

This is the pre-peer reviewed version of the following article:

Nador F., Wnuk K., Roscini C., Solorzano R., Faraudo J., Ruiz-Molina D., Novio F.. Solvent-Tuned Supramolecular Assembly of Fluorescent Catechol/Pyrene Amphiphilic Molecules. *Chemistry - A European Journal*, (2018). 24. : 14724 - . 10.1002/chem.201802249,

which has been published in final form at
<https://dx.doi.org/10.1002/chem.201802249>. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Solvent-Tuned Supramolecular Assembly of Fluorescent Catechol/Pyrene Amphiphilic Molecules

F. Nador,^{[a,b]*} K. Wnuk,^[a] C. Roscini,^[a] R. Solorzano,^[a,c] J. Faraudo,^[d] D. Ruiz-Molina^[a] and F. Novio^{[a,c]*}

Abstract: The synthesis and structuration of a novel low molecular amphiphilic catechol **1** is reported. The combination of a hydrophilic tail containing a catechol group and a pyrene-based hydrophobic head favors its solvent tuned supramolecular assembly. Formation of vesicles occurs in a range of organic solvents with different polarity, whereas in water a fibril-like aggregation process is favored. Moreover, the emission properties of the pyrene moiety have allowed the monitoring of the vesicles formation by combined fluorescence spectroscopy and microscopy. In organic solvents and at low concentrations, compound **1** remains on its non-assembled monomeric form. As the concentration increases, the aggregation containing pre-associated pyrene moieties becomes more evident up to a critical micellar concentration where vesicle-like structures are formed. In contrast, nanosized twist belt-like fibers have been observed in water even at low concentrations, meanwhile at high concentration microplate structures appears. The interactions between molecules in different solvents have been studied by molecular dynamics simulations, which have confirmed different solvent driven supramolecular interactions.

Introduction

Self-assembly involves the organization of atoms, molecules, particles and other building blocks into functional structures driven by different non-covalent bonds like hydrogen bonds, Van der Waals forces and hydrophobic or aromatic interactions.^[1,2] Specifically, amphiphilic molecules such as surfactants, copolymers, and proteins, play a critical role in a wide range of self-assembly phenomena. Due to their dual nature, hydrophobic and hydrophilic part, they display a rich self-

assembly behavior in solution. Depending on the molecule characteristics, structuration at the interface between immiscible media with different polarity will be induced. In this way different structures like micelles, fibers or vesicles can be obtained after the self-assembly process, founding interesting applications in biomimetics,^[3] functional nanomaterials,^[4] light harvesting^[5] and drug and gene delivery.^[6]

Inspired by their multiple roles and functions in nature,^[7] the self-assembly processes of catechols have been extensively studied. For instance, self-assembled monolayers (SAM) with enhanced adhesion properties mimicking those found for mussels have been reported by using the 4-(6'-mercaptohexyl)catechol on different gold surfaces.^[8] Relevant information on the basic principles that govern the adhesion of catechols at the solid-liquid interface has also been obtained upon studying their self-assembly on different surfaces with scanning tunneling microscopy (STM).^[9] Moreover, the supramolecular self-assembly driven by catechol–metal ion coordination has afforded the fabrication of novel functional materials including adhesives, capsules, coatings and hydrogels,^[10] as well the formation of coordination polymer nanoparticles of technological relevance in different areas such as molecular electronics or nanomedicine.^[11] The supramolecular assembly of catechol-containing amphiphilic copolymers or peptides as micelles or vesicles has also been a theme of interest. Hasewaga *et al.* have reported micelles made from poly(ethylene glycol)-b-poly(dopamine) block copolymers with antioxidant and scavenging activity in front of reactive oxygen species (ROS).^[12] Dai *et al.* have reported a supramolecular approach combining both catechol–metal ion coordination and polymer self-assembly that organizes polymers from solid particles or homogeneous vesicles to Janus vesicles.^[10a] Vesicles based on low molecular weight catechols have also been described. Pierre *et al.* have reported the self-assembly properties of three synthetic amphiphilic chelators consisting of monopodal or tripodal catechol ligands bearing long alkyl chains.^[13] The authors showed that these ligands exhibit tensioactive properties with a critical micelle concentration (CMC) of $< 10^{-5}$ M in a water/methanol (95/5, v/v) solution containing 3-(N-morpholino)propanesulfonic acid (MOPS) buffer at pH 7.4. Furthermore, several reports about the preparation of micelles or vesicles from polymers containing catechol groups, showed considerable improvements in their stability against freeze-drying, organic solvents, osmotic stress or complex media, after oxidation and subsequent crosslinking of catechol moiety.^[14]

Herein we report the novel amphiphile molecule **1** (N-(3,4-dihydroxybenzylidene)-4-(pyren-1-yl)butanehydrazide), made of a hydrophilic catechol tail and a pyrene hydrophobic head (Scheme 1). The interest for this molecule is multifold. First,

[a] Dr. F. Nador, K. Wnuk, Dr. C. Roscini, R. Solorzano, Dr. D. Ruiz-Molina, Dr. F. Novio.

Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Edificio ICN2, Campus UAB, Bellaterra, 08193 Barcelona, Spain

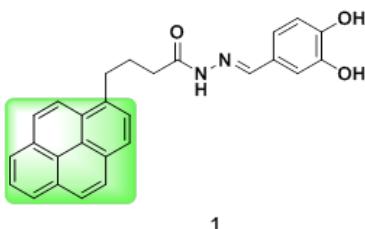
E-mail: fabiana.nador@icn2.cat; fernando.novio@icn2.cat

[b] Dr. F. Nador

Instituto de Química del Sur (INQUISUR-CONICET), Departamento de Química, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahía Blanca, Argentina.

[c] Dr. F. Novio, R. Solorzano

Departament de Química, Universitat Autònoma de Barcelona (UAB), Campus UAB. Cerdanyola del Vallès 08193, Barcelona, Spain


[d] Dr. J. Faraudo.

Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)

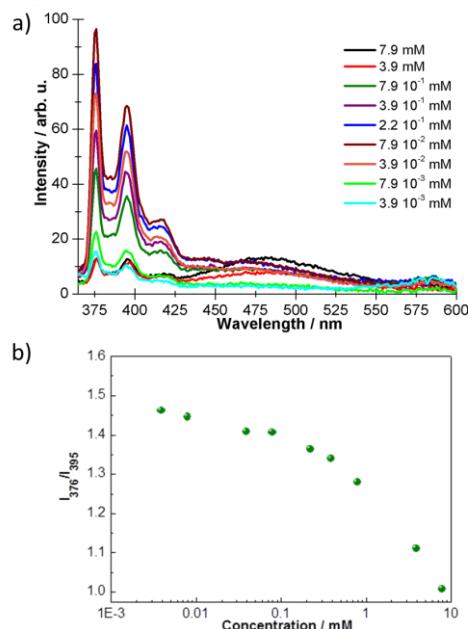
Campus UAB, E-08193 Bellaterra, Spain

Supporting Information is available from the Wiley Online Library or from the author: experimental details, NMR, FT-IR, fluorescence and UV-Vis spectra, SEM and TEM microscopies and fluorescence images (PDF), 3D reconstruction video (avi).

pyrene and derivatives are frequently used in solutions with amphiphilic molecules because of its high sensitivity of the optical properties (absorption and fluorescent emission) on the environment, which makes it a good sensor for self-assembly processes and micelles formation.^[15] This behavior allows the monitoring of the self-assembly process by standard absorption and fluorescence techniques.^[16] Second, the pyrene group confers a hydrophobic character that combined with the hydrophilic character of the catechol results in a molecule with amphiphilic properties. Third, the tendency of pyrene to establish intermolecular forces such as hydrogen bonding or π - π interactions are critical in the self-assembly and structuring process to form micelles, vesicles and other ordered mesophases.^[17] As expected, the self-assembly of compound **1** in different polar solvents induces the formation of fluorescent microstructures at different solvent-dependent critical concentrations (C_c). Such structures can be reversibly transformed into different supramolecular structures defined by the solvent nature.

Scheme 1. Structure of compound **1** containing a pyrene hydrophobic part (in green) and a more hydrophilic catechol-based moiety.

Results and Discussion


Supramolecular assembly in MeOH

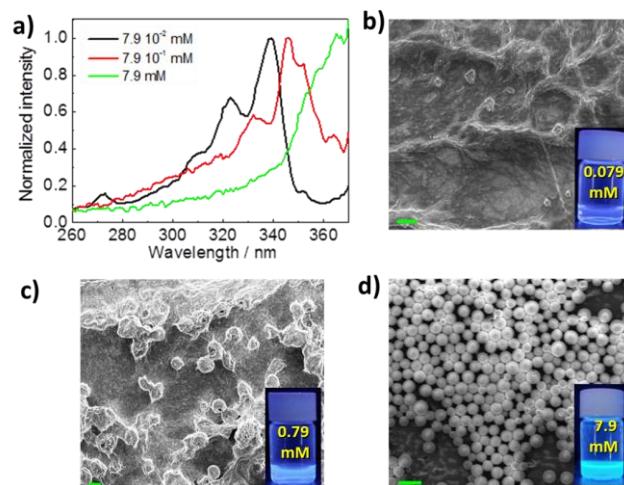
Compound **1** was synthesized by a coupling reaction between 4-(pyren-1-yl)butanehydrazide (PBH) and 3,4-dihydroxybenzaldehyde following the procedure described in Experimental Section (see Supporting Information S1).

The self-assembly process of **1** in methanol was followed by fluorescence and UV-Vis spectroscopies in the concentration range of $3.9 \cdot 10^{-3}$ to 7.9 mM. The emission spectra ($\lambda_{\text{exc}} = 345$ nm) of low-concentrated MeOH solutions ($3.9 \cdot 10^{-3}$ mM) present the fine vibronic structure ($\lambda_{\text{max}} = 376, 395$ and 418 nm) typically obtained for substituted pyrene molecules in water (Figure 1a).^[18] Upon increasing the concentration of **1**, different trends of the spectral features were observed, providing direct information on environmental changes around the amphiphilic molecule. Initially, the emission intensity increases progressively with the concentration up to a maximal signal intensity for the $7.9 \cdot 10^{-2}$ mM solution (Figures 1a and Supporting Information, Figure S6a). The emission enhancement is attributed to the increased concentration of fluorophores in the solution, and the unchanged shape and relative intensities of the bands corresponding to the monomer is indicative of the absence of intermolecular interactions at this concentration range. Between $7.9 \cdot 10^{-2}$ - 7.9

10^{-1} mM the emission intensity decreases significantly (Supporting Information, Figure S6a), while no other bands appear (Figures 1a and Supporting Information, S6b). This quenching of fluorescence was associated to the strong intermolecular interactions between the molecules which start organizing in labile aggregates favored by the decrease of the spatial proximity of pyrene moieties. As commented, the unique spectral features of pyrene are highly sensitive to the microenvironment of the probe: it exhibits an ensemble of monomer fluorescence emission peaks that report on the polarity of the probe microenvironment, and an additional band at longer wavelengths which reflects the presence of another pyrene molecule in spatial proximity.^[19] It is worth mentioning that any inner filter effect was excluded as the cause for the intensity decrease since a triangular cuvette and front-face setup were used to measure the concentration dependent spectra and no deformations of the spectra (due to the partial emission reabsorption) were observed.^[20]

The proximity of pyrene molecules can be related to R_I factor, calculated as the ratio (I_I/I_{II}) between the band intensity of the emission spectra at $\lambda_{\text{max}} = 376$ nm (I_I), independent of the medium polarity, and the one at $\lambda_{\text{max}} = 395$ nm (I_{II}), which instead is dependent on the environment.^[16] This R_I values are related to the polarity of the environment of pyrene molecules. Therefore, R_I is larger for higher polarities (e.g. $R_I = 1.6$ in water), and decreases in hydrophobic media (e.g. $R_I = 0.6$ in alkanes)^[16,21]. In the present system, R_I stays above 1.4 (Figure 1b) until reaching the concentration at which is observed the highest emission intensity ($7.9 \cdot 10^{-2}$ mM) and decreases to 1.3 when the concentration becomes one order of magnitude higher ($7.9 \cdot 10^{-1}$ mM), confirming that the fluorescence quenching is related to the formation of labile aggregates which reduce the environment polarity around the pyrene moiety. According to previous studies, the pyrene molecules of these labile aggregates should be at very short distance (< 40 Å), but far enough to avoid the characteristic aggregates emission.^[15]

Figure 1. a) Emission spectra ($\lambda_{\text{exc}} = 345$ nm) of **1** in MeOH at different concentrations; b) RI (I_{376}/I_{395}) ratio of the emission spectra vs concentration.


