȳ − 1)

2
(2ȳ − 1)α+Q

(
(ȳ − 1)

2
β − 1

))
+

(ȳ − 1)
2
(1 + (ȳ − 1) (ȳβ −Qα))

2
< 0.

There are not values of parameters that would make the origin to behave as a center.

Theorem 4 may be used to prove that the origin of coordinates, which is the unique real
equilibrium point, can only be an attractor; and it is in the RL set defined in (12). Also, the system
is locally stable.

6. ANALYSIS OF RESULTS

There have been used three techniques to study the qualitative behaviour of a second order nonlinear
dynamic system. These techniques have corresponded to the direct method of Lyapunov, theorems
of Dickson and Perko and the approximate linearization of nonlinear systems. In all three cases, the
analysis has led to the same set where the parameters of the system were defined.

The results of the analysis performed with each of the techniques have been summarized in Table
I.

• The direct method of Lyapunov may be used to prove that when there is only one real
equilibrium point, system (7) is globally stable. But it does not provide any information
regarding the boundedness (BQS) of system (7) for any combination of parameter values.

• Theorems 5 and 6 of Dickson and Perko may be used to prove that system (7) is bounded
(BQS), regardless of the values of its parameters. In addition, to prove that when there is a
unique real equilibrium point (BQS1), system (7) is globally stable and there are no limit
cycles in its trajectories.

• Approximate Linearization allows local analysis and provides no information on the overall
behaviour of system (7) or its boundedness (BQS). When there is only one real equilibrium
point, it may be used to prove that the finite equilibrium point is an attractor, and therefore
system (7) is locally stable.

• If the boundedness feature (BQS) of system (7) obtained thru Theorems of Dickson and Perko,
together with the attractor behaviour of the single real equilibrium point, which is derived
using the approximate linearization method is used, it can be concluded that system (7) is
BQS1.
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Table I. Qualitative analysis results of system (7) with different techniques.

Qualitative Analysis Bounded for any value Bounded with a unique real
Technique of the parameters (BQS) equilibrium point (BQS1)

Lyapunov Not shown if bounded Globally Stable
Dickson–Perko Bounded Globally Stable
Linearization Not shown if bounded Locally Stable

Dickson–Perko and
Linearization

Bounded Globally Stable

7. CONCLUSIONS

In this work an analysis of the behaviour of the trajectories around the equilibrium points of the
Buck–Boost power converter with state vector feedback, using qualitative techniques for dynamic
systems has been presented.

For this type of closed-loop systems, there is a bifurcation of equilibrium points; so there may
be one, two or three finite equilibrium points. Regardless of the value of the system parameters,
all trajectories converge to finite equilibrium points; that is, the system is bounded (BQS) for any
configuration of finite equilibrium points and there are no limit cycles.

The direct method of Lyapunov may be used to prove the existence of conditions on the control
parameters to ensure global stability of the system. Through theorems of Dickson and Perko a global
qualitative behaviour of the system with a single equilibrium point is obtained, as well as they
provide conditions on the control parameters that make all trajectories converge to the equilibrium
point. Also, the theorems allow verifying the existence, or not, of limit cycles.

Linearization around the origin of coordinates, where it is located the equilibrium point, facilitates
establishing conditions on the control parameters to ensure that it is a local attractor.

The direct method of Lyapunov and the theorems of Dickson and Perko permitted to obtain results
about the overall behaviour of the system; while the approximate linearization only allowed giving
local results. By using the results of boundedness, together with the absence of limit cycles for the
BQS1, the local analysis may be considered as global for the case study considered.
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A. THEOREM OF DICKSON AND PERKO

Theorem 5. Any (BQS) is affinely equivalent to

ẋ = a11x, ẏ = a21x+ a22y + xy (23)

with a11 < 0 and a22 ≤ 0, or

ẋ = a11x+ a12y + y2, ẏ = a22y (24)

with a11 ≤ 0, a22 ≤ 0 and a11 + a22 < 0, or

ẋ = a11x+ a12y + y2, ẏ = a21x+ a22y − xy + cy2 (25)

with |c| < 2 and either (i) a11 < 0; (ii) a11 = 0 y a21 = 0; or (iii) a11 = 0, a21 6= 0, a12 + a21 = 0
and ca21 + a22 ≤ 0.

Theorem 6. The phase portrait of any (BQS1) is determined by one of the separatrix configurations
in Figure 3. Furthermore, the phase portrait of a quadratic system is given by Figure 3.

(a) iff the quadratic system is affinely equivalent to (23) with a11 < 0 and a22 < 0;
(b) iff the quadratic system is affinely equivalent to (24) with a11 < 2a22 < 0;
(c) iff the quadratic system is affinely equivalent to (24) with 2a22 ≤ a11 < 0 or (25) with |c| < 2

and either

(i) a11 = a22 + a21 = 0, a21 6= 0 and a22 < min(0,−ca21) or a22 = 0 < −ca21,
(ii) a11 < 0, (a12 − a21 + ca11)

2 < 4(a11a22 − a21a12), and a11 + a22 ≤ 0, or
(iii) a11 < 0 y (a12 − a21 + ca11) = (a11a22 − a21a12) = 0;

(d) iff the quadratic system is affinely equivalent to (25) with |c| < 2 and either

(i) a11 = a12 + a21 = 0 and 0 < a22 < −ca21, or
(ii) a11 < 0, a11 + a22 > 0, and (a12 − a21 + ca11)

2 < 4(a11a22 − a21a12).

(a) (b)

(c) (d)

Figure 3. All possible phase portraits for (BQS1).
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