Above $7.9 \cdot 10^{-1}$ mM, the monomer emission keeps reducing its intensity for increased concentrations (Figure 1a and Supporting Information, Figure S6a). At the same time, a typical broad band emission corresponding to aggregated pyrene molecules at 480 nm appears and increases with the molecule concentration, becoming the main contribution to the emission spectra as confirmed by the I_{480}/I_{376} values (Supporting Information, Figure S6c). Thus, between $3.9 \cdot 10^{-1}$ - $7.9 \cdot 10^{-1}$ mM, stable self-assembly structures made by **1** are obtained.

In order to discriminate between the formation of ground state aggregates and excited state dimers (or excimers), absorption and fluorescence excitation spectroscopies were used. Basically, excimers are originated from the interaction between a molecule in its excited state and another in the ground state, while ground state aggregates are already formed without excitation.^[15] Though sometimes they show similar emission spectra (broad emission band with $\lambda_{\text{max}} \sim 480$ nm), the excitation and absorption spectra are useful tools to discriminate between these situations: since in excimers the initial excitation always involves the monomeric species, both excitation and absorption spectra shows the same band features of the monomer. On the other hand, because the aggregates are different species, the relative spectra should change respect to the monomer one.

Unfortunately, with absorption spectroscopy was only possible to measure some of the more diluted solutions of **1**, since at $7.9 \cdot 10^{-1}$ mM saturation of the signal was observed even using a thinner 2 mm cuvette (Supporting Information, Figure S7a). The parameter P_A , calculated as peak-to-valley ratio of the (0,0) vibronic transition ($\lambda_{\text{peak}} = 343$ nm and $\lambda_{\text{valley}} = 333$ nm) can be used as indicator of the association degree of the pyrene molecules, being values above 3 associated to the monomer and decreasing upon association). In the present case this value remains practically constant (~ 1.9) in the range of studied concentrations (Supporting Information, Figure S7b), and only for the $7.9 \cdot 10^{-1}$ mM solution the obtaining value was significantly below 2 (1.6). Since absorption measurements do not allow giving precise conclusions on the association degree, fluorescence measurements were performed at different concentrations. Thus, the excitation spectra of **1** obtained at $\lambda_{\text{emi}} = 395$ nm resemble that corresponding to the monomeric species ($\lambda_{\text{max}} = 310, 323$ and 339 nm)^[16] until reaching the concentration of $7.9 \cdot 10^{-2}$ mM (Figure 2a and Supporting Information, Figure S8). Above this concentration the excitation spectra maintain a similar vibronic structure but shift to the red and reduce their intensity until reaching $7.9 \cdot 10^{-1}$ mM, indicating the formation of labile aggregates. This trend becomes even more evident for the highest concentrations (3.9 and 7.9 mM) at which unstructured and very red-shifted spectra are obtained, clearly demonstrating the presence of stable ground state aggregates. Worth to mention is that the aggregation process is fully reversible, i.e. the monomeric fluorescence emission is completely recovered upon dilution.

The spectral data derived from excitation and emission spectra match with the macro- and microscopic appearance of the solutions. Up to $7.9 \cdot 10^{-2}$ mM, when both maximum emission and monomeric spectral features are observed, completely

transparent solutions were obtained (insets Figure 2) and no material structuration was observed by SEM (Figure 2b). The presence of labile aggregates by increasing the concentration and postulated from the fluorescence quenching is confirmed by the appearance of slightly cloudy solutions of **1** in MeOH and the inefficient formation of microstructured particles still mixed with non-structured materials (Figure 2c). Only when the concentration of **1** is in the range of the appearance of the aggregate emission in the visible region ($\lambda_{\text{emi}} = 480$ nm), the microparticles are efficiently and homogeneously formed as observed in SEM images yielding a very cloudy suspension (Figure 2d). It is worth mentioning that although SEM images are registered after solvent evaporation and this would mean that diluted solutions ($7.9 \cdot 10^{-1}$ mM) can reach the C_c necessary to form structured material, we consider that evaporation process in a drop is too fast to let molecules of compound **1** to self-assemble in a proper way and produce the particles.

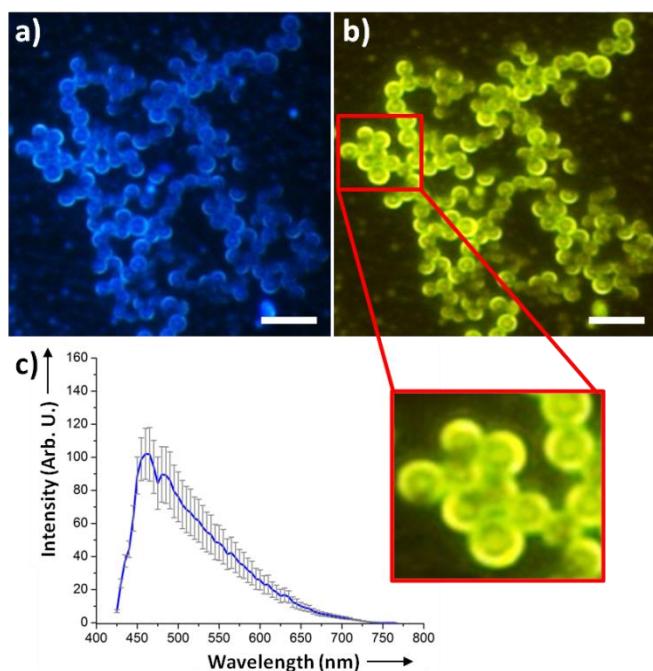


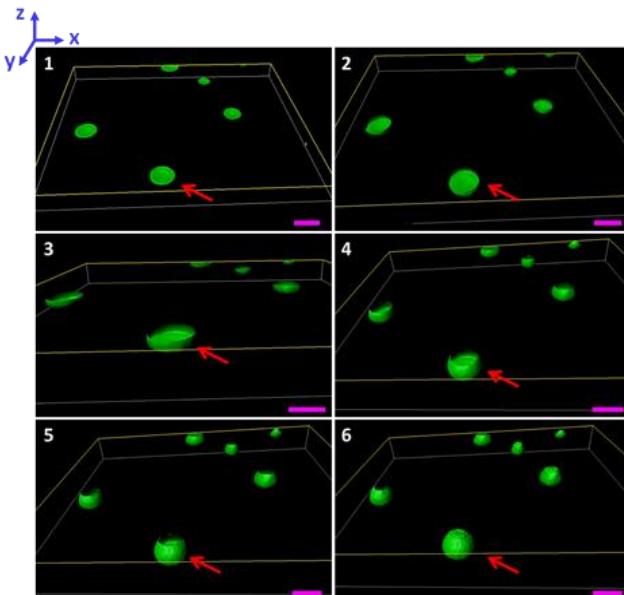
Figure 2. a) Normalized excitation spectra ($\lambda_{\text{emi}} = 395$ nm) of **1** at three different concentrations in MeOH; SEM images and digital photograph (insets) of solutions of **1** in MeOH at b) $7.9 \cdot 10^{-2}$ mM, c) $7.9 \cdot 10^{-1}$ mM and d) 7.9 mM. Scale bars are $2 \mu\text{m}$.

Upon magnification of the images corresponding to high concentration solutions (7.9 mM), holes and fractured sections on a large fraction of the particles can be observed (Supporting Information, Figure S9). According to previously reported works,^[17a,22] the existence of these “open-mouth” structures is in agreement with the vesicle character of the structures and can be rationalized by the rigidity of pyrene rings, which would be responsible for the inability of the membranes to fully close. On the other hand, the formation of these relatively large vesicles is unknown at this stage, but it may arise from the fusion of smaller ones as the concentration of the molecules increases, as already described in the literature.^[2,23] In fact, this was evidenced by STEM images, in which a detectable process of fusion between small particles resulted in the production of larger ones (Supporting Information, Figure S10).

For corroborating that the formation of the vesicles is due to the amphiphilic character of the compound **1**, solutions containing different concentrations of PBH and 3,4-dihydroxybenzaldehyde were analyzed. No evidence of vesicles formation was obtained in the whole range of concentrations and only the presence of non-structured material was observed by SEM (Supporting Information, Figure S11). These results confirm the need of having the pyrene and catechol units covalently linked forming the amphiphilic molecule **1** for a proper self-assembly.

The vesicle nature and the hollow features of this sample were also evidenced by fluorescence microscopy, where a clear contrast was observed between the walls and the inner areas of them (Figures 3a-b).^[17c] At high concentrations (7.9 mM), the formation of vesicles with an emission around 470 nm after excitation at 405 nm were observed (Figure 3c).

Figure 3. Fluorescence images for **1** in MeOH at 7.9 mM measured with a) DAPI ($\lambda_{\text{em}} > 400$ nm) and b) Alexa Fluor 488 ($\lambda_{\text{em}} > 515$ nm) filters. Scale bars are 5 μm . c) Average fluorescence spectrum with standard deviations after analysis on 10 representative vesicles ($\lambda_{\text{exc}} = 405$ nm).


Supramolecular assembly in acetone

The optical behavior of **1** was also studied in acetone in the same concentration range as that previously used for MeOH, exhibiting similar results (Supporting Information, Figure S12). At low concentrations the emission spectrum is characteristic of the initial monomeric species ($\lambda_{\text{max}} = 376, 396$ nm and shoulder at 418 nm) with a fluorescence bands intensity enhancement along with a concentration increase, up to a value of $7.9 \cdot 10^{-1}$ mM. A further increase of the concentration induced an inversion of the tendency, with a significant decrease of the bands between 350-

450 nm and the appearing of a novel broad emission band at $\lambda_{\text{max}} = 480$ nm which increases up to the studied maximum concentration (7.9 mM). Similarly to what concluded for **1** in MeOH, this band is an indication of the pyrene molecules self-assembling in their ground state at higher concentrations, forming microparticles. The bathochromic shift and the loss of vibronic structure of the excitation spectra ($\lambda_{\text{emi}} = 380$ nm) also confirmed the formation of aggregates upon concentration of the compound in acetone (Supporting Information, Figure S13). Also in this solvent, upon dilution the monomeric system can be reversibly obtained.

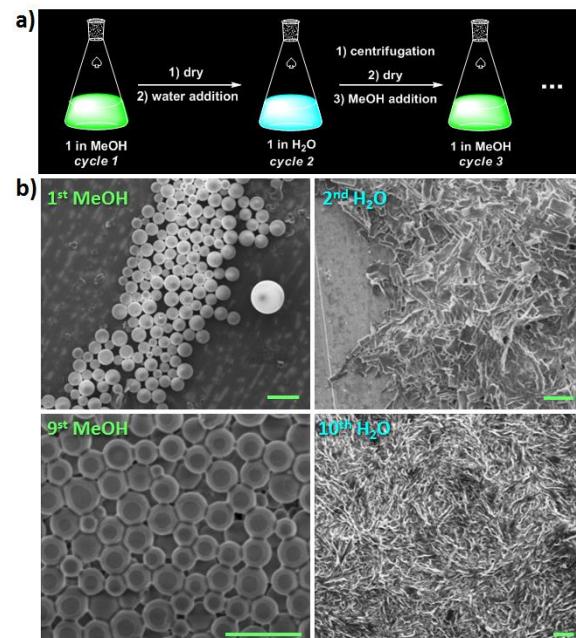
SEM images reveal again the formation of stable vesicles with average dimensions between 0.5 and 2.5 μm for concentrations above 3.9 mM. Below this value, some spherical structures were detected though quite polydispersed (Supporting Information, Figure S14). Optical and fluorescence microscopy images of **1** in acetone at 7.9 mM showed the presence of a) large particles (between 2 and 4 μm) with holes on the surface and b) small particles (between 0.5 and 1 μm) with empty interior and fluorescent walls (Supporting Information, Figure S15).

Complementary, concentrated solutions of compound **1** (7.9 mM) prepared in acetone and MeOH were studied in detail by confocal microscopy. To avoid instantaneous evaporation of the solvents during measurements and consequently changes in concentration of the sample, closed specimen holders were employed. The fluorescence imaging was performed on a Leica TCS SP5 confocal fluorescence microscope, and the image analysis and 3D reconstruction was performed using the Bitplane Imaris software. The results corresponding to methanol

Figure 5. Reconstructed video frames for showing a 3D animation of vesicles produced after dissolution of **1** in acetone at a concentration above 7.9 mM. The sample was analysed in liquid state (acetone) by fluorescence confocal microscopy revealing their empty interior and fluorescent walls. Arrows indicate the formation of a particular vesicle through successive plans in zeta axis. Scale bars are 5 μm .

solution were dismissed because the difficulty to achieve good images and 3D reconstructions. Unlike, the images obtained for compound **1** in acetone showed enough quality to have a 3D image reconstruction with good definition. As observed (Figure 5 and video in Supporting Information), the resulting images revealed the formation of vesicles in solution with an intense fluorescent emission around 450 nm mostly from the walls. This detailed morphological images corroborated the formation of vesicles in solution at the related concentration rather than during the drying process.

Supramolecular assembly in water


The emission spectra of compound **1** in water (Figure S16a) show no structured emission bands, characteristic of the monomeric form, even at the lowest studied concentrations ($3.9 \cdot 10^{-3}$ mM), while the band at 450 nm already appears in diluted solutions and increases along the investigated concentration range (up to $7.9 \cdot 10^{-1}$ mM). The fluorescence quenching observed at 3.9 mM, was ascribed to the formation of large non-emitting aggregates. The loss of the monomeric form is also observed in the excitation spectrum, which depicts a broad, unstructured band between 310-390 nm even at concentrations as low as $3.9 \cdot 10^{-3}$ mM. This spectral feature was already reported for pyrene in water solutions ($\lambda_{\text{emi}} = 460$ nm)^[24] and was associated to the formation of microcrystals, confirming that in water **1** yields microstructures even at very low concentrations (Figure S16b). UV-Vis spectra of the water solutions of **1** show a broadening of the absorption bands in the 300-350 nm region, where P_A values far below 3 (1.84-1.85) corroborate the pre-association of **1** in its ground state (Supporting Information, Figure S16c). The broadening of the bands becomes more evident upon increasing the concentration until collapsing in one broad and unstructured band at 7.9 mM. It might be an indication of the formation of J-type aggregates resulting from a supramolecular self-organization induced by the solvent and/or concentration.^[25] In fact, both UV-Vis and excitation spectra confirm the supramolecular self-organization of **1** induced by the solvent. SEM/HR-TEM micrographs reveal a close relationship between morphologies for different ranges of concentrations and the spectroscopic data already shown. In this way, up to 3.9 mM belt-like nanostructures with ≈ 40 nm width and ≈ 2 nm thickness twisted to form superhelical bundles (Supporting Information, Figure S17). On the other hand, above 3.9 mM, when a drop of fluorescence is observed, more compact plate-like aggregates are observed

Solvent-tuned supramolecular assembly of **1**

The results suggested a structuration completely dependent on the solvent polarity and concentration. Thus, we can tune the morphologies from belt-like morphology or plates (in water) to hollow vesicles (in MeOH or acetone). In this scenario, we decided to carry out a study in which the compound **1** dissolved in pure MeOH at the higher concentration studied (7.9 mM) was exposed to increasing volumes of water. The different samples were dried on the aluminum tape and analyzed by SEM

(Supporting Information, Figure S18). A first observation indicated that the preformed vesicles loss their spherical morphology as more water was added. When the water amount was less than 7.5%, coexistence of the two types of structures (vesicles and belt-like) were obtained. Above this concentration unique structuration in fibers first and then sheets was predominant. These last results motivate us to expose the compound **1** to cycles MeOH-water under the optimal conditions of structuration to check the ability of **1** to structure as vesicles in MeOH in a reversible manner. As we expected, the supramolecular interactions were able to form vesicles repeatedly at least until 10th cycles, even after the aggregation of the compound **1** in water, as long as the concentration is maintained around 7.9 mM (Figure 6).

FT-IR analysis after each cycle of the dry sample in KBr pellets revealed which were the functional groups that presented most changes after structuring/destructuring process (Supporting Information, Figure S19). In this way all the vibrations related with the acyl hydrazone (ν N-H, ν C=O, δ N-H and ν C=N) and catechol (ν O-H and ν C-O) moieties showed variations. For example, N-H stretching band from hydrazone group in water was sharp and centered at 3250 cm⁻¹, while in MeOH was broadened and shifted to lower wavenumber (3205 cm⁻¹). Something similar occurred with the stretching band from O-H which changes from 3530 cm⁻¹ in H₂O to 3450 cm⁻¹ in MeOH, although in this case both signals presented much less intensity. Moreover, the region of amide (C=O) stretching vibrational mode showed in water a single band in comparison with that observed in methanol. This is an unambiguous signature of the presence of a network of intermolecular water-assisted H-bonded amides in the system.^[17c]

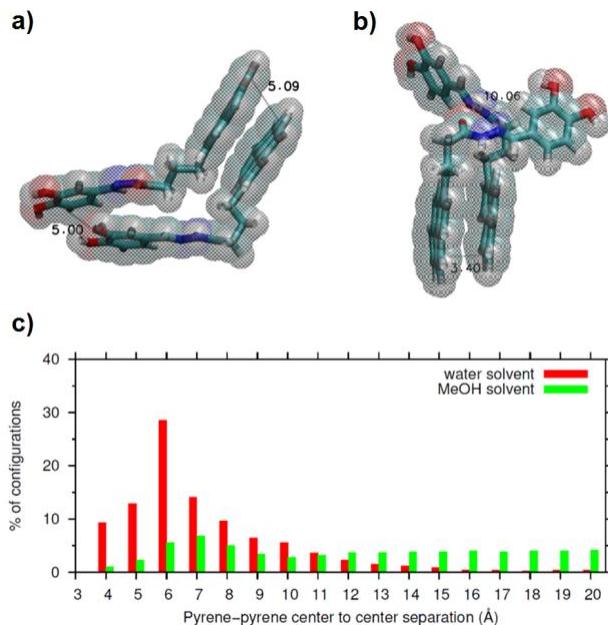
Figure 6. a) Schematic representation of cycles in MeOH-H₂O of compound **1** describing process conditions. b) SEM images of compound **1** after MeOH-water cycles at 7.9 mM. Cycles 1 and 9 for MeOH and cycles 2 and 10 for water are shown revealing the successive formation of vesicles or belt-like structures depending of the solvent added. Scale bars are 2 μ m.

Modeling of supramolecular interactions

In order to provide an atomistic interpretation of the obtained results, we have performed all atomic Molecular Dynamics (MD) simulations at ambient temperature and pressure of the compound **1** in two different solvents, MeOH and water. MD simulations are based on the numerical solution of the Newtonian equations of motion for all atoms the system under the given thermodynamic conditions. Obviously, a description with atomistic detail of the micron-sized particles observed experimentally is not possible nowadays. But we can study by simulations the ligand-solvent and ligand-ligand interactions which are responsible for the self-assembly processes behind the observed structures. Since experimental results in acetone and MeOH are very similar and all atomic MD simulations require a substantial computational effort, simulations for only MeOH and water have been performed.

We first consider simulations SIM1 (in MeOH) and SIM2 (in water) at ambient temperature and pressure of a single molecule **1** (see Experimental Section). In both cases, simulations show the amphiphilic character of **1** since the solvophobic pyrene moiety does not present any significant interactions with the solvent molecules whereas the solvophilic catechol tail is observed to form hydrogen bonds with both solvents, as detailed in Figure 7. We found four possible locations for solvent molecules interacting through hydrogen bonds with **1**, two at the $-\text{OH}$ of the catechol groups and two at the hydrazide group. Being a dynamic system, not all four possible sites are occupied at the same time (Figure 7 is representative snapshot of the dynamic process). Our simulations give an average of 1.5 MeOH and 2.25 water molecules with hydrogen bonds with **1**. In both cases, half of the hydrogen bonds correspond to the catechol moiety and half to the amide. The pyrene moiety has unfavorable interactions with both solvents, and the formation of a clathrate cage around pyrene is seen in the simulations (not shown in the snapshots). This amphiphilic character (ability of tail to form hydrogen bonds and solvophilicity of the pyrene head group) is a driving force for self-assembly of **1** in both MeOH and water.

According to self-assembly thermodynamic theory,^[25] the concentration at which self-assembly will occur and the structures formed depend both on the solvophobic/solvophilic balance in the **1** molecule and on the presence of attractive or repulsive interactions between **1** molecules. In order to identify the presence of interactions between **1** molecules, we have considered atomistic MD simulations of two **1** molecules in a large solvation box, both for water and MeOH at ambient temperature and pressure (simulations SIM3 and SIM4 respectively, see technical details in Experimental Section).


In this case, we obtain very different results for MeOH or water. In water (simulation SIM4), we observe an strong attractive interaction leading to preferred configurations with the pyrene groups in contact in face to face orientation (Figures 8a and 8b). The planes of the pyrene and catechol groups form an angle typically between 120° - 130° . However, the catechol tails in these two main conformations can be found in close contact (see Figure 8a) or with a notable separation (see Figure 8b)

indicating a soft interaction. As the interaction between pyrene moieties determine the supramolecular assembly, the calculations of the pyrene-pyrene separation in the different possible conformations can give us information about the self-assembly process. Thus, while in water the histogram of pyrene-pyrene center of mass distances (simulation SIM4) has a sharp peak at about 6 Å, no significant **1**-**1** interactions (simulation SIM3) are observed in MeOH solvent (Figure 8c). From the simulation results, we can conclude that the self-assembly processes of **1** in MeOH and water are driven by different mechanisms. In the case of water, self-assembly is driven both by the amphiphilic character of **1** but also by the attractive interaction between pyrene groups (Figure 8). This attractive **1**-**1** interaction is responsible for the experimentally observed fact that even at very low concentrations, **1** molecules assemble in water. On the contrary, the self-assembly of **1** in MeOH is driven only by its amphiphilic character (Figure 7a). Since in this case self-assembly is driven by a solvophobic/solvophilic balance in the molecule, thermodynamic theory^[25] predicts the existence of a critical concentration C_c for self-assembly. This critical concentration C_c is related to the gain in solvation free energy per molecule (chemical potential $\Delta\mu$) obtained from moving the solvophobic head of the molecule to a more favorable environment by the approximate relation $C_c \sim (1/v_s) \exp(-\Delta\mu/RT)$ (where R is the gas constant, T is the absolute temperature and v_s is the molar volume of the solvent). In our case, we can employ this equation to test the proposed driving force for self-assembly. In previous experiments,^[26] it was estimated that the solvation free energy of pyrene in MeOH is about $\Delta\mu=6.4$ Kcal/mol = $11RT$, so using a molar volume of $40.45 \text{ cm}^3/\text{mol}$ for MeOH we predict for the critical concentration $C_c \sim 4.0 \cdot 10^{-1} \text{ mM}$. The calculated value is not far from the experimental concentration at which labile aggregates start forming in MeOH ($7.9 \cdot 10^{-1} \text{ mM}$).

Conclusions

In summary, a very simple procedure for the formation of fluorescent vesicles in organic solvents has been reported. The amphiphilic molecule **1** containing hydrophobic pyrene and hydrophilic catechol groups is able to self-assemble in different solvents. While in water there is a strong interaction between pyrene moieties even at low concentrations which results in the formation of fibril-like aggregates, in MeOH the formation of supramolecular structures depends directly of the concentration of **1** in the solution. Spectroscopic techniques confirmed that the self-assembly of **1** was related with vesicle formation in MeOH above 3.9 mM. Theoretical calculations led us to conclude that the self-assembly of compound **1** in water was driven both by the amphiphilic character (ability of catechol tail to form hydrogen bonds and solvophilicity of the pyrene head group), but also by the hydrophobicity and attractive interaction between pyrene groups. However, the self-assembly of **1** in MeOH was led by its amphiphilic character and dependent on the

concentration. Interestingly, the reversible exchange of fibril-like nanostructures to vesicular ones could be achieved in successive cycles MeOH-H₂O without losing the characteristics of both systems indicating the reversibility of the self-assembly process.

Figure 8. (a-b) Snapshots of simulation SIM4 corresponding to the interaction of two compound 1 molecules in water solvent. The representations show the molecules in their most probable configurations, with their pyrene groups in contact in face to face orientation. In (a) the catechol groups are also in close contact, whereas in (b) they are clearly separated (1 molecules are shown in licorice representation and the Van der Waals size of the atoms is indicated as shadows). (c) Results from MD simulations [SIM3 and SIM4, corresponding to the separation of pyrene](#) moieties between two 1 molecules in different solvents. The histogram represents the 1-1 separation distances (measured between the centers of mass of pyrene groups) in MeOH solvent (SIM3 simulation) and water (SIM4 simulation).

Experimental Section

Materials

All chemicals were purchased from Sigma–Aldrich and used without further purification. Solvents were purchased from Scharlab and used as received. Ultrapure water was generated using a Millipore Milli-Q system with a Milli-pak filter of 0.22 µm pore size and used for all the preparation of aqueous solutions.

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker ARX-400 and ARX-250 spectrophotometer using acetone-d₆. Fourier Transform Infrared Spectroscopy (FT-IR) spectra were collected on a Tensor 27 FT-IR Spectrometer (Bruker) in the range of 400-4000 cm⁻¹ using KBr pellets. UV-Vis spectra were obtained on a Cary 4000 spectrophotometer (Agilent) using quartz cuvettes. Fluorescence emission was measured with a Hitachi F-2500 Fluorescence

spectrophotometer with excitation and emission slits of 5 nm and a PMT voltage of 400 V. SEM images were obtained by a scanning electron microscope (FEI Quanta 650 FEG and FEI Magellan 400L XHR) at acceleration voltages of 2–5 kV. Aluminium tape was used as support. TEM images were obtained with a FEI Tecnai G2 F20 at a voltage of 200 kV, and a JEOL 1210 TEM operating voltage of 120 kV.

Optical and fluorescence images were registered by Zeiss Axio Observer Z-1 inverted optical/fluorescence microscope with motorized XY stage, Hg lamp excitation source, AxioCam HRc digital camera and standard filters. Fluorescence imaging was performed on a Leica TCS SP5 confocal fluorescence microscope. The image analysis and 3D reconstruction was performed using the Bitplane Imaris software.

Synthesis of compound 1

A mixture of 4-(pyren-1-yl)butanehydrazide (PBH, 0.06 mmol, 18 mg), 3,4-dihydroxybenzaldehyde (2, 0.05 mmol, 7 mg) and acetic acid (10 µL) in EtOH 96 % (6 mL) was stirred and heated under reflux for 6 hours. The solvent was then evaporated and the residue was washed with water and centrifuged. A pale yellow solid was obtained with a yield around 80%. Complete characterization is detailed in Supporting Information S1.

Simulation methods

We performed 4 different simulations, labeled here as S1, S2, S3 and S4. In simulations S1 and S2 we considered a single molecule of compound 1 in different solvents. In S1 we consider a box of 46.1 nm³ containing 659 MeOH solvent molecules (4008 atoms in total) and in simulation S2, we consider a box of 57.4 nm³ containing 1940 water molecules (5874 atoms). Simulations S3 and S4 correspond to simulations of two 1 molecules in different solvents and were prepared by adding another 1 molecule to simulations S1 and S2, respectively. All MD simulations reported here were performed using NAMD 2.11 software.^[27] The molecular models were build using Visual Molecular Dynamics (VMD) and CGenFF software.^[28,29] Inter- and intramolecular interactions between compound 1 and MeOH were described using the CHARMM General Force Field.^[29] For water molecules we employed the TIP4P/2005 force field,^[30] which is the best model available in reproducing the hydrogen bonding features of liquid water.^[31,32] Electrostatic interactions were computed using the PME method (PME) with the standard settings in NAMD (1 Å resolution, updated each 2 time steps). Lennard-Jones interactions were truncated at 1.2 nm employing a switching function starting at 1.0 nm. Temperature and pressure were kept constant at 298 K and 1 atm using a Langevin thermostat (relaxation time 1 ps) and the isotropic Nosé-Hoover-Langevin piston (oscillation period of 100 fs and decay time of 50 fs). Periodic boundary conditions were employed in all directions. The employed time step was 2 fs. Simulations S1 and S2 were ran for 10 ns. Simulations S3 and S4 required much longer runs (of 220 ns each) in order to obtain accurate statistics. All simulation snapshots were made with VMD. Data analysis was made using in-house build scripts running in VMD.

Acknowledgements

This work was supported by the project MAT2015-70615-R from the Spanish Government. K. W thanks Generalitat de Catalunya for her fellowship (Beca F1 2013). F. N. thanks Universidad Nacional del Sur for supporting her postdoctoral stay. DRM and JF acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2013-0295 & SEV- 2015-0496). We thank CESGA

Supercomputing centre for access to computational resources and technical support.

Keywords: catechol • self-assembly • vesicles • fluorescent • supramolecular

[1] J. Z. Zhang, Z.-I. Wang, J. Liu, S. Chen, G.-y. Liu in *Self-assembled nanostructures*, Eds.: D. J. Lockwood, Kluwer Academic Publishers, **2004**, pp. 7-13.

[2] P. Rajamalli, E. Prasad, *Langmuir* **2013**, *29*, 1609–1617.

[3] R. Blumenthal, M. J. Clague, S. R. Durell, R. M. Eppard, *Chem. Rev.* **2003**, *103*, 53–69.

[4] X. Zhang, Z. Chen, F. Würthner, *J. Am. Chem. Soc.* **2007**, *129*, 4886–4887.

[5] a) A. Ajayaghosh, C. Vijayakumar, V. K. Praveen, S. S. Babu, R. Varghese, *J. Am. Chem. Soc.* **2006**, *128*, 7174–7175; b) A. Ajayaghosh, V. K. Praveen, C. Vijayakumar, S. J. George, *Angew. Chem., Int. Ed.* **2007**, *46*, 6260–6265.

[6] a) A. L. Martin, B. Li, E. R. Gillies, *J. Am. Chem. Soc.* **2009**, *131*, 734–741; b) Y. Zhu, W. Tong, C. Gao, *Soft Matter* **2011**, *7*, 5805–5815; c) T. M. Allen, P. R. Cullis, *Science* **2004**, *303*, 1818–1822.

[7] J. Sedó, J. Saiz-Poseu, F. Busqué, D. Ruiz-Molina, *Adv. Mater.* **2013**, *25*, 653–701.

[8] M. Guardingo, E. Bellido, R. Miralles-Llumà, J. Faraudo, J. Sedó, S. Tatay, A. Verdaguer, F. Busqué, D. Ruiz-Molina, *Small* **2014**, *10*, 1594–1602.

[9] J. Saiz-Poseu, J. Faraudo, A. Figueras, R. Alibés, F. Busqué, D. Ruiz-Molina, *Chem. Eur. J.* **2012**, *18*, 3056–3063.

[10] a) C. Yuan, J. Chen, S. Yu, Y. Chang, J. Mao, Y. Xu, W. Luo, B. Zeng, L. Dai, *Soft Matter* **2015**, *11*, 2243–2250; b) M. Krogsaard, M. A. Behrens, J. S. Pedersen, H. Birkedal, *Biomacromolecules* **2013**, *14*, 297–301; c) N. Holten-Andersen, M. J. Harrington, H. Birkedal, B. P. Lee, P. B. Messersmith, K. Y. C. Lee, J. H. Waite, *PNAS* **2011**, *108*, 2651–2655; d) Z. Shafiq, J. Cui, L. Pastor-Pérez, V. San Miguel, R. A. Gropeanu, C. Serrano, A. del Campo, *Angew. Chem. Int. Ed.* **2012**, *51*, 4332–4335; e) J. Guo, Y. Ping, H. Ejima, K. Alt, M. Meissner, J. J. Richardson, Y. Yan, K. Peter, D. von Elverfeldt, C. E. Hagemeyer, F. Caruso, *Angew. Chem., Int. Ed.* **2014**, *53*, 5546–5551.

[11] a) N.N. Adarsh, C. Frias, T.M. Ponnoth Lohidakshan, J. Lorenzo, F. Novio, J. Garcia-Pardo, D. Ruiz-Molina, *Chem. Eng. J.* **2018**, *340*, 94–102. b) M. Guardingo, P. González-Monje, F. Novio, E. Bellido, F. Busqué, G. Molnár, A. Boussekou, D. Ruiz-Molina, *ACS Nano*, **2016**, *10*, 3206–3213; c) M. Guardingo, F. Busqué, F. Novio, D. Ruiz-Molina, *Inorg. Chem.* **2015**, *54*, 6776–6781; d) M. Borges, S. Yu, A. Laromaine, A. Roig, S. Suárez-García, J. Lorenzo, D. Ruiz-Molina, F. Novio, *RSC Adv.* **2015**, *5*, 86779–86783; e) F. Novio, J. Lorenzo, F. Nador, K. Wnuk, D. Ruiz-Molina, *Chem. Eur. J.* **2014**, *20*, 15443–15450; f) F. Novio, D. Ruiz-Molina, *RSC Adv.* **2014**, *4*, 15293–15296; g) I. Imaz, D. Maspoch, C. Rodríguez-Blanco, J. M. Pérez-Falcón, J. Campo, D. Ruiz-Molina, *Angew. Chem., Int. Ed.* **2008**, *47*, 1857–1860; h) I. Imaz, J. Hernando, D. Ruiz-Molina, D. Maspoch, *Angew. Chem. Int. Ed.* **2009**, *48*, 2325–2329.

[12] a) M. Moriyama, S. Metzger, A. J. van der Vlies, H. Uyama, M. Ehrbar, U. Hasegawa, *Adv. Healthcare Mater.* **2015**, *4*, 569–575; b) U. Hasegawa, M. Moriyama, H. Uyama, A. J. van der Vlies, *Polymer* **2015**, *66*, 1–7.

[13] L. Bednarova, J. Brandel, A. du Moulinet d'Hardemare, J. Bednar, G. Serratrice, J.-L. Pierre, *Chem. Eur. J.* **2008**, *14*, 3680–3686.

[14] a) S. Wu, H. Kuang, F. Meng, Y. Wu, X. Li, X. Jing, Y. Huang, *J. Mater. Chem.* **2012**, *22*, 15348–15356; b) E. P. Holowka, T. J. Deming, *Macromol. Biosci.* **2010**, *10*, 496–502.

[15] F. M. Winnik, *Chem. Rev.* **1993**, *93*, 587–614.

[16] A. Salonen, A. Knyazev, N. von Bandel, J. Degrouard, D. Langevin, W. Drenckhan, *ChemPhysChem* **2011**, *12*, 150–160.

[17] a) J. Xu, L. Tao, C. Boyer, A. B. Lowe, T. P. Davis, *Macromolecules* **2011**, *44*, 299–312; b) N. Kameta, M. Masuda, T. Shimizu, *Chem. Commun.*, **2015**, *51*, 11104–11107; c) M. O. Guler, R. C. Claussen, S. I. Stupp, *J. Mater. Chem.*, **2005**, *15*, 4507–4512.

[18] a) H. T. Oyama, W. T. Tang, C. W. Frank, *Macromolecules* **1987**, *20*, 474–480; b) K. Char, C. W. Frank, A. P. Gast, W. T. Tang, *Macromolecules* **1987**, *20*, 1833–1838.

[19] G. Bains, A. B. Patel, V. Narayanaswami, *Molecules* **2011**, *16*, 7909–7935.

[20] J. F. Sinski, J. Exner, *Applied Spectroscopy*, **2007**, *9*, 970–977; b) B. C. MacDonald, S. J. Lvnb, H. Pattersonc, *Analytica Chimica Acta*, **1997**, *338*, 155–162.

[21] a) K. Kalyanasundaram, J. K. Thomas, *J. Am. Chem. Soc.*, **1977**, *99*, 2039–2044; b) D. C. Dong, M. A. Winnik, *Can. J. Chem.*, **1984**, *62*, 2560–2565.

[22] a) B. Jing, X. Chen, Y. Zhao, X. Wang, F. Ma, X. Yue, *J. Mater. Chem.* **2009**, *19*, 2037–2042; b) M. Changez, N.-G. Kang, C. H. Lee, J.-S. Lee, *Small* **2010**, *6*, 63–68.

[23] P. Rajamalli, E. Prasad, *Soft Matter* **2012**, *8*, 8896–8903.

[24] A. Nakajima, *J. Lumin.* **1977**, *15*, 277–282.

[25] F. Würthner, T. E. Kaiser, C. R. Saha-Möller, *Angew. Chem. Int. Ed.* **2011**, *50*, 3376–3410.

[26] S. A. Safran, *Statistical Thermodynamics of surfaces, Interfaces and membranes*, Addison-Wesley, **1994**.

[27] D.B. Smithrud, F. Diederich, *J. Am. Chem. Soc.* **1990**, *112*, 339–343.

[28] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, K. Schulten, *J. Comput. Chem.* **2005**, *26*, 1781–1802.

[29] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A. D. MacKerell Jr., *J. Comput. Chem.* **2010**, *31*, 671–690.

[30] J. L. F. Abascal, C. Vega, *J. Chem. Phys.* **2005**, *123*, 234505–12.

[31] C. Vega, J. L. F. Abascal, *Phys. Chem. Chem. Phys.* **2011**, *13*, 19663–19688.

[32] C. Calero, J. Martí, E. Guàrdia, *J. Phys. Chem. B* **2015**, *119*, 1966–1973.

Fluorescent catechol-based vesicles are obtained through a simple procedure that involves the dissolution in organic solvents of a simple amphiphilic molecule **1** containing a pyrene head and catechol tail. A correlation between the interaction of pyrene moieties giving supramolecular structures and vesicle formation according to concentration could be established through spectroscopic techniques as well as electron and confocal microscopies. Dispersion of compound **1** in water showed the formation of fibrillar structures assigned to ground state aggregates. Finally, reversible formation of vesicles or fibril-like nanostructures were obtained through successive cycles MeOH-H₂O at high concentrations.

F. Nador,* K. Wnuk, C. Roscini, R. Solorzano, J. Faraudo, D. Ruiz-Molina, F. Novio*

Page No. – Page No.

Fluorescent and solvent tuned catechol-based vesicles.